JP2008207545A - Notched prepreg substrate, composite notched prepreg substrate, laminated substrate, fiber-reinforced plastic, and method for manufacturing notched prepreg substrate - Google Patents

Notched prepreg substrate, composite notched prepreg substrate, laminated substrate, fiber-reinforced plastic, and method for manufacturing notched prepreg substrate Download PDF

Info

Publication number
JP2008207545A
JP2008207545A JP2008013483A JP2008013483A JP2008207545A JP 2008207545 A JP2008207545 A JP 2008207545A JP 2008013483 A JP2008013483 A JP 2008013483A JP 2008013483 A JP2008013483 A JP 2008013483A JP 2008207545 A JP2008207545 A JP 2008207545A
Authority
JP
Japan
Prior art keywords
cut
base material
fiber
prepreg base
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008013483A
Other languages
Japanese (ja)
Other versions
JP5272418B2 (en
Inventor
Ichiro Takeda
一朗 武田
Shigemichi Sato
成道 佐藤
Eisuke Wadahara
英輔 和田原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2008013483A priority Critical patent/JP5272418B2/en
Publication of JP2008207545A publication Critical patent/JP2008207545A/en
Application granted granted Critical
Publication of JP5272418B2 publication Critical patent/JP5272418B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B15/00Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00
    • B29B15/08Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00 of reinforcements or fillers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2793/00Shaping techniques involving a cutting or machining operation
    • B29C2793/0081Shaping techniques involving a cutting or machining operation before shaping

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Moulding By Coating Moulds (AREA)
  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a prepreg substrate which has good fluidity and molding followability in a complex shape and develops excellent dynamics properties applicable to a structural material, the low dispersion of the properties, and high dimensional stability when made fiber-reinforced plastics and the laminated substrate of the prepreg substrate. <P>SOLUTION: The prepreg substrate 7 is composed of reinforcing fibers 3 arranged unidirectionally and a matrix resin and has notches 4 of angles Θ in relation to the reinforcing fibers whose absolute values are 2-25° on its entire surface. All the reinforcing fibers are divided substantially by the notches. The lengths L of the fibers range over 10-100 mm, the thickness H of the prepreg substrate over 30-300 μm, and the volume ratio Vf of the fibers over 45-65%. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、良好な流動性、成形追従性を有し、繊維強化プラスチックとした場合、構造材に適用可能な優れた力学物性、その低バラツキ性、優れた寸法安定性を発現するプリプレグ基材、およびその製造方法ならびに該プリプレグ基材の積層基材に関する。に関する。さらに詳しくは、例えば自動車部材、スポーツ用具等に好適に用いられる繊維強化プラスチックの中間基材であるプリプレグ基材、およびその製造方法、ならびに該プリプレグ基材の積層基材に関する。   The present invention is a prepreg base material that has good fluidity and molding followability, and exhibits excellent mechanical properties applicable to structural materials, its low variation, and excellent dimensional stability when it is made into a fiber reinforced plastic. And a manufacturing method thereof, and a laminated base material of the prepreg base material. About. More specifically, for example, the present invention relates to a prepreg base material that is an intermediate base material of fiber reinforced plastic suitably used for automobile members, sports equipment, and the like, a manufacturing method thereof, and a laminated base material of the prepreg base material.

強化繊維とマトリックス樹脂からなる繊維強化プラスチックは、比強度、比弾性率が高く、力学特性に優れること、耐候性、耐薬品性などの高機能特性を有することなどから産業用途においても注目され、その需要は年々高まりつつある。   Fiber reinforced plastic consisting of reinforced fiber and matrix resin is attracting attention in industrial applications because it has high specific properties, high specific modulus, excellent mechanical properties, weather resistance, chemical resistance, etc. The demand is increasing year by year.

高機能特性を有する繊維強化プラスチックの成形方法としては、プリプレグと称される連続した強化繊維にマトリックス樹脂を含浸せしめた半硬化状態の中間基材を積層し、高温高圧釜で加熱加圧することによりマトリックス樹脂を硬化させ繊維強化プラスチックを成形するオートクレーブ成形が最も一般的に行われている。また、近年では生産効率の向上を目的として、あらかじめ部材形状に賦形した連続繊維基材にマトリックス樹脂を含浸および硬化させるRTM(レジントランスファーモールディング)成形等も行われている。これらの成形法により得られた繊維強化プラスチックは、連続繊維である所以優れた力学物性を有する。また、連続繊維は規則的な配列であるため、基材の配置により必要とする力学物性に設計することが可能であり、力学物性のバラツキも小さい。しかしながら、一方で連続繊維である所以3次元形状等の複雑な形状を形成することは難しく、主として平面形状に近い部材に限られる。   As a molding method of fiber reinforced plastic having high functional properties, a semi-cured intermediate base material impregnated with matrix resin is laminated on continuous reinforcing fiber called prepreg, and heated and pressurized in a high temperature and high pressure kettle. Autoclave molding in which a matrix resin is cured and a fiber reinforced plastic is molded is most commonly performed. In recent years, for the purpose of improving production efficiency, RTM (resin transfer molding) molding in which a continuous fiber base material previously shaped into a member shape is impregnated with a matrix resin and cured has been performed. The fiber reinforced plastics obtained by these molding methods have excellent mechanical properties because they are continuous fibers. Further, since the continuous fibers are regularly arranged, it is possible to design the mechanical properties required by the arrangement of the base material, and the variation in the mechanical properties is small. However, on the other hand, it is difficult to form a complicated shape such as a three-dimensional shape because it is a continuous fiber, and it is mainly limited to members close to a planar shape.

3次元形状等の複雑な形状に適した成形方法として、SMC(シートモールディングコンパウンド)成形等がある。SMC成形は、通常25mm程度に切断したチョップドストランドに熱硬化性樹脂であるマトリックス樹脂を含浸せしめ半硬化状態としたSMCシートを、加熱型プレス機を用いて加熱加圧することにより成形を行う。多くの場合、加圧前にSMCシートを成形体の形状より小さく切断して成形型上に配置し、加圧により成形体の形状に引き伸ばして(流動させて)成形を行う。そのため、その流動により3次元形状等の複雑な形状にも追従可能となる。しかしながら、SMCはそのシート化工程において、チョップドストランドの分布ムラ、配向ムラが必然的に生じてしまうため、力学物性が低下し、あるいはその値のバラツキが大きくなってしまう。さらには、そのチョップドストランドの分布ムラ、配向ムラにより、特に薄物の部材ではソリ、ヒケ等が発生しやすくなり、構造材としては不適な場合がある。   As a molding method suitable for a complicated shape such as a three-dimensional shape, there is SMC (sheet molding compound) molding. SMC molding is performed by heating and pressurizing a semi-cured SMC sheet obtained by impregnating a chopped strand cut to about 25 mm with a matrix resin, which is a thermosetting resin, using a heating press. In many cases, before pressing, the SMC sheet is cut smaller than the shape of the molded body, placed on a mold, and stretched (flowed) into the shape of the molded body by pressing to perform molding. Therefore, it is possible to follow a complicated shape such as a three-dimensional shape by the flow. However, since SMC inevitably causes distribution unevenness and orientation unevenness of chopped strands in the sheeting process, the mechanical properties deteriorate or the variation of the values increases. Furthermore, due to uneven distribution and alignment unevenness of the chopped strands, warpage, sink marks and the like are likely to occur particularly in a thin member, which may be unsuitable as a structural material.

上述のような材料の欠点を埋めるべく、連続繊維と熱可塑性樹脂からなるプリプレグに切り込みを入れることにより、流動可能で力学物性のバラツキも小さくなるとされる基材が開示されている(例えば、特許文献1,2)。しかしながら、SMCと比較すると力学特性が大きく向上し、バラツキが小さくなるものの、構造材として適用するには十分な強度とは言えない。連続繊維基材と比較すると切り込みという欠陥を内包した構成であるために、応力集中点である切り込みが破壊の起点となり、特に引張強度、引張疲労強度が低下する、という問題があった。
特開昭63−247012号公報 特開平9−254227号公報
In order to fill the drawbacks of the above-described materials, a base material that can flow and reduce the variation in mechanical properties by cutting into a prepreg composed of continuous fibers and a thermoplastic resin is disclosed (for example, patents). References 1, 2). However, compared with SMC, the mechanical properties are greatly improved and the variation is small, but it cannot be said that the strength is sufficient for application as a structural material. Compared with the continuous fiber base material, since it has a configuration including a defect called a notch, the notch which is a stress concentration point becomes a starting point of fracture, and in particular, there is a problem that tensile strength and tensile fatigue strength are lowered.
Japanese Unexamined Patent Publication No. 63-247010 Japanese Patent Laid-Open No. 9-254227

本発明は、かかる従来技術の背景に鑑み、良好な流動性、複雑な形状の成形追従性を有し、繊維強化プラスチックとした場合、構造材に適用可能な優れた力学物性、その低バラツキ性、優れた寸法安定性を発現するプリプレグ基材、およびその製造方法、ならびに該プリプレグ基材の積層基材を提供することにある。   In view of the background of such prior art, the present invention has good fluidity, molding followability of complex shapes, and excellent mechanical properties applicable to structural materials when it is used as a fiber reinforced plastic, and its low variability. Another object of the present invention is to provide a prepreg base material that exhibits excellent dimensional stability, a manufacturing method thereof, and a laminated base material of the prepreg base material.

本発明は、かかる課題を解決するために、次のような手段を採用するものである。すなわち、
(1)一方向に引き揃えられた強化繊維とマトリックス樹脂とからなるプリプレグ基材であって、該プリプレグ基材の全面に強化繊維となす角度Θの絶対値が2〜25°の範囲内の切り込みを有し、実質的にすべての強化繊維が前記切り込みにより分断され、前記切り込みにより分断された強化繊維の繊維長さLが10〜100mmの範囲内であり、前記プリプレグ基材の厚みHが30〜300μmであり、繊維体積含有率Vfが45〜65%の範囲内である切込プリプレグ基材。
The present invention employs the following means in order to solve such problems. That is,
(1) A prepreg base material composed of a reinforced fiber and a matrix resin aligned in one direction, and an absolute value of an angle Θ between the prepreg base material and the reinforced fiber is 2 to 25 °. Having a cut, substantially all the reinforcing fibers are divided by the cut, the fiber length L of the reinforcing fiber divided by the cut is in the range of 10 to 100 mm, and the thickness H of the prepreg base material is A cut prepreg base material having a fiber volume content Vf in the range of 45 to 65%, which is 30 to 300 μm.

(2)前記切り込みが直線状に入っている(1)に記載の切込プリプレグ基材。   (2) The cut prepreg base material according to (1), wherein the cut is linear.

(3)前記切り込みにより分断された強化繊維のすべてが実質的に一定の繊維長さLである(1)または(2)に記載の切込プリプレグ基材。   (3) The cut prepreg base material according to (1) or (2), wherein all of the reinforcing fibers divided by the cut have a substantially constant fiber length L.

(4)前記切り込みが連続して入れられている(1)〜(3)のいずれかに記載の切込プリプレグ基材。   (4) The cut prepreg base material according to any one of (1) to (3), wherein the cuts are continuously made.

(5)前記切り込みが、強化繊維の垂直方向に投影した投影長さWsが30μm〜100mmの範囲内である断続的な切り込みであり、前記切り込みと前記切り込みを繊維長手方向に隣接した切り込みの幾何形状が同一である(1)〜(3)のいずれかに記載の切込プリプレグ基材。   (5) The incision is an intermittent incision in which a projection length Ws projected in the vertical direction of the reinforcing fiber is in a range of 30 μm to 100 mm, and the geometry of the incision and the incision adjacent to each other in the longitudinal direction of the fiber The cut prepreg base material according to any one of (1) to (3), which has the same shape.

(6)前記投影長さWsが30μm〜1.5mmの範囲内である(5)に記載の切込プリプレグ基材。   (6) The cut prepreg base material according to (5), wherein the projected length Ws is within a range of 30 μm to 1.5 mm.

(7)前記投影長さWsが1〜100mmの範囲内である(5)に記載の切込プリプレグ基材。   (7) The cut prepreg base material according to (5), wherein the projected length Ws is in the range of 1 to 100 mm.

(8)前記切込プリプレグ基材が炭素繊維と熱硬化性樹脂とから構成される(1)〜(7)のいずれかに記載の切込プリプレグ基材。   (8) The cut prepreg base material according to any one of (1) to (7), wherein the cut prepreg base material includes carbon fibers and a thermosetting resin.

(9)前記切り込みが、前記切込プリプレグ基材の厚み方向に斜めに設けられており、任意の切り込みにおいて、前記切込プリプレグ基材の上面における強化繊維の分断線と下面における分断線との繊維方向の距離をSとすると、前記切込プリプレグ基材厚みHとをもちいて、次の(式1)から導かれる角度θが1〜25°の範囲内にある、(1)〜(8)のいずれかに記載の切込プリプレグ基材。   (9) The notch is provided obliquely in the thickness direction of the notched prepreg base material, and in any notch, a dividing line of reinforcing fibers on the upper surface of the notched prepreg base material and a dividing line on the lower surface When the distance in the fiber direction is S, the angle θ derived from the following (Formula 1) is in the range of 1 to 25 ° using the cut prepreg base material thickness H, (1) to (8 The cut prepreg base material according to any one of the above.

Figure 2008207545
Figure 2008207545

(10)前記切り込みが、前記切込プリプレグ基材の上面と下面とのそれぞれから層を厚み方向に貫かずに設けられ、切り込みの深さHsが前記切込プリプレグ基材厚みHに対して0.4H〜0.6Hの範囲内であり、上面の切り込みと下面の切り込みとがそれぞれ0.01H〜0.1Hの範囲内で互いに切り込んでおり、上面の任意の切り込みAと繊維方向のなす角度Θaに対して、該切り込みAと交わる下面の切り込みBの繊維方向とのなす角度Θbが−Θa−5°〜−Θa+5°である(1)〜(8)のいずれかに記載の切込プリプレグ基材。 (10) The notch is provided so as not to penetrate the layers in the thickness direction from the upper surface and the lower surface of the notched prepreg base material, and the notch depth Hs is 0 with respect to the notched prepreg base material thickness H. In the range of 4H to 0.6H, the cut on the upper surface and the cut on the lower surface are cut in the range of 0.01H to 0.1H, respectively, and the angle formed by the arbitrary cut A on the upper surface and the fiber direction The cut prepreg according to any one of (1) to (8), wherein an angle Θb formed by the fiber direction of the cut B on the lower surface that intersects the cut A with respect to Θa is -Θa-5 ° to -Θa + 5 ° Base material.

(11)(1)〜(10)のいずれかに記載の切込プリプレグ基材の少なくとも一方の表面に層状の追加樹脂層を有し、該追加樹脂層の厚みが強化繊維の短繊維直径以上であり、かつ、切込プリプレグ基材の厚みの0.5倍以下の範囲内であり、該追加樹脂層が前記マトリックス樹脂より引張伸度が高く、形態がフィルム状または不織布状である、複合切込プリプレグ基材。   (11) The cut prepreg base material according to any one of (1) to (10) has a layered additional resin layer on at least one surface, and the thickness of the additional resin layer is equal to or greater than the short fiber diameter of the reinforcing fiber. And within the range of 0.5 times or less the thickness of the cut prepreg base material, the additional resin layer has a higher tensile elongation than the matrix resin, and the form is a film or nonwoven fabric. Cut prepreg base material.

(12)(1)〜(10)のいずれかに記載の切込プリプレグ基材の少なくとも一方の表面に、前記マトリックス樹脂より引張伸度が高い追加樹脂が、前記切込プリプレグ基材厚みHに対して前記切り込みから繊維方向の両方向にH〜100Hの範囲内に、強化繊維により形成される層内に入りこまずに前記切込プリプレグ基材表面上に層状に配置されており、前記追加樹脂の形態がフィルム状または不織布状である、複合切込プリプレグ基材。   (12) On at least one surface of the cut prepreg base material according to any one of (1) to (10), an additional resin having a higher tensile elongation than the matrix resin is added to the cut prepreg base material thickness H. On the other hand, the additional resin is arranged in layers on the surface of the cut prepreg base material without entering the layer formed by the reinforcing fibers in the range of H to 100H in both directions of the fiber from the cut. A composite-cut prepreg base material in which the form is a film or a nonwoven fabric.

(13)(1)〜(9)のいずれかに記載の切込プリプレグ基材を2層積層し、該2層基材の上層の任意の切り込みCと交わる下層の切り込みDの交差角度が4〜90°の範囲内である積層基材。   (13) Two layers of the cut prepreg base material according to any one of (1) to (9) are laminated, and the crossing angle of the lower cut D that intersects the arbitrary cut C of the upper layer of the two-layer base is 4 Laminated substrate that is in the range of ~ 90 °.

(14)(1)〜(12)にいずれか記載の切込プリプレグ基材を少なくとも一部に有してなる積層基材であって含む、強化繊維が一方向に引き揃えられたプリプレグ基材が複数枚積層され、前記強化繊維が一方向に引き揃えられたプリプレグ基材が該プリプレグ基材の繊維方向が少なくとも2方向以上に配向して一体化されている積層基材。   (14) A prepreg base material comprising the cut prepreg base material according to any one of (1) to (12) at least partially and including a reinforcing fiber aligned in one direction. Is a laminated base material in which a plurality of prepreg base materials, in which the reinforcing fibers are aligned in one direction, are integrated with the fiber directions of the prepreg base material oriented in at least two directions.

(15)前記積層基材が(1)〜(12)にいずれか記載の切込プリプレグ基材のみからなり、前記切込プリプレグ基材が擬似等方に積層されてなる積層基材。   (15) A laminated base material in which the laminated base material is composed only of the cut prepreg base material according to any one of (1) to (12), and the cut prepreg base material is laminated in a pseudo isotropic manner.

(16)(14)または(15)の積層基材を成形して得られた、繊維強化プラスチック。
(17)強化繊維が実質的に一方向に引き揃えられた層が、強化繊維の配向が異なる方向に少なくとも2層以上積層されてなる繊維強化プラスチックであって、繊維体積含有率Vfが45〜65%の範囲内であり、前記繊維強化プラスチックを構成する層として、層の全面に複数の、強化繊維が存在せずにマトリックス樹脂または隣接層の強化繊維のみで形成される切り込み開口部を有し、該切り込み開口部によって強化繊維の繊維長さLが10〜100mmの範囲内に分断され、前記切り込み開口部の層表面における表面積が層の表面積の0.1〜10%の範囲内であり、平均厚みHcが15〜300μmの範囲内である短繊維層が少なくとも1層以上積層されている、繊維強化プラスチック。
(16) A fiber-reinforced plastic obtained by molding the laminated substrate of (14) or (15).
(17) The layer in which the reinforcing fibers are substantially aligned in one direction is a fiber-reinforced plastic in which at least two layers are laminated in directions in which the reinforcing fibers have different orientations, and the fiber volume content Vf is 45 to 45. The layer constituting the fiber reinforced plastic has a notch opening portion formed of only the matrix resin or the reinforcing fiber of the adjacent layer without the presence of the reinforcing fiber as the layer constituting the fiber reinforced plastic. The fiber length L of the reinforcing fiber is divided within the range of 10 to 100 mm by the cut opening, and the surface area of the layer surface of the cut opening is within the range of 0.1 to 10% of the surface area of the layer. A fiber-reinforced plastic in which at least one short fiber layer having an average thickness Hc in the range of 15 to 300 μm is laminated.

(18)前記繊維強化プラスチックの最外層の面積が実質的に0である、(16)または(17)に記載の繊維強化プラスチック。   (18) The fiber reinforced plastic according to (16) or (17), wherein an area of an outermost layer of the fiber reinforced plastic is substantially zero.

(19)(1)〜(10)のいずれかに記載の切込プリプレグ基材の製造方法であって、強化繊維を一方向に引き揃えてマトリックス樹脂を含浸して予備プリプレグ基材を準備し、予備プリプレグ基材に、螺旋状に刃をローラー上に配置した回転刃ローラーを押し当てて切り込みを入れる、切込プリプレグ基材の製造方法。   (19) A method for producing a cut prepreg substrate according to any one of (1) to (10), wherein a prepreg substrate is prepared by aligning reinforcing fibers in one direction and impregnating a matrix resin. The manufacturing method of the cutting prepreg base material which presses the rotary blade roller which has arrange | positioned the blade on the roller helically to a preliminary | backup prepreg base material, and makes a cut.

(20)(9)に記載の切込プリプレグ基材の製造方法であって、強化繊維を一方向に引き揃えてマトリックス樹脂を含浸して予備プリプレグ基材を準備し、予備プリプレグ基材に、螺旋状に刃をローラー上に配置した回転刃ローラーを上面または下面のいずれか一方から押し当てて切込プリプレグ基材の層の厚み方向に貫かない切り込みを入れ、しかる後に、前記回転刃ローラーを下面または上面のいずれか一方から押し当てて切込プリプレグ基材の厚み方向に層の厚み方向に貫かない切り込みを入れる、切込プリプレグ基材の製造方法。   (20) The method for producing a cut prepreg base material according to (9), wherein the reinforcing fibers are aligned in one direction and impregnated with a matrix resin to prepare a preliminary prepreg base material. A rotating blade roller having a blade arranged on the roller in a spiral shape is pressed from either the upper surface or the lower surface to make a cut that does not penetrate in the thickness direction of the layer of the cut prepreg base material, and then the rotating blade roller is A method for producing a cut prepreg base material, which is pressed from either the lower surface or the upper surface to make a cut that does not penetrate in the thickness direction of the layer in the thickness direction of the cut prepreg base material.

(21)強化繊維とマトリックス樹脂とから構成される複数層の積層構造を有する繊維強化プラスチックの製造方法であって、(14)または(15)の積層基材をチャージ率が50〜95%の範囲内で加圧成形し、最外層において、前記切り込み開口部の面積を実質的に0とする、繊維強化プラスチックの製造方法。   (21) A method for producing a fiber-reinforced plastic having a multi-layered laminated structure composed of reinforcing fibers and a matrix resin, wherein the charge rate of the laminated base material of (14) or (15) is 50 to 95% A method for producing a fiber-reinforced plastic, which is pressure-molded within a range, and the area of the cut opening is substantially zero in the outermost layer.

本発明によれば、良好な流動性、複雑な形状の成形追従性を有し、繊維強化プラスチックとした場合、構造材に適用可能な優れた力学物性、その低バラツキ性、優れた寸法安定性を発現するプリプレグ基材、およびその製造方法、ならびに該プリプレグ基材の積層基材を得ることができる。   According to the present invention, it has good fluidity, molding conformability of complex shapes, and when it is made of fiber reinforced plastic, it has excellent mechanical properties applicable to structural materials, its low variation, and excellent dimensional stability. Can be obtained, a method for producing the same, and a laminated substrate of the prepreg substrate.

本発明者らは、良好な流動性、複雑な形状の成形追従性を有し、繊維強化プラスチックとした場合、優れた力学物性、その低バラツキ性、優れた寸法安定性を発現するプリプレグ基材を得るため、鋭意検討し、プリプレグ基材として、一方向に引き揃えられた強化繊維とマトリックス樹脂から構成されるプリプレグ基材という特定の基材に特定な切り込みパターンを挿入し、該プリプレグ基材を積層し、加圧成形することにより、かかる課題を一挙に解決することを究明したのである。なお、本発明で用いられるプリプレグ基材には、一方向に引き揃えられた強化繊維や強化繊維基材に樹脂が完全に含浸した基材に加え、樹脂シートが繊維内に完全に含浸していない状態で一体化した樹脂半含浸基材(セミプレグ:以下、半含浸プリプレグを称することもある。)を含むものとする。   The present inventors have excellent fluidity, molding followability of complicated shapes, and when used as a fiber reinforced plastic, a prepreg base material that exhibits excellent mechanical properties, low variation, and excellent dimensional stability. In order to obtain a prepreg base material, a specific cutting pattern is inserted into a specific base material called a prepreg base material composed of reinforcing fibers and a matrix resin aligned in one direction as the prepreg base material. It was clarified that these problems could be solved at once by laminating and pressure forming. In addition, the prepreg base material used in the present invention has a fiber sheet completely impregnated in the fiber in addition to the reinforcing fiber aligned in one direction and the base material in which the reinforcing fiber base material is completely impregnated with the resin. It includes a semi-impregnated resin base material (semi-preg: hereinafter, sometimes referred to as a semi-impregnated prepreg) integrated in a non-existing state.

本発明に係るプリプレグ基材は、強化繊維が一方向に引き揃えられているので、繊維方向の配向制御により任意の力学物性を有する成形体の設計が可能となる。なお、本明細書では、特に断らない限り、繊維あるいは繊維を含む用語(例えば“繊維方向”等)において、繊維とは強化繊維を表すものとする。   In the prepreg base material according to the present invention, since the reinforcing fibers are aligned in one direction, it is possible to design a molded body having arbitrary mechanical properties by controlling the orientation in the fiber direction. In the present specification, unless otherwise specified, in the term including fiber or fiber (for example, “fiber direction” or the like), the fiber represents a reinforcing fiber.

さらに、本発明のプリプレグ基材は、全面に強化繊維となす角度Θの絶対値が2〜25°の範囲内の切り込みが設けられており、実質的にすべての強化繊維が切り込みにより分断され、切り込みにより分断された繊維長さLが10〜100mmの範囲内であり、プリプレグ基材の厚みHが30〜300μmであり、繊維体積含有率Vfが45〜65%の範囲内である。なお、本発明において“実質的にすべての強化繊維が切り込みにより分断され”とは、本発明の切り込みにより分断されていない連続繊維が引き揃えられている面積が、プリプレグ基材面積に占める割合の5%より小さいことを示す。   Furthermore, the prepreg base material of the present invention is provided with cuts in the range of 2 to 25 ° in absolute value of the angle Θ formed with the reinforcing fibers on the entire surface, and substantially all the reinforcing fibers are divided by the cutting, The fiber length L divided by the cutting is in the range of 10 to 100 mm, the thickness H of the prepreg base material is 30 to 300 μm, and the fiber volume content Vf is in the range of 45 to 65%. In the present invention, “substantially all of the reinforcing fibers are divided by the incision” means that the area where the continuous fibers not divided by the incision of the present invention are aligned is a ratio of the prepreg base material area. Indicates less than 5%.

本発明において、繊維長さLとは、任意の切り込みと、任意の切り込みと同等の切り込みが、強化繊維の垂直方向に投影した投影長さWsを有する繊維方向に最近接の切り込み(対になる切り込み)とにより分断される繊維の長さを指している。ここで、“切り込みが、強化繊維の垂直方向に投影した投影長さWs”とは図2に示すとおり、切り込みを強化繊維の垂直方向(繊維直交方向2)を投影面として、切り込みから該投影面に垂直(繊維長手方向1)に投影した際の長さを指す。プリプレグ基材の全面に切り込みが挿入され、基材中の強化繊維の繊維長さLをすべて100mm以下とすることにより、成形時に繊維は流動可能、特に繊維長手方向にも流動可能となり、複雑な形状の成形追従性にも優れる。該切り込みがない場合、すなわち連続繊維のみの場合、繊維長手方向には流動しないため、複雑形状を形成することは出来ない。繊維長さLを10mm未満にすると、さらに流動性が向上するが、他の用件を満たしても構造材として必要な高力学特性は得られない。流動性と力学特性との関係を鑑みると、さらに好ましくは20〜60mmの範囲内である。対になる切り込み以外に切り込まれて分断される繊維長さLより短い繊維も存在するが、10mm以下の繊維は少なければ少ないほどよい。さらに好ましくは、10mm以下の繊維が引き揃えられている面積が、プリプレグ基材面積に占める割合の5%より小さいのがよい。   In the present invention, the fiber length L refers to an incision (a pair of incisions that are the closest to the fiber direction in which an arbitrary incision and an incision equivalent to an arbitrary incision have a projected length Ws projected in the vertical direction of the reinforcing fiber This refers to the length of the fiber that is divided by the notch. Here, “projection length Ws in which the cut is projected in the vertical direction of the reinforcing fiber” means that, as shown in FIG. 2, the vertical direction of the reinforcing fiber (fiber orthogonal direction 2) is the projection plane and the projection is projected from the cut. It refers to the length when projected perpendicularly to the surface (fiber longitudinal direction 1). By making cuts on the entire surface of the prepreg base material and making the fiber length L of the reinforcing fibers in the base material all 100 mm or less, the fibers can flow at the time of molding, particularly in the longitudinal direction of the fiber. Excellent shape conformability. When there is no notch, that is, when only continuous fibers are used, a complicated shape cannot be formed because they do not flow in the fiber longitudinal direction. When the fiber length L is less than 10 mm, the fluidity is further improved. However, even if other requirements are satisfied, the high mechanical properties necessary as a structural material cannot be obtained. Considering the relationship between fluidity and mechanical properties, it is more preferably in the range of 20 to 60 mm. There are fibers that are shorter than the fiber length L that is cut and divided in addition to the pair of cuts, but the fewer the fibers that are 10 mm or less, the better. More preferably, the area where the fibers of 10 mm or less are aligned is smaller than 5% of the ratio of the prepreg base material area.

