JP2014172267A - Laminate substrate - Google Patents

Laminate substrate Download PDF

Info

Publication number
JP2014172267A
JP2014172267A JP2013046343A JP2013046343A JP2014172267A JP 2014172267 A JP2014172267 A JP 2014172267A JP 2013046343 A JP2013046343 A JP 2013046343A JP 2013046343 A JP2013046343 A JP 2013046343A JP 2014172267 A JP2014172267 A JP 2014172267A
Authority
JP
Japan
Prior art keywords
fiber
cut
prepreg
thermoplastic resin
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013046343A
Other languages
Japanese (ja)
Inventor
Yukichi Konami
諭吉 小並
Takeshi Ishikawa
健 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2013046343A priority Critical patent/JP2014172267A/en
Publication of JP2014172267A publication Critical patent/JP2014172267A/en
Pending legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of producing a large-sized laminate which improves workability and handleability in the process and the fluidity, moldability and properties of the laminate.SOLUTION: A large-sized laminate substrate is a flat plate-like laminate substrate in which a plurality of prepreg layers consisting of a plurality of reinforcing fibers oriented in one direction and a thermoplastic resin are arranged in random directions and integrated, and the prepreg layers have cuts of such a depth as to cut the fibers in the direction crossing the fibers. The product of the cut width (fiber length) by the cut length of the cuts is equal to or greater than 220 mm×mm and smaller than 15000 mm×mm, and the flat plate has sides of 100 cm or longer and an area of 6,000 cm.

Description

本発明は、大型での成形を可能とし、成形後の部品が、構造材に適用可能な優れた力学物性、低バラツキ性を有し、スタンピング成形時の複雑な形状への賦形性に優れ、短時間で成形可能であることを特徴とする中間基材、およびその製造方法に関する。さらに詳しくは、リブ,ボス等の3次元形状の成形に容易に追随し、構造部材として機械強度を維持し、例えば航空機部材、自動車部材、スポーツ用具等に好適に用いられる繊維強化プラスチックの中間基材である積層基材、およびその製造方法に関する。   The present invention enables molding in a large size, and the molded parts have excellent mechanical properties applicable to structural materials, low variation, and excellent formability to complicated shapes during stamping molding. The present invention also relates to an intermediate base material that can be molded in a short time, and a method for producing the same. More specifically, an intermediate base of fiber reinforced plastic that easily follows the molding of three-dimensional shapes such as ribs and bosses, maintains mechanical strength as a structural member, and is suitably used for, for example, aircraft members, automobile members, sports equipment, etc. The present invention relates to a laminated base material that is a material, and a method for manufacturing the same.

繊維強化熱可塑性プラスチックの成形方法としては、プリプレグと称される連続した強化繊維に熱可塑性樹脂を含浸せしめた中間基材を積層し、プレス等で加熱加圧することにより目的の形状に賦形するスタンピング成形が最も一般的に行われている。これにより得られた繊維強化プラスチックは、連続繊維であるゆえに優れた力学物性を有する。また連続繊維は規則的な配列であるため、基材の配置により必要とする力学物性に設計することが可能であり、力学物性のバラツキも小さい。しかしながら、連続繊維であるゆえに3次元形状等の複雑な形状を形成することは難しく、主として平面形状に近い部材に限られる。   As a method for molding fiber-reinforced thermoplastics, an intermediate base material impregnated with a thermoplastic resin is laminated on continuous reinforcing fibers called prepregs, and shaped into a desired shape by heating and pressing with a press or the like. Stamping is most commonly performed. The fiber reinforced plastic obtained in this way is a continuous fiber and therefore has excellent mechanical properties. In addition, since the continuous fibers are regularly arranged, it is possible to design the mechanical properties required by the arrangement of the base material, and the variation in the mechanical properties is small. However, since it is a continuous fiber, it is difficult to form a complicated shape such as a three-dimensional shape, and it is mainly limited to members close to a planar shape.

また、近年では生産効率の向上を目的に強化繊維を直接成形機のスクリュー部に送り込み、繊維の切断と分散を同時に行い、その後連続して射出成形や押出成形を行うLFT−D成形も行われている。この方法によると強化繊維は適当な長さに切断されているため流動が容易であり3次元形状等の複雑な形状にも追従可能となる。しかしながら、LFT−Dはその切断および分散工程において繊維長のムラや繊維分布のムラを生じてしまうために、力学物性が低下し、あるいはその値のバラツキが大きくなってしまうという問題があった。   In recent years, for the purpose of improving production efficiency, LFT-D molding has also been carried out, in which reinforcing fibers are fed directly into the screw section of the molding machine, the fibers are cut and dispersed simultaneously, and then injection molding and extrusion molding are performed continuously. ing. According to this method, since the reinforcing fiber is cut to an appropriate length, it can easily flow and can follow a complicated shape such as a three-dimensional shape. However, since LFT-D causes unevenness in fiber length and unevenness in fiber distribution in the cutting and dispersing process, there is a problem that mechanical properties are deteriorated or the variation in value is increased.

上述のような材料の欠点を埋めるべく、連続繊維と熱可塑性樹脂からなるプリプレグに切込を入れることにより、短時間成形が可能であり、成形時には優れた賦形性を示し、繊維強化プラスチックとしたときに優れた力学物性を発現するとされる基材が開示されている。(特許文献1)しかしながらLFT−Dと比較すると力学特性は高く、かつそのバラツキが小さくなるものの、構造材として適用するには十分な強度とは言えなかった。   In order to fill the drawbacks of the above materials, by cutting into a prepreg made of continuous fibers and thermoplastic resin, it can be molded in a short time, and exhibits excellent formability at the time of molding. A base material that is said to exhibit excellent mechanical properties when disclosed. (Patent Document 1) However, compared with LFT-D, the mechanical properties are high and the variation is small, but it cannot be said that the strength is sufficient for application as a structural material.

