JP2006123417A - Multidirectional fiber-reinforced thermoplastic resin plate, its manufacturing method, manufacturing system, and pressure forming apparatus - Google Patents

Multidirectional fiber-reinforced thermoplastic resin plate, its manufacturing method, manufacturing system, and pressure forming apparatus Download PDF

Info

Publication number
JP2006123417A
JP2006123417A JP2004316482A JP2004316482A JP2006123417A JP 2006123417 A JP2006123417 A JP 2006123417A JP 2004316482 A JP2004316482 A JP 2004316482A JP 2004316482 A JP2004316482 A JP 2004316482A JP 2006123417 A JP2006123417 A JP 2006123417A
Authority
JP
Japan
Prior art keywords
fiber
fibers
sheet
thermoplastic resin
resin plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004316482A
Other languages
Japanese (ja)
Other versions
JP4135180B2 (en
Inventor
Yasumochi Hamada
泰以 濱田
Eisuke Fukui
英輔 福井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
FUKUI FIBERTECH CO Ltd
Original Assignee
Japan Science and Technology Agency
FUKUI FIBERTECH CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, FUKUI FIBERTECH CO Ltd filed Critical Japan Science and Technology Agency
Priority to JP2004316482A priority Critical patent/JP4135180B2/en
Publication of JP2006123417A publication Critical patent/JP2006123417A/en
Application granted granted Critical
Publication of JP4135180B2 publication Critical patent/JP4135180B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To manufacture fiber-reinforced plate which is impregnated with a thermoplastic synthetic resin. <P>SOLUTION: The multidirectional fiber-reinforced thermoplastic resin plate of this invention is characterized by the manufacturing method, wherein composite braids or composite twist strings whose reinforced fiber bundles are coated with a thermoplastic synthetic resin fiber are set in parallel, this paralleled fiber is laminated in a lengthwise direction, a lateral direction, and a slanting direction to be an integrated fiber sheet, and a single sheet or a plurality of sheets of this fiber sheet are heated and pressurized to be formed to a plate containing reinforced fiber by melting the above thermoplastic synthetic resin fiber. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、耐熱性強化繊維を芯とした熱可塑性繊維を縦方向、横方向、斜方向に準じ並列して、積層し、前記各繊維間を絡め、糸でまとめた積層繊維シートを加熱、加圧して繊維強化合成樹脂板とすることを目的とした多方向繊維強化熱可塑性樹脂板及びその製造法並びに加圧成形装置に関する。   In this invention, thermoplastic fibers having heat-resistant reinforcing fibers as the core are laminated in parallel in the longitudinal direction, the transverse direction, and the oblique direction, entangled between the fibers, and the laminated fiber sheet bundled with the yarn is heated, The present invention relates to a multi-directional fiber reinforced thermoplastic resin plate intended to be pressed into a fiber reinforced synthetic resin plate, a manufacturing method thereof, and a pressure molding apparatus.

従来ガラス繊維、炭素繊維、アラミド繊維等で強化した熱硬化性樹脂複合材料は、強度、軽量性、耐食性等に優れる等の特徴があるので、各分野で使用されている。   Conventionally, thermosetting resin composite materials reinforced with glass fibers, carbon fibers, aramid fibers, and the like have characteristics such as excellent strength, light weight, corrosion resistance, and the like, and are used in various fields.

一方熱可塑性樹脂複合材料は、強靭で、成形工程の簡素化と、短縮化、媒体となる樹脂の種類が豊富であり、リサイクルの可能性があるなどの反面、長繊維が使用できないので主として短繊維が使用され、例えば射出成形用とされているので、熱硬化性樹脂複合材料に比較して強度が小さいとされている。
特開平11−293535 特開平5−106116 特開平7−112501 特開平7−156341
On the other hand, thermoplastic resin composite materials are tough, simplified and shortened in the molding process, abundant in the variety of resin used as a medium, and may be recycled. Since fibers are used, for example, for injection molding, it is said that the strength is lower than that of a thermosetting resin composite material.
JP-A-11-293535 JP-A-5-106116 JP-A-7-111501 JP-A-7-156341

前記熱硬化性樹脂の製品は、成形による再利用ができず、リサイクル性に難点がある。   The thermosetting resin product cannot be reused by molding and has a difficulty in recyclability.

また前記熱可塑性樹脂は、含浸性が悪いので長繊維の使用が困難であるから、強度が小さくなる問題点はある反面、リサイクルは容易である。   Further, since the thermoplastic resin has poor impregnation properties, it is difficult to use long fibers, and thus there is a problem that the strength is reduced, but recycling is easy.

また熱可塑性合成樹脂繊維を加熱、加圧して合成樹脂板とする際には、加熱、加圧により溶融樹脂を含浸させる為に、加圧面に粘着する問題点がある。   Further, when a thermoplastic synthetic resin fiber is heated and pressed to form a synthetic resin plate, there is a problem of sticking to the pressing surface because the molten resin is impregnated by heating and pressing.

また繊維積層物の加熱、加圧であるから、各繊維間に介在した空気は速やかに外界へ排出しなければならないが、これを有効に、しかも速やかに排出する手段がなく、製品板に微細気泡を内蔵するおそれがあり、よって気泡内蔵による強度不均一、又は強度低下のおそれがあった。   In addition, since the fiber laminate is heated and pressurized, the air intervening between the fibers must be quickly discharged to the outside world. There is a possibility that bubbles may be incorporated, and therefore there is a risk that the strength is not uniform due to the incorporation of bubbles or the strength is reduced.

従来知られているフィルムスタッキング法は、未含浸のプリフォームを積層しているため複雑形状への適用は困難なもの、曲面の追従性はこれまでのプリプレグ材と比較すると向上している。しかし未含浸のプリフォームを使用しているため含浸性に乏しく、含浸には高温、高圧のもと成形に長時間を要する問題点がある。   Conventionally known film stacking methods are difficult to apply to complex shapes because of lamination of unimpregnated preforms, and the followability of curved surfaces is improved compared to conventional prepreg materials. However, since an unimpregnated preform is used, the impregnation property is poor, and impregnation has a problem that it takes a long time for molding under high temperature and high pressure.