プリプレグ基材の厚みHは300μmより大きくても変わらず良い流動性を得ることが出来るが、本発明は切り込みを有するため、分断される層厚みが大きければ大きいほど強度が低下する傾向があり、構造材に適用することを前提とするならば、300μm以下とする必要がある。一方、Hは30μmより小さくても流動性を保ち、高強度を得ることが出来るが、極めて薄いプリプレグ基材を安定的に製造するのは非常に困難であるため、低コストに本発明の効果を得るには30μm以上である必要がある。力学特性とコストとの関係を鑑みると、好ましくは50〜150μmである。   Even if the thickness H of the prepreg base material is larger than 300 μm, good fluidity can be obtained, but since the present invention has a cut, the larger the layer thickness to be divided, the lower the strength tends to be. If it is assumed to be applied to a structural material, it is necessary to set it to 300 μm or less. On the other hand, even if H is smaller than 30 μm, fluidity can be maintained and high strength can be obtained. However, since it is very difficult to stably produce an extremely thin prepreg base material, the effect of the present invention can be reduced at a low cost. It is necessary that the thickness is 30 μm or more. In view of the relationship between mechanical properties and cost, the thickness is preferably 50 to 150 μm.

繊維体積含有率Vfは65%以下で十分な流動性を得ることができる。Vfが低いほど流動性は向上するが、Vfが45%より小さくなると、構造材に必要な高力学特性は得られない。流動性と力学特性との関係を鑑みると、さらに好ましくは55〜60%の範囲内である。   When the fiber volume content Vf is 65% or less, sufficient fluidity can be obtained. The lower the Vf, the better the fluidity. However, if Vf is less than 45%, the high mechanical properties required for the structural material cannot be obtained. Considering the relationship between fluidity and mechanical properties, it is more preferably in the range of 55-60%.

また、切り込みは強化繊維となす角度Θの絶対値が2〜25°の範囲内であることが本発明の大きな特徴である。Θの絶対値が25°より大きくても流動性は得ることができ、従来のSMC等と比較して高い力学特性は得ることができるが、特にΘの絶対値が25°以下であることで力学特性の向上が著しい。一方、Θの絶対値は2°より小さいと流動性も力学特性も十分得ることが出来るが、切り込みを安定して入れることが難しくなる。すなわち、繊維に対して切り込みが寝てくると、切り込みを入れる際、繊維が刃から逃げやすく、また、繊維長さLを100mm以下とするためには、Θの絶対値が2°より小さいと少なくとも切り込み同士の最短距離が0.9mmより小さくなるなど、生産安定性に欠ける。また、このように切り込み同士の距離が小さいと積層時の取り扱い性が難しくなるという問題がある。切り込みの制御のしやすさと力学特性との関係を鑑みると、さらに好ましくは5〜15°の範囲内である。以降、断らない限り、本発明の全面に切り込みを有するプリプレグ基材を切込プリプレグ基材と記す。   Further, the notch is a major feature of the present invention that the absolute value of the angle Θ formed with the reinforcing fiber is in the range of 2 to 25 °. Even if the absolute value of Θ is larger than 25 °, fluidity can be obtained, and higher mechanical properties can be obtained as compared with conventional SMC, etc., but in particular, when the absolute value of Θ is 25 ° or less. Significant improvement in mechanical properties. On the other hand, if the absolute value of Θ is smaller than 2 °, sufficient fluidity and mechanical properties can be obtained, but it becomes difficult to make a stable cut. That is, when the incision lies on the fiber, the fiber easily escapes from the blade when making the incision, and in order to make the fiber length L 100 mm or less, the absolute value of Θ is less than 2 ° Production stability is lacking, for example, at least the shortest distance between the cuts is smaller than 0.9 mm. In addition, when the distance between the cuts is small as described above, there is a problem that handling at the time of stacking becomes difficult. In view of the relationship between the ease of controlling the cutting and the mechanical characteristics, it is more preferably in the range of 5 to 15 °. Hereinafter, unless otherwise specified, a prepreg base material having a cut on the entire surface of the present invention is referred to as a cut prepreg base material.

以下、好ましい切り込みパターンの一例を図1〜4を用いて説明する。   Hereinafter, an example of a preferable cutting pattern will be described with reference to FIGS.

強化繊維が一方向に引き揃えられたプリプレグ基材上に制御されて整列した切り込み4を複数入れる。繊維長手方向の対になる切り込み4同士で繊維が分断され、その間隔6を10〜100mmとすることで、実質的にプリプレグ基材上の強化繊維すべてを繊維長さLが10〜100mmにすることができる。なお、“実質的に強化繊維のすべてが前記切り込みにより分断され”ているとは、プリプレグ基材に含まれる強化繊維本数のうち95%以上が10〜100mmに分断されていることを言う。また、図1、2に示すように、切り込みと強化繊維となす角度5をΘとするとΘの絶対値は全面で2〜25°の範囲内である。図3a)ではΘの絶対値が90°、b)では25°より大きい例を示しているが、これらの例では本発明により得られうる高強度を発現することは出来ない。   A plurality of controlledly aligned cuts 4 are made on a prepreg base material in which reinforcing fibers are aligned in one direction. The fibers are divided by the incisions 4 that form pairs in the longitudinal direction of the fiber, and by setting the interval 6 to 10 to 100 mm, substantially all the reinforcing fibers on the prepreg base material have a fiber length L of 10 to 100 mm. be able to. Note that “substantially all of the reinforcing fibers are divided by the cutting” means that 95% or more of the number of reinforcing fibers contained in the prepreg base material is divided into 10 to 100 mm. As shown in FIGS. 1 and 2, if the angle 5 between the cut and the reinforcing fiber is Θ, the absolute value of Θ is in the range of 2 to 25 ° over the entire surface. FIG. 3a) shows examples in which the absolute value of Θ is greater than 90 ° and b) is greater than 25 °. However, in these examples, the high strength obtainable by the present invention cannot be expressed.

図4には、5つの異なる切り込みパターンを有するプリプレグ基材が示されている。図4a)のプリプレグ基材7は、等間隔をもって配列された斜行した連続、直線状の切り込み4を有する。図4b)のプリプレグ基材7は、2種類の間隔をもって配列された斜行した連続、直線状の切り込みを有する。図4c)のプリプレグ基材7は、等間隔をもって配列された連続、曲線(蛇行線)の切り込み4を有する。図4d)のプリプレグ基材7は、等間隔をもって配列され、かつ、2種類の異なる方向に斜行した断続的な直線状の切り込み4を有する。図4e)のプリプレグ基材7は、等間隔をもって配列された斜行した断続的な直線状の切り込み4を有する。切り込みは図4c)のように曲線でも構わないが図4a)、b)、d)、e)のように直線状である方が流動性をコントロールしやすく好ましい。また、切り込みにより分断される強化繊維の長さLは、図3b)のように一定でなくてもよいが、繊維長さLが全面で一定であると流動性をコントロールしやすく、強度ばらつきをさらに押さえることができるため好ましい。なお、ここで規定の直線状とは、幾何学上の直線の一部をなしている状態を意味するが、前記流動性のコントロールを容易にするという効果を損なわない限り、前記幾何学上の直線の一部をなしていない箇所があっても差支えが無く、その結果、繊維長さLが全面で一定とはならない箇所があっても(この場合、繊維長さLが実質的に全面で一定であると言えるので)差支えが無い。   FIG. 4 shows a prepreg substrate having five different cut patterns. The prepreg substrate 7 of FIG. 4a) has skewed continuous, straight cuts 4 arranged at equal intervals. The prepreg substrate 7 of FIG. 4b) has skewed continuous, linear cuts arranged at two intervals. The prepreg substrate 7 of FIG. 4c) has continuous, curved (meandering) cuts 4 arranged at equal intervals. The prepreg substrate 7 of FIG. 4d) has intermittent linear cuts 4 that are arranged at equal intervals and are skewed in two different directions. The prepreg substrate 7 of FIG. 4e) has skewed intermittent linear cuts 4 arranged at equal intervals. The cut may be a curved line as shown in FIG. 4c), but a straight line as shown in FIGS. 4a), b), d), and e) is preferable because the flowability is easily controlled. In addition, the length L of the reinforcing fiber divided by the cut may not be constant as shown in FIG. 3b), but if the fiber length L is constant over the entire surface, the fluidity can be easily controlled and the strength variation can be reduced. Further, it can be pressed, which is preferable. Here, the prescribed linear shape means a state in which a part of a geometrical straight line is formed. However, as long as the effect of facilitating the fluidity control is not impaired, Even if there is a portion that does not form a part of the straight line, there is no problem. As a result, even if there is a portion where the fiber length L is not constant over the entire surface (in this case, the fiber length L is substantially over the entire surface). It can be said that it is constant).

さらに好ましい例[1]としては、図1や図4a)〜c)のように、切り込み4aが連続して入れられているのがよい。例[1]のパターンでは、切り込み4aが断続的でないため、切り込み端部付近での流動乱れが起きず、切り込み4aを入れた領域では、すべての繊維長さLを一定とすることができ、流動が安定している。切り込み4aが連続的に入れられているため、切込プリプレグ基材7がばらばらになってしまうのを防ぐ目的で、切込プリプレグ基材の周辺部に切り込みがつながっていない領域を設けたり、切り込みの入っていないシート状の離型紙やフィルムなどの支持体で把持することで、取り扱い性を向上させることができる。   As a more preferable example [1], it is preferable that the cuts 4a are continuously formed as shown in FIG. 1 and FIGS. 4a) to 4c). In the pattern of Example [1], since the cut 4a is not intermittent, flow disturbance does not occur in the vicinity of the cut end, and in the region where the cut 4a is made, all the fiber lengths L can be made constant, The flow is stable. Since the cuts 4a are continuously made, in order to prevent the cut prepreg base material 7 from falling apart, an area where the cut is not connected to the peripheral part of the cut prepreg base material is provided, or the cut is made. Handling property can be improved by gripping with a support such as a sheet-like release paper or a film that does not contain slag.

また、他の好ましい例[2]としては、図2のように、強化繊維の垂直方向に投影した長さ9をWsとするとWsが30μm〜100mmの範囲内である断続的な切り込み4bが切込プリプレグ基材7全面に設けられており、切り込み4bと前記切り込み4bを繊維長手方向に隣接した切り込み4bの幾何形状が同一であるとよい。Wsが30μm以下となると、切り込みの制御が難しく、切込プリプレグ基材全面に渡ってLが10〜100mmとなるよう、保障することが難しい。すなわち、切り込みにより切断されていない繊維が存在すると基材の流動性は著しく低下するが、多めに切り込みを入れるとLが10mmを下回る部位が出てきてしまう、という問題点がある。逆にWsが10mmより大きいときにはほぼ強度が一定に落ち着く。すなわち、繊維束端部がある一定以上に大きくなると、破壊が始まる荷重がほぼ同等となる。図2では、LとWsがいずれも一種類である例を示している。いずれの切り込み4b(例えば4b)も繊維方向に平行移動することで重なる他の切り込み4b(例えば4b)がある。前記繊維方向の対になる切り込み4b同士により分断される繊維長さLよりさらに短い繊維長さで隣接する切り込みにより分断され繊維が分断される幅8が存在することによって、安定的に繊維長さを100mm以下で切込プリプレグ基材7を製造できる。例[2]のパターンでは、得られた切込プリプレグ基材7を積層する際、切り込みが断続的なため取り扱い性に優れる。図2d)、e)にはその他のパターンも例示したが、上記条件を満たせばどのようなパターンでも構わない。 As another preferred example [2], as shown in FIG. 2, when the length 9 projected in the vertical direction of the reinforcing fiber is Ws, intermittent cuts 4b in which Ws is in the range of 30 μm to 100 mm are cut. The cut prepreg base material 7 is provided on the entire surface, and the cut 4b 1 and the cut 4b 2 adjacent to the cut 4b 1 in the fiber longitudinal direction may have the same geometric shape. When Ws is 30 μm or less, it is difficult to control the cutting, and it is difficult to ensure that L is 10 to 100 mm over the entire surface of the cut prepreg substrate. That is, when there is a fiber that is not cut by cutting, the fluidity of the base material is remarkably lowered, but there is a problem that a portion where L is less than 10 mm appears when a large amount of cutting is made. Conversely, when Ws is greater than 10 mm, the strength is almost constant. That is, when the fiber bundle end becomes larger than a certain value, the load at which breakage starts becomes substantially equal. FIG. 2 shows an example in which both L and Ws are one type. Any of the cuts 4b (for example, 4b 1 ) has another cut 4b (for example, 4b 2 ) that is overlapped by translation in the fiber direction. The fiber length is stable by the presence of a width 8 in which the fibers are divided by adjacent cuts at a fiber length shorter than the fiber length L divided by the cuts 4b that form a pair in the fiber direction. The cut prepreg base material 7 can be manufactured at 100 mm or less. In the pattern of Example [2], when the obtained cut prepreg base material 7 is laminated, since the cut is intermittent, the handleability is excellent. Although other patterns are illustrated in FIGS. 2d) and e), any pattern may be used as long as the above conditions are satisfied.

好ましい例[2]において、力学特性の観点から好ましくは、強化繊維の垂直方向に投影した長さWsが30μm〜1.5mmの範囲内であるのがよい。切り込み角度Θの絶対値が2〜25°であることにより、切り込み長さに対して、投影長さWsを小さくすることができるため、1.5mm以下という極小の切り込みを工業的に安定して設けることができる。Wsを小さくすることにより、一つ一つの切り込みにより分断される繊維量が減り、強度向上が見込まれる。特に、Wsが1.5mm以下とすることで、大きな強度向上が見込まれる。また、プロセス性の観点から好ましくは、Wsを1mm〜100mmの範囲内とすることにより、簡易な装置で切り込みを挿入することができる。   In the preferred example [2], the length Ws projected in the vertical direction of the reinforcing fiber is preferably in the range of 30 μm to 1.5 mm from the viewpoint of mechanical properties. Since the projection length Ws can be reduced with respect to the cut length when the absolute value of the cut angle Θ is 2 to 25 °, a minimum cut of 1.5 mm or less is industrially stable. Can be provided. By reducing Ws, the amount of fibers cut by each cutting is reduced, and strength improvement is expected. In particular, when Ws is 1.5 mm or less, a great improvement in strength is expected. Further, from the viewpoint of processability, preferably, by setting Ws within a range of 1 mm to 100 mm, it is possible to insert the cut with a simple device.

このようにして得られた切込プリプレグ基材を少なくとも含む、強化繊維が一方向に引き揃えられたプリプレグ基材が複数枚積層され、繊維方向が少なくとも2方向以上に配向して一体化して積層し、成形した繊維強化プラスチックは、切込プリプレグ基材を適用した部位が次のような特徴を有する。強化繊維が実質的に一方向に引き揃えられた層が、強化繊維の配向が異なる方向に少なくとも2層以上積層されてなる繊維強化プラスチックであって、繊維体積含有率Vfが45〜65%の範囲内であり、前記繊維強化プラスチックを構成する層として、層の全面に複数の、強化繊維が存在せずにマトリックス樹脂または隣接層の強化繊維のみで形成される切り込み開口部を有し、該切り込み開口部によって強化繊維の繊維長さLが10〜100mmの範囲内に分断され、前記切り込み開口部の層表面における表面積が層の表面積の0.1〜10%の範囲内であり、平均厚みHcが15〜300μmの範囲内である短繊維層が少なくとも1層以上積層されている。すなわち、切込プリプレグ基材で入れられた切り込みによる繊維束端部が成形により開口しない点が本発明の最大の特徴である。なお、本発明において“実質的に一方向に引き揃えられ”ているとは、任意の繊維のある一部に注目した際、半径5mm以内に存在する繊維群の90%以上が該任意の繊維のある一部の繊維角度から±10°以内に配向していることをさす。   A plurality of prepreg base materials in which reinforcing fibers are aligned in one direction, including at least the incised prepreg base material thus obtained, are laminated, and the fiber directions are oriented in at least two directions and laminated together. The molded fiber reinforced plastic has the following characteristics at the site where the cut prepreg substrate is applied. The layer in which the reinforcing fibers are substantially aligned in one direction is a fiber reinforced plastic obtained by laminating at least two layers in different directions of the reinforcing fibers, and the fiber volume content Vf is 45 to 65%. A plurality of slit openings formed on the entire surface of the layer without the presence of reinforcing fibers and formed only of the matrix resin or the reinforcing fibers of the adjacent layer, The fiber length L of the reinforcing fiber is divided within the range of 10 to 100 mm by the cut opening, the surface area of the cut opening at the layer surface is within the range of 0.1 to 10% of the surface area of the layer, and the average thickness At least one short fiber layer having a Hc in the range of 15 to 300 μm is laminated. That is, the greatest feature of the present invention is that the end portion of the fiber bundle due to the cut made by the cut prepreg base material does not open by molding. In the present invention, “substantially aligned in one direction” means that 90% or more of the fiber group existing within a radius of 5 mm is not less than the arbitrary fiber when attention is paid to a certain part of the arbitrary fiber. It is oriented within ± 10 ° from some fiber angles.

本特徴を図5、6、7を用いて説明する。本発明の比較として図5には、切り込み4が繊維3となす角度Θの絶対値が90°である切込プリプレグ基材7を積層した積層体10をa)、その積層体10を成形した繊維強化プラスチック11をb)に、それぞれ切込プリプレグ基材7由来の層をクローズアップした平面図と平面図のA−A断面を切り出した断面図を示した。a)に示すとおり、切込プリプレグ基材7は、繊維に垂直な切り込みを全面に設けられており、切り込み4は層の厚み方向を貫いている。繊維長さLを100mm以下とすることで、流動性が確保され、プレス成形などにより、容易に積層体10より面積が伸長した繊維強化プラスチック11を得ることができる(ただし、厚みは減る)。b)のように、伸長した繊維強化プラスチック11を得た際、切込プリプレグ基材7由来の短繊維層12は、繊維垂直方向に伸長すると共に、繊維が存在しない領域(切り込み開口部)13が生成される。これは一般的に強化繊維が成形程度の圧力では伸長しないためであり、図5のケースでは、伸張した長さ分だけ切り込み開口部13が生成され、例えば250×250mmの積層基材10から300×300mmの繊維強化プラスチック11を得た際には、300×300mmの繊維強化プラスチック11の表面積に対して、切り込み開口部13の総面積は50×300mm、すなわち1/6(約16.7%)が切り込み開口部となる計算である。この領域13は断面図に示すとおり、隣接層14が侵入してきて、略三角形の樹脂リッチ部16と隣接層が侵入している領域とで占められる。従って、切込プリプレグ基材7を用いた積層体10を伸長して成形した場合、繊維束端部15では層のうねり17や樹脂リッチ部16が発生し、これが力学特性の低下や表面品位の低下に影響を与える。また、繊維がある部位とない部位で剛性が異なるため、面内異方性の繊維強化プラスチック11となり、ソリなどの問題から設計が難しい。また、強度の面では、荷重方向から±10°以下程度に向いている繊維が大部分の荷重を伝達しているが、その繊維束端部15では隣接層14に荷重を再分配しなければならない。その際、図5b)のように、繊維束端部15が荷重方向に垂直となっていると、応力集中が起きやすく、剥離も起こりやすい。そのため、強度向上はあまり期待できない。   This feature will be described with reference to FIGS. As a comparison of the present invention, FIG. 5 shows a laminated body 10 in which a cut prepreg base material 7 in which the absolute value of the angle Θ between the cut 4 and the fiber 3 is 90 ° is laminated a), and the laminated body 10 is molded. The fiber reinforced plastic 11 b) is a plan view showing a close-up of the layer derived from the cut prepreg base material 7 and a cross-sectional view taken along the line AA of the plan view. As shown in a), the cut prepreg base material 7 is provided with a cut perpendicular to the fiber on the entire surface, and the cut 4 penetrates the thickness direction of the layer. By setting the fiber length L to 100 mm or less, fluidity is ensured, and the fiber reinforced plastic 11 whose area is easily extended from the laminate 10 can be easily obtained by press molding or the like (however, the thickness is reduced). When the elongated fiber reinforced plastic 11 is obtained as in b), the short fiber layer 12 derived from the cut prepreg base material 7 extends in the fiber vertical direction and has no fiber (cut opening) 13. Is generated. This is because the reinforcing fibers generally do not expand at a molding level pressure. In the case of FIG. 5, the cut opening 13 is generated for the extended length, for example, 250 × 250 mm laminated substrates 10 to 300 are formed. When the fiber reinforced plastic 11 of × 300 mm was obtained, the total area of the cut openings 13 was 50 × 300 mm, that is, 1/6 (about 16.7%) with respect to the surface area of the fiber reinforced plastic 11 of 300 × 300 mm. ) Is a calculation for a cut opening. As shown in the cross-sectional view, the region 13 is occupied by the substantially triangular resin-rich portion 16 and the region in which the adjacent layer has intruded. Therefore, when the laminated body 10 using the cut prepreg base material 7 is stretched and formed, the undulation 17 of the layer and the resin rich portion 16 are generated at the fiber bundle end portion 15, which causes deterioration of mechanical properties and surface quality. Affects decline. In addition, since the rigidity is different between the part where the fiber is present and the part where the fiber is not present, the fiber-reinforced plastic 11 has in-plane anisotropy. Further, in terms of strength, the fiber oriented to about ± 10 ° or less from the load direction transmits most of the load, but the fiber bundle end 15 must redistribute the load to the adjacent layer 14. Don't be. At that time, as shown in FIG. 5b), when the fiber bundle end 15 is perpendicular to the load direction, stress concentration is likely to occur, and peeling is also likely to occur. Therefore, the strength improvement cannot be expected so much.

一方で図6には、本発明の好ましい例[1]の切込プリプレグ基材7を積層した積層体10をa)、その積層体10を成形した繊維強化プラスチック11をb)に、それぞれ切込プリプレグ基材7由来の層をクローズアップした平面図と平面図のA−A断面を切り出した断面図を示した。a)に示すとおり、切込プリプレグ基材7は、繊維3となす角度Θの絶対値が25°以下の連続した切り込み4aが全面に設けられており、切り込み4aは層の厚み方向を貫いている。繊維長さLを100mm以下とすることで、流動性が確保され、プレス成形などにより、容易に積層体7より面積が伸長した繊維強化プラスチック11を得ることが出来る。b)のように、伸長した繊維強化プラスチック11を得た際、切込プリプレグ基材7由来の短繊維層12は、繊維垂直方向に伸長すると共に、繊維3自体が回転18して伸長領域の面積を稼ぐため、図5のように繊維が存在しない領域(切り込み開口部)13が実質的に生成せず、切り込み開口部の層の表面における面積が層の表面積と比較して0.1〜10%の範囲内である。従って、断面図を見ても分かるとおり、隣接層14が侵入することもなく、層のうねりや樹脂リッチ部のない高強度で品位の高い繊維強化プラスチック11を得ることが出来る。面内全体にくまなく繊維3が配されているため、面内での剛性差がなく、設計も従来の連続繊維強化プラスチックと同様、簡易に適用できる。この繊維が回転して伸長し、層うねりのない繊維強化プラスチックを得るという画期的効果は、切り込みと強化繊維とのなす角度Θの絶対値が25°以下であり、かつ、切り込みが連続して入れられていることで初めて得ることができる。また、強度の面では、前述と同様に荷重方向から±10°以下程度に向いている繊維に注目すると、図6b)のように、繊維束端部15が荷重方向に対して寝てきている様子がわかる。繊維束端部15が層厚み方向に斜めとなっているため、荷重の伝達がスムーズであり、繊維束端部15からの剥離も起こりにくい。従って、図5に比べ格段の強度向上が見込まれる。この繊維束端部15が層厚み方向に斜めとなるのは上述の繊維が回転する際、上面と下面の摩擦により上面から下面で繊維3の回転18になだらかな分布があるためで、そのため、層厚み方向に繊維3の存在分布が発生し、繊維束端部15が層厚み方向に斜めとなったと考えられる。このような繊維強化プラスチック11の層内で層厚み方向に斜めの繊維束端部を形成し、強度を著しく向上する画期的効果は切り込み4aの繊維3となす角度Θの絶対値が25°以下であることで初めて得ることができる。   On the other hand, FIG. 6 shows a laminate 10 in which the cut prepreg base material 7 of the preferred example [1] of the present invention is laminated in a), and a fiber reinforced plastic 11 in which the laminate 10 is molded in b). The top view which closed the layer derived from the embedded prepreg base material 7, and the sectional view which cut out the AA cross section of the top view were shown. As shown in a), the cut prepreg base material 7 is provided with continuous cuts 4a having an absolute value of the angle Θ between the fibers 3 of 25 ° or less, and the cuts 4a penetrate through the thickness direction of the layers. Yes. By setting the fiber length L to 100 mm or less, the fluidity is ensured, and the fiber reinforced plastic 11 whose area is easily extended from the laminate 7 can be obtained by press molding or the like. When the stretched fiber reinforced plastic 11 is obtained as in b), the short fiber layer 12 derived from the cut prepreg base material 7 stretches in the fiber vertical direction, and the fiber 3 itself rotates 18 to expand the stretched region. In order to earn an area, a region (incision opening) 13 in which no fiber exists as shown in FIG. It is within the range of 10%. Therefore, as can be seen from the cross-sectional view, the adjacent layer 14 does not penetrate, and the high-strength and high-quality fiber-reinforced plastic 11 having no layer waviness or resin-rich portion can be obtained. Since the fibers 3 are arranged all over the surface, there is no difference in rigidity in the surface, and the design can be easily applied as in the conventional continuous fiber reinforced plastic. The revolutionary effect that this fiber rotates and stretches to obtain a fiber reinforced plastic without layer waviness is that the absolute value of the angle Θ between the cut and the reinforcing fiber is 25 ° or less, and the cut is continuous. It can be obtained only by being put in. Further, in terms of strength, when attention is paid to the fibers oriented to about ± 10 ° or less from the load direction as described above, the fiber bundle end portion 15 lies down with respect to the load direction as shown in FIG. I can see the situation. Since the fiber bundle end portion 15 is slanted in the layer thickness direction, the load is smoothly transmitted, and peeling from the fiber bundle end portion 15 hardly occurs. Therefore, a marked improvement in strength is expected compared to FIG. The fiber bundle end 15 is inclined in the layer thickness direction because when the above-described fiber rotates, there is a gentle distribution in the rotation 18 of the fiber 3 from the upper surface to the lower surface due to friction between the upper surface and the lower surface. It is considered that the presence distribution of the fibers 3 occurs in the layer thickness direction, and the fiber bundle end 15 is inclined in the layer thickness direction. In such a layer of the fiber reinforced plastic 11, a fiber bundle end portion that is slanted in the layer thickness direction is formed, and the epoch-making effect of remarkably improving the strength is that the absolute value of the angle Θ formed with the fiber 3 of the cut 4 a is 25 °. It can be obtained for the first time by the following.

図7には、本発明の好ましい例[2]の切込プリプレグ基材7を積層した積層体10をa)、その積層体10を成形した繊維強化プラスチック11をb)に、それぞれ切込プリプレグ基材7由来の層をクローズアップした平面図を示した。a)に示すとおり、切込プリプレグ基材7は、繊維3となす角度Θの絶対値が25°以下の断続的な切り込み4bが全面に設けられており、切り込み4bは層の厚み方向を貫いている。切り込み4bにより繊維長さLを切込プリプレグ基材7の全面で100mm以下とすることで、流動性が確保され、プレス成形などにより、容易に積層体7より面積が伸長した繊維強化プラスチック11を得ることができる。切り込み長さ、切り込み角度を小さくすることにより、切り込みを強化繊維の垂直方向に投影した投影長さWsを1.5mm以下とすることができる。b)のように、伸長した繊維強化プラスチック11を得た際、切込プリプレグ基材7由来の短繊維層12は、繊維垂直方向に伸長する際、繊維方向に繊維が伸張しないため、繊維が存在しない領域(切り込み開口部)13が生成されるが、隣接する短繊維群が繊維垂直方向に流動することで、切り込み開口部13を埋め、切り込み開口部13の面積が小さくなる。この傾向は特に、切り込みを強化繊維の垂直方向に投影した投影長さWsを1.5mm以下とすることで顕著となり、実質的に切り込み開口部13が生成せず、切り込み開口部の層の表面における面積が層の表面積と比較して0.1〜10%の範囲内とすることができる。従って、厚み方向に隣接層が侵入することもなく、層のうねりや樹脂リッチ部のない高強度で品位の高い繊維強化プラスチック11を得ることが出来る。面内全体にくまなく繊維3が配されているため、面内での剛性差がなく、設計も従来の連続繊維強化プラスチックと同様、簡易に適用できる。この切り込み開口部を繊維垂直方向の流動により埋め、層うねりのない繊維強化プラスチックを得るという画期的効果は切り込み角度Θの絶対値が25°以下であり、かつ切り込みを強化繊維の垂直方向に投影した投影長さWsを1.5mm以下とすることで初めて得ることができる。さらに好ましくはWsが1mm以下であることにより、より高強度、高品位とすることができる。   In FIG. 7, the laminated body 10 in which the cut prepreg base material 7 of the preferred example [2] of the present invention is laminated is shown in a), and the fiber reinforced plastic 11 in which the laminated body 10 is molded is shown in b). The top view which closed up the layer derived from the base material 7 was shown. As shown in a), the cut prepreg base material 7 is provided with intermittent cuts 4b having an absolute value of the angle Θ between the fibers 3 of 25 ° or less, and the cuts 4b penetrate the layer thickness direction. ing. The fiber length L is set to 100 mm or less over the entire surface of the cut prepreg base material 7 by the cuts 4b, so that the fluidity is ensured, and the fiber reinforced plastic 11 whose area is easily extended from the laminate 7 by press molding or the like. Obtainable. By reducing the cut length and the cut angle, the projected length Ws obtained by projecting the cut in the vertical direction of the reinforcing fiber can be made 1.5 mm or less. When the stretched fiber reinforced plastic 11 is obtained as in b), the short fiber layer 12 derived from the cut prepreg base material 7 does not stretch in the fiber direction when stretched in the fiber vertical direction. A non-existing region (cut opening) 13 is generated, but the adjacent short fiber group flows in the fiber vertical direction, thereby filling the cut opening 13 and reducing the area of the cut opening 13. This tendency is particularly noticeable when the projection length Ws obtained by projecting the cut in the vertical direction of the reinforcing fiber is 1.5 mm or less, and the cut opening 13 is not substantially generated, and the surface of the layer of the cut opening is formed. In the range of 0.1 to 10% compared to the surface area of the layer. Therefore, it is possible to obtain a high-strength and high-quality fiber-reinforced plastic 11 without layer undulation or resin-rich portion without adjacent layers intruding in the thickness direction. Since the fibers 3 are arranged all over the surface, there is no difference in rigidity in the surface, and the design can be easily applied as in the conventional continuous fiber reinforced plastic. The epoch-making effect of filling the cut opening with a flow in the vertical direction of the fiber to obtain a fiber reinforced plastic having no layer waviness has an absolute value of the cut angle Θ of 25 ° or less and the cut is formed in the vertical direction of the reinforcing fiber. It can be obtained for the first time when the projected length Ws is 1.5 mm or less. More preferably, when Ws is 1 mm or less, higher strength and higher quality can be achieved.