特開昭63−247012号公報Japanese Unexamined Patent Publication No. 63-247010

本発明は、上記のような従来技術に伴う問題点を解決しようとするものであって、構造材に適用可能な曲げ強度や引張弾性率など優れた力学物性、その低バラツキ性を持ち、複雑な形状への賦形性に優れて短時間成形可能である中間基材、およびその製造方法を提供することを課題とする。   The present invention is intended to solve the problems associated with the prior art as described above, and has excellent mechanical properties such as bending strength and tensile elastic modulus applicable to structural materials, and its low variation properties, and is complicated. It is an object of the present invention to provide an intermediate base material that is excellent in formability to a simple shape and can be molded in a short time, and a method for producing the same.

本発明は、強化繊維と熱可塑性樹脂を含む一方向プリプレグが、それぞれ任意の方向に配向するように積層された平板状の積層基材であって、前記一方向プリプレグは、強化繊維を横切る方向に強化繊維を切断する深さの切込を有し、前記切込の幅と前記切断された強化繊維長さの積が、220mm以上、15000mm未満であり、平板状の積層基材の一辺の長さが100cm以上で、面積6000cmである積層基材である。 The present invention is a flat laminated substrate in which unidirectional prepregs containing reinforcing fibers and a thermoplastic resin are laminated so as to be oriented in arbitrary directions, respectively, wherein the unidirectional prepreg crosses the reinforcing fibers. has a cutting depth of cutting the reinforcing fibers, the product of the width and the cut reinforcing fibers the length of the notch is, 220 mm 2 or more and less than 15000 2, of a flat layered base It is a laminated substrate having a side length of 100 cm or more and an area of 6000 cm 2 .

本発明によれば、構造材に適用可能な曲げ強度や引張弾性率など優れた力学物性、その低バラツキ性を持ち、複雑な形状への賦形性に優れて短時間成形可能なである大判の中間基材、およびその製造方法を得ることができる。   According to the present invention, it has excellent mechanical properties such as bending strength and tensile elastic modulus applicable to structural materials, and its low variability, and it has excellent shapeability to complex shapes and can be molded in a short time. An intermediate substrate and a production method thereof can be obtained.

本発明の実施例1の切込プリプレグを示す図である。It is a figure which shows the cutting prepreg of Example 1 of this invention. 切り込み線が曲線の場合の切込プリプレレグの一例を示す図である。It is a figure which shows an example of the cutting prepreg when a cutting line is a curve.

以下、本発明について詳細に説明する。
本発明の積層基材に用いることができるプリプレグとしては、一方向に配向した強化繊維と熱可塑性樹脂を含むプリプレグに、特定のパターンで切込を施したプリプレグを、積層厚み方向に繊維長を変化させ積層し、溶着もしくは加熱加圧する積層基材である。
Hereinafter, the present invention will be described in detail.
As a prepreg that can be used for the laminated base material of the present invention, a prepreg including a reinforcing fiber oriented in one direction and a thermoplastic resin, a prepreg that has been cut in a specific pattern, and a fiber length in the laminated thickness direction. It is a laminated base material that is laminated by changing and welding or heating and pressing.

切込みの施されたプリプレグに含まれる強化繊維の長さは長いほど力学特性に優れるものの、スタンピング成形時の流動性は低下する。そのため強化繊維の長さは、強度発現部と流動部に応じて所定の長さにする必要がある。ここでいう強度発現部とは平板形状に近い部分でかつ最外層に近い部分のことをいう。また流動部とはリブやボスなど複雑な3次元形状部のことでこちらも最外層に近い部分である。   The longer the length of the reinforcing fiber contained in the prepreg that has been cut, the better the mechanical properties, but the fluidity during stamping molding decreases. Therefore, the length of the reinforcing fiber needs to be a predetermined length according to the strength developing part and the fluidized part. The strength developing part here means a part close to a flat plate shape and a part close to the outermost layer. The fluid part is a complicated three-dimensional part such as a rib or boss, which is also a part close to the outermost layer.

切込みの施されたプリプレグに含まれる強化繊維の長さは力学特性から5mm以上、好ましくは10mm以上、20mm以上がより好ましい。またリブなど複雑な3次元形状への流動性から考えると100mm以下、好ましくは60mm以下、30mm以下がより好ましい。以上のことから切込みの施されたプリプレグに含まれる強化繊維の長さは5mm以上、100mm以下が好ましく、積層基材内の高強度部,流動部がこの範囲で繊維長分布を持つことが好ましい。   The length of the reinforcing fiber contained in the prepreg that has been cut is 5 mm or more, preferably 10 mm or more, more preferably 20 mm or more in view of mechanical properties. In view of fluidity to a complicated three-dimensional shape such as a rib, it is 100 mm or less, preferably 60 mm or less, more preferably 30 mm or less. From the above, the length of the reinforcing fiber contained in the prepreg that has been cut is preferably 5 mm or more and 100 mm or less, and the high-strength portion and the fluidized portion in the laminated base material preferably have a fiber length distribution in this range. .

また切込プリプレグを複数枚、積層した積層基材は、あらかじめ切込により繊維長を調整したプリプレグを適切に積層できるので、上記の厚み方向に強化繊維の長さを変えることが可能となる。   Moreover, since the laminated base material which laminated | stacked several cut prepregs can laminate | stack appropriately the prepreg which adjusted the fiber length by cutting beforehand, it becomes possible to change the length of a reinforced fiber in said thickness direction.

