JP5598931B2 - Fiber reinforced resin substrate, method for producing resin molded body, and resin processing machine for implementing the method - Google Patents

Fiber reinforced resin substrate, method for producing resin molded body, and resin processing machine for implementing the method Download PDF

Info

Publication number
JP5598931B2
JP5598931B2 JP2012050516A JP2012050516A JP5598931B2 JP 5598931 B2 JP5598931 B2 JP 5598931B2 JP 2012050516 A JP2012050516 A JP 2012050516A JP 2012050516 A JP2012050516 A JP 2012050516A JP 5598931 B2 JP5598931 B2 JP 5598931B2
Authority
JP
Japan
Prior art keywords
resin
reinforcing fiber
fiber bundle
reinforced
die
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012050516A
Other languages
Japanese (ja)
Other versions
JP2013184356A (en
Inventor
秋夫 大野
義之 加藤
和彦 中本
一昭 木村
恭弘 岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Original Assignee
Japan Steel Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd filed Critical Japan Steel Works Ltd
Priority to JP2012050516A priority Critical patent/JP5598931B2/en
Publication of JP2013184356A publication Critical patent/JP2013184356A/en
Application granted granted Critical
Publication of JP5598931B2 publication Critical patent/JP5598931B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、強化繊維と熱可塑性樹脂からなる繊維強化された樹脂基材、樹脂成形体を製造する方法及びその実施のための樹脂加工機に係り、特にTダイを使用して熱可塑性樹脂を強化繊維束や強化繊維織物に含浸させた樹脂基材、樹脂成形体を製造する方法及びその実施のための樹脂加工機に関する。   The present invention relates to a fiber reinforced resin base material composed of a reinforced fiber and a thermoplastic resin, a method for producing a resin molded body, and a resin processing machine for the implementation thereof, and in particular, a thermoplastic resin using a T-die. The present invention relates to a resin base material impregnated in a reinforcing fiber bundle or a reinforcing fiber fabric, a method for producing a resin molded body, and a resin processing machine for implementing the method.

炭素繊維強化樹脂は、軽量で高強度を有し、ゴルフクラブのシャフト、釣り竿、テニスラケット、建築資材、航空機などに使用され、特殊自動車部品などにもその用途を拡大しているが、経済性、量産性が重視される一般自動車部品などへの適用は進んでいない。しかし、環境負荷軽減が求められる社会情勢の変化に伴い自動車軽量化技術の開発が重要な課題になり、炭素繊維強化樹脂が大量に使用される可能性がある一般自動車部品への適用が注目されている。   Carbon fiber reinforced resin is lightweight and has high strength, and is used for golf club shafts, fishing rods, tennis rackets, building materials, aircraft, etc. However, application to general automobile parts where mass productivity is important has not progressed. However, the development of technology for reducing the weight of automobiles has become an important issue due to changes in the social situation where environmental impact reduction is required, and its application to general automobile parts where carbon fiber reinforced resin may be used in large quantities is drawing attention. ing.

これまで強化繊維と樹脂からなる商品化された炭素繊維強化樹脂は、マトリックスとなる樹脂にエポキシ樹脂などの熱硬化性樹脂を用いたものが多く、熱可塑性樹脂を用いたものは少ない。熱可塑性樹脂を炭素繊維束に含浸させるのが容易でないという問題があるためであるが、その取扱の容易さや生産性の高さ、用途の拡大性などの利点を考慮し、マトリックスに熱可塑性樹脂を用いた炭素繊維強化樹脂又はその成形品の開発が試みられている。   Until now, many commercialized carbon fiber reinforced resins made of reinforced fibers and resins have used a thermosetting resin such as an epoxy resin as a matrix resin, and few have used a thermoplastic resin. This is because it is not easy to impregnate the carbon fiber bundle with the thermoplastic resin, but considering the advantages such as ease of handling, high productivity, and expandability of the application, the matrix is thermoplastic resin. Attempts have been made to develop a carbon fiber reinforced resin or molded product thereof.

例えば、特許文献1に、繊維シートの繊維間にマトリクス樹脂を加圧含浸させることから成る樹脂プリプレグの製造方法であって、前記繊維シートに対し、繊維の配向と交差する方向に縫い糸を縫合する縫合処理、並びに繊維に塗布された薬剤を除去し繊維束を開繊する開繊等処理を施すことを特徴とする樹脂プリプレグの製造方法が提案されている。   For example, Patent Document 1 discloses a method for manufacturing a resin prepreg, which includes pressurizing and impregnating a matrix resin between fibers of a fiber sheet, and sewing a sewing thread in a direction crossing the fiber orientation with respect to the fiber sheet. There has been proposed a method for producing a resin prepreg characterized by performing a suturing process and a fiber opening process for removing a drug applied to fibers and opening a fiber bundle.

特許文献2に、減圧されたシール部、温度制御可能な連結部及び溶融樹脂が貯留されたダイが一連に連結され、複数の連続強化繊維からなる帯状強化繊維束がシール部端の導入口から連結部及びダイ内の溶融樹脂を挿通されてダイ端から引き取られるようになったシート状プリレグの製造方法が提案されている。この製造方法によると、樹脂が均一かつ良好に含浸され、含浸時間が短いとされる。また、この製造方法においては、連結部は、ダイ側の加熱ゾーンとシール部側の冷却ゾーンとを有しており、加熱ゾーンは冷却ゾーンの温度からダイの温度に近づく温度まで温度勾配をもたせるようになっているので、ダイ内の溶融樹脂の連結部への流出長を短く抑えることができるとされる。   In Patent Document 2, a reduced-pressure seal part, a temperature-controllable connection part, and a die in which a molten resin is stored are connected in series, and a strip-shaped reinforcing fiber bundle made of a plurality of continuous reinforcing fibers is introduced from an inlet at the end of the seal part. There has been proposed a method for manufacturing a sheet-like pre-leg that is inserted through a molten resin in a connecting portion and a die and pulled from the end of the die. According to this manufacturing method, the resin is uniformly and satisfactorily impregnated and the impregnation time is short. In this manufacturing method, the connecting portion has a heating zone on the die side and a cooling zone on the seal portion side, and the heating zone has a temperature gradient from the temperature of the cooling zone to the temperature approaching the die temperature. Therefore, it is said that the outflow length of the molten resin in the die to the connecting portion can be kept short.