さらに好ましくは、繊維強化プラスチックの最外層において、前記切り込み開口部の面積が実質的に0であるのがよい。なお、切り込み開口部の面積が“実質的に0”とは、開口部は存在しないことが望ましいが、最外層において切り込み開口部の面積が繊維強化プラスチックの表面積と比較して1%以下であれば差支えが無いことを意味する。Θの絶対値が25°よりも大きければ、樹脂リッチ部やその層における繊維がない領域、すなわち隣接層の強化繊維がのぞいている領域が最外層に生成されるため、外板部材としては適用が難しい。一方で本発明では、樹脂リッチ部や繊維がない領域が生成されにくいため、外板部材としての適用も可能となる。   More preferably, in the outermost layer of the fiber reinforced plastic, the area of the cut opening is substantially zero. It should be noted that the area of the cut opening is “substantially 0”, it is desirable that no opening exists, but the area of the cut opening in the outermost layer is 1% or less compared to the surface area of the fiber reinforced plastic. It means no problem. If the absolute value of Θ is larger than 25 °, a region where there is no fiber in the resin-rich part or its layer, that is, a region where the reinforcing fiber of the adjacent layer is viewed is generated in the outermost layer. Is difficult. On the other hand, in the present invention, it is difficult to generate a resin-rich portion or a region without fibers, so that it can be applied as an outer plate member.

本発明の切込プリプレグ基材に用いられる強化繊維としては、例えば、アラミド繊維、ポリエチレン繊維、ポリパラフェニレンベンズオキサドール(PBO)繊維などの有機繊維、ガラス繊維、炭素繊維、炭化ケイ素繊維、アルミナ繊維、チラノ繊維、玄武岩繊維、セラミックス繊維などの無機繊維、ステンレス繊維やスチール繊維などの金属繊維、その他、ボロン繊維、天然繊維、変性した天然繊維などを繊維として用いた強化繊維などが挙げられる。その中でも特に炭素繊維は、これら強化繊維の中でも軽量であり、しかも比強度および比弾性率において特に優れた性質を有しており、さらに耐熱性や耐薬品性にも優れていることから、軽量化が望まれる自動車パネルなどの部材に好適である。なかでも、高強度の炭素繊維が得られやすいPAN系炭素繊維が好ましい。   Examples of the reinforcing fiber used in the cut prepreg base material of the present invention include organic fibers such as aramid fiber, polyethylene fiber, polyparaphenylene benzoxador (PBO) fiber, glass fiber, carbon fiber, silicon carbide fiber, and alumina. Examples thereof include inorganic fibers such as fibers, Tyranno fibers, basalt fibers, and ceramic fibers, metal fibers such as stainless fibers and steel fibers, and reinforcing fibers that use boron fibers, natural fibers, modified natural fibers, and the like as fibers. Among them, carbon fiber is particularly lightweight among these reinforcing fibers, and has particularly excellent properties in specific strength and specific modulus, and is also excellent in heat resistance and chemical resistance. It is suitable for members such as automobile panels that are desired to be made. Among these, PAN-based carbon fibers that can easily obtain high-strength carbon fibers are preferable.

本発明の切込プリプレグ基材に用いられるマトリックス樹脂としては、例えば、エポキシ樹脂、不飽和ポリエステル樹脂、ビニルエステル樹脂、フェノール樹脂、エポキシアクリレート樹脂、ウレタンアクリレート樹脂、フェノキシ樹脂、アルキド樹脂、ウレタン樹脂、マレイミド樹脂、シアネート樹脂などの熱硬化性樹脂や、ポリアミド、ポリアセタール、ポリアクリレート、ポリスルフォン、ABS、ポリエステル、アクリル、ポリブチレンテレフタラート(PBT)、ポリエチレンテレフタレート(PET)、ポリエチレン、ポリプロピレン、ポリフェニレンスルフィド(PPS)、ポリエーテルエーテルケトン(PEEK)、液晶ポリマー、塩ビ、ポリテトラフルオロエチレンなどのフッ素系樹脂、シリコーンなどの熱可塑性樹脂が挙げられる。その中でも特に熱硬化性樹脂を用いるのが好ましい。マトリックス樹脂が熱硬化性樹脂であることにより、切込プリプレグ基材は室温においてタック性を有しているため、該基材を積層した際に上下の該基材と粘着により一体化され、意図したとおりの積層構成を保ったままで成形することができる。一方、室温においてタック性のない熱可塑性樹脂プリプレグ基材では、プリプレグ基材を積層した際に該基材同士が滑るため、成形時に積層構成がずれてしまい、結果として繊維の配向ムラの大きい繊維強化プラスチックとなる。特に、凹凸部を有する型で成形する際は、その差異が顕著に現れる。   Examples of the matrix resin used for the notched prepreg base material of the present invention include, for example, epoxy resins, unsaturated polyester resins, vinyl ester resins, phenol resins, epoxy acrylate resins, urethane acrylate resins, phenoxy resins, alkyd resins, urethane resins, Thermosetting resins such as maleimide resin and cyanate resin, polyamide, polyacetal, polyacrylate, polysulfone, ABS, polyester, acrylic, polybutylene terephthalate (PBT), polyethylene terephthalate (PET), polyethylene, polypropylene, polyphenylene sulfide ( PPS), polyether ether ketone (PEEK), liquid crystal polymer, vinyl chloride, polytetrafluoroethylene and other fluororesins, silicone and other thermoplastic resins It is below. Among these, it is particularly preferable to use a thermosetting resin. Since the matrix resin is a thermosetting resin, the cut prepreg base material has tackiness at room temperature, so when the base material is laminated, it is integrated with the upper and lower base materials by adhesion, It can shape | mold, keeping the laminated structure as it was. On the other hand, in the case of a thermoplastic resin prepreg base material that does not have tack at room temperature, the base materials slip when the prepreg base materials are laminated. It becomes reinforced plastic. In particular, when molding with a mold having an uneven portion, the difference appears remarkably.

さらに、熱硬化性樹脂から構成される本発明の切込プリプレグ基材は、室温において優れたドレープ性を有するため、例えば、凹凸部を有する型を用いて成形する場合、予めその凹凸に沿わした予備賦形を容易に行うことが出来る。この予備賦形により成形性は向上し、流動の制御も容易になる。   Furthermore, since the incised prepreg base material of the present invention composed of a thermosetting resin has excellent drapability at room temperature, for example, when molding using a mold having an uneven portion, the uneven portion is preliminarily aligned with the unevenness. Pre-shaping can be easily performed. This pre-shaping improves moldability and facilitates flow control.

また、本発明の切込プリプレグ基材はテープ状支持体に密着されていてもよい。切り込みが挿入された基材は、全ての繊維が切り込みにより切断されてもその形態を保持することが可能となり、賦形時に繊維が脱落してバラバラになってしまうという問題はない。マトリックス樹脂がタック性を有する熱硬化性樹脂であるとさらに好ましい。ここで、テープ状支持体とは、クラフト紙などの紙類やポリエチレン・ポリプロピレンなどのポリマーフィルム類、アルミなどの金属箔類などが挙げられ、さらに樹脂との離型性を得るために、シリコーン系や“テフロン(登録商標)”系の離型剤や金属蒸着等を表面に付与しても構わない。   Moreover, the cut prepreg base material of the present invention may be in close contact with the tape-like support. The base material into which the cut has been inserted can retain its shape even when all the fibers are cut by the cut, and there is no problem that the fibers fall off during shaping. More preferably, the matrix resin is a thermosetting resin having tackiness. Here, the tape-like support includes papers such as kraft paper, polymer films such as polyethylene / polypropylene, metal foils such as aluminum and the like, and in order to obtain releasability from the resin, silicone. A surface or “Teflon (registered trademark)” type release agent, metal vapor deposition, or the like may be applied to the surface.

さらに好ましくは熱硬化性樹脂の中でも、エポキシ樹脂や不飽和ポリエステル樹脂、ビニルエステル樹脂、フェノール樹脂、アクリル樹脂等や、それらの混合樹脂がよい。これらの樹脂の常温(25℃)における樹脂粘度としては、1×106Pa・s以下であることが好ましく、この範囲内であれば本発明を満たすタック性およびドレープ性を有するプリプレグ基材を得ることができる。中でもエポキシ樹脂は炭素繊維と組み合わせて得られる強化繊維複合材料としての力学特性に最も優れている。   More preferably, among the thermosetting resins, an epoxy resin, an unsaturated polyester resin, a vinyl ester resin, a phenol resin, an acrylic resin, or a mixed resin thereof is preferable. The resin viscosity at normal temperature (25 ° C.) of these resins is preferably 1 × 10 6 Pa · s or less, and within this range, a prepreg base material having tackiness and draping properties satisfying the present invention is obtained. Can do. Among them, the epoxy resin is most excellent in mechanical properties as a reinforced fiber composite material obtained in combination with carbon fiber.

かかるマトリックス樹脂は、熱硬化性樹脂のDSCに拠る発熱ピーク温度をTpとしたとき、前記熱硬化性樹脂が10分以内で硬化し得る温度Tが(Tp−60)〜(Tp+20)の範囲内にあることが好ましい。ここで、硬化し得るとは、熱硬化性樹脂を含む成形前駆体をある温度下で一定時間保持した後に成形前駆体の形状を保持した状態で取り出すことが可能であることをいい、具体的な評価法としては、加熱したプレス上に置いた内径31.7mm、厚さ3.3mmのポリテトラフルオロエチレン製Oリング中に熱硬化性樹脂を1.5ml注入し、10分間加熱加圧し架橋反応を進めた後に、樹脂試験片を変形させることなく取り出せることをいう。前記熱硬化性樹脂が10分以内で硬化し得る温度Tが、(Tp−60)℃より低い場合、成形時に昇温に時間を要することから、成形条件に制約が加わり、(Tp+20)℃より高い場合、樹脂の急激な反応により樹脂内部でのボイドの生成、硬化不良を引き起こすおそれがあるため、上記範囲であることが好ましい。なお、本発明におけるDSCに拠る発熱ピーク温度Tpは、昇温速度10℃/分の条件にて測定した値とする。   In such a matrix resin, the temperature T at which the thermosetting resin can be cured within 10 minutes is within the range of (Tp-60) to (Tp + 20), where Tp is an exothermic peak temperature due to DSC of the thermosetting resin. It is preferable that it exists in. Here, being able to cure means that the molding precursor containing the thermosetting resin can be taken out in a state in which the shape of the molding precursor is maintained after being held for a certain time at a certain temperature. As an evaluation method, 1.5 ml of a thermosetting resin was injected into a polytetrafluoroethylene O-ring having an inner diameter of 31.7 mm and a thickness of 3.3 mm placed on a heated press, and heated and pressurized for 10 minutes for crosslinking. This means that the resin test piece can be taken out without being deformed after the reaction has proceeded. When the temperature T at which the thermosetting resin can be cured within 10 minutes is lower than (Tp-60) ° C., it takes time to raise the temperature at the time of molding, so the molding conditions are limited, and from (Tp + 20) ° C. If it is high, there is a possibility that voids are generated inside the resin due to an abrupt reaction of the resin, resulting in poor curing. In addition, exothermic peak temperature Tp based on DSC in this invention is taken as the value measured on temperature rising conditions 10 degree-C / min conditions.

以上の硬化特性を発現する熱硬化性樹脂としては、少なくともエポキシ樹脂であり、硬化剤がアミン系硬化剤であり、硬化促進剤が1分子中にウレア結合を2個以上有する化合物が挙げられる。硬化促進剤としては、具体的に、2,4−トルエンビス(ジメチルウレア)または4,4−メチレンビス(フェニルジメチルウレア)が好ましい。   Examples of the thermosetting resin exhibiting the above curing characteristics include compounds having at least an epoxy resin, a curing agent being an amine curing agent, and a curing accelerator having two or more urea bonds in one molecule. Specifically, 2,4-toluenebis (dimethylurea) or 4,4-methylenebis (phenyldimethylurea) is preferable as the curing accelerator.

本発明の切込プリプレグ基材を得るためにプリプレグ基材に切り込みを入れる方法としては、まず一方向に引き揃えられた連続繊維のプリプレグ基材を作製し、その後カッターを用いての手作業や裁断機により切り込みを入れる方法、あるいは一方向に引き揃えられた連続繊維のプリプレグ製造工程において所定の位置に刃を配置した回転ローラーを連続的に押し当てたり、多層にプリプレグ基材を重ねて所定の位置に刃を配置した型で押し切りする等の方法がある。簡易にプリプレグ基材に切り込みを入れる場合には前者が、生産効率を考慮し大量に作製する場合には後者が適している。本発明においては、切り込み角度が小さいことから、刃の単位長さあたり裁断する繊維量が減少し、小さな力で繊維を裁断できるため、繊維の切り残りを少なくするとともに、刃の耐久性を向上できる。回転ローラーを用いる場合には、直接ローラーを削りだして所定の刃を設けてもよいが、マグネットローラーなどに平板を削りだして所定の位置に刃を配置したシート状の型を巻きつけることにより、刃の取りかえが容易で好ましい。このような回転ローラーを用いることで、Wsの小さな(具体的には1mm以下であっても)切込プリプレグ基材でも良好に切り込みを挿入することができる。   As a method of cutting into the prepreg base material to obtain the incised prepreg base material of the present invention, first, a prepreg base material of continuous fibers aligned in one direction is prepared, and then manual work using a cutter or In a method of cutting with a cutting machine, or in a prepreg manufacturing process of continuous fibers aligned in one direction, a rotating roller with blades arranged at predetermined positions is continuously pressed, or a plurality of prepreg base materials are stacked in layers. There is a method of pushing and cutting with a mold in which a blade is arranged at the position of. The former is suitable when the prepreg base material is simply cut, and the latter is suitable when producing a large amount in consideration of production efficiency. In the present invention, since the cutting angle is small, the amount of fibers to be cut per unit length of the blade is reduced, and the fibers can be cut with a small force, so that the remaining amount of fibers is reduced and the durability of the blade is improved. it can. When a rotating roller is used, the roller may be directly cut out to provide a predetermined blade, but by cutting a flat plate around a magnet roller or the like and winding a sheet-shaped mold with the blade placed at a predetermined position The replacement of the blade is easy and preferable. By using such a rotating roller, it is possible to insert the cut well even with a cut prepreg base material having a small Ws (specifically, 1 mm or less).

特に、図8に示すように螺旋状の刃20を配した回転刃ローラー19を押し当てて切り込みを入れる製造法が生産安定性に優れている。ここで、螺旋状の刃は連続的な刃であっても、断続的な刃でもよく、それぞれ図1のような連続した切り込み、図2のような断続的な切り込みを挿入することが出来る。その他、図9に示すように、斜めに繊維を引き揃えた後、プリプレグ基材の長手方向33もしくは幅方向34に切り込みを挿入してもよい。例えば図9a)のように、プリプレグ基材の長手方向33から2〜25°傾けた方向が繊維方向となるようにプリプレグ基材、テープ状プリプレグ基材(もしくは繊維束)を、移動ヘッド31を用いて引き揃え(繊維束の場合は含浸工程を経た後)、プリプレグ基材長手方向の切り込みを挿入する押し切り刃29を押し当ててもよい。押し切り刃29の変わりに回転ローラーを用いて、裁断してもよい。また、例えば図9b)のように、プリプレグ基材の幅方向34から2〜25°傾けた方向が繊維方向となるようにプリプレグ基材、テープ状プリプレグ基材(もしくは繊維束)を、移動ヘッド31を用いて引き揃え(繊維束の場合は含浸工程を経た後)、プリプレグ基材幅方向へ連続的、もしくは断続的な切り込みを挿入する回転刃32を押し当ててもよい。また、切り込みを入れた後、さらに、切込プリプレグ基材をローラー等で熱圧着することで、切り込み部に樹脂が充填、融着することにより、取り扱い性を向上させてもよい。   In particular, as shown in FIG. 8, a production method in which a rotary blade roller 19 provided with a spiral blade 20 is pressed to make a cut is excellent in production stability. Here, the spiral blade may be a continuous blade or an intermittent blade, and a continuous cut as shown in FIG. 1 and an intermittent cut as shown in FIG. 2 can be inserted respectively. In addition, as shown in FIG. 9, after the fibers are arranged obliquely, a cut may be inserted in the longitudinal direction 33 or the width direction 34 of the prepreg base material. For example, as shown in FIG. 9 a), the prepreg base material and the tape-shaped prepreg base material (or fiber bundle) are arranged so that the direction inclined by 2 to 25 ° from the longitudinal direction 33 of the prepreg base material is the fiber direction, and the moving head 31 is moved. It may be used to align (after passing through the impregnation step in the case of a fiber bundle) and press the pressing blade 29 for inserting a cut in the longitudinal direction of the prepreg substrate. Cutting may be performed using a rotating roller instead of the press cutting blade 29. For example, as shown in FIG. 9b), the prepreg base material and the tape-shaped prepreg base material (or fiber bundle) are moved to a moving head so that the direction inclined by 2 to 25 ° from the width direction 34 of the prepreg base material is the fiber direction. Rotating blade 32 that inserts continuously or intermittently in the width direction of the prepreg base material may be pressed using 31 (after passing through an impregnation step in the case of a fiber bundle). In addition, after the cut is made, the cut prepreg base material is further thermocompression bonded with a roller or the like, so that the resin is filled and fused in the cut portion, thereby improving the handleability.

さらに好ましくは図10のように本発明の切込プリプレグ基材7を2層積層し、上層の任意の切り込みC(4c)と交わる下層の切り込みD(4d)の交差角度(絶対値)が4〜90°の範囲内である2層基材を用いるのがよい。本発明の切込プリプレグ基材は繊維に対する切り込みの角度Θの絶対値が25°以下であり、繊維長さLが100mm以下でなくてはならないので、幾何的に単位面積あたりの切り込み量が多くなる。したがって、切込プリプレグ基材は繊維が至る所で分断しているため、取り扱い性に劣る。特に、切り込みが連続して入れられている場合には取り扱い性の低下は顕著である。したがって、切り込み角度が同一ではない切込プリプレグ基材を2層あらかじめ機械等で積層しておくことで、多層積層時に取り扱い性が格段に向上する。3層以上積層しておいてもよいが、厚みが大きくなることでドレープ性が低下するため、好ましくは2層の積層基材をひとつのユニットとして扱うのがよい。2層基材の上層と下層の組み合わせとしては切り込み同士の角度が4〜90°であればどのような繊維配向の切込プリプレグ基材の組み合わせでもよく、例えば、45°と−45°、0°と90°、0°と0°などがよい。   More preferably, as shown in FIG. 10, two layers of the cut prepreg substrate 7 of the present invention are laminated, and the crossing angle (absolute value) of the lower cut D (4d) intersecting with the upper cut C (4c) is 4. It is better to use a two-layer substrate that is in the range of ~ 90 °. The cut prepreg base material of the present invention has an absolute value of the cut angle Θ relative to the fiber of 25 ° or less and the fiber length L must be 100 mm or less, so that the cut amount per unit area is geometrically large. Become. Therefore, the cut prepreg base material is inferior in handleability because the fiber is divided everywhere. In particular, when the cuts are continuously made, the handleability is remarkably reduced. Accordingly, by stacking two layers of the cut prepreg base material having the same cut angle with a machine or the like in advance, the handleability is remarkably improved at the time of multilayer lamination. Three or more layers may be laminated. However, since the drape property is lowered by increasing the thickness, it is preferable to treat the two-layer laminated substrate as one unit. The combination of the upper layer and the lower layer of the two-layer base material may be a combination of notched prepreg base materials having any fiber orientation as long as the angle between the cuts is 4 to 90 °. For example, 45 ° and −45 °, 0 ° and 90 °, 0 ° and 0 °, etc. are preferable.

本発明の切込プリプレグ基材は、図11に示すように、さらに好ましくは切り込み4eが、切込プリプレグ基材の上面と下面とのそれぞれから層の厚み方向に貫かずに設けられ、切り込み4eの深さHsが切込プリプレグ基材厚みH(22)に対して0.4H〜0.6Hの範囲内であり、上面の切り込みと下面の切り込みとがそれぞれ0.01H〜0.1Hの範囲内(23)で互いに切り込んでおり、上面の任意の切り込みAと繊維方向のなす角度Θaに対して、該切り込みAと交わる下面の切り込みBの繊維方向とのなす角度Θbが−Θaである、切込プリプレグ基材7がよい。切り込みの深さが深いほど強度が下がる傾向があるが、低コストにプリプレグ化できる薄さには限界があるため、切り込みを入れる段階でプリプレグ基材厚みの略半分の深さの切り込みを上下面から入れることで、大きく強度を向上させるとともに流動性を確保することができることがわかった。また、薄い切込プリプレグ基材を作成し、張り合わせてもよいが、張り合わせる工程のコスト向上分を考慮すると、両面から切り込みを入れる本手法の方が好ましい。なお、角度Θbが−Θaであることが好ましいことは上述のとおりであるが、大きく強度を向上させるとともに流動性を確保することができるという効果を損なわない、Θb=−Θa−5°〜−Θa+5°の範囲内であれば差し支えは無い。なお、図11には、切込プリプレグ基材上面に入った切り込みUの深さと、下面に入った切り込みDの深さが同じである場合を記載しているが、Uの切り込みの深さHs,uと、Dの切り込みの深さHs,dが異なる値であったとしても、いずれもが0.4H〜0.6Hの範囲内にあればよい。   As shown in FIG. 11, the cut prepreg base material of the present invention is more preferably provided with a cut 4e that does not penetrate from the top surface and the bottom surface of the cut prepreg base material in the thickness direction of the layer. Depth Hs is in the range of 0.4H to 0.6H with respect to the cut prepreg base material thickness H (22), and the cuts on the upper surface and the lower surface are in the range of 0.01H to 0.1H, respectively. The angle Θb formed by the fiber direction of the lower notch B intersecting the notch A is −Θa with respect to the angle Θa formed by the inner notch (23) and an arbitrary notch A on the upper surface and the fiber direction. A cut prepreg base material 7 is preferable. Although the strength tends to decrease as the depth of cut increases, there is a limit to how thin the prepreg can be made at a low cost, so the upper and lower surfaces should be cut at a depth that is approximately half the thickness of the prepreg substrate at the time of cutting. It was found that by adding it from the inside, the strength can be greatly improved and the fluidity can be secured. In addition, a thin cut prepreg base material may be prepared and pasted, but considering the cost improvement of the pasting process, this method of cutting from both sides is preferable. The angle Θb is preferably −Θa as described above. However, the effect that the strength can be greatly improved and the fluidity can be ensured is not impaired. Θb = −Θa−5 ° to − If it is within the range of Θa + 5 °, there is no problem. FIG. 11 shows the case where the depth of the cut U entering the upper surface of the cut prepreg base material is the same as the depth of the cut D entering the lower surface, but the depth of cut H of U is Hs. , U and the depth of cut Hs, d of D are different from each other as long as they are within the range of 0.4H to 0.6H.

切込プリプレグ基材の上面の切り込みAと下面の切り込みBの繊維方向となす角度ΘaとΘbは好ましくはΘa=−Θbの関係にあるのがよい。切り込みの角度により強度向上の程度が異なるため、Θの絶対値は同じであることで安定した性能の切込プリプレグ基材とすることができる。また、切り込みの角度の符号により、成形時に繊維が回転する方向が決まるため、繊維の回転方向を逆とすることにより、繊維配向の平均が積層時の繊維方向とすることができ、ロバスト性に優れた基材となる。   The angles Θa and Θb formed by the fiber directions of the cut A on the upper surface and the cut B on the lower surface of the cut prepreg base material are preferably in a relationship of Θa = −Θb. Since the degree of strength improvement varies depending on the angle of cut, the absolute value of Θ is the same, so that a cut prepreg substrate with stable performance can be obtained. In addition, since the direction in which the fiber rotates during molding is determined by the sign of the angle of cut, the average fiber orientation can be made the fiber direction during lamination by reversing the direction of fiber rotation, resulting in robustness. It becomes an excellent base material.

切り込み深さHsは理想的には0.5Hとすることで、欠陥の大きさを均等にすることで、含有する欠陥サイズを最小化することで破壊開始荷重を最低とすることができるが、上面からの切り込みにも下面からの切り込みにも分断されない繊維が存在すると著しく流動性が低下するため、0.5H+0.05H程度の切り込みを上下面から入れることにより、流動性を低下させるような品質欠陥なく、生産安定性を確保できる。   Although the cutting depth Hs is ideally 0.5H, by making the size of the defects uniform, the fracture start load can be minimized by minimizing the size of the contained defects. If there is a fiber that is not divided by the incision from the upper surface and the incision from the lower surface, the fluidity is remarkably lowered. Therefore, the quality that lowers the fluidity by making an incision of about 0.5H + 0.05H from the upper and lower surfaces. Production stability can be secured without defects.

上記のような切り込みを実現する手段としては、例えば、強化繊維が一方向に引き揃えられたプリプレグ基材を準備し、上面または下面のいずれか一方から層の厚み方向に貫かない切り込みを押し切りする判子を押しつけた後、もう一方にも同様に判子を押しつける方法がある。特に螺旋状に刃をローラー上に配置した回転刃ローラーを片面から押しつけ層の厚み方向を貫かない切り込みを入れた後、もう一方の面から螺旋状のローラーを押し当てるのが生産安定性に優れている。   As means for realizing the above incision, for example, a prepreg base material in which reinforcing fibers are aligned in one direction is prepared, and an incision that does not penetrate in the thickness direction of the layer from either the upper surface or the lower surface is pressed. There is a method of pressing the stamp on the other side after pressing the stamp. In particular, it is excellent in production stability to press a rotating blade roller with a spiral blade disposed on the roller from one side and make a cut that does not penetrate the thickness direction of the layer, and then press the spiral roller from the other surface. ing.

さらに好ましくは、図12に示すように、切り込み4fが切込プリプレグ基材厚み方向に斜めに設けられており、任意の切り込みにおいて、切込プリプレグ基材の上面における強化繊維の分断線と下面における分断線との繊維方向の距離24をせん断距離Sとすると、切込プリプレグ基材厚みH(22)とをもちいて、次の式1から導かれる角度θ(26)が1〜25°の範囲内にある切込プリプレグ基材7がよい。   More preferably, as shown in FIG. 12, the cut 4f is provided obliquely in the thickness direction of the cut prepreg base material, and at any cut, the cut line of the reinforcing fiber on the top surface of the cut prepreg base material and the bottom surface When the distance 24 in the fiber direction from the dividing line is the shear distance S, the angle θ (26) derived from the following equation 1 using the cut prepreg base material thickness H (22) is in the range of 1 to 25 °. The cut prepreg base material 7 inside is good.