またパウダーインプレグネーテッドヤーンは、熱可塑性樹脂を粉末化し、強化繊維にまぶすことにより含浸性の向上をねらったものであるが、樹脂パウダーの付着が不均一となり、それをコントロールするのが困難であるという問題点を有する。また樹脂パウダーがこぼれ落ちるため作業性が悪いが、これを防止する為に、前記樹脂パウダーと同じ樹脂からなる外殻で覆うことによって作業性を向上させた材料も開発されている。   Powder impregnated yarn is a powdered thermoplastic resin that is applied to reinforcing fibers to improve impregnation, but the resin powder adheres unevenly and is difficult to control. It has the problem of being. In addition, although the workability is poor because the resin powder spills out, materials for improving workability by covering with an outer shell made of the same resin as the resin powder have been developed to prevent this.

次にコミングレッドヤーンは2種類の繊維を混織したもので、含浸性には優れているが、強化繊維と、マトリックス樹脂を混織する技術を完成するには、該ヤーンの製造工程で繊維の損傷度をいかに低くするか、特性の大きく異なる繊維をいかにそれぞれ同時に分散し均一に混合するかという問題を解決しなければならない。特に炭素繊維を強化繊維とするコミングレッドヤーンの作製時は、炭素繊維の損傷が顕著であり、繊維の損傷をなくし、また炭素繊維とマトリックス繊維を分散させ均一に混合するには高度な技術を必要とすることも問題点となっている。 The Coming Red yarn is a mixture of two types of fibers and is excellent in impregnation. However, in order to complete the technology of mixing the reinforcing fibers and the matrix resin, the manufacturing process of the yarn The problem of how to reduce the damage degree of the fiber and how to disperse and mix the fibers having greatly different properties at the same time must be solved. Especially when making Coming Red yarn with carbon fiber as reinforced fiber, the damage of carbon fiber is significant, eliminating the fiber damage, and advanced technology to disperse and mix carbon fiber and matrix fiber uniformly The need for this is also a problem.

前記特許文献3に示す発明は、一方向に配列された繊維に熱可塑性樹脂を含浸させたシートを樹脂発泡体に熱融着させた複合積層体の発明で、この出願とは、技術及び効果が異なっている。   The invention shown in Patent Document 3 is an invention of a composite laminate in which a sheet in which a fiber arranged in one direction is impregnated with a thermoplastic resin is heat-sealed to a resin foam. Is different.

また前記特許文献4に示す発明は、繊維状物質含有層と、繊維状物質含有層を有する繊維強化樹脂板状体及びその製造方法の発明であるが、繊維長5mm程度というきわめて短い繊維の含有であって、強度的には格段劣る問題点があり、自ら用途が異なる。即ち高強度を求めない建材などには使用することができる。   The invention shown in Patent Document 4 is an invention of a fibrous substance-containing layer, a fiber-reinforced resin plate having the fibrous substance-containing layer, and a method for producing the same, but contains a very short fiber having a fiber length of about 5 mm. However, there is a problem that the strength is extremely inferior, and the use is different by itself. That is, it can be used for building materials that do not require high strength.

この発明は、前記問題点を解決する為に、熱可塑性合成樹脂繊維の芯として強化繊維を用いること、この合成樹脂繊維を縦、横、斜に夫々並列し、これを上下に重ねて積層シートを作り、これを一枚又は複数枚重ね合わせた積層物に加熱板と被着して、加熱加圧することにより、前記従来の含浸不十分の問題点を解決したのである。   In order to solve the above problems, the present invention uses a reinforcing fiber as a core of a thermoplastic synthetic resin fiber, and the synthetic resin fibers are arranged in parallel in the vertical, horizontal, and diagonal directions, and are laminated in the vertical direction. The above-mentioned conventional problem of insufficient impregnation was solved by attaching a heating plate to a laminate obtained by superimposing one or a plurality of these and heating and pressurizing them.

また前記加熱板と繊維との間にポリテトラフルオロエチレンなどの剥離性シート、又は剥離加工した鋼板を介在させることにより、接着性を回避したのである。   Adhesiveness was avoided by interposing a peelable sheet such as polytetrafluoroethylene or a peeled steel plate between the heating plate and the fiber.

また加熱温度は、当該樹脂が溶融する温度とし、例えばナイロン樹脂の場合には250℃〜300℃を用いる。次に加圧時に、加圧面が順次当接するように、スウィングプレスして、気泡を排出し、均質板の製造に成功し、前記従来の問題点を解決したのである。   The heating temperature is a temperature at which the resin melts. For example, in the case of a nylon resin, 250 ° C. to 300 ° C. is used. Next, at the time of pressurization, the press surface was subjected to a swing press so as to sequentially come into contact, and the bubbles were discharged to successfully produce a homogeneous plate, thereby solving the conventional problems.

また熱可塑性合成樹脂繊維としては、PEEK繊維、アクリル繊維、ナイロン繊維、ポリウレタン繊維、ポリプロピレン繊維、又はレーヨンなどが使用できる。また強化繊維としては、アラミド繊維、ガラス繊維、セラミックス繊維、炭素繊維、又は超高分子ポリエチレン繊維などが使用できる。   As the thermoplastic synthetic resin fiber, PEEK fiber, acrylic fiber, nylon fiber, polyurethane fiber, polypropylene fiber, rayon, or the like can be used. As the reinforcing fiber, an aramid fiber, a glass fiber, a ceramic fiber, a carbon fiber, an ultra high molecular polyethylene fiber, or the like can be used.

即ちこの発明は、強化繊維束を熱可塑性合成樹脂繊維で被覆した複合組紐又は複合撚紐を並列し、該並列繊維を縦方向、横方向、斜方向に積層して一体状の繊維シートとし、該繊維シートの単数シート又は複数シートを加熱、加圧して前記熱可塑性合成樹脂繊維を溶融し、強化繊維入りの板状に成形したことを特徴とする多方向繊維強化熱可塑性樹脂板であり、強化繊維をアラミド繊維、ガラス繊維、セラミックス繊維、炭素繊維、又は超高分子量ポリエチレン繊維の連続長繊維としたものであり、熱可塑性樹脂繊維をPEEK繊維、アクリル繊維、ナイロン繊維、ポリウレタン繊維、ポリエチレン繊維、ポリプロピレン繊維、又はレーヨンの連続長繊維としたものである。   That is, in the present invention, a composite braid or a composite twisted cord in which a reinforcing fiber bundle is coated with a thermoplastic synthetic resin fiber is juxtaposed, and the parallel fibers are laminated in the longitudinal direction, the transverse direction, and the oblique direction to form an integral fiber sheet, A multi-directional fiber reinforced thermoplastic resin plate, characterized in that a single sheet or a plurality of sheets of the fiber sheet is heated and pressed to melt the thermoplastic synthetic resin fiber and formed into a plate shape containing reinforcing fibers, Reinforced fiber is a continuous long fiber of aramid fiber, glass fiber, ceramic fiber, carbon fiber, or ultra-high molecular weight polyethylene fiber, and thermoplastic resin fiber is PEEK fiber, acrylic fiber, nylon fiber, polyurethane fiber, polyethylene fiber Polypropylene fiber or rayon continuous long fiber.