特許文献3には、含浸ローラが連接され、粘度100〜1000Pa・sの熱可塑性樹脂が貯留された含浸浴内を、平均直径5〜10μmの炭素繊維のモノフィラメントから構成される繊維束が含浸ローラを縫うように挿通され、所定の大きさのテンションが負荷されて引き取られる熱可塑性樹脂含浸ストランドの製造方法が提案されている。本製造方法においては、繊維束に負荷されるテンションを、繊維束が挿通される熱可塑性樹脂の粘度、含浸ローラの径、搬送速度、繊維束の強度から求められる所定の範囲にすることにより、樹脂含浸率を高くすることができるとされる。   In Patent Document 3, a fiber bundle composed of carbon fiber monofilaments having an average diameter of 5 to 10 μm is contained in an impregnation bath in which an impregnation roller is connected and a thermoplastic resin having a viscosity of 100 to 1000 Pa · s is stored. There has been proposed a method for producing a thermoplastic resin-impregnated strand that is inserted so as to be sewed and pulled by being loaded with a predetermined tension. In this production method, the tension applied to the fiber bundle is set within a predetermined range determined from the viscosity of the thermoplastic resin through which the fiber bundle is inserted, the diameter of the impregnation roller, the conveyance speed, and the strength of the fiber bundle. The resin impregnation rate can be increased.

特許文献4には、マトリックス樹脂注入口を備えた一方の金型のキャビティ内に、透過率調整部材を配設した後、補強繊維基材を配置し、他方の金型を嵌合させて、前記マトリックス樹脂注入口から、キャビティ内の透過率調整部材を介して補強繊維基材にマトリックス樹脂を圧入させて含浸させ、加熱,加圧することにより複合材を成形する複合材の成形方法が提案されている。   In Patent Document 4, after arranging the transmittance adjusting member in the cavity of one mold having the matrix resin injection port, the reinforcing fiber base material is arranged, and the other mold is fitted, A molding method for a composite material has been proposed in which a matrix resin is pressed and impregnated into a reinforcing fiber base material through a transmittance adjusting member in a cavity from the matrix resin injection port, and a composite material is molded by heating and pressurizing. ing.

特開2008-179808号公報JP 2008-179808 JP 特開2012-16857号公報JP 2012-16857 A 特開2011-245754号公報JP 2011-245754 A 特開平11-348059号公報JP 11-348059 A

マトリックスに熱可塑性樹脂を用いた繊維強化樹脂の製造において、生産性・経済性を高めるためには、熱可塑性樹脂のペレット等を溶融し強化繊維に含浸させ、冷却・固化して樹脂成形品を一連に製造する方法が好ましい。かかる観点からすると、特許文献1に記載のような繊維シートと樹脂シートを用いて樹脂を繊維シートに含浸させる方法よりは、特許文献2〜3に記載するような溶融樹脂浴に強化繊維束を挿通して樹脂を含浸させる方法がよく、特許文献4に記載のような金型内に載置された補強繊維基材に溶融樹脂を充填加圧して複合材を直接的に成形する方法がより好ましい。   In the production of fiber reinforced resin using a thermoplastic resin as a matrix, in order to increase productivity and economy, the pellets of thermoplastic resin are melted and impregnated into reinforced fibers, cooled and solidified to form a resin molded product. A series of manufacturing methods is preferred. From such a viewpoint, a reinforcing fiber bundle is formed in a molten resin bath as described in Patent Documents 2 and 3, rather than a method of impregnating a fiber sheet with resin using a fiber sheet and a resin sheet as described in Patent Document 1. A method of inserting and impregnating a resin is preferable, and a method of directly molding a composite material by filling and pressing a molten resin into a reinforcing fiber base placed in a mold as described in Patent Document 4 is more preferable. preferable.

しかしながら、特許文献2又は3に記載の方法は、強化繊維が一方向に連続するストランドやプリプレグ等の樹脂基材の製造に限定され、樹脂成形体の製造は別途行わなければならないという問題がある。特許文献4に記載の方法は、粘度の高い溶融樹脂を透過率調整部材を介して充填しなければならず透過率調整部材の選定の困難さや生産効率の問題がある。また、特許文献2〜4に記載の方法は、樹脂を含浸させるために、真空機構が必須であるという問題もある。   However, the method described in Patent Document 2 or 3 is limited to the production of resin base materials such as strands and prepregs in which reinforcing fibers are continuous in one direction, and there is a problem that the production of a resin molded body must be performed separately. . The method described in Patent Document 4 must be filled with a molten resin having a high viscosity via a transmittance adjusting member, and there are problems in selecting a transmittance adjusting member and production efficiency. Further, the methods described in Patent Documents 2 to 4 also have a problem that a vacuum mechanism is essential for impregnating the resin.

本発明は、このような従来の問題点に鑑み、強化繊維への樹脂含浸を効果的に行うことができ、生産性・経済性の高い繊維強化された樹脂基材、樹脂成形体の製造方法及びその実施のための樹脂加工機を提供することを目的とする。そして、特に、強化繊維の熱伝導率が高い炭素繊維などに好適に使用することができる樹脂基材、樹脂成形体の製造方法及びその実施のための樹脂加工機を提供することを目的とする。   In view of such conventional problems, the present invention can effectively impregnate a reinforcing fiber with a resin, and has a high productivity and economical fiber-reinforced resin base material and a method for producing a resin molded body And it aims at providing the resin processing machine for the implementation. And it aims at providing the resin base material which can be used conveniently especially for carbon fiber etc. with high heat conductivity of a reinforced fiber, the manufacturing method of a resin molding, and the resin processing machine for the implementation .

本発明に係る繊維強化された樹脂基材を製造する方法は、強化繊維と熱可塑性樹脂からなる繊維強化された樹脂基材を製造する方法であって、平面状に載置された強化繊維束又は強化繊維織物の上面に溶融熱可塑性樹脂をTダイからゲージ圧で0.01〜5MPaの動圧が負荷されるように供給しつつ強化繊維束又は強化繊維織物に含浸し、その熱可塑性樹脂が含浸された強化繊維束又は強化繊維織物を冷却することにより実施される。
The method for producing a fiber-reinforced resin base material according to the present invention is a method for producing a fiber-reinforced resin base material composed of reinforcing fibers and a thermoplastic resin, and is a reinforcing fiber bundle placed in a planar shape. Alternatively, the molten fiber bundle or the reinforcing fiber fabric is impregnated into the upper surface of the reinforcing fiber fabric while supplying the molten thermoplastic resin from the T die so that a dynamic pressure of 0.01 to 5 MPa is applied as a gauge pressure. It is carried out by cooling the impregnated reinforcing fiber bundle or the reinforcing fiber fabric.