Figure 2008207545
Figure 2008207545

前述のとおり、面内において切り込みと繊維方向とのなす角Θの絶対値が25°以下である切込プリプレグ基材を積層、成形して得た繊維強化プラスチックの繊維束端部は層厚み方向に斜めとなっており、そのことが強度向上に大きく寄与している。そこで、切込プリプレグ基材の段階で深さ方向に斜めの切り込みを入れることで、上記効果をさらにアシストし、繊維強化プラスチックとした際の繊維束端部の角度をより小さくして強度向上に寄与することができた。特に切り込みの角度θが25°以下であるとき、力学特性向上の効果が著しい。一方、θが1°より小さい場合、斜めの切り込みを設けることが非常に困難となる。   As described above, the fiber bundle end portion of the fiber reinforced plastic obtained by laminating and molding the cut prepreg base material in which the absolute value of the angle Θ between the cut and the fiber direction is 25 ° or less in the plane is in the layer thickness direction. This greatly contributes to the improvement of strength. Therefore, by making oblique cuts in the depth direction at the stage of the cut prepreg base material, the above effect is further assisted, and the angle of the fiber bundle end when made into fiber reinforced plastic is further reduced to improve strength. I was able to contribute. In particular, when the cutting angle θ is 25 ° or less, the effect of improving the mechanical characteristics is remarkable. On the other hand, when θ is smaller than 1 °, it is very difficult to provide an oblique cut.

上記のような切り込みを実現する手段としては、直接斜めに切り込みを入れる方法もあるが、例えば、強化繊維が一方向に引き揃えられたプリプレグ基材を準備し、層の厚み方向を貫く切り込みを入れた後、切込プリプレグ基材を加熱・軟化させた状態で上面と下面とで回転速度の異なるニップローラーを押し当て、せん断力によって、強化繊維の分断面を厚み方向に斜めにする、などの方法もある。後者の場合、強化繊維の側面部が見られるような切込プリプレグ基材面外方向に垂直に切り出した断面において、切り込みによる繊維分断線は直線状ではなく、がたがたになるが、便宜的に切込プリプレグ基材上面の切り込みと切込プリプレグ基材下面の切り込みとの繊維方向の距離24をせん断距離Sとして用いる。切込プリプレグ基材全面の各切り込み4fのせん断距離24の平均をSとして式1に代入して切り込み角度θがもとまる。   As a means for realizing the above incision, there is also a method of making an incision directly obliquely.For example, a prepreg base material in which reinforcing fibers are aligned in one direction is prepared, and an incision penetrating the thickness direction of the layer is performed. After insertion, press the nip rollers with different rotation speeds on the upper and lower surfaces while the cut prepreg base material is heated and softened, and the shearing force makes the cross section of the reinforcing fibers slant in the thickness direction, etc. There is also a method. In the latter case, in the cross-section cut perpendicularly to the outside direction of the cut prepreg base material where the side surface portion of the reinforcing fiber can be seen, the fiber breaking line due to the cut is not linear but rattle, but for the sake of convenience. The distance 24 in the fiber direction between the cut on the upper surface of the cut prepreg substrate and the cut on the lower surface of the cut prepreg substrate is used as the shear distance S. The average of the shear distances 24 of the respective cuts 4f on the entire surface of the cut prepreg base material is substituted into Equation 1 as S to obtain the cut angle θ.

さらに前述の切込プリプレグ基材の少なくとも一方の表面に、切込プリプレグ基材中のマトリックス樹脂より引張伸度が高い、強化繊維の短繊維直径以上であり、かつ、切込プリプレグ基材の厚みの0.5倍以下の範囲内の厚みを有する、形態がフィルム状または不織布状である、層状の追加樹脂層を設けた複合切込プリプレグ基材を用いてもよい。本発明の切込プリプレグ基材を積層、成形して得た繊維強化プラスチックは、層内から発生したクラックが層間剥離によりつながると最終破壊が起こるため、伸度の高い追加樹脂層を層間に設けることにより層間剥離が劇的に抑えられ、強度が向上する。   Furthermore, at least one surface of the above-mentioned cut prepreg base material has a tensile elongation higher than that of the matrix resin in the cut prepreg base material and is not less than the short fiber diameter of the reinforcing fiber, and the thickness of the cut prepreg base material A composite-cut prepreg base material provided with a layered additional resin layer having a thickness in the range of 0.5 times or less of the above and having a film-like or non-woven fabric form may be used. The fiber reinforced plastic obtained by laminating and molding the cut prepreg base material of the present invention has a final elongation when cracks generated from within the layers are connected by delamination, so an additional resin layer having a high elongation is provided between the layers. This dramatically reduces delamination and improves strength.

さらに好ましくは、図13のように、前述の切込プリプレグ基材7の少なくとも一方の表面に、切込プリプレグ基材中のマトリックス樹脂より引張強度が高い、切込プリプレグ基材厚みH(22)に対して切り込みから繊維方向の両方向にH〜100Hの範囲内に、強化繊維が形成する層内に入り込まずに切込プリプレグ基材表面上に層状に配置されている、フィルム状または不織布状の追加樹脂28を設けた複合切込プリプレグ基材がよい。ここで言う“繊維方向の両方向”とは、例えば図13に示すように、切り込み4を境として繊維方向1に沿った左方向と右方向を意味する。上述のようにマトリックス樹脂より追加樹脂の引張伸度が大きいことにより、層間剥離が起こりにくくなる一方、追加樹脂が多くなりすぎると繊維強化プラスチックの繊維体積含有率Vfが小さくなり、弾性率が低下する傾向が低下してしまう。そこで、好ましくは追加樹脂の付与量はマトリックス樹脂の10%未満であるのが好ましい。応力集中の起こりやすい繊維束端部に集中して追加樹脂を配することで、高い効率で強度向上が見込まれる。また、追加樹脂の配置の仕方については、強化繊維が形成する層内に入り込まず切込プリプレグ基材表面上に層状に配置されているのがよい。強化繊維が形成する層内とは、あらかじめマトリックス樹脂を一方向に引き揃えた強化繊維中に含浸して得た切込プリプレグ基材を示す。追加樹脂は切込プリプレグ基材から大きく盛り上がって配されると積層時に嵩高となるため好ましくない。追加樹脂をあらかじめフィルム状、不織布状に加工しておき、切り込みを覆うように層状に配するのがよい。この際、追加樹脂の厚みは強化繊維単糸より大きく層厚みHの半分より小さいのが好ましい。ここで、追加樹脂が強化繊維により形成される層内に入りこまずに層状に配置されているとは、追加樹脂が強化繊維により形成される層中にアンカー効果が得られるような態様で配置されていないことを意味するが、少量の追加樹脂(例えば、全追加樹脂の20体積%以下)が溶融等により強化繊維により形成される層内に入り込んでいても(つまり、一部の強化繊維の周りにマトリックス樹脂ではなく、全追加樹脂の20体積%以下の追加樹脂が存在していても)よいことを意味する。   More preferably, as shown in FIG. 13, the cut prepreg base material thickness H (22) having a tensile strength higher than that of the matrix resin in the cut prepreg base material on at least one surface of the cut prepreg base material 7 described above. In the range of H to 100H in both directions from the cut to the fiber direction, the film or nonwoven fabric is arranged in layers on the cut prepreg substrate surface without entering the layer formed by the reinforcing fibers A composite cut prepreg base material provided with an additional resin 28 is preferable. As used herein, “both directions in the fiber direction” means a left direction and a right direction along the fiber direction 1 with the notch 4 as a boundary, as shown in FIG. As described above, since the tensile elongation of the additional resin is larger than that of the matrix resin, delamination hardly occurs. On the other hand, when the additional resin is excessive, the fiber volume content Vf of the fiber reinforced plastic is decreased and the elastic modulus is decreased. Will tend to decline. Therefore, it is preferable that the amount of additional resin applied is less than 10% of the matrix resin. Strengthening is expected with high efficiency by arranging additional resin concentrated on the fiber bundle end where stress concentration is likely to occur. Moreover, about the method of arrangement | positioning of an additional resin, it is good not to enter in the layer which a reinforced fiber forms, but to arrange | position in layers on the cut prepreg base material surface. The inside of the layer formed by the reinforcing fibers refers to a cut prepreg base material obtained by impregnating the reinforcing fibers in which the matrix resin is previously aligned in one direction. If the additional resin is arranged so as to rise greatly from the cut prepreg base material, it is not preferable because it becomes bulky at the time of lamination. It is preferable that the additional resin is processed into a film or a nonwoven fabric in advance and arranged in layers so as to cover the cuts. At this time, the thickness of the additional resin is preferably larger than the reinforcing fiber single yarn and smaller than half of the layer thickness H. Here, the additional resin is arranged in a layer form without entering the layer formed by the reinforcing fibers, and the additional resin is arranged in a mode in which an anchor effect is obtained in the layer formed by the reinforcing fibers. This means that a small amount of additional resin (for example, 20% by volume or less of the total additional resin) has entered the layer formed by the reinforcing fibers by melting or the like (that is, some reinforcing fibers) ) May be present in the presence of 20% or less by volume of the total additional resin instead of the matrix resin.

追加樹脂の引張伸度としてはマトリックス樹脂よりも大きければ何でもよいが、好ましくは2〜10倍であり、2〜50%の範囲内がよい。さらに好ましくは8〜20%の範囲内がよい。追加樹脂より引張伸度が大きいことにより、層間剥離が起こりにくくなり、強度向上が見込まれる。さらに追加樹脂の引張強度がマトリックス樹脂よりも大きい方が好ましい。すなわち、引張強度が高い方が樹脂割れであるクラックが発生しにくいため、追加樹脂はマトリックス樹脂よりも強度が高いほどよい。さらに好ましくは1.5倍以上の強度を有することが好ましい。なお、樹脂の引張伸度と引張強度とは、JIS K7113(1995)、あるいは、ASTM D638(1997)に従い測定される。さらに好ましくは、追加樹脂の破壊靱性値がマトリックス樹脂より大きい方がよい。樹脂の破壊靱性値は例えばASTM E399(1983)(コンパクト試験規格)で測定されるが、測定法により大きく値が異なるため、同一試験で比較した際の破壊靱性値が、例えばマトリックス樹脂が100J/mに対して追加樹脂が500J/m、などのように、マトリックス樹脂と比較して大きければ大きいほどよい。さらに好ましくはマトリックス樹脂の破壊靱性値の3倍以上がよい。 The tensile elongation of the additional resin may be anything as long as it is larger than that of the matrix resin, but is preferably 2 to 10 times, and preferably within a range of 2 to 50%. More preferably, it is in the range of 8 to 20%. Since the tensile elongation is greater than that of the additional resin, delamination is less likely to occur and strength improvement is expected. Further, the tensile strength of the additional resin is preferably larger than that of the matrix resin. That is, the higher the tensile strength, the less likely the cracks, which are resin cracks, occur, the better the additional resin has strength than the matrix resin. More preferably, it has a strength of 1.5 times or more. The tensile elongation and tensile strength of the resin are measured according to JIS K7113 (1995) or ASTM D638 (1997). More preferably, the fracture toughness value of the additional resin is larger than that of the matrix resin. The fracture toughness value of the resin is measured by, for example, ASTM E399 (1983) (compact test standard), but the value varies greatly depending on the measurement method. Therefore, the fracture toughness value when compared in the same test is, for example, 100 J / matrix resin. added to m 2 resin such as 500 J / m 2,, better larger as compared with the matrix resin. More preferably, it should be at least three times the fracture toughness value of the matrix resin.

追加樹脂としては、前述のマトリックス樹脂に適用される樹脂群の中から、マトリックス樹脂として用いる樹脂より引張伸度の高いものなら何でもよいが、特に熱可塑性樹脂を用いるのがよい。樹脂伸度や破壊靱性値が一般的な熱硬化性樹脂に比べ高いことが知られており、効果的に本発明の強度向上効果を奏する。さらに、ポリアミド、ポリエステル、ポリオレフィン、ポリフェニレンスルフォンが樹脂特性とコストとのバランス、樹脂粘度の設計自由度の点で好ましい。追加樹脂はマトリックス樹脂との相溶性が高いほど、本発明の効果を奏するため、成形温度と同等以下の融点を持つものがよい。とりわけ、共重合等により100〜200°程度に低融点化したポリアミドは熱硬化性樹脂との相溶性に優れており、かつ、伸引張度、引張強度、破壊靱性値も高く、好ましい。強化繊維として炭素繊維を用い、マトリックス樹脂としてエポキシ樹脂、追加樹脂としてポリアミド樹脂を用いた際、最も軽量で高強度、高剛性な繊維強化プラスチックを得ることが出来る。   As the additional resin, any resin may be used as long as it has a higher tensile elongation than the resin used as the matrix resin from the group of resins applied to the matrix resin described above, and a thermoplastic resin is particularly preferable. It is known that the resin elongation and fracture toughness are higher than those of a general thermosetting resin, and the strength improvement effect of the present invention is effectively achieved. Furthermore, polyamide, polyester, polyolefin, and polyphenylene sulfone are preferable in terms of the balance between resin characteristics and cost and the degree of freedom in designing the resin viscosity. As the additional resin has higher compatibility with the matrix resin, the effect of the present invention is exhibited. Therefore, it is preferable that the additional resin has a melting point equal to or lower than the molding temperature. In particular, a polyamide having a low melting point of about 100 to 200 ° by copolymerization or the like is excellent in compatibility with a thermosetting resin, and has a high tensile tensile strength, tensile strength, and fracture toughness, and is preferable. When carbon fiber is used as the reinforcing fiber, epoxy resin is used as the matrix resin, and polyamide resin is used as the additional resin, the most lightweight, high-strength, high-rigidity fiber-reinforced plastic can be obtained.

本発明の積層基材としては、前記切込プリプレグ基材を少なくとも一部に有してなる積層基材であって、強化繊維が一方向に引き揃えられたプリプレグ基材が複数枚積層され、強化繊維が一方向に引き揃えられたプリプレグ基材がその繊維方向が少なくとも2方向以上に配向して一体化されている積層基材であるのがよい。例えば、切込プリプレグ基材と切り込みのない一方向基材や織物基材であるプリプレグ基材を用いてハイブリッド積層してもよい。また、全面が切込プリプレグ基材で構成されていてもよい。   The laminated base material of the present invention is a laminated base material having at least a part of the cut prepreg base material, and a plurality of prepreg base materials in which reinforcing fibers are aligned in one direction are laminated, The prepreg base material in which the reinforcing fibers are aligned in one direction is preferably a laminated base material in which the fiber directions are aligned in at least two directions and integrated. For example, hybrid lamination may be carried out using a prepreg base material that is a cut prepreg base material and a unidirectional base material without a cut or a woven base material. Moreover, the whole surface may be comprised with the cutting prepreg base material.

本発明の切込プリプレグ基材は1層だけでは、繊維垂直方向にしか流動しない。すなわち、90°方向への樹脂の流動が繊維を動かす原動力であるため、2層以上異なる繊維方向に積層されていることではじめて、流動性が発現する。好ましくは、本発明の切込プリプレグ基材に隣接する層は一方向に強化繊維が配向したプリプレグ基材(本発明の切込プリプレグ基材を含む)であり、切込プリプレグ基材とは異なる繊維方向に積層されているのがよい。やむを得ず同一繊維方向の切込プリプレグ基材を隣接して積層する際には、切り込みが重ならないように積層するのがよい。またこれら切込プリプレグ基材の層間に樹脂フィルム等を積層し、流動性を向上させてもよい。また流動しなくてもよい部位には連続繊維基材を配し、さらにその部位の力学特性を向上させることもできる。形状によっては切り込みのない一方向プリプレグ基材と本発明の切込プリプレグ基材を積層して用いることもできる。例えば、一様断面形状の筒状体ならば、形状変化のない方向に連続繊維を配しても、流動性に問題はない。   The cut prepreg base material of the present invention flows only in the fiber vertical direction with only one layer. That is, since the flow of the resin in the 90 ° direction is a driving force for moving the fiber, the fluidity is manifested only when two or more layers are laminated in different fiber directions. Preferably, the layer adjacent to the cut prepreg substrate of the present invention is a prepreg substrate (including the cut prepreg substrate of the present invention) in which reinforcing fibers are oriented in one direction, and is different from the cut prepreg substrate. It is good to be laminated in the fiber direction. When it is unavoidable to stack the cut prepreg base materials in the same fiber direction adjacent to each other, it is preferable to stack the cuts so that the cuts do not overlap. Moreover, a resin film etc. may be laminated | stacked between the layers of these cutting prepreg base materials, and fluidity | liquidity may be improved. Moreover, the continuous fiber base material can be arranged in the site | part which does not need to flow, and also the mechanical characteristic of the site | part can be improved. Depending on the shape, the unidirectional prepreg base material having no cut and the cut prepreg base material of the present invention can be laminated and used. For example, in the case of a cylindrical body having a uniform cross-sectional shape, there is no problem in fluidity even if continuous fibers are arranged in a direction where there is no change in shape.

層同士で繊維方向が異なると、層ごとの流動方向、距離に違いが生じるが、層間が滑ることで変位差を吸収できる。すなわち、繊維体積含有率Vfが45〜65%と高くても、本発明の積層基材は層間に樹脂を偏在させることができる構成のため、高い流動性を発現することができる。SMCの場合、ランダムに分散したチョップドストランド同士で流動性が異なり、互いに違う方向に流動しようとするが、繊維同士が干渉して流動しにくく、最大でVfが40%程度までしか流動性を確保することができない。すなわち、本発明の積層基材は力学特性を向上することが出来る高Vfの構成であっても高い流動性を発現できる、という特徴を有する。なお、成形時の樹脂粘度は1×10Pa・s以下であると、流動性に優れてよいが、0.01Pa・sより小さいと、樹脂により繊維に効率的に力を伝達できないため、適さないことがある。 If the fiber direction is different between layers, a difference occurs in the flow direction and distance of each layer, but the displacement difference can be absorbed by sliding between the layers. That is, even if the fiber volume content Vf is as high as 45 to 65%, the laminated base material of the present invention can exhibit high fluidity because the resin can be unevenly distributed between the layers. In the case of SMC, fluidity is different between randomly chopped strands, and they try to flow in different directions, but they are difficult to flow due to interference between fibers, and fluidity is ensured only up to about 40% Vf. Can not do it. That is, the laminated base material of the present invention is characterized in that high fluidity can be exhibited even with a high Vf configuration capable of improving mechanical properties. In addition, if the resin viscosity at the time of molding is 1 × 10 4 Pa · s or less, fluidity may be excellent, but if it is less than 0.01 Pa · s, the resin cannot efficiently transmit force to the fiber, May not be suitable.

さらに好ましくは本発明の切込プリプレグ基材のみからなり、擬似等方に積層されている積層基材である。本発明の切込プリプレグ基材のみを用いることで、積層時にトラップされた空気が厚み方向に切り込みを通じて脱気しやすく、ボイドが発生しにくく、高力学特性が期待できる。なかでも、[+45/0/−45/90]、[0/±60]といった等方積層が、均等な物性とし、ソリの発生を抑制する場合には好ましい。また前述のとおり90°方向への樹脂の流動が繊維を動かす原動力であるため、隣接層の繊維配向によって繊維の流れ具合が異なるが、擬似等方積層とすることで流動性が等方となり、流動性のバラツキが少なくロバスト性に優れた成形材料となる。 More preferably, it is a laminated base material made of only the cut prepreg base material of the present invention and laminated in a pseudo isotropic manner. By using only the cut prepreg base material of the present invention, air trapped at the time of lamination is easily degassed by cutting in the thickness direction, voids are hardly generated, and high mechanical properties can be expected. Of these, isotropic lamination such as [+ 45/0 / −45 / 90] S and [0 / ± 60] S is preferable in order to achieve uniform physical properties and suppress the generation of warpage. In addition, since the flow of the resin in the 90 ° direction is a driving force for moving the fiber as described above, the flow of the fiber differs depending on the fiber orientation of the adjacent layer, but the fluidity becomes isotropic by using the pseudo isotropic lamination, It becomes a molding material with less fluidity variation and excellent robustness.

本発明の繊維強化プラスチックは、前記積層基材を硬化せしめることにより得ることが好ましい。硬化せしめる方法、すなわち繊維強化プラスチックを成形する方法としては、プレス成形、オートクレーブ成形、シートワインディング成形等が挙げられる。なかでも、生産効率を考慮するとプレス成形が好ましい。さらに好ましくは本発明の積層基材をチャージ率が50〜95%の範囲内で加圧成形し、最外層の切り込み部において、最外層の強化繊維が存在せずにマトリックス樹脂または隣接層の強化繊維のみで形成される切り込み開口部の面積を実質的に0とし、外観品位のよい繊維強化プラスチックを得る製造方法がよい。   The fiber-reinforced plastic of the present invention is preferably obtained by curing the laminated base material. Examples of the curing method, that is, the method of molding the fiber reinforced plastic include press molding, autoclave molding, sheet winding molding and the like. Of these, press molding is preferable in consideration of production efficiency. More preferably, the laminated base material of the present invention is pressure-molded within the range of 50 to 95% of the charge rate, and the matrix resin or the adjacent layer is reinforced without the outermost layer reinforcing fiber in the cut portion of the outermost layer. A manufacturing method for obtaining a fiber-reinforced plastic having a good appearance quality by setting the area of the cut opening formed of only fibers to substantially zero is preferable.

前記積層基材において、本発明の切込プリプレグ基材のみが積層された部位に回転部などの機構を備えるために金属インサートを埋め込み、硬化、一体化させることにより、アセンブリコストが低減できる。その際、金属インサートの周囲に複数の凹部設けることにより、流動した繊維が凹部に進入し、容易に隙間を充填することができるとともに、成形温度から低下することで、金属と繊維の熱膨張差でかしめられ、強固に一体化させることができる。   In the laminated base material, the assembly cost can be reduced by embedding, hardening, and integrating the metal insert in order to provide a mechanism such as a rotating part in a portion where only the cut prepreg base material of the present invention is laminated. At that time, by providing a plurality of recesses around the metal insert, the flowed fibers can enter the recesses, and can easily fill the gaps. And can be firmly integrated.

また、本発明の切込プリプレグ基材およびこれを用いた繊維強化プラスチックの用途としては、強度、剛性、軽量性が要求される、自転車用品、ゴルフ等のスポーツ部材のシャフトやヘッド、ドアやシートフレームなどの自動車部材、ロボットアームなどの機械部品がある。中でも、強度、軽量に加え、複雑な形状の成形追従性が要求されるシートパネルやシートフレーム等の自動車部品に好ましく適用できる。   In addition, the cut prepreg base material of the present invention and fiber-reinforced plastic using the same are used for shafts and heads, doors and seats of sports parts such as bicycle equipment and golf, which require strength, rigidity and light weight. There are automotive parts such as frames and mechanical parts such as robot arms. In particular, the present invention can be preferably applied to automobile parts such as seat panels and seat frames that require molding followability of complicated shapes in addition to strength and light weight.

以下、実施例により本発明をさらに具体的に説明するが、本発明は、実施例に記載の発明に限定されるというものではない。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the inventions described in the examples.

<平板成形方法>
所定の基材を、300×300mmの金型上に配置した後、加熱型プレス成型機により、6MPaの加圧下、150℃の温度雰囲気で所定の時間で流動・成形せしめ、300×300mmの平板状の成形体を得た。
<Flat plate forming method>
After a predetermined base material is placed on a 300 × 300 mm mold, it is fluidized and molded in a temperature atmosphere of 150 ° C. under a pressure of 6 MPa by a heating press molding machine for a predetermined time, and a 300 × 300 mm flat plate A shaped molded body was obtained.

<機械特性評価方法>
得られた平板状の成形体より、長さ250±1mm、幅25±0.2mmの引張強度試験片を切り出した。JIS K−7073(1998)に規定する試験方法に従い、標点間距離を150mmとし、クロスヘッド速度2.0mm/分で引張強度を測定した。なお、本実施例においては、試験機としてインストロン(登録商標)万能試験機4208型を用いた。測定した試験片の数はn=5とし、平均値を引張強度とした。さらに、測定値より標準偏差を算出し、その標準偏差を平均値で除することにより、バラツキの指標である変動係数(CV値(%))を算出した。
<Mechanical property evaluation method>
A tensile strength test piece having a length of 250 ± 1 mm and a width of 25 ± 0.2 mm was cut out from the obtained flat molded body. According to the test method specified in JIS K-7073 (1998), the tensile strength was measured at a crosshead speed of 2.0 mm / min with a distance between the gauge points of 150 mm. In this example, an Instron (registered trademark) universal testing machine 4208 type was used as a testing machine. The number of test pieces measured was n = 5, and the average value was the tensile strength. Further, a standard deviation was calculated from the measured value, and the standard deviation was divided by an average value, thereby calculating a variation coefficient (CV value (%)) as an index of variation.

<成形性評価>
得られた平板状の成形体の性状より、流動性とソリを評価した。
流動性に関しては、基材を伸長して成形するにあたり、金型キャビティ内に繊維強化プラスチックが充填されており、最表層に配された基材も金型端部付近まで伸長している場合には流動性○、金型キャビティ内に繊維強化プラスチックが充填されているものの、最表層に配された基材がほとんど伸長していない場合には流動性△、金型キャビティ内に繊維強化プラスチックが充填されていない部位がある場合には流動性×、として評価した。
ソリに関しては、成形体を平らな試験台上に置いただけで成形体が試験台と全面で接触している場合にはソリ○、成形体を平らな試験台上に置いただけで成形体が試験台とが全面で接触しておらず、指で成形体上面から試験台に成形体を押し付けた際、成形体が試験台と全面で接触する場合にはソリ△、指で成形体上面から試験台に成形体を押し付けた際、成形体が試験台と接触していない部分がある場合にはソリ×と評価して、表1〜9にまとめた。
<Formability evaluation>
The fluidity and warpage were evaluated from the properties of the obtained flat plate-shaped body.
In terms of fluidity, when the base material is stretched and molded, fiber reinforced plastic is filled in the mold cavity, and the base material placed on the outermost layer also extends to the vicinity of the mold edge. Is fluidity ○, but fiber reinforced plastic is filled in the mold cavity, but when the base material arranged on the outermost layer is not stretched, fluidity △, fiber reinforced plastic is in the mold cavity. When there was an unfilled part, it evaluated as fluidity | liquidity x.
For sleds, if the molded body is placed on a flat test bench and the molded body is in contact with the entire surface of the test bench, the sled ○, and the molded body can be tested by placing the molded body on a flat test bench. When the molded body is not in contact with the entire surface and the molded body is in contact with the entire surface of the test table with the finger when the molded body is pressed against the entire surface of the test table, warping is required. When the molded body was pressed against the table, if there was a portion where the molded body was not in contact with the test table, it was evaluated as a sled x and summarized in Tables 1-9.

<基材の形態の比較(表1)>
(実施例1)
エポキシ樹脂(ジャパンエポキシレジン(株)製“エピコート(登録商標)”828:30重量部、“エピコート(登録商標)”1001:35重量部、“エピコート(登録商標)”154:35重量部)に、熱可塑性樹脂ポリビニルホルマール(チッソ(株)製“ビニレック(登録商標)”K)5重量部をニーダーで加熱混練してポリビニルホルマールを均一に溶解させた後、硬化剤ジシアンジアミド(ジャパンエポキシレジン(株)製DICY7)3.5重量部と、硬化促進剤3−(3,4−ジクロロフェニル)−1,1−ジメチルウレア(保土谷化学工業(株)製DCMU99)4重量部を、ニーダーで混練して未硬化のエポキシ樹脂組成物を調整した。このエポキシ樹脂組成物を、リバースロールコーターを用いてシリコーンコーティング処理された厚さ100μmの離型紙上に塗布して樹脂フィルムを作製した。次に、一方向に配列させた炭素繊維(引張強度4,900MPa、引張弾性率235GPa)の両面に樹脂フィルムをそれぞれ重ね、加熱・加圧することによって樹脂を含浸させ、単位面積あたりの炭素繊維重さ125g/m、繊維体積含有率Vf55%、厚み0.125mmのプリプレグ基材を作製した。
<Comparison of substrate forms (Table 1)>
(Example 1)
Epoxy resin ("Epicoat (registered trademark)" 828: 30 parts by weight, "Epicoat (registered trademark)" 1001: 35 parts by weight, "Epicoat (registered trademark)" 154: 35 parts by weight, manufactured by Japan Epoxy Resin Co., Ltd. Then, 5 parts by weight of a thermoplastic resin polyvinyl formal (“Vinylec (registered trademark)” K manufactured by Chisso Corporation) was heated and kneaded with a kneader to uniformly dissolve the polyvinyl formal, and then a curing agent dicyandiamide (Japan Epoxy Resin Co., Ltd.) ) DICY7) 3.5 parts by weight and 4 parts by weight of curing accelerator 3- (3,4-dichlorophenyl) -1,1-dimethylurea (Hodogaya Chemical Co., Ltd. DCMU99) were kneaded in a kneader. Thus, an uncured epoxy resin composition was prepared. This epoxy resin composition was applied onto a release paper having a thickness of 100 μm that had been subjected to silicone coating using a reverse roll coater to prepare a resin film. Next, a resin film is laminated on both sides of carbon fibers arranged in one direction (tensile strength 4,900 MPa, tensile elastic modulus 235 GPa), and the resin is impregnated by heating and pressing, so that the carbon fiber weight per unit area is increased. A prepreg base material having a thickness of 125 g / m 2 , a fiber volume content Vf of 55%, and a thickness of 0.125 mm was produced.