また製造法の発明は、強化繊維入りの複合組紐又は複合撚紐を並列し、該並列繊維を縦方向、横方向、斜方向に夫々積層させて一体化し、繊維シートを構成して、該繊維シートの単数繊維シート又は複数枚を積層した積層繊維シートを熱可塑性合成樹脂溶融温度に加熱すると共に、加圧し、強化繊維入り樹脂とした後、冷却固化して繊維強化樹脂板とすることを特徴とした多方向繊維強化熱可塑性樹脂板の製造法であり、加熱温度は、200℃〜350℃とし、加圧時間を1分〜30分とするものである。また、加圧は一側から他側へ順次加圧とし、加圧の圧力は、30kg/cm〜70kg/cmとするものであり、加圧時の加圧面と繊維面との間に離型手段を介装するものであり、離型手段は、薄金属板面にポリテトラフルオロエチレン加工を施し、又は薄金属板にポリテトラフルオロエチレンシートを積層するものである。 Further, the invention of the manufacturing method is a method in which composite braids or composite twisted cords containing reinforcing fibers are juxtaposed, and the parallel fibers are laminated and integrated in the longitudinal direction, the transverse direction, and the oblique direction, respectively, to constitute a fiber sheet, and the fibers A single fiber sheet of a sheet or a laminated fiber sheet obtained by laminating a plurality of sheets is heated to a thermoplastic synthetic resin melting temperature and pressurized to form a resin containing reinforcing fibers, and then cooled and solidified to form a fiber reinforced resin plate. The method for producing a multi-directional fiber reinforced thermoplastic resin plate is as follows. The heating temperature is 200 ° C. to 350 ° C., and the pressing time is 1 minute to 30 minutes. The pressure is sequentially pressurized from one side to the other side, the pressure of the pressure is for the 30kg / cm 2 ~70kg / cm 2 , between the pressing surface and the fiber surface during pressurization A mold release means is interposed, and the mold release means performs polytetrafluoroethylene processing on the surface of the thin metal plate or laminates a polytetrafluoroethylene sheet on the thin metal plate.

次にシステムの発明は、強化繊維入りの複合組紐又は複合撚紐を繊維シートとする編成手段と、前記繊維シートを加熱加圧する加熱加圧手段と、冷却して樹脂板とする冷却手段と、切断手段とを組み合せたことを特徴とする多方向繊維強化熱可塑性樹脂板の製造システムであり、加熱加圧手段は、加圧板を電熱加熱すると共に、前記加圧板の一方又は両方を順次近接して加圧するものである。更に、加圧板を2軸降下方式とし、繊維シートの進行方向に対し、前記2軸を直列方向に設置すると共に、前記2軸の下降量に大小差を設けて順次加圧としたことを特徴とする多方向繊維強化熱可塑性樹脂板の製造に用いる加圧成形装置である。   Next, the invention of the system is a knitting means using a composite braid containing reinforcing fibers or a composite twisted string as a fiber sheet, a heating and pressurizing means for heating and pressurizing the fiber sheet, a cooling means for cooling to a resin plate, A multi-directional fiber-reinforced thermoplastic resin plate manufacturing system characterized by combining cutting means, and the heating and pressurizing means electrically heats the pressurizing plate and sequentially brings one or both of the pressurizing plates close to each other. Pressure. Furthermore, the pressure plate is a two-axis descent method, and the two axes are installed in series with respect to the traveling direction of the fiber sheet, and the amount of descent of the two axes is provided with a difference in size so that the pressure is sequentially applied. It is a pressure molding apparatus used for manufacture of the multi-directional fiber reinforced thermoplastic resin plate.

また、加圧板を2軸降下方式とし、繊維シートの進行方向に対し、前記に軸を直列方向に設置すると共に、前記2軸の下降量に大小差を設けて順次加圧としたことを特徴とする多方向繊維強化熱可塑性樹脂板の製造に用いる加圧成形装置である。   Further, the pressure plate is a biaxial lowering method, the shaft is installed in the series direction with respect to the traveling direction of the fiber sheet, and the pressure is sequentially applied by providing a difference in the amount of lowering the two shafts. It is a pressure molding apparatus used for manufacture of the multi-directional fiber reinforced thermoplastic resin plate.

この発明は、強化繊維を内蔵した合成樹脂板であって、従来均等に樹脂を含浸させることが困難であったが、この発明は、強化繊維束の周囲を熱可塑性合成樹脂繊維で被覆した複合組紐又は複合撚紐を材料として編組した繊維シートを加熱加圧したので、熱可塑性合成樹脂が表面はもとより内部まで均等に分布している。従って熱可塑性合成樹脂が溶融すれば、全体が一様に合成樹脂溶融物となり、その中に、強化繊維が一体的に埋入されることになる。   The present invention is a synthetic resin plate incorporating reinforcing fibers, and it has been difficult to impregnate the resin evenly in the past, but this invention is a composite in which the periphery of the reinforcing fiber bundle is coated with thermoplastic synthetic resin fibers. Since the fiber sheet braided with the braid or composite twisted string as a material is heated and pressurized, the thermoplastic synthetic resin is evenly distributed not only from the surface but also to the inside. Therefore, when the thermoplastic synthetic resin is melted, the whole becomes a synthetic resin melt uniformly, and the reinforcing fibers are integrally embedded therein.