上記発明において、溶融樹脂の供給は、強化繊維束又は強化繊維織物の表面温度が供給される樹脂の吐出温度の-100℃以上+50℃以下の温度範囲にある状態において行うのがよい。   In the above invention, the molten resin is preferably supplied in a state where the surface temperature of the reinforcing fiber bundle or the reinforcing fiber fabric is in the temperature range of −100 ° C. to + 50 ° C. of the discharge temperature of the resin to be supplied.

また、溶融樹脂の供給は、層状又は部分的に塗り重ねるように行うことができ、Tダイの吐出圧、移動速度を変更することにより樹脂の吐出量を部分的に変化させて行うことができる。   Further, the molten resin can be supplied in a layered manner or partially overlaid, and the resin discharge amount can be partially changed by changing the discharge pressure and moving speed of the T die. .

また上記発明において、強化繊維束又は強化繊維織物は、炭素繊維からなるものであるのがよい。   In the above invention, the reinforcing fiber bundle or the reinforcing fiber fabric may be made of carbon fiber.

また、本発明に係る繊維強化された樹脂基材を製造する方法は、加熱及び冷却手段を有する基台に載置された強化繊維束又は強化繊維織物の上面に溶融熱可塑性樹脂をTダイからゲージ圧で0.01〜5MPaの動圧が負荷されるように供給しつつ強化繊維束又は強化繊維織物に含浸させ、その熱可塑樹脂を含浸させた強化繊維束又は強化繊維織物を前記基台とローラ間で加圧した後冷却することにより実施される。
Further, the method for producing a fiber reinforced resin base material according to the present invention includes a molten thermoplastic resin on a top surface of a reinforcing fiber bundle or a reinforcing fiber fabric placed on a base having heating and cooling means from a T die. A reinforcing fiber bundle or a reinforcing fiber fabric is impregnated while supplying a dynamic pressure of 0.01 to 5 MPa at a gauge pressure, and the reinforcing fiber bundle or the reinforcing fiber fabric impregnated with the thermoplastic resin is used as the base. It is carried out by cooling after pressurizing between rollers.

本発明に係る繊維強化された樹脂成形体を製造する方法は、加熱及び冷却手段を有する上下金型において、下金型に載置された強化繊維束又は強化繊維織物の上面に溶融熱可塑性樹脂をTダイからゲージ圧で0.01〜5MPaの動圧が負荷されるように供給しつつ強化繊維束又は強化繊維織物に含浸させた後、前記下金型に上金型を閉じて前記熱可塑樹脂を含浸させた強化繊維束又は強化繊維織物を加圧・冷却することにより実施される。
The method for producing a fiber-reinforced resin molded body according to the present invention includes a molten thermoplastic resin on the upper surface of a reinforcing fiber bundle or a reinforcing fiber fabric placed on a lower mold in an upper and lower mold having heating and cooling means. Is impregnated into a reinforcing fiber bundle or a reinforcing fiber fabric while supplying a dynamic pressure of 0.01 to 5 MPa with a gauge pressure from a T die, and then the upper mold is closed to the lower mold and the thermoplastic resin It is carried out by pressurizing and cooling a reinforcing fiber bundle or reinforcing fiber fabric impregnated with.

上記繊維強化された樹脂基材、樹脂成形体は、Tダイを有し、かつ、溶融樹脂が供給される繊維束又は強化繊維織物の表面部を所定温度に加熱する加熱手段を有する樹脂加工機により、好適に製造することができる。   The fiber reinforced resin base material and resin molded body have a T die, and a resin processing machine having a heating means for heating a surface portion of a fiber bundle or a reinforced fiber fabric to which a molten resin is supplied to a predetermined temperature Thus, it can be suitably manufactured.

本発明によれば、強化繊維への熱可塑性樹脂の含浸を効果的に行うことができ、繊維強化された樹脂基材、樹脂成形体を高い生産性・経済性で製造することができる。また、本発明によれば、ウェルドラインが発生しにくく、レジントランスファー成形法(RTM)のような問題がない。   According to the present invention, it is possible to effectively impregnate a reinforcing fiber with a thermoplastic resin, and it is possible to produce a fiber-reinforced resin base material and resin molded body with high productivity and economy. In addition, according to the present invention, weld lines are unlikely to occur, and there is no problem like the resin transfer molding method (RTM).

本発明に係る繊維強化された樹脂基材を製造する方法の説明図である。It is explanatory drawing of the method of manufacturing the fiber reinforced resin base material which concerns on this invention. 供給する樹脂を強化繊維束又は強化繊維織物の上面に部分的に塗り重ねるように行う場合の例を示す説明図である。It is explanatory drawing which shows the example in the case of performing so that resin to supply may be partially overlaid on the upper surface of a reinforced fiber bundle or a reinforced fiber fabric. 本発明に係る繊維強化された樹脂成形体を製造する方法の説明図である。It is explanatory drawing of the method of manufacturing the fiber reinforced resin molding which concerns on this invention.