切り込みの形状は直線であっても、折れ線であっても、曲線であっても良い。但し切り込み線は、1本の切り込み線中において強化繊維を横切る方向が逆転しないことが必要である。切り込みの幅は1本の切り込み線の強化繊維に垂直な面への投影線の長さとして定義され、積層基材を作成する際の作業性、取り扱い性から350mm以下、好ましくは180mm以下、35mm以下がより好ましい。   The shape of the cut may be a straight line, a broken line, or a curved line. However, it is necessary that the cut line does not reverse the direction across the reinforcing fiber in one cut line. The width of the incision is defined as the length of the projection line of one incision line onto the surface perpendicular to the reinforcing fiber, and is 350 mm or less, preferably 180 mm or less, preferably 35 mm from the viewpoint of workability and handleability when creating a laminated substrate. The following is more preferable.

切込プリプレグに含まれる強化繊維の配列する方向と、切り込み線とがなす角度(切り込み線が折れ線の場合は折れ線中の各線分とがなす角度。切り込み線が曲線の場合は曲線各部位における接線とがなす角度。以下総称して切込角度という。)にも特に制限があるわけではないが、製造時間の短縮は製造コストの削減から、切込角度の絶対値は大きいほど良い。切込角度の絶対値は30°以上が好ましく,さらには45°以上が好ましい。   The angle formed by the direction in which the reinforcing fibers contained in the cut prepreg are arranged and the cut line (when the cut line is a broken line, the angle formed by each line segment in the broken line. When the cut line is a curved line, the tangent at each part of the curved line Although there is no particular limitation on the angle formed by the following (collectively referred to as the cutting angle), the shorter the manufacturing time, the better the absolute value of the cutting angle is because the manufacturing cost is reduced. The absolute value of the cutting angle is preferably 30 ° or more, and more preferably 45 ° or more.

本発明の積層基材に用いることができるプリプレグに用いるマトリックス樹脂は、熱可塑性樹脂を用いることが望ましい。すなわち、不連続な強化繊維を用いた繊維強化プラスチックの場合、繊維端部同士を連結するように破壊するため、一般的に熱硬化性樹脂よりも靱性値が高い熱可塑性樹脂をマトリックス樹脂として用いることで、強度、特に衝撃性が向上する。さらに熱可塑性樹脂は化学反応を伴うことなく冷却固化して形状を決定するので、短時間成形が可能であり、生産性に優れる。   The matrix resin used for the prepreg that can be used for the laminated base material of the present invention is desirably a thermoplastic resin. That is, in the case of a fiber reinforced plastic using discontinuous reinforcing fibers, a thermoplastic resin generally having a higher toughness value than a thermosetting resin is used as a matrix resin in order to break the fiber ends so as to connect each other. As a result, strength, particularly impact resistance is improved. Furthermore, since the thermoplastic resin is cooled and solidified without a chemical reaction to determine the shape, it can be molded in a short time and has excellent productivity.

本発明の積層基材に用いることができるプリプレグの厚みは200μmより大きくても良い流動性を得ることができるが、本発明に係るプリプレグはその切込部において強化繊維がプリプレグ厚み全体にわたって分断されるため、プリプレグ厚みが大きければ大きいほど強度が低下する傾向があり、構造材に適用することを前提とするならば、200μm以下とするのが良い。一方厚みが50μm未満ではプリプレグの取り扱いが難しく積層基材を構成するプリプレグが非常に多くなり生産性が著しく悪化する。よって生産性の観点から50μm以上200μm以下であるのが良く、100μm以上150μm以下がより良い。   Although the thickness of the prepreg that can be used for the laminated base material of the present invention may be greater than 200 μm, fluidity may be obtained. However, in the prepreg according to the present invention, the reinforcing fibers are divided throughout the thickness of the prepreg at the cut portion. Therefore, as the prepreg thickness increases, the strength tends to decrease. If it is assumed to be applied to a structural material, the thickness is preferably 200 μm or less. On the other hand, if the thickness is less than 50 μm, it is difficult to handle the prepreg, and the amount of prepreg constituting the laminated base material becomes very large, and the productivity is remarkably deteriorated. Therefore, from the viewpoint of productivity, it is preferably 50 μm or more and 200 μm or less, and more preferably 100 μm or more and 150 μm or less.

本発明の積層基材に用いることができるプリプレグに含まれる強化繊維の体積含有率Vfは50%以下で十分な流動性を得ることができる。Vfが低いほど流動性は向上するが、Vfが20%未満では構造材に必要な力学特性は得られない。流動性と力学特性の関係を鑑みると、20%以上50%以下が好ましく、30%以上40%以下がより好ましく。   The volume content Vf of the reinforcing fiber contained in the prepreg that can be used for the laminated base material of the present invention is 50% or less, and sufficient fluidity can be obtained. The lower the Vf, the better the fluidity. However, if Vf is less than 20%, the mechanical properties necessary for the structural material cannot be obtained. In view of the relationship between fluidity and mechanical properties, 20% to 50% is preferable, and 30% to 40% is more preferable.