前記加熱温度は、熱可塑性合成樹脂によって異なるが、前記のように200℃〜350℃であり、圧力は、前記のように30kg/cm〜70kg/cmであって、比較的短時間(例えば1分〜30分以内、好ましくは1分位)に均等含浸状態になることが好ましい。 The heating temperature varies depending thermoplastic synthetic resin, wherein a 200 ° C. to 350 ° C. As the pressure is a 30kg / cm 2 ~70kg / cm 2 as described above, a relatively short period of time ( For example, it is preferable that the uniform impregnation is performed within 1 to 30 minutes, preferably within about 1 minute.

然して均等含浸状態になったならば、速やかに冷却し(例えば5℃〜15℃の冷風を吹きつける)、離型する。前記においては、プレス機による加圧であるから、加圧板(金属平盤)であるが、粘着力が高いので、離型用の鋼薄板にポリテトラフルオロエチレン加工を施して、前記当接型と繊維板との間に介装することが好ましい。   However, when the uniform impregnation state is obtained, it is quickly cooled (for example, blown with cold air of 5 ° C. to 15 ° C.) and released. In the above, it is a pressure plate (metal flat plate) because it is pressurized by a press machine, but since the adhesive force is high, the steel sheet for release is subjected to polytetrafluoroethylene processing, and the contact type It is preferable to interpose between the fiberboard and the fiberboard.

前記離型用としては、ポリテトラフルオロエチレンシートなども考えられるが、離型用の冷却も考えて対処する必要がある。例えば冷却用には、熱伝導度の大きい鋼板、アルミ板などにポリテトラフルオロエチレン加工を施すことも考えられる。   As the mold release, a polytetrafluoroethylene sheet or the like can be considered, but it is necessary to deal with the cooling for mold release. For example, for cooling, it is conceivable to apply polytetrafluoroethylene processing to a steel plate, an aluminum plate or the like having a high thermal conductivity.

また加工能率を考えれば、離型ベルト(極薄鋼板ベルト又はポリテトラフルオロエチレンベルト)として無端方式に回転させるのが好ましく、ベルト化が無理の場合には、離型板として使用することもできる。   In consideration of processing efficiency, it is preferable to rotate it endlessly as a release belt (ultra-thin steel plate belt or polytetrafluoroethylene belt), and when it is impossible to make a belt, it can also be used as a release plate. .

前記発明における繊維シートには多量の空気を含んでいるので、そのまま加熱加圧すると、多量の気泡を含むことになる。そこで、加圧板を順次加圧にして、一方向へ空気を逃すようにしている。この場合の加圧速度については、合成樹脂の粘度によって異なるが、例えばナイロン繊維の場合には、1分前後となる。また加圧機を2台並列した場合には、順次加圧と、二箇所で同時加圧する場合がある。何れにしても気泡を出すように工夫し、硬化時には気泡となることが好ましい。   Since the fiber sheet in the said invention contains a lot of air, if it heat-presses as it is, it will contain a lot of bubbles. Therefore, the pressure plates are sequentially pressurized so that air is released in one direction. The pressurization speed in this case varies depending on the viscosity of the synthetic resin, but for example, in the case of nylon fiber, it is about 1 minute. Further, when two pressurizers are arranged in parallel, there are cases where the pressurization is performed sequentially and simultaneous pressurization at two locations. In any case, it is preferable to devise so as to generate bubbles and to form bubbles at the time of curing.

この発明は、熱可塑性合成樹脂板の中へ、強化繊維を所定数量、所定位置、所定密度に埋設して、熱硬化性合成樹脂板と同一強度を得ようとするものである。   In the present invention, reinforcing fibers are embedded in a predetermined amount, a predetermined position, and a predetermined density in a thermoplastic synthetic resin plate so as to obtain the same strength as the thermosetting synthetic resin plate.

熱可塑性合成樹脂板の多くは、短繊維を混入した溶融合成樹脂を押し出し成型(射出成型も含む)しているが、この製法では、長繊維(例えば1m以上とか)を埋設することができないからである。   Many of the thermoplastic synthetic resin plates are formed by extrusion molding (including injection molding) of molten synthetic resin mixed with short fibers. However, this manufacturing method cannot embed long fibers (for example, 1 m or more). It is.

そこで長繊維の編成物の上方から熱可塑性合成樹脂を供給し、加圧成形することも考えられるが、長繊維の編成シートに合成樹脂を供給すると、合成樹脂の浸透性が悪く、不均一材質となって強度低下の原因となっている。   Therefore, it is conceivable to supply a thermoplastic synthetic resin from above the long-fiber knitted fabric and press-mold it. However, if synthetic resin is supplied to the long-fiber knitted sheet, the permeability of the synthetic resin is poor, resulting in a non-uniform material. This causes a decrease in strength.

前記問題点を解決する為に、この発明は強度繊維を芯とする熱可塑性合成樹脂紐などを作り、この紐によって編成物を作り、これを積層して任意の厚さにした後、加熱、加圧して合成樹脂板を成形したものである。   In order to solve the above-mentioned problems, the present invention makes a thermoplastic synthetic resin string having a strength fiber as a core, makes a knitted product with this string, laminates this to an arbitrary thickness, and then heats, A synthetic resin plate is molded by applying pressure.

このことにより、肉厚各所に熱可塑性合成樹脂が介在すると共に、強化繊維は無端(必要長さだけ連続できる)である為に、強度が著しく向上し、ほぼ熱硬化性繊維強化合成樹脂板に匹敵する強度の合成樹脂板を得ることに成功したのである。   As a result, the thermoplastic synthetic resin is interposed at various thicknesses, and the reinforcing fibers are endless (continuous as long as necessary), so that the strength is remarkably improved, and the almost thermosetting fiber reinforced synthetic resin plate is formed. They succeeded in obtaining a synthetic resin plate with comparable strength.

この発明によれば、強化繊維束を熱可塑性樹脂繊維で被覆した複合組紐又は複合撚紐を並列し、この並列繊維を縦方向、横方向、斜方向に積層して一体状繊維シートとし、これを加熱、加圧したので、強化繊維間に熱可塑性合成樹脂が介在しているからこれを加熱することによって、短時間に含浸状態となる効果がある(含浸状態が均等化できる利点がある)。   According to this invention, composite braids or composite twisted cords in which reinforcing fiber bundles are coated with thermoplastic resin fibers are juxtaposed, and the parallel fibers are laminated in the longitudinal direction, transverse direction, and oblique direction to form an integral fiber sheet, Since the thermoplastic synthetic resin is interposed between the reinforced fibers, heating it is effective to be in an impregnated state in a short time (the advantage is that the impregnated state can be equalized). .