以下、本発明を実施するための形態について説明する。本発明に係る繊維強化された樹脂基材を製造する方法は、強化繊維と熱可塑性樹脂からなる繊維強化された樹脂基材を製造する方法であって、平面状に載置された強化繊維束又は強化繊維織物の上面に溶融熱可塑性樹脂をTダイからゲージ圧で0.01〜5MPaの動圧が負荷されるように供給しつつ強化繊維束又は強化繊維織物に含浸し、その熱可塑性樹脂が含浸された強化繊維束又は強化繊維織物を冷却することにより実施される。すなわち、本製造方法は、平面状に載置された強化繊維束又は強化繊維織物の上面に溶融熱可塑性樹脂をTダイからゲージ圧で0.01〜5MPaの動圧が負荷されるように供給することによって熱可塑性樹脂を強化繊維束又は強化繊維織物に含浸させることを特徴とする。
Hereinafter, modes for carrying out the present invention will be described. The method for producing a fiber-reinforced resin base material according to the present invention is a method for producing a fiber-reinforced resin base material composed of reinforcing fibers and a thermoplastic resin, and is a reinforcing fiber bundle placed in a planar shape. Alternatively, the molten fiber bundle or the reinforcing fiber fabric is impregnated into the upper surface of the reinforcing fiber fabric while supplying the molten thermoplastic resin from the T die so that a dynamic pressure of 0.01 to 5 MPa is applied as a gauge pressure. It is carried out by cooling the impregnated reinforcing fiber bundle or the reinforcing fiber fabric. That is, in this manufacturing method, a molten thermoplastic resin is supplied from the T die so that a dynamic pressure of 0.01 to 5 MPa is applied from the T die to the upper surface of the reinforcing fiber bundle or the reinforcing fiber fabric placed in a plane. Thus, the reinforcing fiber bundle or the reinforcing fiber fabric is impregnated with the thermoplastic resin.

強化繊維は、炭素繊維、セラミック繊維、ガラス繊維等の各種繊維を含み得、特に限定されるものではない。しかしながら、本発明は、溶融された熱可塑性樹脂が接触するとその熱を急速に奪い熱可塑性樹脂の含浸を困難にするような高熱伝導率を有する炭素繊維などに好適に使用することができる。   The reinforcing fiber can include various fibers such as carbon fiber, ceramic fiber, and glass fiber, and is not particularly limited. However, the present invention can be suitably used for carbon fibers having a high thermal conductivity that rapidly takes away the heat when the molten thermoplastic resin comes into contact, making it difficult to impregnate the thermoplastic resin.

強化繊維が炭素繊維の場合は、一般に外径が4〜10μmの単繊維が1000本(1k)以上、例えば1k〜24kに束ねられて糸状にしたもの(ストランド)に加工される。ストランドは、縦糸及び横糸に配されて強化繊維織物に加工され、あるいは所定の長さに切断されてチョップドファイバーなどに加工される。   When the reinforcing fibers are carbon fibers, they are generally processed into 1000 (1k) or more, for example, 1k to 24k, single strands having an outer diameter of 4 to 10 μm, which are threaded (strands). The strand is arranged into warp and weft and processed into a reinforced fiber fabric, or cut into a predetermined length and processed into chopped fiber or the like.

本発明において、強化繊維束とは複数のストランドが平面状に並列した状態のもの、ストランドが開繊されて拡幅された状態のもの、あるいは、繊維が不連続に積層したマット状のものをいう。   In the present invention, the reinforcing fiber bundle refers to a state in which a plurality of strands are arranged in a plane, a state in which the strands are opened and widened, or a mat-like shape in which fibers are laminated discontinuously. .

このような外径がミクロンオーダの炭素繊維からなる単繊維が束ねられた強化繊維束又は強化繊維織物は、単繊維間にμm以下の多数の隙間が形成され、粘度の大きい熱可塑性樹脂の含浸を困難にしている。しかしながら、本発明は、溶融樹脂の粘度が剪断速度の大きさに対数的に減少する特性を利用している。すなわち、本発明においては、強化繊維束又は強化繊維織物の上面にゲージ圧で0.01〜5MPaの動圧が負荷されるように供給し、炭素繊維などの強化繊維により溶融樹脂に剪断力が作用するように溶融樹脂を供給する。このため、本発明によれば、熱可塑性樹脂を強化繊維束又は強化繊維織物に効果的に含浸させることができる。
A reinforced fiber bundle or reinforced fiber fabric in which single fibers made of carbon fibers having an outer diameter of the order of microns are bundled, and a large number of gaps of μm or less are formed between the single fibers, and impregnation with a thermoplastic resin having a high viscosity. Making it difficult. However, the present invention utilizes the property that the viscosity of the molten resin decreases logarithmically with the magnitude of the shear rate. That is, in the present invention, the upper surface of the reinforcing fiber bundle or the reinforcing fiber fabric is supplied so that a dynamic pressure of 0.01 to 5 MPa is applied as a gauge pressure, and a shearing force acts on the molten resin by the reinforcing fibers such as carbon fibers. The molten resin is supplied as follows. For this reason, according to the present invention, the reinforcing fiber bundle or the reinforcing fiber fabric can be effectively impregnated with the thermoplastic resin.

本発明において、熱可塑性樹脂は特に限定されない。例えば、ポリエチレン樹脂、ポリプロピレン樹脂、ポリエチレンテレフタレート樹脂、ポリスチレン系樹脂、ポリカーボネート系樹脂など各種の樹脂、あるいは各種グレードの熱可塑性樹脂を使用することができる。   In the present invention, the thermoplastic resin is not particularly limited. For example, various resins such as polyethylene resin, polypropylene resin, polyethylene terephthalate resin, polystyrene resin, and polycarbonate resin, or various grades of thermoplastic resins can be used.

本発明に係る樹脂基材の製造方法は、例えば図1に示す方法により実施することができる。この製造方法は、図1に示すように、基台1に強化繊維束2(又は強化繊維織物2)が平面状に載置され、強化繊維束2の上面に熱可塑性樹脂からなる溶融樹脂3が樹脂加工機10から供給される。基台1は、加熱・冷却手段を有しており、樹脂加工機10はTダイ12を有している。Tダイは、溶融樹脂を強化繊維束又は強化繊維織物の上面に動圧が負荷されるように供給するのに好適である。また、Tダイは、供給する樹脂の容量、あるいは、強化繊維束又は強化繊維織物の上面に供給する樹脂の厚さを好適に制御することができる利点を有する。   The manufacturing method of the resin base material which concerns on this invention can be implemented by the method shown, for example in FIG. In this manufacturing method, as shown in FIG. 1, a reinforcing fiber bundle 2 (or reinforcing fiber fabric 2) is placed in a flat shape on a base 1, and a molten resin 3 made of a thermoplastic resin is formed on the upper surface of the reinforcing fiber bundle 2. Is supplied from the resin processing machine 10. The base 1 has heating / cooling means, and the resin processing machine 10 has a T die 12. The T-die is suitable for supplying the molten resin so that dynamic pressure is applied to the upper surface of the reinforcing fiber bundle or the reinforcing fiber fabric. Further, the T die has an advantage that the capacity of the resin to be supplied or the thickness of the resin supplied to the upper surface of the reinforcing fiber bundle or the reinforcing fiber fabric can be suitably controlled.