本発明の積層基材に用いることができる強化繊維の種類は特に限定されず、無機繊維、有機繊維、金属繊維、またはこれらを組み合わせたハイブリッド構成の繊維を用いることができる。無機繊維としては、炭素繊維、黒鉛繊維、炭化珪素繊維、アルミナ繊維、タングステンカーバイド繊維、ボロン繊維、ガラス繊維などが挙げられる。有機繊維としては、アラミド繊維、高密度ポリエチレン繊維、その他一般のナイロン繊維、ポリエステルなどが挙げられる。金属繊維としては、ステンレス、鉄等の繊維が挙げられる。また金属を被覆した炭素繊維でもよい。これらの中では、最終成形物の強度等の機械特性を考慮すると、炭素繊維が好ましい。また、強化繊維の平均繊維直径は、1〜50μmであることが好ましく、5〜20μmであることがより好ましい。   The kind of the reinforcing fiber that can be used in the laminated base material of the present invention is not particularly limited, and inorganic fiber, organic fiber, metal fiber, or a fiber having a hybrid configuration in which these are combined can be used. Examples of the inorganic fiber include carbon fiber, graphite fiber, silicon carbide fiber, alumina fiber, tungsten carbide fiber, boron fiber, and glass fiber. Examples of organic fibers include aramid fibers, high density polyethylene fibers, other general nylon fibers, and polyesters. Examples of metal fibers include stainless steel and iron fibers. Moreover, the carbon fiber which coat | covered the metal may be sufficient. Among these, carbon fibers are preferable in consideration of mechanical properties such as strength of the final molded product. Moreover, it is preferable that the average fiber diameter of a reinforced fiber is 1-50 micrometers, and it is more preferable that it is 5-20 micrometers.

本発明の積層基材に用いることができる熱可塑性樹脂としては、ポリアミド(ナイロン6、ナイロン66等)、ポリオレフィン(ポリエチレン、ポリプロピレン等)、変性ポリオレフィン(酸変性ポリプロピレン等)、ポリエステル(ポリエチレンテレフタレート、ポリブチレンテレフタレート等)、ポリカーボネート、ポリアミドイミド、ポリフェニレンオキシド、ポリスルホン、ポリエーテルスルホン、ポリエーテルエーテルケトン、ポリエーテルイミド、ポリスチレン、ABS、ポリフェニレンサルファイド、液晶ポリエステルや、アクリロニトリルとスチレンの共重合体、ナイロン6とナイロン66との共重合ナイロンのように共重合等が挙げられる。これらは、一種単独で、または二種以上を併用して用いることができる。中でも、低温での成形性の観点からポリプロピレン、特に炭素繊維との付着性の観点から酸変性ポリプロピレンが好ましく、高温での力学特性の観点からポリアミドが好ましい。   Examples of the thermoplastic resin that can be used in the laminated substrate of the present invention include polyamide (nylon 6, nylon 66, etc.), polyolefin (polyethylene, polypropylene, etc.), modified polyolefin (acid-modified polypropylene, etc.), polyester (polyethylene terephthalate, poly Butylene terephthalate, etc.), polycarbonate, polyamideimide, polyphenylene oxide, polysulfone, polyethersulfone, polyetheretherketone, polyetherimide, polystyrene, ABS, polyphenylene sulfide, liquid crystalline polyester, acrylonitrile and styrene copolymer, nylon 6 Copolymerization with nylon 66 Copolymerization etc. are mentioned like nylon. These can be used individually by 1 type or in combination of 2 or more types. Among these, polypropylene is preferable from the viewpoint of moldability at low temperatures, and acid-modified polypropylene is particularly preferable from the viewpoint of adhesion to carbon fibers, and polyamide is preferable from the viewpoint of mechanical properties at high temperatures.

また、得たい成形品の要求特性に応じて、難燃剤、耐候性改良剤、その他酸化防止剤、熱安定剤、紫外線吸収剤、可塑剤、滑剤、着色剤、相溶化剤、導電性フィラー等を加えても良い。   In addition, depending on the required characteristics of the molded product to be obtained, flame retardants, weather resistance improvers, other antioxidants, heat stabilizers, ultraviolet absorbers, plasticizers, lubricants, colorants, compatibilizers, conductive fillers, etc. May be added.

以下に本発明の積層基材の製造方法の一態様を説明するが、本発明はこれによって特に制限されるものではない。
まず、上述した熱可塑性樹脂の形態として例えばフィルム状のものを二層分準備し、その二層の間に上述した繊維束で構成される繊維シートを挟み込み、加熱及び加圧を行う工程を経て積層体とする。より具体的には、対を形成する熱可塑性樹脂フィルムを送り出す2つのロールから二層分のフィルムを送り出すとともに、繊維シートのロールから供給される繊維シートをその層間に挟み込ませ、熱可塑性樹脂フィルム−繊維シート−熱可塑性樹脂フィルムの三層構造、いわゆるサンドイッチ構造が構成された後に、加熱及び加圧する。加熱及び加圧する手段としては、公知のものを用いることができ、二個以上の熱ロールを利用したり、予熱装置と熱ロールの対を複数使用したりするなどの多段階の工程を要するものであってもよい。ここで、熱可塑性樹脂からなる層は一層である必要はなく、繊維シートを挟む熱可塑性樹脂とは別の種類の熱可塑性樹脂からなるフィルムを、上記のような装置を用いてさらに積層させてもよい。加熱温度は、熱可塑性樹脂の種類にもよるが、通常、100〜400℃が好ましい。一方、加圧時の圧力は、通常0.1〜10MPaであることが好ましい。
One embodiment of the method for producing a laminated base material of the present invention will be described below, but the present invention is not particularly limited thereby.
First, as a form of the above-described thermoplastic resin, for example, two layers of a film-like material are prepared, and a fiber sheet composed of the above-described fiber bundle is sandwiched between the two layers, followed by heating and pressing. A laminate is used. More specifically, a two-layer film is sent out from two rolls that send out a pair of thermoplastic resin films, and a fiber sheet supplied from a roll of fiber sheets is sandwiched between the thermoplastic resin films. -After a three-layer structure of a fiber sheet-thermoplastic resin film, that is, a so-called sandwich structure is formed, heating and pressurizing are performed. As a means for heating and pressurizing, known means can be used, which requires a multi-step process such as using two or more heat rolls or using multiple pairs of preheating devices and heat rolls. It may be. Here, the layer made of the thermoplastic resin does not need to be a single layer, and a film made of a thermoplastic resin different from the thermoplastic resin sandwiching the fiber sheet is further laminated using the apparatus as described above. Also good. Although heating temperature is based also on the kind of thermoplastic resin, 100-400 degreeC is preferable normally. On the other hand, the pressure during pressurization is preferably 0.1 to 10 MPa.