また加圧に際しては、順次加圧するので、繊維シート内に含まれた空気を合理的に排出し、気泡のない均質合成樹脂板を得る効果がある。   In addition, since pressurization is sequentially performed during pressurization, there is an effect that the air contained in the fiber sheet is rationally discharged to obtain a homogeneous synthetic resin plate having no bubbles.

また強化繊維は、縦、横、斜に均等配置されているので、均等強度の強化繊維入り合成樹脂板ができる効果がある。   Further, since the reinforcing fibers are evenly arranged in the vertical, horizontal, and diagonal directions, there is an effect that a synthetic resin plate with reinforcing fibers of uniform strength can be obtained.

この発明は炭素繊維束を芯とし、その外側に熱可塑性合成樹脂繊維(例えばアクリル繊維、ポリウレタン繊維)を被覆した複合組紐又は複合撚紐を並列し、この並列繊維を、下方から縦方向、横方向、斜方向に順次積層した後、ステッチ糸で結束して繊維シートとし、この繊維シートを複数枚重ね合わせてから250℃に加熱しつつ、40kg/cmで加圧して、前記熱可塑性合成樹脂を溶解して強化繊維の内外に含浸させ、これを冷却して離型することを特徴とした多方向繊維強化熱可塑性樹脂板及びその製造方法である。従って強化繊維は条になっているが、熱可塑性繊維は溶融成形した樹脂板になる。 In the present invention, a composite braid or a composite twisted cord having a carbon fiber bundle as a core and a thermoplastic synthetic resin fiber (for example, acrylic fiber or polyurethane fiber) coated on the outside thereof is juxtaposed. After sequentially laminating in the direction and oblique direction, they are bound with stitch yarns to form a fiber sheet, and a plurality of the fiber sheets are stacked and then heated to 250 ° C. and pressurized at 40 kg / cm 2 to produce the thermoplastic composition. A multidirectional fiber reinforced thermoplastic resin plate and a method for producing the same, wherein the resin is dissolved and impregnated inside and outside of the reinforcing fiber, and then cooled and released. Accordingly, the reinforcing fibers are strips, but the thermoplastic fibers are melt-molded resin plates.

また複合組紐又は複合撚紐を従来技術により製造し、前記複合組紐又は複合撚紐を従来技術により編成して繊維シートとし、前記繊維シートを使用樹脂の溶解温度に加熱し、加圧して一体的合成樹脂板とする為の各種加工手段を組み合せて、多方向繊維強化熱可塑性樹脂板の製造システムである。   Moreover, a composite braid or a composite twisted string is manufactured by a conventional technique, and the composite braid or a composite twisted string is knitted by a conventional technique to form a fiber sheet, and the fiber sheet is heated to the melting temperature of the resin used and pressurized to be integrated. This is a system for producing a multi-directional fiber reinforced thermoplastic resin plate by combining various processing means for making a synthetic resin plate.

また前記繊維シートの加熱加圧は、一側より他側へ順次加圧することにより、繊維間に入っている空気を押し出すようにして、特殊な加圧装置を構成した。   The fiber sheet was heated and pressed in order from one side to the other side to extrude the air contained between the fibers, thereby forming a special pressing device.

この発明の実施例を図に基づいて説明すると、炭素繊維束1(例えば炭素繊維10〜20本)の外側に複数のナイロン繊維束2(例えばナイロン繊維10〜20本)を組み込んだ複合組紐4又は炭素繊維束1(例えば炭素繊維10〜20本)にナイロン繊維束2(例えばナイロン繊維10〜20本)の複数本を巻きつけた複合撚紐3(図1(a)、(b))を、下から斜並列(a)、横並列(b)、斜並列(a)、縦並列(c)と積層した後、かがり糸5、5で一体化して繊維シート6を製造する(図2(a))。この繊維シート6は、横並列(b)を2層にすることもできる(図2(b))。   An embodiment of the present invention will be described with reference to the drawings. A composite braid 4 in which a plurality of nylon fiber bundles 2 (for example, 10 to 20 nylon fibers) are incorporated outside a carbon fiber bundle 1 (for example, 10 to 20 carbon fibers). Alternatively, a composite twisted string 3 (FIGS. 1A and 1B) in which a plurality of nylon fiber bundles 2 (for example, 10 to 20 nylon fibers) are wound around a carbon fiber bundle 1 (for example, 10 to 20 carbon fibers). Are laminated in diagonally parallel (a), laterally parallel (b), diagonally parallel (a), and longitudinally parallel (c) from the bottom, and then integrated with the overlying threads 5 and 5 to produce a fiber sheet 6 (FIG. 2). (A)). This fiber sheet 6 can also be made into two layers in the horizontal parallel (b) (FIG.2 (b)).

前記繊維シート6をロール状に巻き込み、繊維ロール7、7として上下に架設し、これを引き出して二枚積層して加熱加圧する(図3(a))。   The fiber sheet 6 is wound into a roll shape, and is laid up and down as fiber rolls 7 and 7, pulled out and stacked, and heated and pressed (FIG. 3A).

前記は二枚の積層について説明したが、繊維ロール7、7を上下2束宛架設すれば(図3(b))、4枚積層することができる。従って積層枚数に制約はないが、通常2枚〜4枚が用いられる。   Although the above description has been made on the lamination of two sheets, if the fiber rolls 7 and 7 are installed on two upper and lower bundles (FIG. 3B), four sheets can be laminated. Therefore, although there is no restriction | limiting in the number of lamination | stacking, normally 2 sheets-4 sheets are used.

前記繊維ロール7、7から、繊維シート6、6を巻き出し(或いは繊維シート6を4枚巻き出し)、加工装置10に送り込む。加工装置10は、引張機8、予備加熱器9、加熱、加圧機11、冷却器12、引張機13、切断器14が順次直列してあり、機体15上に設置されている。図中16は給気器、17は排気ダクトである(図3)。   From the fiber rolls 7, 7, the fiber sheets 6, 6 are unwound (or four fiber sheets 6 are unwound) and fed into the processing apparatus 10. In the processing apparatus 10, a tension machine 8, a preheater 9, a heating and pressurizing machine 11, a cooler 12, a tension machine 13, and a cutting machine 14 are sequentially arranged in series, and are installed on a machine body 15. In the figure, 16 is an air supply device, and 17 is an exhaust duct (FIG. 3).