本製造方法においては、強化繊維束2は加熱手段5により加熱され、強化繊維束2が所定温度の下に溶融樹脂3の供給を受けることができるようになっている。溶融樹脂3が供給されるときの強化繊維束2の温度は、Tダイ12吐出口から吐出される溶融樹脂の吐出温度の-100℃以上+50℃以下にするのがよい。強化繊維束2をこの範囲の温度に維持することにより、強化繊維2が炭素繊維のように熱伝導率が高いものであっても溶融樹脂3の温度低下により粘度が増大して含浸が困難になるのを抑制することができる。熱可塑性樹脂の粘度は、温度に関しても対数的に変化するので強化繊維2の温度管理は重要である。   In this manufacturing method, the reinforcing fiber bundle 2 is heated by the heating means 5 so that the reinforcing fiber bundle 2 can be supplied with the molten resin 3 at a predetermined temperature. The temperature of the reinforcing fiber bundle 2 when the molten resin 3 is supplied is preferably -100 ° C. or higher and + 50 ° C. or lower of the discharge temperature of the molten resin discharged from the T die 12 discharge port. By maintaining the reinforced fiber bundle 2 at a temperature in this range, even if the reinforced fiber 2 has a high thermal conductivity such as carbon fiber, the viscosity increases due to the temperature decrease of the molten resin 3, and impregnation becomes difficult. It can be suppressed. Since the viscosity of the thermoplastic resin changes logarithmically with respect to the temperature, the temperature management of the reinforcing fiber 2 is important.

加熱手段5は、遠赤外線加熱によるもの、あるいはレーザ加熱によるものなどが好ましい。これにより、強化繊維2を効率的に加熱することができる。基台1に設けた加熱手段により所定温度に加熱することもできるが、基台1は熱容量が大きく、また、樹脂が含浸された強化繊維束の冷却を行う必要があり、冷却を効率的に行うためには強化繊維2を加熱する加熱手段を別個に設けるのが良い。なお、加熱手段5は、強化繊維2の全体を加熱する必要はない。溶融樹脂3が供給される部分を加熱すれば足りる。なお、加熱手段5は、溶融樹脂3が強化繊維2に供給される際に強化繊維2が所定の温度まで加熱されていればよく、その加熱範囲、加熱時間、取付け位置等は適宜の方法を採用することができる。   The heating means 5 is preferably one by far infrared heating or one by laser heating. Thereby, the reinforcing fiber 2 can be efficiently heated. Although it can be heated to a predetermined temperature by the heating means provided on the base 1, the base 1 has a large heat capacity, and it is necessary to cool the reinforcing fiber bundle impregnated with the resin. For this purpose, it is preferable to provide a heating means for heating the reinforcing fiber 2 separately. Note that the heating means 5 does not need to heat the entire reinforcing fiber 2. It is sufficient to heat the portion to which the molten resin 3 is supplied. The heating means 5 is not limited as long as the reinforcing fiber 2 is heated to a predetermined temperature when the molten resin 3 is supplied to the reinforcing fiber 2, and the heating range, heating time, mounting position, etc. Can be adopted.

強化繊維束2に溶融樹脂3を含浸させた後、これを加圧するのがよい。この加圧により、強化繊維束2への溶融樹脂3の含浸が促進されるので好ましい。加圧は、図1に示すようなローラにより加圧する加圧手段20を使用することができる。強化繊維束2への溶融樹脂3の含浸、加圧が終わった後、溶融樹脂3が含浸された強化繊維束2は冷却され、樹脂基材が製造される。   It is preferable to pressurize the reinforcing fiber bundle 2 after impregnating the molten resin 3 with it. This pressurization is preferable because impregnation of the molten resin 3 into the reinforcing fiber bundle 2 is promoted. For the pressurization, pressurizing means 20 for pressurizing with a roller as shown in FIG. 1 can be used. After the impregnation and pressurization of the molten resin 3 into the reinforcing fiber bundle 2, the reinforcing fiber bundle 2 impregnated with the molten resin 3 is cooled to produce a resin base material.

強化繊維束2への溶融樹脂3の供給は、通常は、均一な厚さの樹脂基材が製造されるように行われる。すなわち、溶融樹脂3が強化繊維束2の上面均一な厚さの層状になるように供給される。しかしながら、溶融樹脂3の供給は、最初の層の上にさらに塗り重ねるように行う得ことができ、例えば図2に示すように部分的に塗り重ねるように行うこともできる。図2において、層3b又は層3cは、層3aの上に塗り重ねられている。層3aと層3b又は層3cについて、材質を異なるものにすることもできる。また、Tダイの吐出圧、移動速度を変えて溶融樹脂の吐出量を変えることにより、層3a、層3b又は層3cの厚みを部分的に異なるようにすることができる。   The molten resin 3 is normally supplied to the reinforcing fiber bundle 2 so that a resin base material having a uniform thickness is manufactured. That is, the molten resin 3 is supplied in a layered manner with a uniform thickness on the upper surface of the reinforcing fiber bundle 2. However, the supply of the molten resin 3 can be performed so as to be further repainted on the first layer, and can also be performed such that it is partially repainted as shown in FIG. In FIG. 2, the layer 3b or the layer 3c is overcoated on the layer 3a. The material of the layer 3a and the layer 3b or the layer 3c may be different. Further, the thickness of the layer 3a, the layer 3b or the layer 3c can be partially varied by changing the discharge amount of the molten resin by changing the discharge pressure and moving speed of the T die.