上記のような操作を経ることで、強化繊維と強化繊維との空隙に、熱可塑性樹脂が含浸され、熱可塑性樹脂含浸繊維プリプレグとなる。このような熱可塑性樹脂含浸繊維プリプレグは、市販されているものを用いてもよい。   By undergoing the above operation, the gap between the reinforcing fiber and the reinforcing fiber is impregnated with the thermoplastic resin, and a thermoplastic resin-impregnated fiber prepreg is obtained. As such a thermoplastic resin-impregnated fiber prepreg, a commercially available product may be used.

このようにして得た繊維強化熱可塑性樹脂プリプレグを、例えばレーザーマーカー、カッティングプロッター、抜型等を利用して切込を入れ、本発明にかかる切込プリプレグを得ることができる。   The fiber reinforced thermoplastic resin prepreg thus obtained can be cut using, for example, a laser marker, a cutting plotter, a cutting die, or the like to obtain the cut prepreg according to the present invention.

本発明にかかるプリプレグにおいて繊維体積含有率(Vf)は、積層基材の流動性の向上と破壊強度を大きくする観点から10〜50%であることが好ましく、より好ましくは20〜40%である。かかるVf値は、JIS K7075に基づき測定できる。   In the prepreg according to the present invention, the fiber volume content (Vf) is preferably 10 to 50%, more preferably 20 to 40% from the viewpoint of improving the fluidity of the laminated base material and increasing the breaking strength. . Such Vf value can be measured based on JIS K7075.

次工程では、上記のようにして得た切込プリプレグを疑似等方積層、0°/90°交互積層、ランダム積層など任意の積層構成になるように積層して積層物を作成する。この際、超音波溶着機で隣接する層をなす切込プリプレグをスポット溶接しながら積層することで積層基材とすることもできる。   In the next step, the cut prepreg obtained as described above is laminated so as to have an arbitrary laminated structure such as pseudo isotropic lamination, 0 ° / 90 ° alternating lamination, random lamination, or the like, thereby creating a laminate. Under the present circumstances, it can also be set as a lamination | stacking base material by laminating | stacking the cutting prepreg which makes the layer which adjoins with an ultrasonic welder, spot welding.

上記積層物ないしスポット溶接をしながら積層することによって得られた積層基材においては、プリプレグの積層数が8〜96層となることが好ましい。   In the laminated substrate obtained by laminating while performing the above laminate or spot welding, the number of prepregs laminated is preferably 8 to 96.

次工程では、上記のようにして得た積層物を加熱及び加圧(ホットスタンピング)して一体化した積層基材を成形する。この工程は、通常の装置、例えば加熱プレス機を用いて行うことができ、その際に用いる型については、所望の形状を有するものを用いることができる。型の材質についても、繊維強化熱可塑性樹脂シートのホットスタンピング成形で通常用いられるものを採用することができ、金属製のいわゆる金型を用いることができる。具体的に本工程は、例えば前記積層物を型内に配置して、加熱及び加圧することにより行うことができる。加熱においては、前記熱可塑性樹脂の種類にもよるが、通常100〜400℃、好ましくは150〜350℃で加熱する。さらに予備加熱を行ってもよい。予備加熱については、前記プリプレグに用いられている熱可塑性樹脂の種類にもよるが、通常150〜400℃、好ましくは200〜380℃で加熱する。   In the next step, the laminated body obtained as described above is heated and pressurized (hot stamping) to form an integrated laminated base material. This step can be performed using a normal apparatus, for example, a hot press machine, and a mold having a desired shape can be used for the mold used at that time. As for the material of the mold, those usually used in hot stamping molding of a fiber reinforced thermoplastic resin sheet can be adopted, and a so-called metal mold can be used. Specifically, this step can be performed, for example, by placing the laminate in a mold and heating and pressing. In the heating, although it depends on the kind of the thermoplastic resin, it is usually heated at 100 to 400 ° C., preferably 150 to 350 ° C. Further, preheating may be performed. About preheating, although it is based also on the kind of thermoplastic resin used for the said prepreg, it heats at 150-400 degreeC normally, Preferably it is 200-380 degreeC.

前記加圧において積層物にかける圧力としては、好ましくは0.1〜10.0MPaであり、より好ましくは0.2〜2.0MPaである。この圧力については、プレス力を積層物の初期面積で除した値とする。また、加熱・加圧する時間は、通常0.1〜30分間、好ましくは0.5〜10分間であることが好ましく。また、加熱及び加圧の後に設ける冷却時間は、通常0.5〜30分間であることがさらに好ましい。上記ホットスタンピング成形を経た積層基材の厚さは、通常0.5〜10mmとなる。   The pressure applied to the laminate in the pressurization is preferably 0.1 to 10.0 MPa, more preferably 0.2 to 2.0 MPa. The pressure is a value obtained by dividing the pressing force by the initial area of the laminate. Moreover, it is preferable that the time to heat and pressurize is 0.1 to 30 minutes normally, Preferably it is 0.5 to 10 minutes. Moreover, it is further more preferable that the cooling time provided after a heating and pressurization is 0.5 to 30 minutes normally. The thickness of the laminated base material that has undergone the hot stamping molding is usually 0.5 to 10 mm.