このプリプレグ基材に、自動裁断機を用いて図4a)に示すような繊維から10°の方向の直線的な切り込みを連続的に挿入した後、炭素繊維の配向方向(0°方向)と、炭素繊維の配向方向から右に45度ずらした方向(45°方向)に、それぞれ300×300mmの大きさに切り出し、等間隔で規則的な切り込みを有するプリプレグ基材を得た。うち、300×300mmの周囲5mmずつは切り込みを入れず、連続的な切り込みによりばらばらとならないようにした切り込みを繊維から10°の方向に入れ、プリプレグ基材の端部近傍からもう一方の端部近傍まで入れられており、290×290mmの範囲に切り込みが入れられた。切り込みにより分断された繊維長さLは30mmである。エポキシ樹脂の25℃雰囲気下における粘度は2×104Pa・sであり、該基材はタック性を有していた。   To this prepreg base material, after continuously inserting a linear cut in the direction of 10 ° from the fiber as shown in FIG. 4a) using an automatic cutter, the orientation direction of the carbon fiber (0 ° direction), Each was cut into a size of 300 × 300 mm in a direction (45 ° direction) shifted 45 degrees to the right from the orientation direction of the carbon fibers, and prepreg base materials having regular cuts at equal intervals were obtained. Of these, the notch is not cut every 5 mm around 300 × 300 mm, and a notch that is not separated by continuous cutting is inserted in a direction of 10 ° from the fiber, and the other end from the vicinity of the end of the prepreg base material The incision was made in the range of 290 × 290 mm. The fiber length L divided by the cutting is 30 mm. The viscosity of the epoxy resin in an atmosphere at 25 ° C. was 2 × 10 4 Pa · s, and the substrate had tackiness.

上記切り出した切込プリプレグ基材を、16層疑似等方([−45/0/+45/90]2S)に積層した後、周囲25mmずつ切り落として全面に切り込みを有する250×250mmの積層基材を得た。 The above-cut cut prepreg base material is laminated in a 16-layer pseudo-isotropic ([−45 / 0 / + 45/90] 2S ), and then is cut off by 25 mm perimeter, and a 250 × 250 mm laminated base material having cuts on the entire surface. Got.

更に、上記の積層基材を用いて、300×300mmのキャビティを有する平板金型上の概中央部に配置した後、加熱型プレス成形機により、6MPaの加圧のもと、150℃×30分間の条件により硬化せしめ、300×300mmの平板状の繊維強化プラスチックを得た。金型を上から見たときの金型面積に対する基材の面積の割合をチャージ率と定義すると、チャージ率は70%に相当する。   Furthermore, after arrange | positioning in the approximate center part on the flat plate metal mold | die which has a cavity of 300x300mm using said laminated base material, 150 degreeCx30 under the pressurization of 6 MPa with a heating type press molding machine. Curing was performed under the condition of minutes, and a plate-like fiber reinforced plastic of 300 × 300 mm was obtained. When the ratio of the area of the base material to the mold area when the mold is viewed from above is defined as the charge rate, the charge rate corresponds to 70%.

得られた繊維強化プラスチックは繊維のうねりがなく、その端部まで繊維が均等に流動していた。全体的にソリもなく、最外層の切り込み部においても、強化繊維が存在せずに樹脂リッチまたは隣接層の強化繊維がのぞいている部位はほとんどなく、良好な外観品位、平滑性を保っていた。引張弾性率は46GPaとほぼ理論値通り発現し、また、引張強度に関しても590MPaと高い値が発現し、そのCV値も5%ときわめてバラツキの小さい結果となった。これらの結果から構造材としての適用、外板部材への適用が可能な力学特性と品位が得られたことがわかった。また、得られた繊維強化プラスチックを切り出し、切り出し面が0°である層に注目すると、図6b)のように、層うねりや繊維が存在しない部位がなく、樹脂リッチ部もほとんど存在しなかった。また、繊維束端部も厚み方向に斜めとなっており(繊維方向から5°以下程度)、応力伝達効率が高いと考えられた。   The obtained fiber reinforced plastic had no fiber undulation, and the fibers were flowing evenly to the end. There was no warpage as a whole, and there was almost no part where the reinforcing fiber was not present and the resin-rich or adjacent layer reinforcing fiber was peeking out even in the cut portion of the outermost layer, and good appearance quality and smoothness were maintained. . The tensile modulus was 46 GPa, which was almost the theoretical value, and the tensile strength was as high as 590 MPa, and the CV value was 5%. From these results, it was found that mechanical properties and quality that can be applied to structural materials and outer plate members were obtained. Further, when the obtained fiber-reinforced plastic was cut out and attention was paid to the layer having a cut-out surface of 0 °, there was no layer undulation or a portion where no fiber was present as shown in FIG. 6b), and there was almost no resin-rich portion. . Moreover, the fiber bundle end was also inclined in the thickness direction (about 5 ° or less from the fiber direction), and it was considered that the stress transmission efficiency was high.

(実施例2)
切り込みの入れ方以外は実施例1と同様にして繊維強化プラスチックを得た。実施例1と同様にして得たプリプレグ基材を、自動裁断機を用いて図4d)に示すような繊維から±10°の方向の直線的な切り込みを全面に断続的に挿入した後、炭素繊維の配向方向(0°方向)と、炭素繊維の配向方向から右に45度ずらした方向(45°方向)に、それぞれ300×300mmの大きさに切り出し、等間隔で規則的な切り込みを有する切込プリプレグ基材を得た。切り込みの繊維の垂直方向に投影した投影長さWsが10mm(実際の切り込み長さは57.6mm)で、図2のように隣接する切り込みによって繊維長さL以下(本実施例では15mm程度)に分断される部位があった。
(Example 2)
A fiber reinforced plastic was obtained in the same manner as in Example 1 except for how to cut. After the prepreg base material obtained in the same manner as in Example 1 was intermittently inserted into the entire surface by linear cuts in the direction of ± 10 ° from the fiber as shown in FIG. Each of the fiber orientation direction (0 ° direction) and the direction shifted 45 degrees to the right from the carbon fiber orientation direction (45 ° direction) are each cut into a size of 300 × 300 mm and have regular cuts at equal intervals. A cut prepreg substrate was obtained. The projected length Ws projected in the vertical direction of the cut fiber is 10 mm (the actual cut length is 57.6 mm), and the fiber length L or less (about 15 mm in this embodiment) by the adjacent cut as shown in FIG. There was a site that was divided.

得られた繊維強化プラスチックは繊維のうねりがなく、その端部まで繊維が均等に流動していた。全体的にソリもなく、最外層の切り込み部においても、強化繊維が存在せずに樹脂リッチまたは隣接層の強化繊維がのぞいている部位はほとんどなく、良好な外観品位、平滑性を保っていた。引張弾性率は46GPaとほぼ理論値通り発現し、また、引張強度に関しても550MPaと高い値が発現し、そのCV値も4%ときわめてバラツキの小さい結果となった。また、得られた繊維強化プラスチックを切り出し、切り出し面が0°である層に注目すると、図6b)のように、層うねりや繊維が存在しない部位がなく、樹脂リッチ部もほとんど存在しなかった。また、繊維束端部も厚み方向に斜めとなっており(繊維方向から5°以下程度)、応力伝達効率が高いと考えられた。   The obtained fiber reinforced plastic had no fiber undulation, and the fibers were flowing evenly to the end. There was no warpage as a whole, and there was almost no part where the reinforcing fiber was not present and the resin-rich or adjacent layer reinforcing fiber was peeking out even in the cut portion of the outermost layer, and good appearance quality and smoothness were maintained. . The tensile modulus was 46 GPa, which was almost the theoretical value, and the tensile strength was as high as 550 MPa, and the CV value was 4%. Further, when the obtained fiber-reinforced plastic was cut out and attention was paid to the layer having a cut-out surface of 0 °, there was no layer undulation or a portion where no fiber was present as shown in FIG. 6b), and there was almost no resin-rich portion. . Moreover, the fiber bundle end was also inclined in the thickness direction (about 5 ° or less from the fiber direction), and it was considered that the stress transmission efficiency was high.

(実施例3)
切り込みの入れ方以外は実施例1と同様にして繊維強化プラスチックを得た。実施例1と同様にして得たプリプレグ基材を、自動裁断機を用いて図4e)に示すような繊維から10°の方向の直線的な切り込みを全面に断続的に挿入した後、炭素繊維の配向方向(0°方向)と、炭素繊維の配向方向から右に45度ずらした方向(45°方向)に、それぞれ300×300mmの大きさに切り出し、等間隔で規則的な切り込みを有する切込プリプレグ基材を得た。切り込みの繊維の垂直方向に投影した投影長さWsが10mm(実際の切り込み長さは57.6mm)で、図2のように隣接する切り込みによって繊維長さL以下(今回は15mm程度)に分断される部位があった。
(Example 3)
A fiber reinforced plastic was obtained in the same manner as in Example 1 except for how to cut. After the prepreg base material obtained in the same manner as in Example 1 is inserted into the entire surface by linear cutting in the direction of 10 ° from the fiber as shown in FIG. Cut into a size of 300 × 300 mm in a direction of 45 ° to the right (0 ° direction) and 45 ° to the right of the carbon fiber orientation direction (45 ° direction), and have regular cuts at regular intervals. An embedded prepreg substrate was obtained. The projected length Ws projected in the vertical direction of the cut fiber is 10 mm (actual cut length is 57.6 mm), and is cut to the fiber length L or less (this time around 15 mm) by the adjacent cut as shown in FIG. There was a site to be.

得られた繊維強化プラスチックは繊維のうねりがなく、その端部まで繊維が均等に流動していた。全体的にソリもなく、最外層の切り込み部においても、強化繊維が存在せずに樹脂リッチまたは隣接層の強化繊維がのぞいている部位はほとんどなく、良好な外観品位、平滑性を保っていた。引張弾性率は46GPaとほぼ理論値通り発現し、また、引張強度に関しても580MPaと高い値が発現し、そのCV値も5%ときわめてバラツキの小さい結果となった。また、得られた繊維強化プラスチックを切り出し、切り出し面が0°である層に注目すると、図6b)のように、層うねりや繊維が存在しない部位がなく、樹脂リッチ部もほとんど存在しなかった。また、繊維束端部も厚み方向に斜めとなっており(繊維方向から5°以下程度)、応力伝達効率が高いと考えられた。   The obtained fiber reinforced plastic had no fiber undulation, and the fibers were flowing evenly to the end. There was no warpage as a whole, and there was almost no part where the reinforcing fiber was not present and the resin-rich or adjacent layer reinforcing fiber was peeking out even in the cut portion of the outermost layer, and good appearance quality and smoothness were maintained. . The tensile modulus was 46 GPa, which was almost the theoretical value, the tensile strength was as high as 580 MPa, and the CV value was 5%, which was very small. Further, when the obtained fiber-reinforced plastic was cut out and attention was paid to the layer having a cut-out surface of 0 °, there was no layer undulation or a portion where no fiber was present as shown in FIG. 6b), and there was almost no resin-rich portion. . Moreover, the fiber bundle end was also inclined in the thickness direction (about 5 ° or less from the fiber direction), and it was considered that the stress transmission efficiency was high.

<強化繊維、マトリックス樹脂の比較(表2)>
(実施例4)
硬化促進剤を2,4−トルエンビス(ジメチルウレア)(ピイ・ティ・アイジャパン(株)製“オミキュア(登録商標)”24)5重量部に替えた以外は実施例1と同様に、切込プリプレグ基材、それを用いた積層基材を作製した。かかる積層基材を、加熱型プレス成形機の加圧時間(硬化時間)だけを3分に替えた以外は実施例1と同様の方法で繊維強化プラスチックを得た。加圧時間が実施例1の1/10であるにもかかわらず、ほぼ同等のガラス転移温度を示し、該エポキシ樹脂組成物は、速硬化性に優れることがわかった。
<Comparison of reinforcing fiber and matrix resin (Table 2)>
Example 4
Cut off in the same manner as in Example 1 except that the curing accelerator was changed to 5 parts by weight of 2,4-toluenebis (dimethylurea) ("OMICURE (registered trademark)" 24 manufactured by PTI Japan). An embedded prepreg base material and a laminated base material using the same were prepared. A fiber-reinforced plastic was obtained in the same manner as in Example 1 except that only the pressing time (curing time) of the heating press molding machine was changed to 3 minutes. Despite the pressurization time being 1/10 that of Example 1, the glass transition temperature was almost the same, and it was found that the epoxy resin composition was excellent in rapid curability.

得られた繊維強化プラスチックはいずれも繊維のうねりがなく、その端部まで繊維が均等に流動していた。また、ソリもなく、最外層の切り込み部においても、強化繊維が存在せずに樹脂リッチまたは隣接層の強化繊維がのぞいている部位はほとんどなく、良好な外観品位、平滑性を保っていた。引張弾性率47GPa、引張強度580MPaと高い値であり、引張強度のCV値は4%とバラツキの小さい結果であった。これら値は実施例1と遜色ないものであった。   None of the obtained fiber reinforced plastics had any fiber undulations, and the fibers were flowing evenly to the ends. In addition, there was no warp, and there was almost no portion where the reinforcing fiber was not present and the reinforcing fiber in the adjacent layer was not present in the cut portion of the outermost layer, and good appearance quality and smoothness were maintained. The tensile elastic modulus was 47 GPa and the tensile strength was high as 580 MPa, and the CV value of the tensile strength was 4% and the variation was small. These values were comparable to those in Example 1.

(実施例5)
硬化促進剤を4,4−メチレンビス(フェニルジメチルウレア)(ピイ・ティ・アイジャパン(株)製“オミキュア(登録商標)”52)7重量部に替えた以外は実施例4と同様の方法で繊維強化プラスチックを得た。加圧時間が実施例1の1/10であるにもかかわらず、ほぼ同等のガラス転移温度を示し、未硬化のエポキシ樹脂組成物は、速硬化性に優れることがわかった。
(Example 5)
In the same manner as in Example 4 except that the curing accelerator was changed to 7 parts by weight of 4,4-methylenebis (phenyldimethylurea) (“OMICURE (registered trademark)” 52) manufactured by PTI Japan Ltd. A fiber reinforced plastic was obtained. Despite the pressurization time being 1/10 of that of Example 1, it was found that the uncured epoxy resin composition was excellent in rapid curability, showing almost the same glass transition temperature.

得られた繊維強化プラスチックはいずれも繊維のうねりがなく、その端部まで繊維が均等に流動していた。また、ソリもなく、最外層の切り込み部においても、強化繊維が存在せずに樹脂リッチまたは隣接層の強化繊維がのぞいている部位はほとんどなく、良好な外観品位、平滑性を保っていた。引張弾性率47GPa、引張強度580MPaと高い値であり、引張強度のCV値は5%とバラツキの小さい結果であった。これら値は実施例1と遜色ないものであった。   None of the obtained fiber reinforced plastics had any fiber undulations, and the fibers were flowing evenly to the ends. In addition, there was no warp, and there was almost no portion where the reinforcing fiber was not present and the reinforcing fiber in the adjacent layer was not present in the cut portion of the outermost layer, and good appearance quality and smoothness were maintained. The tensile modulus was 47 GPa and the tensile strength was as high as 580 MPa, and the CV value of the tensile strength was as small as 5%. These values were comparable to those in Example 1.

(実施例6)
共重合ポリアミド樹脂(東レ(株)製“アミラン”(登録商標)CM4000、ポリアミド6/66/610共重合体、融点155℃)のペレットを、200℃で加熱したプレスで34μm厚みのフィルム状に加工した。離型紙を用いなかった他は実施例1と同様にして、切込プリプレグ基材を作成した。ポリアミド樹脂の25℃雰囲気下における粘度は固体であるため測定不可能であり、該基材はタック性がなかった。実施例1と同様に裁断後、タック性がないので単に16層を疑似等方([−45/0/+45/90]2S)に重ね、そのまま、300×300mmのキャビティを有する平板金型上の概中央部に配置した。加熱型プレス成形機により、6MPaの加圧のもと、200℃×1分間の条件で流動せしめ、型を開けることなく、冷却した後、脱型して、300×300mmの平板状の繊維強化プラスチックを得た。
(Example 6)
Pellets of copolymerized polyamide resin (“Amilan” (registered trademark) CM4000 manufactured by Toray Industries, Inc., polyamide 6/66/610 copolymer, melting point 155 ° C.) were formed into a film having a thickness of 34 μm with a press heated at 200 ° C. processed. A cut prepreg base material was prepared in the same manner as in Example 1 except that the release paper was not used. The viscosity of the polyamide resin in an atmosphere at 25 ° C. was a solid and could not be measured, and the substrate had no tackiness. After cutting in the same manner as in Example 1, since there is no tackiness, 16 layers are simply stacked in a pseudo isotropic manner ([−45 / 0 / + 45/90] 2S ), and a plate mold having a 300 × 300 mm cavity is left as it is. It was arranged at the approximate center. It was made to flow at 200 ° C for 1 minute under a pressure of 6 MPa with a heated die press, cooled without opening the mold, demolded, and reinforced with a flat fiber of 300 x 300 mm. Got plastic.

得られた繊維強化プラスチックは若干の繊維のうねりはあるものの、その端部まで繊維が流動していた。若干の繊維分布の粗密から、わずかながらソリが発生したが、最外層の切り込み部においては、強化繊維が存在せずに樹脂リッチまたは隣接層の強化繊維がのぞいている部位はほとんどなく、おおむね良好な外観品位、平滑性を保っていた。   Although the obtained fiber reinforced plastic had some fiber undulations, the fibers flowed to the end. Slight warpage occurred due to slight density of the fiber distribution, but in the outermost notch, there was almost no part where the reinforcing fiber was not present and the reinforcing fiber in the adjacent layer was not visible, and it was generally good. Appearance quality and smoothness were maintained.

(実施例7)
ランダム共重合PP樹脂(プライムポリマー(株)製J229E,融点155℃)55重量%と酸変性PP系樹脂(三洋化成(株)製ユーメックス1010、酸価約52、融点142℃、重量平均分子量30,000)45重量%とを、日本製鋼所(株)製2軸押出機(TEX−30α2)を用い、200℃で溶融混練したペレットを、200℃で加熱したプレスで34μm厚みのフィルム状に加工した。以降、実施例6と同様にして、繊維強化プラスチックを得た。
(Example 7)
55% by weight of random copolymer PP resin (Prime Polymer Co., Ltd. J229E, melting point 155 ° C.) and acid-modified PP resin (Sanyo Chemical Co., Ltd. Yumex 1010, acid value about 52, melting point 142 ° C., weight average molecular weight 30 , 000) 45% by weight of a pellet obtained by melting and kneading at 200 ° C. using a twin-screw extruder (TEX-30α2) manufactured by Nippon Steel Works Co., Ltd. into a 34 μm-thick film form using a press heated at 200 ° C. processed. Thereafter, a fiber reinforced plastic was obtained in the same manner as in Example 6.

得られた繊維強化プラスチックは若干の繊維のうねりはあるものの、その端部まで繊維が流動していた。若干の繊維分布の粗密から、わずかながらソリが発生したが、最外層の切り込み部においては、強化繊維が存在せずに樹脂リッチまたは隣接層の強化繊維がのぞいている部位はほとんどなく、おおむね良好な外観品位、平滑性を保っていた。   Although the obtained fiber reinforced plastic had some fiber undulations, the fibers flowed to the end. Slight warpage occurred due to slight density of the fiber distribution, but in the outermost notch, there was almost no part where the reinforcing fiber was not present and the reinforcing fiber in the adjacent layer was not visible, and it was generally good. Appearance quality and smoothness were maintained.

(実施例8)
実施例1と同様に樹脂フィルムを作成した。次に、一方向に配列させたガラス繊維(引張強度1,500MPa、引張弾性率74GPa)の両面に樹脂フィルムをそれぞれ重ね、加熱・加圧することによって樹脂を含浸させ、ガラス繊維重さ175g/m、繊維体積含有率Vf55%、厚み0.125mmの切込プリプレグ基材を作製した。以後、実施例1と同様にして繊維強化プラスチックを得た。
(Example 8)
A resin film was prepared in the same manner as in Example 1. Next, resin films are superimposed on both surfaces of glass fibers arranged in one direction (tensile strength 1,500 MPa, tensile elastic modulus 74 GPa), and impregnated with resin by heating and pressurization, and the glass fiber weight is 175 g / m. 2. A cut prepreg base material having a fiber volume content Vf of 55% and a thickness of 0.125 mm was prepared. Thereafter, a fiber reinforced plastic was obtained in the same manner as in Example 1.

得られた繊維強化プラスチックはいずれも繊維のうねりがなく、その端部まで繊維が均等に流動していた。また、ソリもなく、最外層の切り込み部においても、強化繊維が存在せずに樹脂リッチまたは隣接層の強化繊維がのぞいている部位はほとんどなく、良好な外観品位、平滑性を保っていた。引張弾性率29GPa、引張強度430MPaと、実施例1と比較すると強化繊維の性能差分低くなっているが、引張弾性率は理論値近く発現しており、また引張強度のCV値は3%とバラツキの小さい結果となった。   None of the obtained fiber reinforced plastics had any fiber undulations, and the fibers were flowing evenly to the ends. In addition, there was no warp, and there was almost no portion where the reinforcing fiber was not present and the reinforcing fiber in the adjacent layer was not present in the cut portion of the outermost layer, and good appearance quality and smoothness were maintained. Although the tensile elastic modulus is 29 GPa and the tensile strength is 430 MPa, the performance difference of the reinforcing fiber is lower than that of Example 1, the tensile elastic modulus is expressed close to the theoretical value, and the CV value of the tensile strength varies as 3%. The result was small.

<切り込み角度の比較(表3)>
(実施例9〜12)
切り込みの角度を変えた他は実施例1と同様にして繊維強化プラスチックを得た。実施例9は繊維からの角度が2°、実施例10は5°、実施例11は15°、実施例12は25°の方向に連続的な切り込みを設けた。
<Comparison of cutting angle (Table 3)>
(Examples 9 to 12)
A fiber reinforced plastic was obtained in the same manner as in Example 1 except that the cutting angle was changed. In Example 9, the angle from the fiber was 2 °, Example 10 was 5 °, Example 11 was 15 °, and Example 12 was provided with a continuous cut in the direction of 25 °.

得られた繊維強化プラスチックはいずれも繊維のうねりがなく、その端部まで繊維が均等に流動していた。また、ソリもなく、最外層の切り込み部においても、強化繊維が存在せずに樹脂リッチまたは隣接層の強化繊維がのぞいている部位はほとんどなく、良好な外観品位、平滑性を保っていた。引張弾性率は46〜47GPa、引張強度は460〜660MPaと高い値であり、引張強度のCV値は3〜6%とバラツキの小さい結果であった。特に切り込み角度の小さな実施例9、10では600MPa以上の引張強度を発現した一方、実施例9では切り込み角度が小さいため、切り込み同士の間隔は1mm程度と小さく、積層時の取り扱い性に若干難があった。   None of the obtained fiber reinforced plastics had any fiber undulations, and the fibers were flowing evenly to the ends. In addition, there was no warp, and there was almost no portion where the reinforcing fiber was not present and the reinforcing fiber in the adjacent layer was not present in the cut portion of the outermost layer, and good appearance quality and smoothness were maintained. The tensile modulus was 46 to 47 GPa, the tensile strength was as high as 460 to 660 MPa, and the CV value of the tensile strength was as small as 3 to 6%. In particular, in Examples 9 and 10 having a small cutting angle, a tensile strength of 600 MPa or more was expressed. On the other hand, since the cutting angle was small in Example 9, the interval between the cuttings was as small as about 1 mm, and the handling at the time of lamination was slightly difficult. there were.

<チャージ率の比較(表4)>
(実施例13〜15)
切り出す切込プリプレグ基材の大きさが異なる以外は実施例1と同様にして繊維強化プラスチックを得た。切り出す切込プリプレグ基材の大きさは、実施例13では212×212mm、実施例14では285×285mm、実施例15では300×300mm、とした。それぞれ実施例13がチャージ率50%、実施例14が90%、実施例15が100%に相当する。
<Comparison of charge rates (Table 4)>
(Examples 13 to 15)
A fiber reinforced plastic was obtained in the same manner as in Example 1 except that the size of the cut prepreg base material to be cut out was different. The size of the cut prepreg base material to be cut out was 212 × 212 mm in Example 13, 285 × 285 mm in Example 14, and 300 × 300 mm in Example 15. Example 13 corresponds to 50% charge rate, Example 14 corresponds to 90%, and Example 15 corresponds to 100%.

得られた繊維強化プラスチックはいずれも繊維のうねりなく、その端部まで繊維が充分に流動していた(ただし、実施例15は100%チャージのため、流動していない)。実施例13は長距離流動させたため、若干の繊維分布の粗密から、わずかながらソリが発生したが、最外層の切り込み部においても、強化繊維が存在せずに樹脂リッチまたは隣接層の強化繊維がのぞいている部位はほとんどなく、おおむね良好な外観品位、平滑性を保っていた。実施例14、15はいずれもソリがなく、最外層の切り込み部においても、強化繊維が存在せずに樹脂リッチまたは隣接層の強化繊維がのぞいている部位はなく、良好な外観品位、平滑性を保っていた。引張弾性率46〜47GPa、引張強度は510〜690MPaと高い値であり、引張強度のCV値も3〜7%とバラツキの小さい結果であった。特に、チャージ率が小さい実施例13では、切込プリプレグ基材が薄く引き延ばされるため得られた繊維強化プラスチックの層厚みが極めて薄く、繊維束端部からの層間剥離が起こりにくくなる効果か、引張強度が690MPaと非常に高い値を発現した。   All of the obtained fiber reinforced plastics did not swell, and the fibers sufficiently flowed to the end thereof (however, Example 15 was not flowing because of 100% charge). In Example 13, since it was made to flow for a long distance, a slight warp was generated due to a slight density of the fiber distribution, but the reinforcing fiber was not present in the cut portion of the outermost layer, and the reinforcing fiber in the resin-rich or adjacent layer was not present. There were almost no peeping parts, and generally good appearance quality and smoothness were maintained. In Examples 14 and 15, there is no warp, and there is no portion in which the reinforcing fiber is not present and the reinforcing fiber in the adjacent layer is not in the cut portion of the outermost layer, and the appearance quality and smoothness are good. Was kept. The tensile modulus was 46 to 47 GPa, the tensile strength was as high as 510 to 690 MPa, and the CV value of the tensile strength was also as small as 3 to 7%. In particular, in Example 13 where the charge rate is small, the layer thickness of the fiber reinforced plastic obtained because the cut prepreg base material is thinly stretched is an effect that the delamination from the fiber bundle end portion is less likely to occur, The tensile strength expressed a very high value of 690 MPa.

<繊維長さの比較(表5)>
(実施例16〜18)
実施例1の切り込みパターンにおいて、切り込みの間隔を変えることにより繊維長さLを変えた以外は、実施例1と同様にして繊維強化プラスチックを得た。それぞれLは、実施例16では10mm、実施例17では60mm、実施例13では100mmとした。
<Comparison of fiber length (Table 5)>
(Examples 16 to 18)
A fiber reinforced plastic was obtained in the same manner as in Example 1 except that the fiber length L was changed by changing the cut interval in the cut pattern of Example 1. L was 10 mm in Example 16, 60 mm in Example 17, and 100 mm in Example 13, respectively.

得られた繊維強化プラスチックは実施例18を除いて繊維のうねりなく、その端部まで繊維が充分に流動していた。実施例13は若干の繊維のうねりと金型との摩擦を受ける表面部で端部まで繊維が十分流動してない部位があった。その他、いずれの繊維強化プラスチックもソリがなく、最外層の切り込み部においても、強化繊維が存在せずに樹脂リッチまたは隣接層の強化繊維がのぞいている部位はほとんどなく、良好な外観品位、平滑性を保っていた。引張弾性率46〜47GPa、引張強度は510〜650MPaと高い値であり、引張強度のCV値も3〜6%とバラツキの小さい結果であった。   The obtained fiber reinforced plastic had no fiber swell except for Example 18, and the fiber sufficiently flowed to its end. In Example 13, there was a portion where the fiber did not sufficiently flow to the end at the surface portion where the undulation of the fiber and friction with the mold were received. In addition, none of the fiber reinforced plastics has warpage, and there is almost no part where the reinforcing fibers are not present and the reinforcing fibers in the adjacent layer are not present in the cut portion of the outermost layer, and the appearance quality is smooth and smooth. I kept the sex. The tensile modulus was 46 to 47 GPa, the tensile strength was as high as 510 to 650 MPa, and the CV value of the tensile strength was also as small as 3 to 6%.

<切り込み長さの比較(表6)>
(実施例19〜21)
実施例3の切り込みパターンにおいて、自動裁断機の代わりに、円柱状の金属を削りだし円周上に複数の刃を設けて回転ローラーとし、プリプレグ基材に押し当てて繊維から10°の方向の直線的な切り込みを入れることで、切り込みの長さを変えた以外は実施例3と同様にして繊維強化プラスチックを得た。それぞれ切り込みの繊維の垂直方向に投影した投影長さWsは実施例19では17μm、実施例20では30μm、実施例21では170μmとした。実際の切り込みの長さはそれぞれ、実施例19では0.1mm、実施例20では0.17mm、実施例21では1mmとなった。
<Comparison of cutting length (Table 6)>
(Examples 19 to 21)
In the cutting pattern of Example 3, instead of an automatic cutting machine, a cylindrical metal is cut out, a plurality of blades are provided on the circumference to form a rotating roller, and pressed against a prepreg base material in a direction of 10 ° from the fiber. A fiber reinforced plastic was obtained in the same manner as in Example 3 except that the length of the cut was changed by making a straight cut. The projected length Ws projected in the vertical direction of each cut fiber was 17 μm in Example 19, 30 μm in Example 20, and 170 μm in Example 21. The actual cut lengths were 0.1 mm in Example 19, 0.17 mm in Example 20, and 1 mm in Example 21, respectively.

得られた繊維強化プラスチックは実施例19を除いて繊維のうねりがなかった。実施例19では、切り込み端部が多く存在するためか局所的な流動の乱れが発生し、若干の繊維うねりが観察された。その他、いずれの繊維強化プラスチックもその端部まで繊維が充分に流動しており、ソリもなく、最外層の切り込み部においても、強化繊維が存在せずに樹脂リッチまたは隣接層の強化繊維がのぞいている部位はほとんどなく、良好な外観品位、平滑性を保っていた。引張弾性率47GPa、引張強度は690〜7130MPaと高い値であった。引張強度のCV値は実施例19で9%と若干高いものの、その他は4〜5%とバラツキの小さい結果であった。   The obtained fiber reinforced plastic had no fiber swell except in Example 19. In Example 19, local disturbance of flow occurred due to the presence of many cut edges, and some fiber undulation was observed. In addition, in all the fiber reinforced plastics, the fibers are sufficiently flowing to the end thereof, there is no warp, and there is no reinforcing fiber in the cut portion of the outermost layer. There were almost no parts, and good appearance quality and smoothness were maintained. The tensile modulus was 47 GPa and the tensile strength was a high value of 690 to 7130 MPa. Although the CV value of the tensile strength was a little high at 9% in Example 19, the others were 4 to 5% and the variation was small.

(実施例22〜25)
実施例3の切り込みパターンにおいて、切り込みの長さが異なる以外は実施例3と同様にして繊維強化プラスチックを得た。それぞれ切り込みの繊維の垂直方向に投影した投影長さWsは実施例22では1mm、実施例23では1.5mm、実施例24では100mm、実施例225では120mmとした。実際の切り込みの長さはそれぞれ、実施例22では5.8mm、実施例23では8.6mm、実施例24、25では実質的に用意した300×300mmの切込プリプレグ基材に収まらない大きな切り込みであり、切り込みの一方の端部が内在するほとんど連続の切り込み状となった。
(Examples 22 to 25)
A fiber reinforced plastic was obtained in the same manner as in Example 3 except that the length of the cut in the cut pattern of Example 3 was different. The projected length Ws projected in the vertical direction of each cut fiber was 1 mm in Example 22, 1.5 mm in Example 23, 100 mm in Example 24, and 120 mm in Example 225. The actual cut lengths were 5.8 mm in Example 22, 8.6 mm in Example 23, and large cuts that did not fit in the 300 × 300 mm cut prepreg substrate prepared in Examples 24 and 25, respectively. It was almost a continuous cut with one end of the cut inside.

得られた繊維強化プラスチックはいずれも繊維のうねりがなく、その端部まで繊維が充分に流動しており、ソリもなく、最外層の切り込み部においても、強化繊維が存在せずに樹脂リッチまたは隣接層の強化繊維がのぞいている部位はほとんどなく、良好な外観品位、平滑性を保っていた。引張弾性率45〜47GPa、引張強度は580〜640MPaと高い値であった。引張強度のCV値は3〜6%とバラツキの小さい結果であった。一方で、実施例24、25はほとんど連続的な切り込みとなっていたため、積層時に切込プリプレグ基材の端部がばらばらであり、取り扱い性が悪かった。   All of the obtained fiber reinforced plastics have no fiber undulation, the fibers are sufficiently flowing to the end thereof, no warp, and no reinforcing fibers are present in the cut portion of the outermost layer. There were almost no portions where the reinforcing fibers of the adjacent layer were peeked, and good appearance quality and smoothness were maintained. The tensile modulus was 45 to 47 GPa and the tensile strength was a high value of 580 to 640 MPa. The CV value of the tensile strength was 3 to 6%, which was a small variation. On the other hand, since Examples 24 and 25 were almost continuous cuts, the ends of the cut prepreg base material were scattered during lamination, and the handleability was poor.

<層厚みの比較(表7)>
(実施例26、27)
実施例1のプリプレグ基材の単位面積あたりの炭素繊維重さを変えることにより切込プリプレグ基材厚みを変えた以外は実施例1と同様にして繊維強化プラスチックを得た。それぞれ実施例26が単位面積あたりの炭素繊維重さが50g/m、切込プリプレグ基材厚みが0.05mm、実施例27が300g/m、0.3mmとした。
<Comparison of layer thickness (Table 7)>
(Examples 26 and 27)
A fiber reinforced plastic was obtained in the same manner as in Example 1 except that the thickness of the cut prepreg base material was changed by changing the weight of the carbon fiber per unit area of the prepreg base material of Example 1. In Example 26, the carbon fiber weight per unit area was 50 g / m 2 , the thickness of the cut prepreg base material was 0.05 mm, and Example 27 was 300 g / m 2 and 0.3 mm.

得られた繊維強化プラスチックはいずれも繊維のうねりなく、その端部まで繊維が充分に流動しており、ソリもなく、最外層の切り込み部においても、強化繊維が存在せずに樹脂リッチまたは隣接層の強化繊維がのぞいている部位はほとんどなく、良好な外観品位、平滑性を保っていた。引張弾性率46〜47GPa、引張強度は実施例26は750MPaと高く、一方実施例27は370MPaと若干低いものの、いずれも引張強度のCV値は4〜5%とバラツキの小さい結果であった。特に、切込プリプレグ基材厚みを薄くすることで引張強度が向上することがわかった。   All of the obtained fiber reinforced plastics have no fiber undulations, the fibers are sufficiently flowing to the end, no warp, and there is no reinforcing fiber even in the outermost notch, and the resin rich or adjacent There were almost no portions where the reinforcing fibers of the layer were peeking, and good appearance quality and smoothness were maintained. Although the tensile modulus was 46 to 47 GPa and the tensile strength was as high as 750 MPa in Example 26, while Example 27 was slightly low as 370 MPa, the CV value of the tensile strength was 4 to 5%, showing little variation. In particular, it was found that the tensile strength was improved by reducing the thickness of the cut prepreg base material.

<繊維含有率の比較(表8)>
(実施例28、29)
実施例1のプリプレグ基材の単位面積あたりの炭素繊維重さを変えることにより炭素繊維の体積含有率Vfを変えた以外は実施例1と同様にして繊維強化プラスチックを得た。それぞれ実施例28が単位面積あたりの炭素繊維重さが146g/m、Vfが65%、実施例29が101g/m、Vfが45%とした。
<Comparison of fiber content (Table 8)>
(Examples 28 and 29)
A fiber-reinforced plastic was obtained in the same manner as in Example 1 except that the volume content Vf of the carbon fiber was changed by changing the carbon fiber weight per unit area of the prepreg base material of Example 1. Each Example 28 is carbon fiber weight per unit area 146 g / m 2, Vf is 65%, Example 29 was 101g / m 2, Vf is 45%.

実施例28では得られた繊維強化プラスチックは若干の繊維のうねりと金型との摩擦を受ける表面部で端部まで繊維が十分流動してない部位があった。一方、実施例29では得られた繊維強化プラスチックは繊維のうねりなく、その端部まで繊維が充分に流動していた。その他、どちらの繊維強化プラスチックもソリがなく、最外層の切り込み部においても、強化繊維が存在せずに樹脂リッチまたは隣接層の強化繊維がのぞいている部位はほとんどなく、良好な外観品位、平滑性を保っていた。引張弾性率39〜52GPa、引張強度は490〜630MPaと高い値であり、引張強度のCV値も4〜8%とバラツキの小さい結果であった。Vfが大きくなるほど、引張弾性率も強度も向上するという結果となったが、あまりVfが大きいと流動性が落ちるという難点があった。   In Example 28, the obtained fiber reinforced plastic had a portion where the fiber did not sufficiently flow to the end at the surface portion where the undulation of the fiber and friction between the mold and the mold were received. On the other hand, in the fiber reinforced plastic obtained in Example 29, the fibers did not swell, and the fibers sufficiently flowed to the ends. In addition, both fiber reinforced plastics have no warp, and there is almost no portion where the reinforcing fibers are not present and the reinforcing fibers in the adjacent layer are not present in the cut portion of the outermost layer, and the appearance quality is smooth and smooth. I kept the sex. The tensile elastic modulus was 39 to 52 GPa, the tensile strength was as high as 490 to 630 MPa, and the CV value of the tensile strength was also as small as 4 to 8%. As Vf increased, the tensile modulus and strength were improved. However, when Vf was too large, there was a problem that the fluidity decreased.

<積層構成の比較(表9)>
(実施例30、31)
実施例30は実施例1の積層構成を変えた以外は実施例1と同様にして繊維強化プラスチックを得た。実施例1の切り込みを入れた切込プリプレグ基材を16層クロスプライに積層した、[0/90]4sの積層基材を用いた。実施例31は実施例1のプリプレグ基材と、切り込みを入れた後の切込プリプレグ基材を取り合わせて積層した以外は実施例1と同様にして繊維強化プラスチックを得た。切り込みのない連続繊維のみで構成されたプリプレグ基材8層と切り込みを入れた切込プリプレグ基材8層とを交互にクロスプライに積層した、[0/C90]4s(Cは連続繊維のみで構成されたプリプレグ基材をさす)の積層基材を用いた。
<Comparison of laminated structures (Table 9)>
(Examples 30 and 31)
Example 30 obtained the fiber reinforced plastic like Example 1 except having changed the laminated structure of Example 1. FIG. A [0/90] 4s laminated base material in which the cut prepreg base material into which the cuts of Example 1 were cut was laminated on a 16-layer cross ply was used. Example 31 obtained a fiber-reinforced plastic in the same manner as in Example 1 except that the prepreg base material of Example 1 and the cut prepreg base material after being cut were combined and laminated. [0 / C90] 4s (C is a continuous fiber only). 8 layers of prepreg base material composed only of continuous fibers without cut and 8 layers of cut prepreg base material with cuts were alternately laminated on a cross ply. The laminated base material of the prepreg base material comprised was used.

得られた繊維強化プラスチックはいずれも繊維のうねりなく、その端部まで繊維が十分に流動していた。実施例30では若干のソリは発生したものの、最外層の切り込み部においても、強化繊維が存在せずに樹脂リッチまたは隣接層の強化繊維がのぞいている部位はほとんどなく、良好な外観品位、平滑性を保っていた。引張弾性率63〜64GPa、引張強度は680〜690MPaと高い値であり、引張強度のCV値も4〜5%とバラツキの小さい結果であった。ただし、引張試験の方向は0°方向であるため非常に高い力学特性を示しているが、±45°の方向には繊維が配向していないため、汎用的ではない、という問題点がある。   All of the obtained fiber reinforced plastics had no fibers swelled, and the fibers were sufficiently flowing to the ends thereof. Although some warping occurred in Example 30, there was almost no portion in which the reinforcing fiber was not present and the resin-rich or the reinforcing fiber in the adjacent layer was peeking out even in the cut portion of the outermost layer. I kept the sex. The tensile elastic modulus was 63 to 64 GPa, the tensile strength was a high value of 680 to 690 MPa, and the CV value of the tensile strength was 4 to 5%, which was a small variation. However, since the direction of the tensile test is the 0 ° direction, very high mechanical properties are shown. However, since the fibers are not oriented in the ± 45 ° direction, there is a problem that it is not general-purpose.

(実施例32〜34)
実施例32は実施例1の積層構成を変えた以外は実施例1と同様にして繊維強化プラスチックを得た。実施例1の切り込みを入れた切込プリプレグ基材を12層擬似等方に積層した、[60/0/−60]2sの積層基材を用いた。実施例33は実施例1の切り込みを入れた切込プリプレグ基材に加え、その層間に実施例1のエポキシ樹脂フィルムを転写させた樹脂層を挿入した以外は実施例1と同様にして繊維強化プラスチックを得た。実施例1の切り込みを入れた切込プリプレグ基材を16層擬似等方に積層する際、樹脂層を設け、[45/R/0/R/-45/R/90/R]2s(Rは樹脂層をさす)の積層基材を用いた。最終的にVfは49%となった。実施例34は実施例1の切り込みを入れた切込プリプレグ基材に加え、最表層に実施例1と同様のエポキシ樹脂を含浸したVf55%の層厚み250μmの平織プリプレグ基材を配した以外は実施例1と同様にして繊維強化プラスチックを得た。実施例1の切り込みを入れた切込プリプレグ基材を16層擬似等方に積層し、さらに最表層に繊維方向が0°と90°に配向した前記平織プリプレグ基材を積層した、[WF0/45/0/-45/90]2s(WFは平織プリプレグ基材をさす)の積層基材を用いた。
(Examples 32-34)
Example 32 obtained the fiber reinforced plastic like Example 1 except having changed the laminated structure of Example 1. FIG. A [ 60/0 / −60] 2s laminated base material obtained by laminating the cut prepreg base material into which the cuts of Example 1 were made in a 12-layer pseudo-isotropic manner was used. In Example 33, in addition to the notched prepreg base material into which the incision was made in Example 1, a fiber layer was reinforced in the same manner as in Example 1 except that a resin layer having the epoxy resin film of Example 1 transferred between the layers was inserted. Got plastic. When the cut prepreg base material into which the cut of Example 1 was cut is laminated in a 16-layer pseudo-isotropic manner, a resin layer is provided and [45 / R / 0 / R / −45 / R / 90 / R] 2s (R Is a resin layer). Eventually Vf was 49%. In Example 34, in addition to the cut prepreg base material into which the incision was made in Example 1, a plain weave prepreg base material having a Vf 55% layer thickness of 250 μm and impregnated with the same epoxy resin as in Example 1 was arranged on the outermost layer. A fiber reinforced plastic was obtained in the same manner as in Example 1. The cut prepreg base material into which the incision of Example 1 was cut was laminated in a 16-layer pseudo-isotropic manner, and the plain weave prepreg base material in which the fiber directions were oriented at 0 ° and 90 ° was further laminated on the outermost layer [WF0 / 45/0 / −45 / 90] 2s (WF refers to plain weave prepreg substrate) was used.

実施例32、33で得られた繊維強化プラスチックはいずれも繊維のうねりなく、その端部まで繊維が十分に流動していた。特に実施例33は流動性に優れ、極めて均一に繊維が広がっていた。いずれもソリはなく、最外層の切り込み部においても、強化繊維が存在せずに樹脂リッチまたは隣接層の強化繊維がのぞいている部位はほとんどなく、良好な外観品位、平滑性を保っていた。それぞれ引張弾性率46GPaと42GPa、引張強度は5980MPaと510MPaとVf相応の高い値であり、引張強度のCV値も6%と4%でありバラツキの小さい結果であった。実施例34で得られた繊維強化プラスチックは最表層の平織部がまったく流動していないものの、平織部にはさまれた部位は端部まで繊維が十分に流動していた。端部で特に繊維のうねりや、繊維束端部において樹脂リッチや隣接層の強化繊維がのぞいている部位が見られたものの、全体的にはソリもなく、良好な外観品位、平滑性を保っていた。引張弾性率54GPa、引張強度670MPaとハイブリッド化により高い力学特性を示した。   In the fiber reinforced plastics obtained in Examples 32 and 33, the fibers did not swell, and the fibers sufficiently flowed to the ends. Especially Example 33 was excellent in fluidity | liquidity and the fiber spread very uniformly. None of them were warped, and even in the cut portion of the outermost layer, there was almost no portion where the reinforcing fibers were not present and the reinforcing fibers of the resin layer or the adjacent layer were peeking, and good appearance quality and smoothness were maintained. The tensile elastic moduli were 46 GPa and 42 GPa, the tensile strengths were 5980 MPa and 510 MPa, high values corresponding to Vf, and the CV values of the tensile strength were 6% and 4%, which were small variations. In the fiber reinforced plastic obtained in Example 34, although the plain weave portion of the outermost layer did not flow at all, the portion of the portion sandwiched between the plain weave portions was sufficiently flowed to the end. Although fiber swells at the ends and resin-rich and fiber reinforced fibers in the adjacent layers are observed at the ends of the fiber bundle, there is no warpage overall and good appearance quality and smoothness are maintained. It was. High mechanical properties were exhibited by hybridization with a tensile modulus of 54 GPa and a tensile strength of 670 MPa.

(実施例35)
実施例1と同様に樹脂フィルムを作製し、実施例1と同様に一方向に配列させた炭素繊維の両面に樹脂フィルムをそれぞれ重ね、加熱・加圧する際、樹脂が完全に炭素繊維内に含浸していない状態で単位面積あたりの炭素繊維重さ125g/m、繊維体積含有率Vf55%の半含浸プリプレグ基材を作製した。この半含浸プリプレグ基材に実施例1と同様に図1に示すような切り込みを挿入した。得られた切込プリプレグ基材は、厚み方向中央部には樹脂の含浸していない領域があるものの、切り込みにより毛羽立ったり、分離したりすることなく、実施例1と同様に十分な取り扱い性を保っていた。さらに実施例1と同様に、積層、成形して繊維強化プラスチックを得た。
(Example 35)
A resin film was prepared in the same manner as in Example 1, and the resin film was completely impregnated in the carbon fiber when the resin films were stacked on both sides of the carbon fiber arranged in one direction as in Example 1, and heated and pressurized. A semi-impregnated prepreg base material having a carbon fiber weight of 125 g / m 2 per unit area and a fiber volume content Vf of 55% was prepared. A cut as shown in FIG. 1 was inserted into this semi-impregnated prepreg substrate in the same manner as in Example 1. Although the obtained cut prepreg base material has a region that is not impregnated with resin in the central portion in the thickness direction, it has sufficient handleability as in Example 1 without fluffing or being separated by the cut. I kept it. Furthermore, it laminated and shape | molded similarly to Example 1, and obtained the fiber reinforced plastic.

得られた繊維強化プラスチックは繊維のうねりがなく、その端部まで繊維が均等に流動していた。また、ソリもなく、良好な外観品位、平滑性を保っていた。引張弾性率は46GPa、引張強度も550MPaと高い値が発現し、そのCV値も7%とバラツキの小さい結果となった。   The obtained fiber reinforced plastic had no fiber undulation, and the fibers were flowing evenly to the end. Moreover, there was no warp and good appearance quality and smoothness were maintained. The tensile elastic modulus was 46 GPa, the tensile strength was as high as 550 MPa, and the CV value was 7%, which was a small variation.

<両面から切り込まれた切込プリプレグ基材の比較(表10)>
(実施例36〜38)
実施例1のプリプレグ基材に切り込みを入れる工程において、プリプレグ基材の上面と下面とのそれぞれから層の厚み方向に貫かない切り込みを入れる以外は実施例1と同様にして繊維強化プラスチックを得た。図78に示した、所定の長さ露出した螺旋状の刃が設けられた回転ローラーを、プリプレグ基材の上面、下面の順で押し当ててプリプレグ基材の層の厚み方向に貫かない切り込みを入れた。切込プリプレグ基材上面に入った切り込みをU、下面をDとすると、実施例36におけるUの切り込みの深さHs,uは35μm(0.28H、ただしHは切込プリプレグ基材厚み)、Dの切り込みの深さHs,dが100μm(0.8H)、実施例37におけるUの切り込みの深さHs,uは55μm(0.44H)、Dの切り込みの深さHs,dが75μm(0.6H)、実施例38はU、Dともに切り込みの深さHs(=Hs,d、Hs,u)が67μm(0.54H)の深さとした。上面の切り込み角度は10°、下面の切り込み角度は−10°であった。切込プリプレグ基材の繊維は上下の切り込みによって分断されすべて繊維長が30mm以下となっていた。
<Comparison of cut prepreg base material cut from both sides (Table 10)>
(Examples 36 to 38)
A fiber reinforced plastic was obtained in the same manner as in Example 1 except that in the step of making a cut in the prepreg base material of Example 1, a notch that did not penetrate through the thickness direction of the layer from each of the upper surface and the lower surface of the prepreg base material was made. . The rotary roller provided with a spiral blade exposed for a predetermined length shown in FIG. 78 is pressed in the order of the upper surface and the lower surface of the prepreg base material so as not to penetrate through the thickness direction of the prepreg base material layer. I put it in. When the cut into the upper surface of the cut prepreg base material is U and the lower surface is D, the depth of cut Hs and u in Example 36 is 35 μm (0.28H, where H is the thickness of the cut prepreg base material), D cut depth Hs, d is 100 μm (0.8H), U cut depth Hs, u in Example 37 is 55 μm (0.44H), and D cut depth Hs, d is 75 μm ( 0.6H), in Example 38, both U and D had a depth of cut Hs (= Hs, d, Hs, u) of 67 μm (0.54H). The cut angle on the upper surface was 10 °, and the cut angle on the lower surface was −10 °. The fibers of the cut prepreg base material were divided by the upper and lower cuts, and all the fiber lengths were 30 mm or less.

得られた繊維強化プラスチックはいずれも繊維のうねりはなく、その端部まで繊維が十分に流動していた。実施例36は若干のソリが発生したものの、いずれも、最外層の切り込み部においても、強化繊維が存在せずに樹脂リッチまたは隣接層の強化繊維がのぞいている部位はほとんどなく、良好な外観品位、平滑性を保っていた。引張弾性率は45〜46GPaとほぼ理論値通り発現しており、引張強度は650〜750MPaと実施例1と比較しても高かった。特に、上面と下面の切り込み量が近いほど高い引張強度を得た。これは、上面と下面の切り込み量が同等であることで、繊維束端部の厚みを最小化することが出来る効果によるものと考えられた。   None of the obtained fiber reinforced plastics had any fiber undulations, and the fibers sufficiently flowed to the ends. In Example 36, although some warping occurred, there was almost no portion where the reinforcing fiber was not present and the reinforcing fiber in the adjacent layer was not present in the cut portion of the outermost layer, and a good appearance Quality and smoothness were maintained. The tensile modulus of elasticity was 45 to 46 GPa, which was expressed as the theoretical value, and the tensile strength was 650 to 750 MPa, which was higher than that of Example 1. In particular, a higher tensile strength was obtained as the cut depth between the upper surface and the lower surface was closer. This is considered to be due to the effect that the thickness of the end portion of the fiber bundle can be minimized because the cut amounts of the upper surface and the lower surface are equal.

(実施例39)
実施例1の切込プリプレグ基材を用いて、上面と下面で切り込み角度が繊維方向に対して10°と−10°となるように積層して2層積層基材を得た。こうして得た2層積層基材を1層分の切込プリプレグ基材として、実施例1と同様に積層、成形して繊維強化プラスチックを得た。2層積層基材を1層の切込プリプレグ基材としてみると、U、DのHsはともに125μm(0.5H)の深さである。
(Example 39)
Using the cut prepreg base material of Example 1, lamination was performed so that the cut angle was 10 ° and −10 ° with respect to the fiber direction on the upper surface and the lower surface to obtain a two-layer laminated base material. The two-layer laminated substrate thus obtained was laminated and molded in the same manner as in Example 1 as a cut prepreg substrate for one layer to obtain a fiber reinforced plastic. When the two-layer laminated substrate is regarded as a single-layer cut prepreg substrate, the Hs of U and D are both 125 μm (0.5H) deep.

得られた繊維強化プラスチックはいずれも繊維のうねりはなく、最外層の切り込み部においても、強化繊維が存在せずに樹脂リッチまたは隣接層の強化繊維がのぞいている部位はほとんどなく、良好な外観品位、平滑性を保っていた。引張弾性率は47GPaとほぼ理論値通り発現しており、引張強度は690MPaと実施例1や実施例36〜38と比較して1層当たりの厚みが2倍でありながら高い値を発現しており、その引張強度のCV値は4とバラツキの小さい結果であった。切り込みの隣に切り込みの開口を止める方向に繊維が配されている構造となっているため、高い強度が発現したものと思われる。   None of the obtained fiber reinforced plastics have undulations in the fibers, and there is almost no part where the reinforcing fibers are present and the reinforcing fibers in the adjacent layer are not present in the cut portion of the outermost layer, and a good appearance Quality and smoothness were maintained. The tensile elastic modulus is expressed as 47 GPa almost as theoretical value, and the tensile strength is 690 MPa, which is higher than that of Example 1 and Examples 36 to 38, although the thickness per layer is twice. As a result, the CV value of the tensile strength was 4 and the variation was small. It seems that high strength was developed because the structure is such that the fibers are arranged in the direction to stop the opening of the notch next to the notch.

<厚み方向に斜めに切り込まれた切込プリプレグ基材の比較(表11)>
(実施例40〜44)
実施例1のプリプレグ基材に切り込みを入れた後、切込プリプレグ基材の厚み方向にせん断力を加え、切り込みを斜めにする以外は、実施例1と同様にして繊維強化プラスチックを得た。実施例1のように層の厚み方向を貫く切込プリプレグ基材に鉛直な切り込みを入れた後、切込プリプレグ基材を60℃で加熱・軟化させた状態で、上面と下面とで回転速度の異なるニップローラーを押し当て、せん断力によって、強化繊維の分断面を厚み方向に斜めにした。図12のように、切込プリプレグ基材の上面における強化繊維の分断線と下面における分断線との繊維方向の距離24をせん断距離Sとすると、250×250mmに切り出した切込プリプレグ基材上で5ヶ所の切り込み部においてせん断距離Sを測定し、平均したものを(式1)に代入して切り込みのなす角26、すなわち切り込みの傾き角度θを算出した。実施例40はせん断距離Sが12.5mm、切り込みの傾き角度θが0.6°、実施例41はSが6.25mm、θが1.1°、実施例42はSが1mm、θが7.1°、実施例43はSが0.5mm、θが1.4mm、実施例44はSが0.25mm、θが27°とした。
<Comparison of cut prepreg base material cut obliquely in thickness direction (Table 11)>
(Examples 40 to 44)
After cutting into the prepreg base material of Example 1, a fiber reinforced plastic was obtained in the same manner as in Example 1 except that a shearing force was applied in the thickness direction of the cut prepreg base material to make the cutting diagonal. After making a vertical cut in the cut prepreg base material that penetrates the thickness direction of the layer as in Example 1, the rotational speed of the upper surface and the lower surface is heated and softened at 60 ° C. A nip roller having a different thickness was pressed against each other, and a shearing force was applied to make the reinforcing fiber's partial cross section slant in the thickness direction. As shown in FIG. 12, when the distance 24 in the fiber direction between the cut line of the reinforcing fiber on the upper surface of the cut prepreg substrate and the cut line on the lower surface is the shear distance S, the cut prepreg substrate cut into 250 × 250 mm Then, the shear distance S was measured at five notches, and the averaged value was substituted into (Equation 1) to calculate the angle 26 formed by the notch, that is, the inclination angle θ of the notch. Example 40 has a shear distance S of 12.5 mm and a cutting inclination angle θ of 0.6 °, Example 41 has S of 6.25 mm and θ of 1.1 °, Example 42 has S of 1 mm, and θ is 7.1 °, Example 43 had S of 0.5 mm and θ of 1.4 mm, and Example 44 had S of 0.25 mm and θ of 27 °.

Figure 2008207545
Figure 2008207545

得られた繊維強化プラスチックはいずれも繊維のうねりはなく、実施例40は若干のソリが発生したものの、いずれも最外層の切り込み部においても、強化繊維が存在せずに樹脂リッチまたは隣接層の強化繊維がのぞいている部位はほとんどなく、良好な外観品位、平滑性を保っていた。引張弾性率は46〜47GPaとほぼ理論値通り発現しており、引張強度は実施例40が580MPa、実施例41が620MPa、実施例42が620MP、実施例43が610MPa、実施例44が590MPaと実施例1と比較しても同等程度もしくはそれ以上であった。ただし、繊維束端部の傾き角度が1°以下となった実施例40では、せん断距離Sが非常に長くなっており、切り込み部ごとのSのバラツキが大きくなり、工程安定性に欠けた。   None of the obtained fiber reinforced plastics had any fiber undulations, and although Example 40 produced some warping, none of the outermost cuts were resin-rich or adjacent to the adjacent layer. There were almost no portions where the reinforcing fibers were peeked out, and good appearance quality and smoothness were maintained. The tensile elastic modulus is expressed as 46 to 47 GPa almost as theoretical values, and the tensile strength is 580 MPa in Example 40, 620 MPa in Example 41, 620 MPa in Example 42, 610 MPa in Example 43, and 590 MPa in Example 44. Even compared with Example 1, it was comparable or more. However, in Example 40 in which the inclination angle of the fiber bundle end portion was 1 ° or less, the shear distance S was very long, the variation in S for each cut portion was large, and the process stability was lacking.