以上、本発明に係る繊維強化された樹脂基材を製造する方法を説明した。本発明は、プレス式の金型を用いることにより、繊維強化された樹脂成形体を好適に製造することができる。例えば、図3に示す方法により繊維強化された樹脂成形体を好適に製造することができる。図3においては、下金型30と上金型40が設けられたプレス式の金型において、下金型30に強化繊維束2(又は強化繊維織物2)が載置されている。熱可塑性樹脂からなる溶融樹脂3がTダイ12を有する樹脂加工機10から供給されるようになっている。また、強化繊維束2の加熱手段5が設けられている。下金型30及び上金型40には、加熱・冷却手段が設けられている。   The method for producing the fiber reinforced resin substrate according to the present invention has been described above. In the present invention, a fiber-reinforced resin molded body can be suitably manufactured by using a press mold. For example, a resin molded body reinforced with fibers can be suitably produced by the method shown in FIG. In FIG. 3, the reinforcing fiber bundle 2 (or the reinforcing fiber fabric 2) is placed on the lower mold 30 in the press mold provided with the lower mold 30 and the upper mold 40. A molten resin 3 made of a thermoplastic resin is supplied from a resin processing machine 10 having a T die 12. Further, a heating means 5 for the reinforcing fiber bundle 2 is provided. The lower mold 30 and the upper mold 40 are provided with heating / cooling means.

この繊維強化された樹脂基材を製造する方法は、先ず、下金型30及び加熱手段5により強化繊維束2を所定温度に保持した上で、下金型30に載置された強化繊維束2の上面に熱可塑性樹脂からなる溶融樹脂3をTダイ12からゲージ圧で0.01〜5MPaの動圧が負荷されるように供給しつつ強化繊維束2に含浸させる。次に、下金型30に上金型40を閉じて熱可塑樹脂を含浸させた強化繊維束2を加圧・冷却する。これにより、所定の形状に成形され、繊維強化された樹脂成形体を効率的に製造することができる。

The method for producing the fiber-reinforced resin base material is as follows. First, the reinforcing fiber bundle 2 placed on the lower mold 30 is held by holding the reinforcing fiber bundle 2 at a predetermined temperature by the lower mold 30 and the heating means 5. The molten fiber bundle 2 is impregnated on the upper surface of 2 while supplying the molten resin 3 made of thermoplastic resin from the T die 12 so that a dynamic pressure of 0.01 to 5 MPa is applied as a gauge pressure. Next, the upper mold 40 is closed in the lower mold 30 and the reinforcing fiber bundle 2 impregnated with the thermoplastic resin is pressurized and cooled. Thereby, the resin molded object shape | molded by the predetermined | prescribed shape and fiber-reinforced can be manufactured efficiently.

本発明は、上記実施例に限定されない。本発明において、強化繊維束又は強化繊維織物を重ねて熱可塑性樹脂を含浸させた樹脂基材又は樹脂成形体を製造することができる。また、熱可塑性樹脂の物性や機能を補完するために添加物を加えることができる。また、本発明により成形された樹脂基材を層状に重ねてより強度を有する樹脂基材、あるいは、特性の異なる樹脂基材を重ねてより機能性に富んだ樹脂基材を成形することができる。   The present invention is not limited to the above embodiments. In the present invention, it is possible to produce a resin base material or resin molded body in which reinforcing fiber bundles or reinforcing fiber fabrics are superimposed and impregnated with a thermoplastic resin. Additives can be added to supplement the physical properties and functions of the thermoplastic resin. In addition, the resin base material molded according to the present invention can be layered to form a stronger resin base material, or a resin base material with different functionality can be formed by stacking resin base materials with different properties. .

図3に示すプレス式の金型を用いて炭素繊維の強化繊維織物とポリカーボネート(PC)樹脂からなる樹脂成形体を製造する試験を行った。強化繊維織物は、PAN系炭素繊維(1K)を2mm幅に開繊して平織りした炭素繊維織物を使用した。PC樹脂は、帝人化成株式会社製パンライト(AD5503)を使用した。溶融樹脂の供給温度は330℃、下金型の金型温度は160℃、炭素繊維表面温度は溶融樹脂温と同等の条件で試験を行った。溶融樹脂供給時の動圧は、0.06MPaであった。プレスの加圧力は0.5MPa〜5MPa、プレスの加圧時間は0.5min、1min、2.5min、5minの各条件で試験を行った。
The test which manufactures the resin molding which consists of a reinforced fiber fabric of carbon fiber and polycarbonate (PC) resin using the press type metal mold | die shown in FIG. 3 was done. As the reinforcing fiber fabric, a carbon fiber fabric in which PAN-based carbon fibers (1K) were opened to a width of 2 mm and plain woven was used. As the PC resin, Panlite (AD5503) manufactured by Teijin Chemicals Ltd. was used. The test was performed under the conditions that the molten resin supply temperature was 330 ° C., the lower mold temperature was 160 ° C., and the carbon fiber surface temperature was the same as the molten resin temperature. The dynamic pressure when the molten resin was supplied was 0.06 MPa . The test was performed under the conditions of a pressing force of 0.5 MPa to 5 MPa and a pressurizing time of 0.5 min, 1 min, 2.5 min, and 5 min.

溶融樹脂の供給温度が300℃、下金型の金型温度が160℃、炭素繊維表面温度が300℃、プレスの加圧力が0.5MPa、プレスの加圧時間が0.5minの場合は、樹脂成形体の厚みが100-110μmで、炭素繊維に樹脂が含浸した良好な樹脂成形体が得られた。
Resin molding when the molten resin supply temperature is 300 ° C, the lower mold temperature is 160 ° C, the carbon fiber surface temperature is 300 ° C, the press pressure is 0.5 MPa , and the press pressure time is 0.5 min. A good resin molded body having a body thickness of 100-110 μm and carbon fibers impregnated with a resin was obtained.

実施例1において用いた強化繊維織物とポリプロピレン(PP)樹脂からなる樹脂成形体について、実施例1と同様な製造試験を行った。溶融樹脂の供給温度が〜260℃であった点以外、実施例1の場合と同様な条件の下で試験を行った。   The same production test as in Example 1 was performed on the resin molded body made of the reinforced fiber fabric and polypropylene (PP) resin used in Example 1. The test was performed under the same conditions as in Example 1 except that the molten resin supply temperature was ˜260 ° C.