前記実施例において、図3中矢示18のように繊維シート6の積層シートを引張機8で引き出し、予備加熱器9で150℃〜200℃に予備加熱した後、矢示19のように加熱、加圧機11へ送り込む。   In the said Example, after drawing the laminated sheet of the fiber sheet 6 with the tension machine 8 as shown by the arrow 18 in FIG. 3 and preheating to 150-200 degreeC with the preheater 9, it is heated like the arrow 19, Feed into pressurizer 11.

前記加熱、加圧機11には加圧スタンド20が設置され(図4(a))、繊維シート6の積層シート6aは、矢示19のように間欠的に引き出される。前記引出し量は、例えば加圧スタンド20の加圧ヘッド21、21の長さによって決まる。   The heating and pressurizing machine 11 is provided with a pressurizing stand 20 (FIG. 4A), and the laminated sheet 6a of the fiber sheet 6 is pulled out intermittently as indicated by an arrow 19. The pull-out amount is determined by the length of the pressure heads 21 and 21 of the pressure stand 20, for example.

前記加圧ヘッド21と、受台22の内側には、加熱板21a、22aが固定され、例えば300℃に加熱されている。   Heat plates 21 a and 22 a are fixed inside the pressure head 21 and the cradle 22 and are heated to, for example, 300 ° C.

前記加圧ヘッド21の左右端は、油圧シリンダー23、23aのロッド24、24aに夫々連結され、ロッド24、24aの下降(矢示25、26)に対応して下降される。従って図4(d)のように、ロッド24を早く、ロッド24aを遅れて下降させると、加圧ヘッド21は、図4(d)に示すように、斜に下降し、順次加圧される。従って繊維シート6a内に含まれた空気は、矢示27のように合理的に排除される(気泡の残留がない)。前記において、ロッド24の下降速度をロッド24aよりも遅くする。   The left and right ends of the pressure head 21 are connected to the rods 24 and 24a of the hydraulic cylinders 23 and 23a, respectively, and are lowered corresponding to the lowering of the rods 24 and 24a (arrows 25 and 26). Therefore, as shown in FIG. 4D, when the rod 24 is lowered early and the rod 24a is lowered with a delay, the pressure head 21 descends obliquely and is sequentially pressurized as shown in FIG. 4D. . Therefore, the air contained in the fiber sheet 6a is rationally excluded as indicated by an arrow 27 (no bubbles remain). In the above, the descending speed of the rod 24 is made slower than that of the rod 24a.

前記加熱、加圧時に、繊維シート6aの熱可塑性合成樹脂は溶融して粘着するので、図4(b)のように、繊維シート6aと、加圧ヘッド21の加熱板21aと、受台22の加熱板22aとの間に、ポリテトラフルオロエチレンフィルム28を層着(例えばラミネート)した鋼シート29を上下に挟み込み、熱接着を防止する。   Since the thermoplastic synthetic resin of the fiber sheet 6a melts and adheres at the time of the heating and pressurization, the fiber sheet 6a, the heating plate 21a of the pressure head 21 and the cradle 22 are used as shown in FIG. A steel sheet 29 having a polytetrafluoroethylene film 28 layered (for example, laminated) is sandwiched between it and the heating plate 22a to prevent thermal bonding.

前記鋼シート29は、冷却器12を経て、引張機13まで挟着してある。従って、繊維シート6aが加熱され、その耐引張力が低下した時においても、挟着した鋼シート29に挟まれているので、引張力不足を生じるおそれはない。   The steel sheet 29 is clamped to the tension machine 13 through the cooler 12. Therefore, even when the fiber sheet 6a is heated and its tensile strength is lowered, the fiber sheet 6a is sandwiched between the steel sheets 29 that have been sandwiched, so that there is no possibility of insufficient tensile force.

前記のようにして、加工済繊維シートが繊維強化板6bとなったならば、粘着性がなくなると共に、強度も著しく大きくなるので、直接引張力を加えても何等の支障はない。   As described above, if the processed fiber sheet becomes the fiber reinforced plate 6b, the adhesiveness is lost and the strength is remarkably increased. Therefore, there is no problem even if a direct tensile force is applied.

前記繊維シート6aの送り込み、繊維強化板6bの取り出しについては、引張機8、13をローラのように図示したが、単なる抽象図であって、ローラの外に、各種咬み込み引張機その他従来公知の引張機を使用することができる。   Regarding the feeding of the fiber sheet 6a and the removal of the fiber reinforced plate 6b, the tension machines 8 and 13 are illustrated as rollers. However, the tension machines 8 and 13 are merely abstract views. The tensioning machine can be used.

前記のようにして成形された繊維強化板6bは、切断器14で所定の長さ(例えば1m〜2m)に繊維強化単板6cに切断され、コンベア30により矢示31のように次工程へ運ばれる。   The fiber reinforced plate 6b formed as described above is cut into a fiber reinforced single plate 6c by a cutter 14 into a predetermined length (for example, 1 m to 2 m), and the conveyor 30 proceeds to the next step as indicated by an arrow 31. Carried.

前記繊維強化単板6cは、炭素繊維束を熱可塑性樹脂32内へ埋設した状態となって、熱硬化性樹脂板の強度に近い強度(ほぼ80%以上)を示すものである。   The fiber reinforced single plate 6c is in a state where a carbon fiber bundle is embedded in the thermoplastic resin 32, and exhibits a strength (approximately 80% or more) close to the strength of the thermosetting resin plate.

(a)この発明に用いる複合撚紐の一部拡大図、(b)同じく複合撚組紐一部拡大図。(A) A partially enlarged view of a composite twisted string used in the present invention, (b) A partially enlarged view of a composite twisted braid. (a)同じく繊維シートの斜視図、(b)同じく他の繊維シートの斜視図。(A) The perspective view of a fiber sheet similarly, (b) The perspective view of another fiber sheet. (a)同じく加工装置の模式図、(b)同じく繊維シートの積層を示す図。(A) The schematic diagram of a processing apparatus, (b) The figure which similarly shows lamination | stacking of a fiber sheet. (a)同じく加工時の説明図、(b)同じく剥離性を保有する為の例示拡大断面図、(c)同じく一部拡大断面図、(d)同じく順次加圧の説明図。(A) Explanatory drawing at the time of processing, (b) Illustrated enlarged sectional view for retaining the peelability, (c) Partial enlarged sectional view, (d) Explanatory drawing of sequential pressurization. 同じく繊維強化板の一部断面拡大図。The partial cross-sectional enlarged view of a fiber reinforced board similarly.