なお、前記加熱及び加圧は、型と上記積層物との間に潤滑剤が存在する条件下で行ってもよい。潤滑剤の作用により、前記加熱及び加圧時に上記積層物を構成する積層基材内の繊維の流動性が高まるため、繊維束内への熱可塑性樹脂の含浸を高まるとともに、得られる積層基材において繊維内及び繊維と熱可塑性樹脂の間におけるボイドを低減させることができるからである。このような潤滑剤としては、例えばシリコーン系潤滑剤やフッ素系潤滑剤を用いることができる。また、これらの混合物を用いてもよい。シリコーン系潤滑剤としては、高温環境で用いることができる耐熱性のものが好ましく用いられる。より具体的には、メチルフェニルシリコーンオイルやジメチルシリコーンオイルのようなシリコーンオイルを挙げることができ、市販されているものを好ましく用いることができる。
フッ素系潤滑剤としては、高温環境で用いることができる耐熱性のものが好ましく用いられる。そのようなものの具体例としては、パーフルオロポリエーテルオイルや三フッ化塩化エチレンの低重合物(重量平均分子量500〜1300)のようなフッ素オイルを用いることができる。
The heating and pressurization may be performed under conditions where a lubricant is present between the mold and the laminate. Due to the action of the lubricant, the fluidity of the fibers in the laminated base material constituting the laminate during the heating and pressurization is increased, so that the impregnation of the thermoplastic resin into the fiber bundle is enhanced and the obtained laminated base material is obtained. This is because voids in the fiber and between the fiber and the thermoplastic resin can be reduced. As such a lubricant, for example, a silicone lubricant or a fluorine lubricant can be used. Moreover, you may use these mixtures. As the silicone-based lubricant, a heat-resistant one that can be used in a high-temperature environment is preferably used. More specifically, silicone oils such as methylphenyl silicone oil and dimethyl silicone oil can be exemplified, and commercially available ones can be preferably used.
As the fluorine-based lubricant, a heat-resistant one that can be used in a high temperature environment is preferably used. As specific examples of such a material, fluorine oil such as perfluoropolyether oil or a low polymer of ethylene trifluoride chloride (weight average molecular weight 500 to 1300) can be used.

上記潤滑剤は、上記積層物の片側若しくは両側の表面上、前記金型の片側もしくは両側の表面上または上記積層基材及び金型の双方の片側若しくは両側の表面上に、潤滑剤塗布装置などの適当な手段によって供給されてもよいし、予め金型の表面上に塗布しておいてもよい。上記の態様の中では、上記プリプレグの両側の表面に潤滑剤が供給される態様が好ましい。   The lubricant is applied on one or both surfaces of the laminate, on one or both surfaces of the mold, or on one or both surfaces of both the laminated base material and the mold. It may be supplied by any appropriate means, or may be applied in advance on the surface of the mold. Among the above aspects, an aspect in which the lubricant is supplied to the surfaces on both sides of the prepreg is preferable.

以下、本発明を実施例により具体的に説明するが、本発明はこれらに限定されるものではない。本実施例及び比較例における各物性の測定及び評価は以下の方法で行った。
(作業性)
プリプレグ基材をカッティングプロッター(レザック社製、製品名:L−2500カッティングプロッター)を用いて強化繊維と直角方向に一定間隔で切込を入れるのに要した時間を測定した。評価の判定は以下の基準で行った。
「◎」:1mあたりの作業時間400秒未満。
「○」:1mあたりの作業時間400秒以上800秒未満。
「×」:1mあたりの作業時間800秒以上。
Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited thereto. Measurement and evaluation of each physical property in this example and comparative example were performed by the following methods.
(Workability)
Using a cutting plotter (product name: L-2500 cutting plotter, manufactured by Rezac Co., Ltd.), the prepreg base material was measured for the time required for cutting at regular intervals in the direction perpendicular to the reinforcing fibers. Evaluation was determined based on the following criteria.
“◎”: Working time per 1 m 2 is less than 400 seconds.
“◯”: Working time per 1 m 2 is 400 seconds or more and less than 800 seconds.
“×”: Working time per 1 m 2 is 800 seconds or more.

(取り扱い性)
カッティングプロッターにて切り込みを施した、それぞれのサイズのプリプレグを積層する際の取り扱い性を作業者の感覚にて評価した。評価の判定は以下の基準で行った。
「○」:取り扱い易い。
「×」:取り扱い難い。
(Handability)
The handleability when stacking prepregs of various sizes that were cut with a cutting plotter was evaluated by the operator's sense. Evaluation was determined based on the following criteria.
“◯”: Easy to handle.
“×”: difficult to handle.

(流動性)
一体化された積層基材より52mm×52mmの板状物を2枚切り出した。その板状物を2枚重ねて、東洋精機製ミニテストプレスMP−2FHにて230℃まで加熱後に同様のプレス機で145℃プレス温度、油圧2MPaで1分間プレスした。プレス成形前後での厚みを測定し、プレス成形前の厚みをプレス成形後の厚みで除すことにより流動性の評価とし、3段階で評価した。
「○」:3以上。
「△」:2以上3未満。
「×」:2未満。
(Liquidity)
Two 52 mm × 52 mm plate-like objects were cut out from the integrated laminated base material. Two sheets of the plate were stacked, heated to 230 ° C. with a mini test press MP-2FH manufactured by Toyo Seiki, and then pressed with a similar press at 145 ° C. press temperature and hydraulic pressure of 2 MPa for 1 minute. The thickness before and after press molding was measured, and the fluidity was evaluated by dividing the thickness before press molding by the thickness after press molding.
“◯”: 3 or more.
“△”: 2 or more and less than 3.
"X": Less than 2.

(物性)
一体化された積層基材より、長さ100mm,幅25mmの曲げ強度試験片を切り出した。JIS K−7074に規定する試験方法に従い、標点間距離を80mmとし、クロスヘッド速度5.0mm/分で3点曲げ試験を行った。試験機としてはインストロン万能試験機4465型を用いた。測定した試験片の数はn=6とし、平均値の曲げ強度の値を物性の評価とし、3段階で評価した。
「○」:300MPa以上。
「△」:200MPa以上300MPa未満。
「×」:200MPa未満。
(Physical properties)
A bending strength test piece having a length of 100 mm and a width of 25 mm was cut out from the integrated laminated base material. According to the test method specified in JIS K-7074, the distance between the gauge points was 80 mm, and a three-point bending test was performed at a crosshead speed of 5.0 mm / min. As a testing machine, an Instron universal testing machine 4465 type was used. The number of test specimens measured was n = 6, and the average bending strength was evaluated as a physical property.
“◯”: 300 MPa or more.
“Δ”: 200 MPa or more and less than 300 MPa.
“×”: Less than 200 MPa.

(判定(総合))
各評価結果を総合して、以下の基準で総合判定を行った。
「◎」:全ての評価結果が○以上である。
「○」:全ての評価結果に×はないが、△のものがある。
「×」:評価結果に×であるものがある。
(Judgment (overall))
The evaluation results were comprehensively evaluated based on the following criteria.
“◎”: All evaluation results are ○ or more.
“◯”: All evaluation results are not “x”, but some are Δ.
“×”: Some evaluation results are ×.

(実施例1)
一方向に炭素繊維(三菱レイヨン製、製品名:パイロフィル(登録商標)TR−50S15L)を平面状に引き揃えて目付が72g/mとなる繊維シートとし、繊維シートの両面から、酸変性ポリプロピレン樹脂(三菱化学製、商品名:モディック(登録商標)P958)からなる目付が27g/mのフィルムを挟み、カレンダロールを複数回通して加熱と加圧より、樹脂を繊維シートに含浸し、繊維体積含有率Vf40%、厚み0.10mmのプリプレグ基材を作成した。
Example 1
Carbon fiber (manufactured by Mitsubishi Rayon, product name: Pyrofil (registered trademark) TR-50S15L) is made into a fiber sheet with a basis weight of 72 g / m 2 by aligning it in one direction. From both sides of the fiber sheet, acid-modified polypropylene A fiber sheet made of resin (Mitsubishi Chemical, trade name: Modic (registered trademark) P958) with a basis weight of 27 g / m 2 is sandwiched, and a calender roll is passed a plurality of times, and the fiber sheet is impregnated with heat and pressure. A prepreg base material having a fiber volume content Vf of 40% and a thickness of 0.10 mm was prepared.

このプリプレグ基材をカッティングプロッター(レザック社製、製品名:L−2500カッティングプロッター)を用いて図1に示すように繊維と45度の角度をなす方向に、切断された繊維の長さが一定となるよう一定間隔で切込を入れ、規定のサイズに切り出した。切り出した切込プリプレグを24層疑似等方([0°/45°/90°/−45°]3S)に重ねつつ、超音波溶着機(日本エマソン社製、製品名:2000LPt)でスポット溶接して、一体化して平板状の積層基材を作成した。この平板状の積層基材を印籠金型内に配置して加熱し多段プレス機で200℃に加熱したのち,油圧5MPaの圧力で7分間保持後、同一の圧力で室温まで冷却した。 The prepreg base material is cut using a cutting plotter (product name: L-2500 cutting plotter), and the length of the cut fiber is constant in a direction forming an angle of 45 degrees with the fiber as shown in FIG. A cut was made at regular intervals so that Spot welding is performed with an ultrasonic welding machine (product name: 2000LPt, manufactured by Emerson Japan, Inc.) while stacking the cut prepregs on 24 layers pseudo isotropic ([0 ° / 45 ° / 90 ° / −45 °] 3S ). Then, they were integrated to create a flat laminated substrate. The flat laminated base material was placed in an stamping die, heated, heated to 200 ° C. with a multistage press, held at a pressure of 5 MPa for 7 minutes, and then cooled to room temperature at the same pressure.

(実施例2〜10、比較例1〜3)
実施例1と同様に、表1、2に示す切込の幅、繊維長、サイズで作成し同様の作業及び評価を行い、その結果は表1に示した。
実施例1〜10の切込プリプレグは、作業性、取り扱い性に優れる。また、得られる積層基材は、流動性、物性に優れている。比較例1は作業性が劣っていた。比較例2は、取り扱い性が劣っていた。比較例3は、切込のない連続繊維であることから流動性が劣っていた。
(Examples 2 to 10, Comparative Examples 1 to 3)
Similar to Example 1, the same work and evaluation were performed with the cut width, fiber length, and size shown in Tables 1 and 2, and the results are shown in Table 1.
The cut prepregs of Examples 1 to 10 are excellent in workability and handleability. Moreover, the obtained laminated base material is excellent in fluidity and physical properties. Comparative Example 1 was inferior in workability. Comparative Example 2 was inferior in handleability. Since the comparative example 3 is a continuous fiber without a notch | incision, fluidity | liquidity was inferior.