溶融樹脂の供給温度が260℃、炭素繊維表面温度が230℃、プレスの加圧力が2.5MPa、プレスの加圧時間が2.5minの場合は、樹脂成形体の厚みが75μmで、炭素繊維に樹脂が含浸した良好な炭素繊維強化樹脂が得られた。同様にプレスの加圧力が5MPa、プレスの加圧時間が0.5minの場合でも、樹脂成形体の厚みが65μmで、炭素繊維に樹脂が含浸した良好な樹脂成形体が得られた。
When the molten resin supply temperature is 260 ° C, the carbon fiber surface temperature is 230 ° C, the press pressure is 2.5 MPa, and the press pressurization time is 2.5 min, the thickness of the resin molding is 75 μm, and the resin is applied to the carbon fiber. A good carbon fiber reinforced resin impregnated with was obtained. Similarly, even when the pressing force of the press was 5 MPa and the pressurization time was 0.5 min, a good resin molded body in which the resin molded body had a thickness of 65 μm and carbon fiber was impregnated with the resin was obtained.

実施例1、2と同様に、強化繊維としてセルロース繊維を使用した樹脂成形体を製造する試験を行った。強化繊維は、旭化成せんい株式会社製BEMCOTを使用した。条件は、溶融樹脂の供給温度が260℃、BEMCOT表面温度が230℃、プレスの加圧力が0.5MPa、プレスの加圧時間が0.5minの場合は、樹脂成形体の厚みが75μmで、繊維に樹脂が含浸した良好な樹脂成形体が得られた。本例の場合は、炭素繊維の場合に比べて低い温度及び圧力で製造することができた。


The test which manufactures the resin molding which uses a cellulose fiber as a reinforced fiber similarly to Examples 1 and 2 was done. As reinforcing fiber, BEMCOT manufactured by Asahi Kasei Fibers Co., Ltd. was used. When the molten resin supply temperature is 260 ° C, the BEMCOT surface temperature is 230 ° C, the press pressure is 0.5 MPa , and the press pressurization time is 0.5 min, the thickness of the resin molding is 75 μm and the fiber A good resin molded body impregnated with the resin was obtained. In the case of this example, it was possible to produce at a lower temperature and pressure than in the case of carbon fiber.


1 基台
2 強化繊維束又は強化繊維織物
3 溶融樹脂
5 加熱手段
10 樹脂加工機
12 Tダイ
20 加圧手段
30 下金型
40 上金型
1 base
2 Reinforced fiber bundle or reinforced fiber fabric
3 Molten resin
5 Heating means
10 Resin processing machine
12 T die
20 Pressurizing means
30 Lower mold
40 Upper mold

Claims (8)

強化繊維と熱可塑性樹脂からなる繊維強化された樹脂基材を製造する方法であって、平面状に載置された強化繊維束又は強化繊維織物の上面に溶融熱可塑性樹脂をTダイからゲージ圧で0.01〜5MPaの動圧が負荷されるように供給しつつ強化繊維束又は強化繊維織物に含浸し、その熱可塑性樹脂が含浸された強化繊維束又は強化繊維織物を冷却することにより繊維強化された樹脂基材を製造する方法。 A method for producing a fiber-reinforced resin base material comprising reinforcing fibers and a thermoplastic resin, wherein a molten thermoplastic resin is applied to a top surface of a reinforcing fiber bundle or a reinforcing fiber fabric placed in a flat shape from a T die to a gauge pressure. The fiber is reinforced by impregnating the reinforcing fiber bundle or the reinforcing fiber woven fabric while being supplied with a dynamic pressure of 0.01 to 5 MPa , and cooling the reinforcing fiber bundle or the reinforcing fiber woven fabric impregnated with the thermoplastic resin. Of manufacturing a resin base material. 溶融樹脂の供給は、強化繊維束又は強化繊維織物の表面温度が供給される樹脂の吐出温度の-100℃以上+50℃以下の温度範囲にある状態において行われることを特徴とする請求項1に記載の樹脂基材を製造する方法。   2. The molten resin is supplied in a state where the surface temperature of the reinforcing fiber bundle or the reinforcing fiber fabric is in a temperature range of −100 ° C. to + 50 ° C. of the discharge temperature of the resin to be supplied. The method to manufacture the resin base material as described in 2. 溶融樹脂の供給は、層状又は部分的に塗り重ねるように行われることを特徴とする請求項2に記載の樹脂基材を製造する方法。   The method for producing a resin base material according to claim 2, wherein the molten resin is supplied so as to be layered or partially coated. 溶融樹脂の供給は、Tダイの吐出圧、移動速度を変更することにより樹脂の吐出量を部分的に変化させて行われることを特徴とする請求項2に記載の樹脂基材を製造する方法。   The method for producing a resin base material according to claim 2, wherein the molten resin is supplied by changing the discharge amount of the resin partially by changing the discharge pressure and moving speed of the T die. . 強化繊維束又は強化繊維織物は、炭素繊維からなるものであることを特徴とする請求項1〜4の何れか一項に記載の樹脂基材を製造する方法。   The method for producing a resin substrate according to any one of claims 1 to 4, wherein the reinforcing fiber bundle or the reinforcing fiber fabric is made of carbon fiber. 加熱及び冷却手段を有する基台に載置された強化繊維束又は強化繊維織物の上面に溶融熱可塑性樹脂をTダイからゲージ圧で0.01〜5MPaの動圧が負荷されるように供給しつつ強化繊維束又は強化繊維織物に含浸させ、その熱可塑樹脂を含浸させた強化繊維束又は強化繊維織物を前記基台とローラ間で加圧した後冷却することにより繊維強化された樹脂基材を製造する方法。 While supplying molten thermoplastic resin from the T die to the upper surface of the reinforcing fiber bundle or reinforcing fiber fabric placed on the base having heating and cooling means so that a dynamic pressure of 0.01 to 5 MPa is applied by a gauge pressure. A resin substrate reinforced by fiber impregnating a reinforcing fiber bundle or a reinforcing fiber fabric and pressurizing the reinforcing fiber bundle or the reinforcing fiber fabric impregnated with the thermoplastic resin between the base and the roller and then cooling. How to manufacture. 加熱及び冷却手段を有する上下金型において、下金型に載置された強化繊維束又は強化繊維織物の上面に溶融熱可塑性樹脂をTダイからゲージ圧で0.01〜5MPaの動圧が負荷されるように供給しつつ強化繊維束又は強化繊維織物に含浸させた後、前記下金型に上金型を閉じて前記熱可塑樹脂を含浸させた強化繊維束又は強化繊維織物を加圧・冷却することにより繊維強化された樹脂成形体を製造する方法。 In an upper and lower mold having heating and cooling means, a dynamic pressure of 0.01 to 5 MPa is applied from the T die to the upper surface of the reinforcing fiber bundle or reinforcing fiber fabric placed on the lower mold with a gauge pressure from the T die. The reinforcing fiber bundle or the reinforcing fiber fabric is impregnated while being supplied, and then the upper mold is closed to the lower mold and the reinforcing fiber bundle or the reinforcing fiber fabric impregnated with the thermoplastic resin is pressurized and cooled. A method for producing a fiber-reinforced resin molded body. Tダイを有し、請求項1〜7に記載する繊維強化された樹脂基材又樹脂成形体の製造に使用される樹脂加工機であって、溶融樹脂が供給される繊維束又は強化繊維織物の表面部を所定温度に加熱する加熱手段を有する樹脂加工機。 A resin processing machine having a T-die and used for manufacturing a fiber-reinforced resin base material or resin molded body according to claim 1 , wherein the fiber bundle or reinforced fiber fabric is supplied with molten resin. A resin processing machine having a heating means for heating the surface portion of the steel plate to a predetermined temperature.
JP2012050516A 2012-03-07 2012-03-07 Fiber reinforced resin substrate, method for producing resin molded body, and resin processing machine for implementing the method Active JP5598931B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012050516A JP5598931B2 (en) 2012-03-07 2012-03-07 Fiber reinforced resin substrate, method for producing resin molded body, and resin processing machine for implementing the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012050516A JP5598931B2 (en) 2012-03-07 2012-03-07 Fiber reinforced resin substrate, method for producing resin molded body, and resin processing machine for implementing the method