符号の説明Explanation of symbols

1 炭素繊維束
2 ナイロン繊維束
3 複合組紐
4 複合撚紐
5 かがり糸
6 繊維シート
7 繊維ロール
8 引張機
9 予備加熱器
10 加工装置
11 加熱加圧機
12 冷却器
13 引張機
14 切断器
15 機体
16 空気吸入器
17 排気ダクト
20 加圧スタンド
DESCRIPTION OF SYMBOLS 1 Carbon fiber bundle 2 Nylon fiber bundle 3 Composite braid 4 Composite twisted string 5 Overhang yarn 6 Fiber sheet 7 Fiber roll 8 Pulling machine 9 Preheating machine 10 Processing apparatus 11 Heating and pressing machine 12 Cooling machine 13 Pulling machine 14 Cutting machine 15 Machine body 16 Air inhaler 17 Exhaust duct 20 Pressure stand

Claims (11)

強化繊維束を熱可塑性合成樹脂繊維で被覆した複合組紐又は複合撚紐を並列し、該並列繊維を縦方向、横方向、斜方向に積層して一体状の繊維シートとし、該繊維シートの単数シート又は複数シートを加熱、加圧して前記熱可塑性合成樹脂繊維を溶融し、強化繊維入りの板状に成形したことを特徴とする多方向繊維強化熱可塑性樹脂板。   Composite braids or composite twisted cords in which reinforcing fiber bundles are coated with thermoplastic synthetic resin fibers are juxtaposed, and the parallel fibers are laminated in the longitudinal direction, the transverse direction, and the oblique direction to form an integral fiber sheet, and the single fiber sheet A multi-directional fiber reinforced thermoplastic resin plate, wherein a sheet or a plurality of sheets are heated and pressed to melt the thermoplastic synthetic resin fibers and formed into a plate shape containing reinforcing fibers. 強化繊維をアラミド繊維、ガラス繊維、セラミックス繊維、炭素繊維、又は超高分子量ポリエチレン繊維の連続長繊維としたことを特徴とする請求項1記載の多方向繊維強化熱可塑性樹脂板。   The multidirectional fiber-reinforced thermoplastic resin plate according to claim 1, wherein the reinforcing fibers are continuous long fibers of aramid fibers, glass fibers, ceramic fibers, carbon fibers, or ultrahigh molecular weight polyethylene fibers. 熱可塑性樹脂繊維をPEEK繊維、アクリル繊維、ナイロン繊維、ポリウレタン繊維、ポリエチレン繊維、ポリプロピレン繊維、又はレーヨンの連続長繊維としたことを特徴とする請求項1記載の多方向繊維強化熱可塑性樹脂板。   The multi-directional fiber reinforced thermoplastic resin plate according to claim 1, wherein the thermoplastic resin fiber is a continuous long fiber of PEEK fiber, acrylic fiber, nylon fiber, polyurethane fiber, polyethylene fiber, polypropylene fiber, or rayon. 強化繊維入りの複合組紐又は複合撚紐を並列し、該並列繊維を縦方向、横方向、斜方向に夫々積層させて一体化し、繊維シートを構成して、該繊維シートの単数繊維シート又は複数枚を積層した積層繊維シートを熱可塑性合成樹脂溶融温度に加熱すると共に、加圧し、強化繊維入り樹脂とした後、冷却固化して繊維強化樹脂板とすることを特徴とした多方向繊維強化熱可塑性樹脂板の製造法。   A composite braid or composite twisted string containing reinforcing fibers is juxtaposed, and the parallel fibers are laminated in the longitudinal direction, the transverse direction, and the oblique direction, respectively, to form a fiber sheet, and a single fiber sheet or a plurality of the fiber sheets Multi-directional fiber reinforced heat characterized in that laminated fiber sheet with laminated sheets is heated to thermoplastic synthetic resin melting temperature and pressed to make resin with reinforced fiber, then cooled and solidified to make fiber reinforced resin plate Manufacturing method of plastic resin board. 加熱温度は、200℃〜350℃とし、加圧時間を1分〜30分とすることを特徴とした請求項4記載の多方向繊維強化熱可塑性樹脂板の製造法。   The method for producing a multidirectional fiber-reinforced thermoplastic resin plate according to claim 4, wherein the heating temperature is 200 ° C to 350 ° C, and the pressing time is 1 minute to 30 minutes. 加圧は一側から他側へ順次加圧とし、加圧の圧力は、30kg/cm〜70kg/cmとすることを特徴とした請求項4記載の多方向繊維強化熱可塑性樹脂板の製造法。 Pressure is sequentially pressurized from one side to the other side, the pressure of the pressurization, 30kg / cm 2 ~70kg / cm 2 and according to claim 4, wherein the characterized in that the multidirectional fiber-reinforced thermoplastic resin sheet Manufacturing method. 加圧時の加圧面と繊維面との間に離型手段を介装することを特徴とした請求項4記載の多方向繊維強化熱可塑性樹脂板の製造法。   5. The method for producing a multi-directional fiber-reinforced thermoplastic resin plate according to claim 4, wherein a releasing means is interposed between the pressing surface and the fiber surface during pressing. 離型手段は、薄金属板面にポリテトラフルオロエチレン加工を施し、又は薄金属板にポリテトラフルオロエチレンシートを積層することを特徴とする請求項7記載の多方向繊維強化熱可塑性樹脂板の製造法。   8. The multidirectional fiber-reinforced thermoplastic resin plate according to claim 7, wherein the releasing means performs polytetrafluoroethylene processing on the surface of the thin metal plate or laminates a polytetrafluoroethylene sheet on the thin metal plate. Manufacturing method. 強化繊維入りの複合組紐又は複合撚紐を繊維シートとする編成手段と、前記繊維シートを加熱加圧する加熱加圧手段と、冷却して樹脂板とする冷却手段と、切断手段とを組み合せたことを特徴とする多方向繊維強化熱可塑性樹脂板の製造システム。   Combining knitting means using a composite braid containing reinforcing fibers or a composite twisted string as a fiber sheet, a heating and pressurizing means for heating and pressurizing the fiber sheet, a cooling means for cooling to a resin plate, and a cutting means A system for producing a multi-directional fiber reinforced thermoplastic resin board characterized by 加熱加圧手段は、加圧板を電熱加熱すると共に、前記加圧板の一方又は両方を順次近接して加圧することを特徴とした請求項9記載の多方向繊維強化熱可塑性樹脂板の製造システム。   The system for producing a multi-directional fiber reinforced thermoplastic resin plate according to claim 9, wherein the heating and pressing means heats the pressure plate electrically and simultaneously presses one or both of the pressure plates in close proximity. 加圧板を2軸降下方式とし、繊維シートの進行方向に対し、前記2軸を直列方向に設置すると共に、前記2軸の下降量に大小差を設けて順次加圧としたことを特徴とする多方向繊維強化熱可塑性樹脂板の製造に用いる加圧成形装置。   The pressure plate is a two-axis descent method, and the two axes are installed in series with respect to the traveling direction of the fiber sheet, and the amount of descent of the two axes is provided with a difference in size so that the pressure is sequentially applied. A pressure forming apparatus used for manufacturing a multi-directional fiber reinforced thermoplastic resin plate.
JP2004316482A 2004-10-29 2004-10-29 Multi-directional fiber reinforced thermoplastic resin plate, manufacturing method thereof, manufacturing system and pressure molding apparatus Expired - Fee Related JP4135180B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004316482A JP4135180B2 (en) 2004-10-29 2004-10-29 Multi-directional fiber reinforced thermoplastic resin plate, manufacturing method thereof, manufacturing system and pressure molding apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004316482A JP4135180B2 (en) 2004-10-29 2004-10-29 Multi-directional fiber reinforced thermoplastic resin plate, manufacturing method thereof, manufacturing system and pressure molding apparatus