<追加樹脂の付与面積の比較(表12)>
(実施例45)
追加樹脂として、共重合ポリアミド樹脂(東レ(株)製“アミラン”(登録商標)CM4000、ポリアミド6/66/610共重合体、融点155℃)のペレットを、メルトブローにより単位面積あたりの樹脂重量30g/mとなる不織布を作成した。ポリアミド樹脂の25℃雰囲気下における粘度は固体であるため測定不可能であり、該不織布基材はタック性がなかった。得られた不織布基材を0.2mm幅の帯状に裁断した後、実施例1と同様の切込プリプレグ基材の両面にすべての連続的な切り込みを覆うように、切り込みが帯状の不織布基材の幅中心になるよう(繊維方向に±0.1mm)、配置した。エポキシ樹脂のタックにより、押圧するだけで、不織布基材が切込プリプレグ基材に付着した。こうして得られた複合切込プリプレグ基材全体の繊維体積含有率Vfは53%相当となった。この複合切込プリプレグ基材を積層、成形して、繊維強化プラスチックを得た。
なお、この複合切込プリプレグ基材を1層のみ、そのまま圧力も加えずオーブン内で130℃×2時間で硬化させ、断面を切り出したところ、追加樹脂層がない部位の層厚みは平均125μmに対して、追加樹脂層が両面に存在する部位の層厚みは、追加樹脂層が不織布であることから均一な厚みではないものの、平均175μmであった。追加樹脂層が両面に存在する部位を繊維方向に垂直な面で切り出し、光学顕微鏡により観察すると、切込プリプレグ基材の層表面から10μm程度の深さに追加樹脂層が強化繊維周りに存在することが確認されたが、断面図における追加樹脂層の占める面積全体から比較すると10%を越えることなく、実質的に追加樹脂層は切込プリプレグ基材の層内に入り込んでおらず、また、追加樹脂層の厚みは平均25μm程度であることがわかった。
<Comparison of application area of additional resin (Table 12)>
(Example 45)
As an additional resin, pellets of a copolymerized polyamide resin (“Amilan” (registered trademark) CM4000, polyamide 6/66/610 copolymer, melting point 155 ° C., manufactured by Toray Industries, Inc.) were melt blown and the resin weight per unit area was 30 g. A nonwoven fabric of / m 2 was created. The viscosity of the polyamide resin in an atmosphere at 25 ° C. was a solid and could not be measured, and the nonwoven fabric substrate did not have tackiness. After the obtained non-woven fabric base material is cut into a strip shape having a width of 0.2 mm, the non-woven fabric base material is cut in a strip shape so as to cover all continuous cuts on both sides of the same cut prepreg base material as in Example 1. Was placed so as to be the center of the width (± 0.1 mm in the fiber direction). The nonwoven fabric substrate adhered to the cut prepreg substrate simply by pressing the epoxy resin tack. The fiber volume content Vf of the composite cut prepreg base material thus obtained was equivalent to 53%. This composite cut prepreg base material was laminated and molded to obtain a fiber reinforced plastic.
In addition, when this composite cut prepreg base material was cured only in one layer without applying pressure as it was in an oven at 130 ° C. for 2 hours, and the cross section was cut out, the layer thickness of the portion having no additional resin layer was 125 μm on average. On the other hand, the layer thickness of the portion where the additional resin layer exists on both surfaces was 175 μm on average, although the additional resin layer was not a uniform thickness because it was a nonwoven fabric. When the portion where the additional resin layer exists on both sides is cut out in a plane perpendicular to the fiber direction and observed with an optical microscope, the additional resin layer exists around the reinforcing fiber at a depth of about 10 μm from the layer surface of the cut prepreg substrate. It was confirmed that the additional resin layer did not penetrate into the layer of the cut prepreg base material without exceeding 10% as compared with the entire area occupied by the additional resin layer in the sectional view, The thickness of the additional resin layer was found to be about 25 μm on average.

得られた繊維強化プラスチックは繊維のうねりもなく、最外層の切り込み部においても、強化繊維が存在せずに樹脂リッチまたは隣接層の強化繊維がのぞいている部位はほとんどなく、良好な外観品位、平滑性を保っていた。引張弾性率は45GPa、引張強度は580MPaと、実施例1と同等レベルであった。追加樹脂の帯状不織布の幅が非常に狭かったために、切り込みのすべてを覆えていなかった可能性がある。   The obtained fiber reinforced plastic has no fiber undulation, and there is almost no part where the reinforcing fiber is not present and the reinforcing fiber in the adjacent layer is not present in the cut portion of the outermost layer, and the appearance quality is good. The smoothness was maintained. The tensile modulus was 45 GPa and the tensile strength was 580 MPa, which was the same level as in Example 1. There is a possibility that not all of the cuts were covered because the width of the non-woven fabric of the additional resin was very narrow.

(実施例46、47)
追加樹脂である不織布基材の付与面積が異なる他は実施例45と同様にして繊維強化プラスチックを得た。テープ状の不織布基材を裁断する際、実施例46が3mm幅、実施例47が20mm幅とし、切り込みが不織布テープで覆われるように切込プリプレグ基材上に、切り込みがテープ状の不織布基材の幅中心になるよう配置した。具体的には切り込みから不織布基材の幅端部までの距離が、実施例46が繊維方向に±1.5mm、実施例47が繊維方向に±10mmとなるよう、配置した。実施例45と同様に、追加樹脂層は層状に配置されており、切込プリプレグ基材の層内に入り込んでいないことが確認され、平均で25μm程度の厚みであった。
(Examples 46 and 47)
A fiber reinforced plastic was obtained in the same manner as in Example 45 except that the area of the nonwoven fabric base material, which is an additional resin, was different. When cutting the tape-shaped nonwoven fabric base material, Example 46 is 3 mm wide, Example 47 is 20 mm wide, and the cut is tape-shaped nonwoven fabric base so that the cut is covered with the nonwoven tape. Arranged so that the center of the width of the material. Specifically, the distance from the cut to the width end of the nonwoven fabric substrate was arranged such that Example 46 was ± 1.5 mm in the fiber direction and Example 47 was ± 10 mm in the fiber direction. As in Example 45, the additional resin layer was arranged in layers, and it was confirmed that the additional resin layer did not enter the layer of the cut prepreg base material, and the average thickness was about 25 μm.

得られた繊維強化プラスチックはいずれも繊維のうねりはなく、いずれも最外層の切り込み部においても、強化繊維が存在せずに樹脂リッチまたは隣接層の強化繊維がのぞいている部位はほとんどなく、良好な外観品位、平滑性を保っていた。引張弾性率は37〜44GPaと若干低めながら、引張強度は590〜680MPaと実施例1同等以上の高い物性を発現した。実施例47では、追加樹脂の覆う面積が大きくなるにつれ、弾性率や引張強度が若干低下する傾向が見られた。   None of the obtained fiber reinforced plastics have any undulation of the fiber, and none of the outermost incised portions are resin-rich or there are almost no parts where the reinforcing fibers of the adjacent layer are peeking out and are good. Appearance quality and smoothness were maintained. While the tensile elastic modulus was slightly reduced to 37 to 44 GPa, the tensile strength was 590 to 680 MPa, and high physical properties equivalent to or higher than those of Example 1 were exhibited. In Example 47, the elastic modulus and the tensile strength tended to slightly decrease as the area covered by the additional resin increased.

(実施例48)
実施例45と同様にして得た追加樹脂である不織布基材を、実施例1の切込プリプレグ基材の両面の全面に付与した以外は実施例1と同様にして、繊維強化プラスチックを得た。実施例45と同様に、追加樹脂層は層状に配置されており、切込プリプレグ基材の層内に入り込んでいないことが確認され、平均で25μm程度の厚みであった。
(Example 48)
A fiber reinforced plastic was obtained in the same manner as in Example 1 except that the nonwoven fabric base material, which was an additional resin obtained in the same manner as in Example 45, was applied to the entire surface of both sides of the cut prepreg base material in Example 1. . As in Example 45, the additional resin layer was arranged in layers, and it was confirmed that the additional resin layer did not enter the layer of the cut prepreg base material, and the average thickness was about 25 μm.

得られた繊維強化プラスチックはいずれも繊維のうねりはなく、最外層の切り込み部においても、強化繊維が存在せずに樹脂リッチまたは隣接層の強化繊維がのぞいている部位はほとんどなく、良好な外観品位、平滑性を保っていた。引張強度は590MPaと実施例1同等であったが、引張弾性率は34GPaとVfが低下したため大幅に下がってしまったが、層間全面に引張伸度の高い追加樹脂が配されたことで、面外荷重に対しての耐久性が向上する効果を得た。   None of the obtained fiber reinforced plastics have undulations in the fibers, and there is almost no part where the reinforcing fibers are present and the reinforcing fibers in the adjacent layer are not present in the cut portion of the outermost layer, and a good appearance Quality and smoothness were maintained. The tensile strength was 590 MPa, which was the same as in Example 1. However, the tensile modulus dropped significantly due to the decrease in 34 GPa and Vf, but the additional resin with a high tensile elongation was disposed on the entire surface of the interlayer. The effect which the durability with respect to an external load improves was acquired.

<積層構成の比較(表9)>
(参考例1、2)
実施例1の積層構成を変えた以外は実施例1と同様にして繊維強化プラスチックを得た。参考例1では実施例1の切り込みを入れた切込プリプレグ基材を8層同方向に積層した[0]の積層基材を用いた。参考例2では実施例1の切り込みを入れた切込プリプレグ基材を16層積層した[0/45]4sの積層基材を用いた。
<Comparison of laminated structures (Table 9)>
(Reference Examples 1 and 2)
A fiber reinforced plastic was obtained in the same manner as in Example 1 except that the laminated structure of Example 1 was changed. In Reference Example 1, a laminated substrate of [0] 8 obtained by laminating 8 cut prepreg substrates into which the cuts of Example 1 were made in the same direction was used. In Reference Example 2, a [0/45] 4s laminated base material obtained by laminating 16 layers of the cut prepreg base material into which the cuts of Example 1 were made was used.

参考例1で得られた繊維強化プラスチックは、90°方向にのみ流動し、0°方向にはところどころヒゲのように繊維が飛び出している部分はあるが、基本的に流動していなかった。0°方向のキャビティの空隙には搾り出された樹脂が溜まり、外観品位も悪かった。参考例2で得られた繊維強化プラスチックは、キャビティ全体に流動はしているが、積層構成と同様に繊維の流れが異方性であり、繊維のうねりが大きかった。また、得られた繊維強化プラスチックはソリが大きかった。その他、いずれの繊維強化プラスチックも最外層の切り込み部においても、樹脂リッチ部や隣接層の強化繊維がのぞいている部位が多く見られた。   The fiber reinforced plastic obtained in Reference Example 1 flowed only in the 90 ° direction, and in the 0 ° direction, there was a portion where the fiber protruded like a whisker, but it was basically not flowing. The squeezed resin collected in the cavity of the 0 ° direction cavity, and the appearance quality was poor. Although the fiber reinforced plastic obtained in Reference Example 2 was flowing throughout the cavity, the flow of fibers was anisotropic as in the laminated structure, and the undulation of the fibers was large. Further, the obtained fiber reinforced plastic had a large warp. In addition, in any of the fiber reinforced plastics, there were many sites where the resin-rich portion and the reinforcing fibers in the adjacent layer were peeking out in the cut portion of the outermost layer.

以下、比較例を示す。   Hereinafter, a comparative example is shown.

<基材の形態の比較(表1)>
(比較例1)
プリプレグ基材に切り込みを入れなかった他は、実施例1と同様とした。
<Comparison of substrate forms (Table 1)>
(Comparative Example 1)
The procedure was the same as Example 1 except that the prepreg base material was not cut.

得られた繊維強化プラスチックは積層基材の段階からほとんど流動することなく、ほぼ250×250mmの大きさであり、マトリックス樹脂が搾り出されて金型との隙間に樹脂バリが出来ていた。樹脂が搾り出されているため、表面ががさがさしており、製品には適用できなさそうだった。   The obtained fiber reinforced plastic hardly flowed from the stage of the laminated base material and was approximately 250 × 250 mm in size, and the matrix resin was squeezed out and a resin burr was formed in the gap with the mold. Because the resin was squeezed out, the surface was squeezed and it seemed impossible to apply it to the product.

(比較例2)
実施例1と同様のエポキシ樹脂組成物を厚めに塗布した樹脂フィルムを作成した。次に、長さ25mmにカットされた炭素繊維束(引張強度4,900MPa、引張弾性率235GPa、12,000本)を単位面積あたりの重量が125g/mになるよう均一に樹脂フィルム上に落下、散布した。さらにもう一枚の樹脂フィルムを被せて、カットされた炭素繊維を挟んだ後、カレンダーロールを通過させ、繊維体積含有率Vf55%のSMCシートを作製した。このSMCシートを250×250mmに切り出し、16層積層して、積層基材を得た後、実施例1と同様に成形し、繊維強化プラスチックを得た。
(Comparative Example 2)
A resin film coated with a thick epoxy resin composition similar to that in Example 1 was prepared. Next, a carbon fiber bundle (tensile strength 4,900 MPa, tensile elastic modulus 235 GPa, 12,000 fibers) cut to a length of 25 mm is uniformly applied on the resin film so that the weight per unit area becomes 125 g / m 2. Dropped and sprayed. Further, after covering another cut carbon fiber, the cut carbon fiber was sandwiched, and then passed through a calender roll to prepare an SMC sheet having a fiber volume content Vf of 55%. This SMC sheet was cut out into 250 × 250 mm, and 16 layers were laminated to obtain a laminated base material, and then molded in the same manner as in Example 1 to obtain a fiber reinforced plastic.

得られた繊維強化プラスチックはその端部まで繊維が充分に流動していた。わずかながらソリが発生した一方、繊維分布の粗密から樹脂リッチ部でヒケが発生し、平滑性に劣った。引張弾性率は33GPaと繊維が真直でないためか理論値よりかなり低く、引張強度も220MPa、そのCV値は12%とバラツキが大きく、構造材には適用できそうになかった。   In the obtained fiber reinforced plastic, fibers sufficiently flowed to the end portion. On the other hand, warping occurred slightly, but sinking occurred in the resin-rich part due to the coarse and dense fiber distribution, and the smoothness was poor. The tensile elastic modulus was 33 GPa, which was considerably lower than the theoretical value because the fiber was not straight, the tensile strength was 220 MPa, and the CV value was as large as 12%, which was unlikely to be applicable to structural materials.

(比較例3)
マトリックス樹脂としてビニルエステル樹脂(ダウ・ケミカル(株)製、デラケン790)を100重量部、硬化剤としてtert−ブチルパーオキシベンゾエート(日本油脂(株)製、パーブチルZ)を1重量部、内部離型剤としてステアリン酸亜鉛(堺化学工業(株)製、SZ−2000)を2重量部、増粘剤として酸化マグネシウム(協和化学工業(株)製、MgO#40)を4重量部用いて、それらを十分に混合撹拌し、樹脂ペーストを得た。樹脂ペーストをドクターブレードを用いて、ポリプロピレン製の離型フィルム上に塗布した。その上から、比較例2と同様の長さ25mmにカットされた炭素繊維束を単位面積あたりの重量が500g/mになるよう均一に落下、散布した。さらに、樹脂ペーストを塗布したもう一方のポリプロピレンフィルムとで樹脂ペースト側を内にして挟んだ。炭素繊維のSMCシートに対する体積含有量は40%とした。得られたシートを40℃にて24時間静置することにより、樹脂ペーストを十分に増粘化させて、SMCシートを得た。このSMCシートを250×250mmに切り出し、4層積層して、積層基材を得た後、実施例1と同様に成形し、繊維強化プラスチックを得た。
(Comparative Example 3)
100 parts by weight of vinyl ester resin (manufactured by Dow Chemical Co., Ltd., Delaken 790) as a matrix resin, 1 part by weight of tert-butyl peroxybenzoate (manufactured by NOF Corporation, Perbutyl Z) as a curing agent, internally separated Using 2 parts by weight of zinc stearate (manufactured by Sakai Chemical Industry Co., Ltd., SZ-2000) as a mold, and 4 parts by weight of magnesium oxide (Kyowa Chemical Industry Co., Ltd., MgO # 40) as a thickener, They were thoroughly mixed and stirred to obtain a resin paste. The resin paste was applied onto a polypropylene release film using a doctor blade. From there, the carbon fiber bundles cut to a length of 25 mm as in Comparative Example 2 were uniformly dropped and dispersed so that the weight per unit area was 500 g / m 2 . Further, it was sandwiched between the other polypropylene film coated with the resin paste with the resin paste side inward. The volume content of carbon fiber with respect to the SMC sheet was 40%. The obtained sheet was allowed to stand at 40 ° C. for 24 hours, thereby sufficiently thickening the resin paste to obtain an SMC sheet. This SMC sheet was cut into 250 × 250 mm, and four layers were laminated to obtain a laminated base material, and then molded in the same manner as in Example 1 to obtain a fiber reinforced plastic.

得られた繊維強化プラスチックはその端部まで繊維が十分に流動していた。わずかながらソリが発生した一方、樹脂含有成分が多い分平滑性は比較例2よりは優れていたが、若干のヒケが発生した。引張弾性率は30GPa、引張強度は160MPaと全体的に低く、引張強度のCV値は16%とバラツキが大きいため、構造材には適用できそうになかった。   In the obtained fiber reinforced plastic, fibers sufficiently flowed to the end portion. While slight warpage occurred, the smoothness was superior to that of Comparative Example 2 due to the greater amount of resin-containing components, but some sinking occurred. The tensile modulus was 30 GPa, the tensile strength was as low as 160 MPa as a whole, and the CV value of the tensile strength was as large as 16%, so it was not likely to be applicable to structural materials.

(比較例4)
比較例3と同様に樹脂ペーストを作成してポリプロピレンフィルム上に樹脂ペーストを塗布した後、長さ25mmにカットされたガラス繊維束(引張強度1,500MPa、引張弾性率74GPa、800本)を単位面積あたりの重量が700g/mになるよう均一に落下、散布した。以後、比較例3と同様に、繊維強化プラスチックを得た。
(Comparative Example 4)
A resin paste was prepared in the same manner as in Comparative Example 3 and the resin paste was applied onto a polypropylene film, and then a glass fiber bundle (tensile strength 1,500 MPa, tensile elastic modulus 74 GPa, 800 pieces) cut to a length of 25 mm was used as a unit. It was dropped and sprayed uniformly so that the weight per area was 700 g / m 2 . Thereafter, a fiber-reinforced plastic was obtained in the same manner as in Comparative Example 3.

得られた繊維強化プラスチックはその端部まで繊維が十分に流動していた。わずかながらソリが発生した一方、樹脂含有成分が多い分平滑性は比較例2よりは優れていたが、若干のヒケが発生した。引張弾性率は15GPa、引張強度は180MPaと全体的に低く、引張強度のCV値は14%とバラツキが大きいため、構造材には適用できそうになかった。   In the obtained fiber reinforced plastic, fibers sufficiently flowed to the end portion. While slight warpage occurred, the smoothness was superior to that of Comparative Example 2 due to the greater amount of resin-containing components, but some sinking occurred. The tensile modulus was 15 GPa, the tensile strength was as low as 180 MPa as a whole, and the CV value of the tensile strength was as large as 14%, so it was unlikely to be applicable to a structural material.

<切り込み角度の比較(表3)>
(比較例5、6)
切り込みの角度を変えたほかは実施例1と同様にして繊維強化プラスチックを得た。比較例5は繊維からの角度が1°、比較例6は45°の方向に連続的な切り込みを設けた。
<Comparison of cutting angle (Table 3)>
(Comparative Examples 5 and 6)
A fiber reinforced plastic was obtained in the same manner as in Example 1 except that the cutting angle was changed. In Comparative Example 5, the angle from the fiber was 1 °, and in Comparative Example 6, continuous cutting was provided in the direction of 45 °.

比較例5については、切り込み角度が小さいため、切り込み同士の間隔が0.5mm程度と小さく、裁断や積層に難があった。得られた繊維強化プラスチックは、100mm以下に裁断しきれていない繊維が残っていたためか、若干繊維がうねっていたが、端部まで繊維が流動していた。ソリはなく、最外層の切り込み部においても、強化繊維が存在せずに樹脂リッチまたは隣接層の強化繊維がのぞいている部位はほとんどなく、良好な外観品位、平滑性を保っていた。引張弾性率は45GPa、引張強度は650MPaと高かったが、引張強度のCV値が10%と高く、生産安定性に欠けていた。一方、比較例6は繊維のうねりがなく、その端部まで繊維が均等に流動していた。また、ソリもなかったが、最外層の切り込み部において、強化繊維が存在せずに樹脂リッチまたは隣接層の強化繊維がのぞいている領域が多く見受けられ、若干それらの部位でヒケが見られた。引張弾性率は45GPaであったが引張強度は330MPaと実施例1や実施例9〜12と比較して大きく下がった。   In Comparative Example 5, since the cutting angle was small, the interval between the cuttings was as small as about 0.5 mm, and cutting and lamination were difficult. In the obtained fiber reinforced plastic, fibers were slightly swelled because fibers that were not cut to 100 mm or less remained, but the fibers were flowing to the end. There was no warp, and even in the cut portion of the outermost layer, there was almost no portion where the reinforcing fiber was not present and the reinforcing fiber of the resin layer or the adjacent layer was peeking, and good appearance quality and smoothness were maintained. The tensile elastic modulus was as high as 45 GPa and the tensile strength was as high as 650 MPa, but the CV value of the tensile strength was as high as 10% and the production stability was lacking. On the other hand, in Comparative Example 6, there was no fiber undulation, and the fibers flowed evenly to the end. In addition, there was no warp, but there were many areas where the reinforcing fibers were not present in the notch of the outermost layer and the reinforcing fibers in the adjacent layer were peeking out, and there were some sink marks in those parts. . Although the tensile elastic modulus was 45 GPa, the tensile strength was 330 MPa, which was significantly lower than those of Example 1 and Examples 9-12.

(比較例7)
切り込みの角度を90°としたほかは実施例3と同様にして繊維強化プラスチックを得た。切り込みのパターンは図3のa)のとおりであり、切り込みの長さは10mmであり、繊維長さLは30mmである。隣り合う切り込みの列は繊維直交方向に10mmずれている。すなわち、切り込みの列のパターンは2パターンである。さらに、隣り合う列の切り込みが互いに切り込んでいる。
(Comparative Example 7)
A fiber-reinforced plastic was obtained in the same manner as in Example 3 except that the cutting angle was 90 °. The notch pattern is as shown in FIG. 3 a, the notch length is 10 mm, and the fiber length L is 30 mm. Adjacent cut rows are offset by 10 mm in the direction perpendicular to the fiber. That is, there are two patterns of the cut row. Furthermore, the cuts in adjacent rows are cut into each other.

得られた繊維強化プラスチックは繊維のうねりがなく、その端部まで繊維が均等に流動していた。また、ソリもなかったが、最外層の切り込み部において、強化繊維が存在せずに樹脂リッチまたは隣接層の強化繊維がのぞいている領域が多く見受けられ、若干それらの部位でヒケが見られた。引張弾性率は43GPa、引張強度は430MPaと実施例1や実施例9〜12と比較して大きく下がった。   The obtained fiber reinforced plastic had no fiber undulation, and the fibers were flowing evenly to the end. In addition, there was no warp, but there were many areas where the reinforcing fibers were not present in the notch of the outermost layer and the reinforcing fibers in the adjacent layer were peeking out, and there were some sink marks in those parts. . The tensile elastic modulus was 43 GPa and the tensile strength was 430 MPa, which was significantly lower than those in Example 1 and Examples 9-12.

<繊維長さの比較(表5)>
(比較例8、9)
実施例1の切り込みパターンにおいて、切り込みの間隔を変えることにより繊維長さLを変えた以外は、実施例1と同様にして繊維強化プラスチックを得た。それぞれLは、比較例8では7.5mm、比較例9では120mmとした。
<Comparison of fiber length (Table 5)>
(Comparative Examples 8 and 9)
A fiber reinforced plastic was obtained in the same manner as in Example 1 except that the fiber length L was changed by changing the cut interval in the cut pattern of Example 1. L was 7.5 mm in Comparative Example 8 and 120 mm in Comparative Example 9, respectively.

比較例8においては、得られた繊維強化プラスチックは繊維のうねりなく、その端部まで繊維が十分に流動していた。ソリもなく、良好な外観品位、平滑性を保っていたが、引張強度が4400MPaと実施例1や実施例16〜18と比較して低い値となった。比較例9については、得られた繊維強化プラスチックは、金型のキャビティ全面に繊維が流動しきっておらず、端部に樹脂リッチ部が見られた。繊維はうねり、ソリも発生した。   In Comparative Example 8, the obtained fiber reinforced plastic had no fiber undulation, and the fiber sufficiently flowed to its end. Although there was no warp and good appearance quality and smoothness were maintained, the tensile strength was 4400 MPa, a value lower than those of Example 1 and Examples 16-18. As for Comparative Example 9, in the obtained fiber reinforced plastic, the fibers did not flow completely over the cavity of the mold, and a resin rich portion was observed at the end. The fibers swelled and warped.

<層厚みの比較(表7)>
(比較例10、11)
実施例1のプリプレグ基材の単位面積あたりの炭素繊維重さを変えることにより切込プリプレグ基材厚みを変えた以外は実施例1と同様にして繊維強化プラスチックを得た。それぞれ比較例10が単位面積あたりの炭素繊維重さが25g/m、切込プリプレグ基材厚みが0.025mm、比較例11が400g/m、0.4mmとした。
<Comparison of layer thickness (Table 7)>
(Comparative Examples 10 and 11)
A fiber reinforced plastic was obtained in the same manner as in Example 1 except that the thickness of the cut prepreg base material was changed by changing the weight of the carbon fiber per unit area of the prepreg base material of Example 1. In Comparative Example 10, the carbon fiber weight per unit area was 25 g / m 2 , the cut prepreg base material thickness was 0.025 mm, and Comparative Example 11 was 400 g / m 2 , 0.4 mm.

得られた繊維強化プラスチックはいずれも繊維のうねりなく、その端部まで繊維が充分に流動しており、ソリもなく、良好な外観品位、平滑性を保っていた。しかしながら、比較例10は切込プリプレグ基材厚みが極めて薄いため、製造コストが非常に高くなる、という問題点があった。また、比較例11の引張強度は320MPaと実施例1や実施例26、27と比較してかなり低くなることがわかった。   All of the obtained fiber reinforced plastics had no fiber undulations, the fibers sufficiently flowed to the ends thereof, no warpage, and good appearance quality and smoothness were maintained. However, Comparative Example 10 has a problem that the manufacturing cost becomes very high because the thickness of the cut prepreg base material is extremely thin. Moreover, it turned out that the tensile strength of the comparative example 11 is considerably low compared with 320 MPa and Example 1 and Examples 26 and 27.

<繊維含有率の比較(表8)>
(比較例12、13)
実施例1の切込プリプレグ基材の単位面積あたりの炭素繊維重さを変えることにより炭素繊維の体積含有率Vfを変えた以外は実施例1と同様にして繊維強化プラスチックを得た。それぞれ比較例12が単位面積あたりの炭素繊維重さが158g/m、Vfが70%、比較例13が90g/m、Vfが40%とした。
<Comparison of fiber content (Table 8)>
(Comparative Examples 12 and 13)
A fiber-reinforced plastic was obtained in the same manner as in Example 1 except that the volume content Vf of the carbon fiber was changed by changing the carbon fiber weight per unit area of the cut prepreg base material of Example 1. In Comparative Example 12, the carbon fiber weight per unit area was 158 g / m 2 , Vf was 70%, Comparative Example 13 was 90 g / m 2 , and Vf was 40%.

比較例12で得られた繊維強化プラスチックは繊維がうねり、金型との摩擦を受ける表面部で端部まで繊維が流動していなかった。表面部には樹脂欠けがあり、外観品位は悪く、ソリも発生した。比較例13で得られた繊維強化プラスチックはソリがなく、良好な外観品位、平滑性を保っていた。しかしながら、引張弾性率36GPa、引張強度440MPaと実施例1や実施例28、29と比較してかなり低い値であった。   In the fiber reinforced plastic obtained in Comparative Example 12, the fibers swelled, and the fibers did not flow to the end at the surface portion that received friction with the mold. The surface portion had resin chipping, the appearance quality was poor, and warping occurred. The fiber reinforced plastic obtained in Comparative Example 13 had no warp and maintained good appearance quality and smoothness. However, the tensile elastic modulus was 36 GPa and the tensile strength was 440 MPa, which were considerably low values as compared with Examples 1 and 28 and 29.

Figure 2008207545
Figure 2008207545

Figure 2008207545
Figure 2008207545

Figure 2008207545
Figure 2008207545

Figure 2008207545
Figure 2008207545

Figure 2008207545
Figure 2008207545

Figure 2008207545
Figure 2008207545

Figure 2008207545
Figure 2008207545

Figure 2008207545
Figure 2008207545

Figure 2008207545
Figure 2008207545

Figure 2008207545
Figure 2008207545

Figure 2008207545
Figure 2008207545

Figure 2008207545
Figure 2008207545

本発明の切込プリプレグ基材の切り込みパターンの一例を示す拡大平面図である。It is an enlarged plan view which shows an example of the cutting pattern of the cutting prepreg base material of this invention. 本発明の切込プリプレグ基材の切り込みパターンの一例を示す拡大平面図である。It is an enlarged plan view which shows an example of the cutting pattern of the cutting prepreg base material of this invention. 比較用の切込プリプレグ基材の切り込みパターンの数例を示す平面図である。It is a top view which shows several examples of the cutting pattern of the cutting prepreg base material for a comparison. 本発明の切込プリプレグ基材の切り込みパターンの数例を示す平面図である。It is a top view which shows several examples of the cutting pattern of the cutting prepreg base material of this invention. 比較用の積層体、繊維強化プラスチックの一例を示す平面図および断面図である。It is a top view and a sectional view showing an example of a layered product for comparison and fiber reinforced plastic. 本発明の積層体、繊維強化プラスチックの一例を示す平面図および断面図である。It is a top view and a sectional view showing an example of a layered product of the present invention and fiber reinforced plastic. 本発明の積層体、繊維強化プラスチックの一例を示す平面図および断面図である。It is a top view and a sectional view showing an example of a layered product of the present invention and fiber reinforced plastic. 本発明の切込プリプレグ基材の製造方法の一例を示す概略図である。It is the schematic which shows an example of the manufacturing method of the cutting prepreg base material of this invention. 本発明の切込プリプレグ基材の製造方法の一例を示す概略図である。It is the schematic which shows an example of the manufacturing method of the cutting prepreg base material of this invention. 本発明の2層積層基材の一例を示す平面図である。It is a top view which shows an example of the 2 layer laminated base material of this invention. 本発明の切込プリプレグ基材の一例を示す断面図である。It is sectional drawing which shows an example of the cutting prepreg base material of this invention. 本発明の切込プリプレグ基材の一例を示す断面図である。It is sectional drawing which shows an example of the cutting prepreg base material of this invention. 本発明の切込プリプレグ基材の一例を示す断面図である。It is sectional drawing which shows an example of the cutting prepreg base material of this invention.

符号の説明Explanation of symbols

1:繊維長手方向
2:繊維直交方向
3:強化繊維
4:強化繊維の不連続端(切り込み)
4a:連続的な切り込み
4b(4b,4b):断続的な切り込み
4c:上層の切り込み
4d:下層の切り込み
4e:層の厚み方向に貫かない切り込み
4f:厚み方向に斜めの切り込み
5:切り込みと繊維方向のなす角度Θ
6:繊維方向に対になる切り込みで分断された繊維長さL
7:切込プリプレグ基材
8:切り込み同士で互いに切り込んだ幅
9:切り込みを強化繊維の垂直方向に投影した投影長さWs
10:積層基材
11:繊維強化プラスチック
12:短繊維層
13:強化繊維の存在しない領域(切り込み開口部)
14:隣接層
15:繊維束端部
16:樹脂リッチ部
17:層うねり
18:強化繊維の回転
19:回転ローラー
20:螺旋状の刃
21:2層基材
22:切込プリプレグ基材厚み
23:上面下面の切り込み同士で互いに切り込んだ厚み方向の幅
24:せん断距離S
25:平均繊維分断線
26:切り込みの傾き角度θ
27:複合切込プリプレグ基材
28:追加樹脂
29:切り込みを挿入する押し切り刃
30:端部処理用の回転刃
31:プリプレグ基材(もしくは繊維束)を配置する移動ヘッド
32:切り込みを挿入する回転刃
33:プリプレグ基材長手方向
34:プリプレグ基材幅方向
1: Fiber longitudinal direction 2: Fiber orthogonal direction 3: Reinforcing fiber 4: Discontinuous end (cutting) of reinforcing fiber
4a: continuous cut 4b (4b 1 , 4b 2 ): intermittent cut 4c: upper layer cut 4d: lower layer cut 4e: cut not penetrating in the thickness direction 4f: cut oblique in the thickness direction 5: cut And the angle Θ between the fiber direction
6: Fiber length L divided by a notch paired in the fiber direction
7: Cut prepreg base material 8: Width of the cuts cut into each other 9: Projected length Ws obtained by projecting the cut in the vertical direction of the reinforcing fiber
10: Laminated substrate 11: Fiber reinforced plastic 12: Short fiber layer 13: Region where no reinforcing fiber exists (cut opening)
14: Adjacent layer 15: Fiber bundle end 16: Resin rich portion 17: Layer waviness 18: Reinforcement fiber rotation
19: Rotating roller 20: Spiral blade 21: Two-layer base material 22: Cut prepreg base material thickness 23: Thickness direction width obtained by cutting each other on the lower surface of the upper surface 24: Shear distance S
25: Average fiber breaking line 26: Inclination angle θ of cut
27: Compound cut prepreg base material 28: Additional resin 29: Push cutting blade for inserting the cut 30: Rotary blade for end treatment 31: Moving head for arranging the prepreg base material (or fiber bundle) 32: Inserting the cut Rotating blade 33: Pre-preg base material longitudinal direction 34: Pre-preg base material width direction

Claims (21)

一方向に引き揃えられた強化繊維とマトリックス樹脂とからなるプリプレグ基材であって、該プリプレグ基材の全面に強化繊維となす角度Θの絶対値が2〜25°の範囲内の切り込みを有し、実質的にすべての強化繊維が前記切り込みにより分断され、前記切り込みにより分断された強化繊維の繊維長さLが10〜100mmの範囲内であり、前記プリプレグ基材の厚みHが30〜300μmであり、繊維体積含有率Vfが45〜65%の範囲内である切込プリプレグ基材。 A prepreg base material composed of a reinforced fiber and a matrix resin aligned in one direction, and the entire surface of the prepreg base material has a cut within an absolute value of the angle Θ between the reinforcing fiber and 2 to 25 °. And substantially all the reinforcing fibers are divided by the incision, the fiber length L of the reinforcing fibers divided by the incision is in the range of 10 to 100 mm, and the thickness H of the prepreg base material is 30 to 300 μm. A cut prepreg base material having a fiber volume content Vf in the range of 45 to 65%. 前記切り込みが直線状に入っている請求項1に記載の切込プリプレグ基材。 The cut prepreg base material according to claim 1, wherein the cut is linear. 前記切り込みにより分断された強化繊維のすべてが実質的に一定の繊維長さLである請求項1または2に記載の切込プリプレグ基材。 The cut prepreg base material according to claim 1 or 2, wherein all of the reinforcing fibers cut by the cut have a substantially constant fiber length L. 前記切り込みが連続して入れられている請求項1〜3のいずれかに記載の切込プリプレグ基材。 The cut prepreg base material according to any one of claims 1 to 3, wherein the cuts are continuously made. 前記切り込みが、強化繊維の垂直方向に投影した投影長さWsが30μm〜100mmの範囲内である断続的な切り込みであり、前記切り込みと前記切り込みを繊維長手方向に隣接した切り込みの幾何形状が同一である請求項1〜3のいずれかに記載の切込プリプレグ基材。 The incision is an intermittent incision in which the projected length Ws projected in the vertical direction of the reinforcing fiber is within a range of 30 μm to 100 mm, and the incision and the incision adjacent to the incision in the fiber longitudinal direction have the same geometric shape The cut prepreg base material according to any one of claims 1 to 3. 前記投影長さWsが30μm〜1.5mmの範囲内である請求項5に記載の切込プリプレグ基材。 The cut prepreg base material according to claim 5, wherein the projected length Ws is within a range of 30 μm to 1.5 mm. 前記投影長さWsが1〜100mmの範囲内である請求項5に記載の切込プリプレグ基材。 The cut prepreg base material according to claim 5, wherein the projected length Ws is within a range of 1 to 100 mm. 前記切込プリプレグ基材が炭素繊維と熱硬化性樹脂とから構成される請求項1〜7のいずれかに記載の切込プリプレグ基材。 The cut prepreg substrate according to any one of claims 1 to 7, wherein the cut prepreg substrate is composed of carbon fibers and a thermosetting resin. 前記切り込みが、前記切込プリプレグ基材の厚み方向に斜めに設けられており、任意の切り込みにおいて、前記切込プリプレグ基材の上面における強化繊維の分断線と下面における分断線との繊維方向の距離をSとすると、前記切込プリプレグ基材厚みHとをもちいて、次の(式1)から導かれる角度θが1〜25°の範囲内にある、請求項1〜8のいずれかに記載の切込プリプレグ基材。
Figure 2008207545
The incision is provided obliquely in the thickness direction of the incision prepreg base material, and in an arbitrary incision, in the fiber direction of the reinforcing fiber dividing line on the upper surface of the incision prepreg base material and the dividing line on the lower surface When the distance is S, the angle θ derived from the following (Equation 1) using the cut prepreg base material thickness H is in the range of 1 to 25 °. The cut prepreg base material as described.
Figure 2008207545
前記切り込みが、前記切込プリプレグ基材の上面と下面とのそれぞれから層を厚み方向に貫かずに設けられ、切り込みの深さHsが前記切込プリプレグ基材厚みHに対して0.4H〜0.6Hの範囲内であり、上面の切り込みと下面の切り込みとがそれぞれ0.01H〜0.1Hの範囲内で互いに切り込んでおり、上面の任意の切り込みAと繊維方向のなす角度Θaに対して、該切り込みAと交わる下面の切り込みBの繊維方向とのなす角度Θbが−Θa−5°〜−Θa+5°である請求項1〜8のいずれかに記載の切込プリプレグ基材。 The incision is provided without penetrating the layers in the thickness direction from the upper surface and the lower surface of the incised prepreg base material, and the incision depth Hs is 0.4H to the incised prepreg base material thickness H. It is within the range of 0.6H, and the cut on the upper surface and the cut on the lower surface are cut into each other within the range of 0.01H to 0.1H. The cut prepreg base material according to any one of claims 1 to 8, wherein an angle Θb formed by the fiber direction of the cut B on the lower surface intersecting the cut A is -Θa-5 ° to -Θa + 5 °. 請求項1〜10のいずれかに記載の切込プリプレグ基材の少なくとも一方の表面に層状の追加樹脂層を有し、該追加樹脂層の厚みが強化繊維の短繊維直径以上であり、かつ、切込プリプレグ基材の厚みの0.5倍以下の範囲内であり、該追加樹脂層が前記マトリックス樹脂より引張伸度が高く、形態がフィルム状または不織布状である、複合切込プリプレグ基材。 It has a layered additional resin layer on at least one surface of the cut prepreg base material according to any one of claims 1 to 10, and the thickness of the additional resin layer is not less than the short fiber diameter of the reinforcing fiber, and A composite cut prepreg base material that is within a range of 0.5 times or less the thickness of the cut prepreg base material, the additional resin layer has a higher tensile elongation than the matrix resin, and the form is a film or a nonwoven fabric. . 請求項1〜10のいずれかに記載の切込プリプレグ基材の少なくとも一方の表面に、前記マトリックス樹脂より引張伸度が高い追加樹脂が、前記切込プリプレグ基材厚みHに対して前記切り込みから繊維方向の両方向にH〜100Hの範囲内に、強化繊維により形成される層内に入りこまずに前記切込プリプレグ基材表面上に層状に配置されており、前記追加樹脂の形態がフィルム状または不織布状である、複合切込プリプレグ基材。 An additional resin having a higher tensile elongation than the matrix resin is formed on at least one surface of the cut prepreg substrate according to any one of claims 1 to 10 from the cut with respect to the cut prepreg substrate thickness H. Within the range of H to 100H in both directions of the fiber direction, it is arranged in layers on the surface of the cut prepreg base material without entering the layer formed by the reinforcing fibers, and the form of the additional resin is a film shape Or the composite cut prepreg base material which is a nonwoven fabric form. 請求項1〜9のいずれかに記載の切込プリプレグ基材を2層積層し、該2層基材の上層の任意の切り込みCと交わる下層の切り込みDの交差角度が4〜90°の範囲内である積層基材。 Two layers of the cut prepreg base material according to any one of claims 1 to 9, wherein a crossing angle of a lower cut D that intersects an arbitrary cut C of the upper layer of the two-layer base material is in a range of 4 to 90 °. Laminated substrate that is inside. 請求項1〜12にいずれか記載の切込プリプレグ基材を少なくとも一部に有してなる積層基材であって含む、強化繊維が一方向に引き揃えられたプリプレグ基材が複数枚積層され、前記強化繊維が一方向に引き揃えられたプリプレグ基材が該プリプレグ基材の繊維方向が少なくとも2方向以上に配向して一体化されている積層基材。 A plurality of prepreg base materials, each comprising the cut prepreg base material according to any one of claims 1 to 12 and having a reinforcing fiber aligned in one direction, are laminated. A laminated base material in which the prepreg base material in which the reinforcing fibers are aligned in one direction is integrated with the fiber direction of the prepreg base material oriented in at least two directions. 前記積層基材が請求項1〜12にいずれか記載の切込プリプレグ基材のみからなり、前記切込プリプレグ基材が擬似等方に積層されてなる積層基材。 The laminated base material which the said laminated base material consists only of the cut prepreg base material in any one of Claims 1-12, and the said cut prepreg base material is laminated | stacked pseudo-isotropically. 請求項14または15の積層基材を成形して得られた、繊維強化プラスチック。 A fiber-reinforced plastic obtained by molding the laminated substrate according to claim 14 or 15. 強化繊維が実質的に一方向に引き揃えられた層が、強化繊維の配向が異なる方向に少なくとも2層以上積層されてなる繊維強化プラスチックであって、繊維体積含有率Vfが45〜65%の範囲内であり、前記繊維強化プラスチックを構成する層として、層の全面に複数の、強化繊維が存在せずにマトリックス樹脂または隣接層の強化繊維のみで形成される切り込み開口部を有し、該切り込み開口部によって強化繊維の繊維長さLが10〜100mmの範囲内に分断され、前記切り込み開口部の層表面における表面積が層の表面積の0.1〜10%の範囲内であり、平均厚みHcが15〜300μmの範囲内である短繊維層が少なくとも1層以上積層されている、繊維強化プラスチック。 The layer in which the reinforcing fibers are substantially aligned in one direction is a fiber reinforced plastic obtained by laminating at least two layers in different directions of the reinforcing fibers, and the fiber volume content Vf is 45 to 65%. A plurality of slit openings formed on the entire surface of the layer without the presence of reinforcing fibers and formed only of the matrix resin or the reinforcing fibers of the adjacent layer, The fiber length L of the reinforcing fiber is divided within the range of 10 to 100 mm by the cut opening, the surface area of the cut opening at the layer surface is within the range of 0.1 to 10% of the surface area of the layer, and the average thickness A fiber reinforced plastic in which at least one short fiber layer having a Hc in the range of 15 to 300 μm is laminated. 前記繊維強化プラスチックの最外層の面積が実質的に0である、請求項16または17に記載の繊維強化プラスチック。 The fiber reinforced plastic according to claim 16 or 17, wherein an area of the outermost layer of the fiber reinforced plastic is substantially zero. 請求項1〜10のいずれかに記載の切込プリプレグ基材の製造方法であって、強化繊維を一方向に引き揃えてマトリックス樹脂を含浸して予備プリプレグ基材を準備し、予備プリプレグ基材に、螺旋状に刃をローラー上に配置した回転刃ローラーを押し当てて切り込みを入れる、切込プリプレグ基材の製造方法。 It is a manufacturing method of the cut prepreg base material in any one of Claims 1-10, Comprising: Reinforcing fiber is aligned in one direction, a matrix resin is impregnated, a preliminary | backup prepreg base material is prepared, A preliminary | backup prepreg base material The manufacturing method of the cutting prepreg base material which presses the rotary blade roller which has arrange | positioned the blade on the roller helically, and makes a cut. 請求項9に記載の切込プリプレグ基材の製造方法であって、強化繊維を一方向に引き揃えてマトリックス樹脂を含浸して予備プリプレグ基材を準備し、予備プリプレグ基材に、螺旋状に刃をローラー上に配置した回転刃ローラーを上面または下面のいずれか一方から押し当てて切込プリプレグ基材の層の厚み方向に貫かない切り込みを入れ、しかる後に、前記回転刃ローラーを下面または上面のいずれか一方から押し当てて切込プリプレグ基材の厚み方向に層の厚み方向に貫かない切り込みを入れる、切込プリプレグ基材の製造方法。 It is a manufacturing method of the notch prepreg base material of Claim 9, Comprising: Reinforcing fiber is aligned in one direction, a matrix resin is impregnated, a preliminary | backup prepreg base material is prepared, a preliminary | backup prepreg base material is helically formed. A rotary blade roller with a blade placed on the roller is pressed from either the upper surface or the lower surface to make a cut that does not penetrate the thickness direction of the layer of the cut prepreg base material, and then the rotary blade roller is moved to the lower surface or the upper surface. A method for producing a cut prepreg base material, in which a notch that does not penetrate in the thickness direction of the layer is inserted in the thickness direction of the cut prepreg base material by pressing from any one of the above. 強化繊維とマトリックス樹脂とから構成される複数層の積層構造を有する繊維強化プラスチックの製造方法であって、請求項14または15の積層基材をチャージ率が50〜95%の範囲内で加圧成形し、最外層において、前記切り込み開口部の面積を実質的に0とする、繊維強化プラスチックの製造方法。 A method for producing a fiber-reinforced plastic having a multi-layer laminated structure composed of reinforcing fibers and a matrix resin, wherein the laminated base material of claim 14 or 15 is pressurized within a range of 50 to 95% charge rate. A method for producing a fiber-reinforced plastic, which is molded and the area of the cut opening is substantially zero in the outermost layer.
JP2008013483A 2007-02-02 2008-01-24 Cut prepreg base material, composite cut prepreg base material, laminated base material, fiber reinforced plastic, and method for producing cut prepreg base material Active JP5272418B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008013483A JP5272418B2 (en) 2007-02-02 2008-01-24 Cut prepreg base material, composite cut prepreg base material, laminated base material, fiber reinforced plastic, and method for producing cut prepreg base material

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007023870 2007-02-02
JP2007023870 2007-02-02
JP2008013483A JP5272418B2 (en) 2007-02-02 2008-01-24 Cut prepreg base material, composite cut prepreg base material, laminated base material, fiber reinforced plastic, and method for producing cut prepreg base material

Publications (2)

Publication Number Publication Date
JP2008207545A true JP2008207545A (en) 2008-09-11
JP5272418B2 JP5272418B2 (en) 2013-08-28

Family

ID=39784255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008013483A Active JP5272418B2 (en) 2007-02-02 2008-01-24 Cut prepreg base material, composite cut prepreg base material, laminated base material, fiber reinforced plastic, and method for producing cut prepreg base material

Country Status (1)

Country Link
JP (1) JP5272418B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009286817A (en) * 2008-05-27 2009-12-10 Toray Ind Inc Laminated substrate, fiber-reinforced plastic, and methods for producing them
US20120237356A1 (en) * 2009-09-23 2012-09-20 Suzhou Red Maple Wind Blade Mould Co., Ltd. Wind turbine blade and its producing method
WO2013035705A1 (en) * 2011-09-06 2013-03-14 帝人株式会社 Molded body with excellent surface designability and composed of fiber-reinforced composite material
JP2013538141A (en) * 2010-08-13 2013-10-10 グリーン, ツイード オブ デラウェア, インコーポレイテッド Thermoplastic fiber composite with high volume fiber loading and method and apparatus for making the same
WO2014142061A1 (en) 2013-03-11 2014-09-18 三菱レイヨン株式会社 Layered substrate and method for manufacturing same
JP2015051630A (en) * 2013-08-06 2015-03-19 三菱レイヨン株式会社 Method for producing laminate substrate and laminate substrate
JP2015091930A (en) * 2013-10-01 2015-05-14 三菱レイヨン株式会社 Plate material for apparatus, apparatus and manufacturing method of apparatus
WO2015083707A1 (en) 2013-12-03 2015-06-11 三菱レイヨン株式会社 Fiber-reinforced resin laminate
WO2015122500A1 (en) * 2014-02-14 2015-08-20 三菱レイヨン株式会社 Fiber-reinforced plastic and production method therefor
JP2018075812A (en) * 2016-11-11 2018-05-17 本田技研工業株式会社 Production method of preform
US10576695B2 (en) 2015-08-04 2020-03-03 Mitsubishi Chemical Corporation Fiber-reinforced plastic and method for producing same
WO2020218610A1 (en) * 2019-04-26 2020-10-29 三菱ケミカル株式会社 Method for manufacturing molded article of fiber-reinforced composite material, reinforcing fiber substrate and molded article of fiber-reinforced composite material
JP2021091141A (en) * 2019-12-10 2021-06-17 東レ株式会社 Manufacturing method of fiber reinforced plastic and fiber reinforced plastic
WO2021180335A1 (en) * 2020-03-13 2021-09-16 Schunk Kohlenstofftechnik Gmbh Method for producing a layer containing fibres and a prepreg
CN115945700A (en) * 2023-03-08 2023-04-11 北京航星机器制造有限公司 Composite additive manufacturing method for forming complex component by utilizing anisotropy

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230113270A1 (en) 2020-03-24 2023-04-13 Toray Industries, Inc. Preform and method of producing same
WO2022209454A1 (en) 2021-03-30 2022-10-06 東レ株式会社 Flat, lightweight member and manufacturing method therefor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58201614A (en) * 1982-05-20 1983-11-24 Mitsubishi Rayon Co Ltd Prepreg sheet
JPH01289837A (en) * 1988-05-17 1989-11-21 Mitsui Toatsu Chem Inc Production of fiber-reinforced theromoplastic resin by using slit continuous fiber prepreg
JPH02115236A (en) * 1988-10-25 1990-04-27 Sumitomo Chem Co Ltd Fiber-reinforced resin sheet for molding, its production and production of fiber-reinforced resin molding
WO2007135418A1 (en) * 2006-05-22 2007-11-29 Advanced Composites Group Limited Moulding materials

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58201614A (en) * 1982-05-20 1983-11-24 Mitsubishi Rayon Co Ltd Prepreg sheet
JPH01289837A (en) * 1988-05-17 1989-11-21 Mitsui Toatsu Chem Inc Production of fiber-reinforced theromoplastic resin by using slit continuous fiber prepreg
JPH02115236A (en) * 1988-10-25 1990-04-27 Sumitomo Chem Co Ltd Fiber-reinforced resin sheet for molding, its production and production of fiber-reinforced resin molding
WO2007135418A1 (en) * 2006-05-22 2007-11-29 Advanced Composites Group Limited Moulding materials

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009286817A (en) * 2008-05-27 2009-12-10 Toray Ind Inc Laminated substrate, fiber-reinforced plastic, and methods for producing them
US9291151B2 (en) * 2009-09-23 2016-03-22 Suzhou Red Maple Wind Blade Mould Co., Ltd. Wind turbine blade and its producing method
US20120237356A1 (en) * 2009-09-23 2012-09-20 Suzhou Red Maple Wind Blade Mould Co., Ltd. Wind turbine blade and its producing method
US10160146B2 (en) 2010-08-13 2018-12-25 Greene, Tweed Technologies, Inc. Thermoplastic fiber composites having high volume fiber loading and methods and apparatus for making same
JP2013538141A (en) * 2010-08-13 2013-10-10 グリーン, ツイード オブ デラウェア, インコーポレイテッド Thermoplastic fiber composite with high volume fiber loading and method and apparatus for making the same
JPWO2013035705A1 (en) * 2011-09-06 2015-03-23 帝人株式会社 Molded product with excellent surface design composed of fiber reinforced composite material
US9855689B2 (en) 2011-09-06 2018-01-02 Teijin Limited Shaped product made of fiber-reinforced composite material and having excellent surface appearance
WO2013035705A1 (en) * 2011-09-06 2013-03-14 帝人株式会社 Molded body with excellent surface designability and composed of fiber-reinforced composite material
WO2014142061A1 (en) 2013-03-11 2014-09-18 三菱レイヨン株式会社 Layered substrate and method for manufacturing same
US9969146B2 (en) 2013-03-11 2018-05-15 Mitsubishi Chemical Corporation Layered substrate and method for manufacturing same
KR20150107893A (en) 2013-03-11 2015-09-23 미쯔비시 레이온 가부시끼가이샤 Layered substrate and method for manufacturing same
KR20160066008A (en) 2013-03-11 2016-06-09 미쯔비시 레이온 가부시끼가이샤 Layered substrate and method for manufacturing same
JP2015051630A (en) * 2013-08-06 2015-03-19 三菱レイヨン株式会社 Method for producing laminate substrate and laminate substrate
JP2015091930A (en) * 2013-10-01 2015-05-14 三菱レイヨン株式会社 Plate material for apparatus, apparatus and manufacturing method of apparatus
WO2015083707A1 (en) 2013-12-03 2015-06-11 三菱レイヨン株式会社 Fiber-reinforced resin laminate
KR20160065997A (en) 2013-12-03 2016-06-09 미쯔비시 레이온 가부시끼가이샤 Fiber-reinforced resin laminate
JP5900663B2 (en) * 2013-12-03 2016-04-06 三菱レイヨン株式会社 Fiber reinforced resin laminate
KR20160105877A (en) 2014-02-14 2016-09-07 미쯔비시 레이온 가부시끼가이샤 Fiber-reinforced plastic and production method therefor
JP5975171B2 (en) * 2014-02-14 2016-08-23 三菱レイヨン株式会社 Fiber reinforced plastic and method for producing the same
WO2015122500A1 (en) * 2014-02-14 2015-08-20 三菱レイヨン株式会社 Fiber-reinforced plastic and production method therefor
US10773473B2 (en) 2014-02-14 2020-09-15 Mitsubishi Chemical Corporation Fiber-reinforced plastic and production method therefor
US11034103B2 (en) 2014-02-14 2021-06-15 Mitsubishi Chemical Corporation Fiber-reinforced plastic and production method therefor
US10576695B2 (en) 2015-08-04 2020-03-03 Mitsubishi Chemical Corporation Fiber-reinforced plastic and method for producing same
JP2018075812A (en) * 2016-11-11 2018-05-17 本田技研工業株式会社 Production method of preform
JPWO2020218610A1 (en) * 2019-04-26 2020-10-29
WO2020218610A1 (en) * 2019-04-26 2020-10-29 三菱ケミカル株式会社 Method for manufacturing molded article of fiber-reinforced composite material, reinforcing fiber substrate and molded article of fiber-reinforced composite material
JP7156513B2 (en) 2019-04-26 2022-10-19 三菱ケミカル株式会社 METHOD FOR MANUFACTURING FIBER REINFORCED COMPOSITE MOLDED PRODUCT AND PREPREG
JP2021091141A (en) * 2019-12-10 2021-06-17 東レ株式会社 Manufacturing method of fiber reinforced plastic and fiber reinforced plastic
JP7472480B2 (en) 2019-12-10 2024-04-23 東レ株式会社 Manufacturing method of fiber reinforced plastic
WO2021180335A1 (en) * 2020-03-13 2021-09-16 Schunk Kohlenstofftechnik Gmbh Method for producing a layer containing fibres and a prepreg
CN115945700A (en) * 2023-03-08 2023-04-11 北京航星机器制造有限公司 Composite additive manufacturing method for forming complex component by utilizing anisotropy
CN115945700B (en) * 2023-03-08 2023-06-16 北京航星机器制造有限公司 Composite additive manufacturing method for forming complex component by utilizing anisotropy

Also Published As

Publication number Publication date
JP5272418B2 (en) 2013-08-28

Similar Documents

Publication Publication Date Title
JP5272418B2 (en) Cut prepreg base material, composite cut prepreg base material, laminated base material, fiber reinforced plastic, and method for producing cut prepreg base material
JP5223354B2 (en) Cut prepreg base material, laminated base material, fiber reinforced plastic, and method for producing cut prepreg base material
US8758874B2 (en) Prepreg base material, layered base material, fiber-reinforced plastic, process for producing prepreg base material, and process for producing fiber-reinforced plastic
JP2008207544A5 (en)
JP5167953B2 (en) Laminated substrate, fiber reinforced plastic, and production method thereof
JP5353099B2 (en) Manufacturing method of fiber reinforced plastic
JP5320742B2 (en) Method for producing composite prepreg substrate, laminated substrate and fiber reinforced plastic
JP5292972B2 (en) Manufacturing method of fiber reinforced plastic
JPWO2008038429A1 (en) Fiber-reinforced plastic and method for producing the same
JP2010018724A (en) Prepreg layered substrate and fiber-reinforced plastic
JP2010023359A (en) Method of manufacturing laminate
JP2008279753A (en) Manufacturing method of fiber-reinforced plastics
JP2010018723A (en) Incised prepreg substrate, prepreg layered product, and fiber-reinforced plastic
KR20200071072A (en) Method for manufacturing fiber reinforced plastic composite
JP2008208343A (en) Cut prepreg substrate, laminated substrate, fiber reinforced plastics and preparation method of cut prepreg substrate
JP2009220480A (en) Manufacturing method of notched sheet base material
JP2007146151A (en) Prepreg substrate material, laminated substrate material and fiber-reinforced plastic
JP2008238809A (en) Method of manufacturing laminate
WO2022024939A1 (en) Fiber-reinforced plastic and production method for fiber-reinforced plastic
JP2016179647A (en) Method for producing fiber-reinforced plastic
JP2006027091A (en) Composite material having smooth surface
JP2004338270A (en) Method for producing fiber-reinforced resin composite material and fiber-reinforced resin composite material
WO2020067478A1 (en) Tape prepreg, tape prepreg disposition method, fiber-reinforcement composite material, fiber-reinforcement composite material manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130321

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130416

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130429

R151 Written notification of patent or utility model registration

Ref document number: 5272418

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151