Publications (2)

Publication Number Publication Date
JP2013184356A JP2013184356A (en) 2013-09-19
JP5598931B2 true JP5598931B2 (en) 2014-10-01

Family

ID=49386237

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012050516A Active JP5598931B2 (en) 2012-03-07 2012-03-07 Fiber reinforced resin substrate, method for producing resin molded body, and resin processing machine for implementing the method

Country Status (1)

Country Link
JP (1) JP5598931B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI610000B (en) * 2015-12-17 2018-01-01 翁慶隆 Semi-cured impregnated fiber bundle device formed by fiber bundle and the manufacturing method thereof
CN110446744A (en) 2017-03-22 2019-11-12 东丽株式会社 The manufacturing method of prepreg and the manufacturing method of fibre reinforced composites
US11806899B2 (en) 2017-03-22 2023-11-07 Toray Industries, Inc. Method for producing prepreg and method for producing fiber-reinforced composite material

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2312816C3 (en) * 1973-03-15 1983-02-03 Basf Ag, 6700 Ludwigshafen Process for the continuous production of semi-finished products from glass fiber reinforced thermoplastics
JPS5914924A (en) * 1982-07-16 1984-01-25 Mitsubishi Rayon Co Ltd Manufacture of prepreg
JPH02184433A (en) * 1989-01-11 1990-07-18 Showa Denko Kk Lamination-molded object of glass fiber fabric and synthetic resin and its manufacture
JPH0452106A (en) * 1990-06-20 1992-02-20 Japan Steel Works Ltd:The Production of fiber reinforced plastic molded form
JPH04193506A (en) * 1990-11-26 1992-07-13 Neste Oy Method and device for impregnating fiber bundle with molten resin
JPH0839552A (en) * 1994-07-28 1996-02-13 Tokai Jiyuken Kogyo Kk Long metal fiber composite material and long metal fiber composite molded article
JP5491767B2 (en) * 2009-05-26 2014-05-14 パナソニック株式会社 Method for manufacturing prepreg for printed wiring board and prepreg manufacturing apparatus for printed wiring board
JP5328040B2 (en) * 2009-11-27 2013-10-30 株式会社日本製鋼所 Laminated body having fine structure and method for producing the same

Also Published As

Publication number Publication date
JP2013184356A (en) 2013-09-19

Similar Documents

Publication Publication Date Title
JP5167953B2 (en) Laminated substrate, fiber reinforced plastic, and production method thereof
US8101262B2 (en) Fiber-reinforced plastic and process for production thereof
JP6085798B2 (en) COMPOSITE MATERIAL FOR 3D SHAPE FORMING AND ITS MANUFACTURING METHOD
JP6883527B2 (en) Manufacturing method of fiber reinforced resin molded product
JP2011178890A (en) Carbon fiber composite material
EP2733161A1 (en) Thermoplastic resin pre-preg, molded preform and molded composite using same, and method for producing molded preform and molded composite
JP5952510B2 (en) Method for producing molded body having opening
JP5531170B1 (en) Random mat and fiber reinforced composite material molded body
JP2006142819A (en) Fiber reinforced laminated body, preform, frp, manufacturing method of fiber reinforced laminated body and its manufacturing device
CN109715385A (en) Laminated substrate and its manufacturing method
CN109228408B (en) Method for producing fiber-reinforced resin base material or resin molded article, and plasticizing ejector used in the production method
EP3042753A1 (en) Production method for fiber-reinforcing component
JP2015078260A (en) Highly conductive carbon fiber material and molding method using the same
TW201920398A (en) Prepreg laminate, method for manufacturing fiber-reinforced plastic using prepreg laminate, and fiber-reinforced plastic
JP5598931B2 (en) Fiber reinforced resin substrate, method for producing resin molded body, and resin processing machine for implementing the method
US20220040935A1 (en) Method for manufacturing molded article of fiber-reinforced composite material, reinforcing fiber substrate and molded article of fiber-reinforced composite material
CN106113531A (en) A kind of anti-roll production technology sticking up CFRT one-way tape composite sheet
JP5362596B2 (en) Paste composition method, pasting composite mold and pasting device
JP7039823B2 (en) Carbon fiber reinforced plastic laminate and its manufacturing method
JP2011202303A (en) Fiber structure and method for producing the same, and preform
Aburaia et al. A production method for standardized continuous fiber reinforced FFF filament
Kesarwani et al. Composites: Classification and its manufacturing process
JP5958360B2 (en) Manufacturing method of FRP sheet
Jappes et al. Design of Polymer-Based Composites
JP2006123417A (en) Multidirectional fiber-reinforced thermoplastic resin plate, its manufacturing method, manufacturing system, and pressure forming apparatus

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140806

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140806

R150 Certificate of patent or registration of utility model

Ref document number: 5598931

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250