1・・・・・強化繊維
2・・・・・切込
3・・・・・繊維長
4・・・・・切込の幅
1 ... Reinforcing fiber 2 ... Cut 3 ... Fiber length 4 ... Cut width

Claims (1)

強化繊維と熱可塑性樹脂を含む一方向プリプレグが、ランダムな方向に配向するように積層された平板状の積層基材であって、
前記一方向プリプレグは、強化繊維を横切る方向に強化繊維を切断する深さの切込を有し、前記切込の幅と前記切断された強化繊維長さの積が、220mm以上、15000mm未満であり、
平板状の積層基材の一辺の長さが100cm以上で、面積6000cmである積層基材。
A unidirectional prepreg containing reinforcing fibers and a thermoplastic resin is a flat laminated substrate laminated so as to be oriented in a random direction,
The unidirectional prepreg has a depth of cut that cuts the reinforcing fibers in a direction crossing the reinforcing fibers, and the product of the width of the notches and the length of the cut reinforcing fibers is 220 mm 2 or more and 15000 mm 2. Is less than
A laminated substrate having a side length of 100 cm or more and an area of 6000 cm 2 on a flat laminated substrate.
JP2013046343A 2013-03-08 2013-03-08 Laminate substrate Pending JP2014172267A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013046343A JP2014172267A (en) 2013-03-08 2013-03-08 Laminate substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013046343A JP2014172267A (en) 2013-03-08 2013-03-08 Laminate substrate

Publications (1)

Publication Number Publication Date
JP2014172267A true JP2014172267A (en) 2014-09-22

Family

ID=51694035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013046343A Pending JP2014172267A (en) 2013-03-08 2013-03-08 Laminate substrate

Country Status (1)

Country Link
JP (1) JP2014172267A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017110616A1 (en) * 2015-12-25 2017-06-29 東レ株式会社 Method for manufacturing base material layered body and fiber-reinforced plastic
JP2018123267A (en) * 2017-02-03 2018-08-09 三菱ケミカル株式会社 Fiber-reinforced plastic
WO2018142963A1 (en) * 2017-02-02 2018-08-09 東レ株式会社 Method for producing fiber-reinforced plastic
WO2018142962A1 (en) * 2017-02-02 2018-08-09 東レ株式会社 Method for producing fiber-reinforced plastic
WO2021192464A1 (en) * 2020-03-24 2021-09-30 東レ株式会社 Preform and method for producing same

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017110616A1 (en) * 2015-12-25 2018-10-11 東レ株式会社 Substrate laminate and method for producing fiber-reinforced plastic
CN108349116A (en) * 2015-12-25 2018-07-31 东丽株式会社 The manufacturing method of base material laminated body and fiber-reinforced plastic
US11279097B2 (en) 2015-12-25 2022-03-22 Toray Industries, Inc. Laminated base material and method of manufacturing fiber-reinforced plastic
CN108349116B (en) * 2015-12-25 2020-05-12 东丽株式会社 Substrate laminate and method for producing fiber-reinforced plastic
WO2017110616A1 (en) * 2015-12-25 2017-06-29 東レ株式会社 Method for manufacturing base material layered body and fiber-reinforced plastic
JPWO2018142963A1 (en) * 2017-02-02 2019-11-21 東レ株式会社 Manufacturing method of fiber reinforced plastic
WO2018142962A1 (en) * 2017-02-02 2018-08-09 東レ株式会社 Method for producing fiber-reinforced plastic
JPWO2018142962A1 (en) * 2017-02-02 2019-11-21 東レ株式会社 Manufacturing method of fiber reinforced plastic
WO2018142963A1 (en) * 2017-02-02 2018-08-09 東レ株式会社 Method for producing fiber-reinforced plastic
US11872773B2 (en) 2017-02-02 2024-01-16 Toray Industries, Inc. Method for producing fiber-reinforced plastic
US11951695B2 (en) 2017-02-02 2024-04-09 Toray Industries, Inc. Method for producing fiber-reinforced plastic
JP2018123267A (en) * 2017-02-03 2018-08-09 三菱ケミカル株式会社 Fiber-reinforced plastic
WO2021192464A1 (en) * 2020-03-24 2021-09-30 東レ株式会社 Preform and method for producing same

Similar Documents

Publication Publication Date Title
JP5858171B2 (en) Thermoplastic prepreg, laminated substrate and molded product
KR101643114B1 (en) Layered substrate and method for manufacturing same
JP5320742B2 (en) Method for producing composite prepreg substrate, laminated substrate and fiber reinforced plastic
JP5915780B2 (en) Laminated substrate using fiber reinforced thermoplastics
JP2014198838A (en) Method for producing fiber-reinforced thermoplastic resin molded plate
JP2014172267A (en) Laminate substrate
JP5900663B2 (en) Fiber reinforced resin laminate
JP6278286B2 (en) Laminate
JP6435696B2 (en) Method for producing laminated substrate
JP2014189722A (en) Laminated base material of fiber-reinforced plastic and method for producing the same
JP2017001371A (en) Manufacturing method of fiber reinforced plastic molded sheet
JP2016108348A (en) Laminated base material and method for manufacturing the same
JP5982934B2 (en) Thermoplastic resin-impregnated fiber prepreg and method for producing fiber-reinforced thermoplastic resin sheet
JP5982946B2 (en) Fiber-reinforced thermoplastic resin random sheet and method for producing the same
JP6066174B2 (en) Laminated substrate of fiber reinforced plastic and method for producing the same
JP2016190355A (en) Laminated base material
JP6477114B2 (en) Fiber reinforced thermoplastic resin laminate and method for producing the same
JP5935437B2 (en) Manufacturing method of fiber reinforced thermoplastic resin sheet
JP2016011367A (en) Laminate substrate
JP2016169271A (en) Carbon fiber resin composite material sheet having improved draw-down properties
JP2014173031A (en) Stampable molded article, and method for producing the same
JP2015160349A (en) Method for producing fiber-reinforced plastic
JP2015224275A (en) Multilayer base material
JP2016172346A (en) Method for producing fiber reinforced plastic and laminated sheet
JP2018161799A (en) Carbon fiber reinforced sheet and manufacturing method thereof