Publications (2)

Publication Number Publication Date
JP2006123417A true JP2006123417A (en) 2006-05-18
JP4135180B2 JP4135180B2 (en) 2008-08-20

Family

ID=36718606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004316482A Expired - Fee Related JP4135180B2 (en) 2004-10-29 2004-10-29 Multi-directional fiber reinforced thermoplastic resin plate, manufacturing method thereof, manufacturing system and pressure molding apparatus

Country Status (1)

Country Link
JP (1) JP4135180B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012136653A (en) * 2010-12-27 2012-07-19 Kyoto Institute Of Technology Fiber reinforced thermoplastic resin composite material, method for producing the same, and apparatus for producing the same
WO2014057606A1 (en) 2012-10-10 2014-04-17 綾羽株式会社 Fabric for carbon fiber-reinforced composite, and method for manufacturing same
JPWO2013042763A1 (en) * 2011-09-22 2015-03-26 国立大学法人京都工芸繊維大学 Reinforcing fiber / resin fiber composite and manufacturing method thereof
CN114161807A (en) * 2021-12-09 2022-03-11 江苏安卡新材料科技有限公司 Manufacturing method of bulletproof plate

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012136653A (en) * 2010-12-27 2012-07-19 Kyoto Institute Of Technology Fiber reinforced thermoplastic resin composite material, method for producing the same, and apparatus for producing the same
JPWO2013042763A1 (en) * 2011-09-22 2015-03-26 国立大学法人京都工芸繊維大学 Reinforcing fiber / resin fiber composite and manufacturing method thereof
WO2014057606A1 (en) 2012-10-10 2014-04-17 綾羽株式会社 Fabric for carbon fiber-reinforced composite, and method for manufacturing same
CN104718320A (en) * 2012-10-10 2015-06-17 绫羽株式会社 Fabric for carbon fiber-reinforced composite, and method for manufacturing same
US9534322B2 (en) 2012-10-10 2017-01-03 Ayaha Corporation Fabric for carbon fiber reinforced composite material and method of manufacturing the same
CN114161807A (en) * 2021-12-09 2022-03-11 江苏安卡新材料科技有限公司 Manufacturing method of bulletproof plate

Also Published As

Publication number Publication date
JP4135180B2 (en) 2008-08-20

Similar Documents

Publication Publication Date Title
KR101321651B1 (en) Method of forming molded thermoplastic-resin composite material
JP3821467B2 (en) Reinforcing fiber base material for composite materials
CN110461918B (en) Prepreg and method for producing same, cell layer with skin material, fiber-reinforced composite material molded article, and method for producing same
JP6085798B2 (en) COMPOSITE MATERIAL FOR 3D SHAPE FORMING AND ITS MANUFACTURING METHOD
CN103921369B (en) A kind of dry method pre-impregnating process of thermoplastic resin-based pre-preg band
CA2967160C (en) Tape-like dry fibrous reinforcement
JP2011073436A (en) Intermediate product and intermediate-product composite
KR20140005409A (en) Thermoplastic prepreg and method for producing the same
KR101684821B1 (en) Manufacturing method for fibre-reinforced resin substrate or resin molded article, and plasticizing exhauster used in manufacturing method
CN106273989A (en) The shaped device of a kind of fiber reinforced thermolplastic composite material plate and forming method thereof
JP2007182065A (en) Multi-axial molding material, preform, frp, and manufacturing method for frp
CN102296805B (en) Recyclable composite material building template and manufacturing method thereof
JP4135180B2 (en) Multi-directional fiber reinforced thermoplastic resin plate, manufacturing method thereof, manufacturing system and pressure molding apparatus
JP2018507128A (en) Process equipment and manufacturing method for fiber reinforced plastic parts
KR20220159937A (en) Method and apparatus for manufacturing composite material molded articles
CN108032537B (en) Preparation process of continuous fiber reinforced plate
JP5598931B2 (en) Fiber reinforced resin substrate, method for producing resin molded body, and resin processing machine for implementing the method
KR100296229B1 (en) Composite material manufacturing method with enhanced performance and its manufacturing apparatus
FI97114C (en) Planar porous composite structure and method for its manufacture
JPH0433807A (en) Production equipment of reinforced resin forming material
JP3254802B2 (en) Manufacturing method of FRP
JPH0433808A (en) Production equipment of reinforced resin forming material

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051003

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051003

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20051003

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080422

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080523

R150 Certificate of patent or registration of utility model

Ref document number: 4135180

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130613

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees