JP2009220480A - Manufacturing method of notched sheet base material - Google Patents

Manufacturing method of notched sheet base material Download PDF

Info

Publication number
JP2009220480A
JP2009220480A JP2008068934A JP2008068934A JP2009220480A JP 2009220480 A JP2009220480 A JP 2009220480A JP 2008068934 A JP2008068934 A JP 2008068934A JP 2008068934 A JP2008068934 A JP 2008068934A JP 2009220480 A JP2009220480 A JP 2009220480A
Authority
JP
Japan
Prior art keywords
base material
cut
sheet base
fiber
blade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008068934A
Other languages
Japanese (ja)
Inventor
Shigemichi Sato
成道 佐藤
Ichiro Takeda
一朗 武田
Eisuke Wadahara
英輔 和田原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2008068934A priority Critical patent/JP2009220480A/en
Publication of JP2009220480A publication Critical patent/JP2009220480A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B15/00Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00
    • B29B15/08Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00 of reinforcements or fillers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/10Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
    • B29C70/16Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length
    • B29C70/20Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length oriented in a single direction, e.g. roofing or other parallel fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2793/00Shaping techniques involving a cutting or machining operation
    • B29C2793/0036Slitting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2793/00Shaping techniques involving a cutting or machining operation
    • B29C2793/0081Shaping techniques involving a cutting or machining operation before shaping

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a notched sheet base material which shows good fluidity and molding followability when used as a molding material and which shows a superior physical property when made of a fiber-reinforced plastic. <P>SOLUTION: The manufacturing method of the notched sheet base material comprises sending a sheet base material 3 containing a reinforcing fiber oriented in one direction and having a sheet thickness H in the range of 30 to 300 μm to a fiber arrangement direction 2, pushing a trimming die with a blade intermittently to the sheet base material, and advancing the blade into the sheet base material to insert disconnected notches therein. The four components Ws of the notches perpendicular to the fiber are in the range of 30 μm to 100 mm, and fiber length L of substantially all the reinforcing fibers is in the range of 10 to 100 mm. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、良好な流動性、成形追従性を有し、繊維強化プラスチックとした場合、優れた力学物性、その低バラツキ性、優れた寸法安定性を発現する切込シート基材の製造方法に関する。   The present invention relates to a method for producing a cut sheet substrate that has good fluidity and molding followability, and exhibits excellent mechanical properties, low variability, and excellent dimensional stability when used as a fiber reinforced plastic. .

強化繊維とマトリックス樹脂からなる繊維強化プラスチックは、比強度、比弾性率が高く、力学特性に優れること、耐候性、耐薬品性などの高機能特性を有することなどから産業用途においても注目され、その需要は年々高まりつつある。   Fiber reinforced plastic consisting of reinforced fiber and matrix resin is attracting attention in industrial applications because it has high specific properties, high specific modulus, excellent mechanical properties, weather resistance, chemical resistance, etc. The demand is increasing year by year.

高機能特性を有する繊維強化プラスチックの成形方法としては、プリプレグと称される連続した強化繊維にマトリックス樹脂を含浸せしめた半硬化状態の中間基材を積層し、高温高圧釜で加熱加圧することによりマトリックス樹脂を硬化させ繊維強化プラスチックを成形するオートクレーブ成形が最も一般的に行われている。また、近年では生産効率の向上を目的として、あらかじめ部材形状に賦形した連続繊維基材にマトリックス樹脂を含浸および硬化させるRTM(レジントランスファーモールディング)成形等も行われている。これらの成形法により得られた繊維強化プラスチックは、連続繊維である所以優れた力学物性を有する。また、連続繊維は規則的な配列であるため、基材の配置により必要とする力学物性に設計することが可能であり、力学物性のバラツキも小さい。しかしながら、一方で連続繊維である所以3次元形状等の複雑な形状を形成することは難しく、主として平面形状に近い部材に限られる。   As a molding method of fiber reinforced plastic having high functional properties, a semi-cured intermediate base material impregnated with matrix resin is laminated on continuous reinforcing fiber called prepreg, and heated and pressurized in a high temperature and high pressure kettle. Autoclave molding in which a matrix resin is cured and a fiber reinforced plastic is molded is most commonly performed. In recent years, for the purpose of improving production efficiency, RTM (resin transfer molding) molding in which a continuous fiber base material previously shaped into a member shape is impregnated with a matrix resin and cured has been performed. The fiber reinforced plastics obtained by these molding methods have excellent mechanical properties because they are continuous fibers. Further, since the continuous fibers are regularly arranged, it is possible to design the mechanical properties required by the arrangement of the base material, and the variation in the mechanical properties is small. However, on the other hand, it is difficult to form a complicated shape such as a three-dimensional shape because it is a continuous fiber, and it is mainly limited to members close to a planar shape.

3次元形状等の複雑な形状に適した成形方法として、SMC(シートモールディングコンパウンド)成形等がある。SMC成形は、通常25mm程度に切断したチョップドストランドに熱硬化性樹脂であるマトリックス樹脂を含浸せしめ半硬化状態としたSMCシートを、加熱型プレス機を用いて加熱加圧することにより成形を行う。多くの場合、加圧前にSMCシートを成形体の形状より小さく切断して成形型上に配置し、加圧により成形体の形状に引き伸ばして(流動させて)成形を行う。そのため、その流動により3次元形状等の複雑な形状にも追従可能となる。しかしながら、SMCはそのシート化工程において、チョップドストランドの分布ムラ、配向ムラが必然的に生じてしまうため、力学物性が低下し、あるいはその値のバラツキが大きくなってしまう。さらには、そのチョップドストランドの分布ムラ、配向ムラにより、特に薄物の部材ではソリ、ヒケ等が発生しやすくなり、構造材としては不適な場合がある。   As a molding method suitable for a complicated shape such as a three-dimensional shape, there is SMC (sheet molding compound) molding. SMC molding is performed by heating and pressurizing a semi-cured SMC sheet obtained by impregnating a chopped strand cut to about 25 mm with a matrix resin, which is a thermosetting resin, using a heating press. In many cases, before pressing, the SMC sheet is cut smaller than the shape of the molded body, placed on a mold, and stretched (flowed) into the shape of the molded body by pressing to perform molding. Therefore, it is possible to follow a complicated shape such as a three-dimensional shape by the flow. However, since SMC inevitably causes distribution unevenness and orientation unevenness of chopped strands in the sheeting process, the mechanical properties deteriorate or the variation of the values increases. Furthermore, due to uneven distribution and alignment unevenness of the chopped strands, warpage, sink marks and the like are likely to occur particularly in a thin member, which may be unsuitable as a structural material.

上述のような材料の欠点を埋めるべく、連続繊維とマトリックス樹脂からなるプリプレグに断続的な切込を入れることにより、流動性可能で力学物性のバラツキも小さくなるとされる基材が開示されている(例えば特許文献1、2)。例えば、特許文献1ではプレスに装着した抜き刃の下にプリプレグを置き、切込を打ち抜く方法が開示されているが、連続的に基材を製造することができない、という問題点があった。例えば、特許文献1、2では回転ローラーに刃を埋め込み、対になるローラーに押し当てて切込を連続的に挿入する方法が開示されているが、断続的な切込を入れるために回転ローラーの曲面上に1つ1つの切込に対応する複数の刃を精度良く位置決めして設けるのが困難である、という問題点があった。
特開昭63−247012号公報 特開平9−254227号公報
In order to fill in the drawbacks of the above-described materials, a base material is disclosed that can be made fluid and small in variation in mechanical properties by making intermittent cuts in a prepreg composed of continuous fibers and a matrix resin. (For example, Patent Documents 1 and 2). For example, Patent Document 1 discloses a method of placing a prepreg under a punching blade attached to a press and punching out the cut, but there is a problem that the base material cannot be manufactured continuously. For example, Patent Documents 1 and 2 disclose a method in which a blade is embedded in a rotating roller and pressed against a pair of rollers to continuously insert the incision, but the rotating roller is used to make intermittent incisions. There is a problem that it is difficult to accurately position and provide a plurality of blades corresponding to each cut on the curved surface.
Japanese Unexamined Patent Publication No. 63-247010 Japanese Patent Laid-Open No. 9-254227

本発明は、かかる従来技術の背景に鑑み、良好な流動性、複雑形状追従性を有し、繊維強化プラスチックとした場合、優れた力学物性、その低バラツキ性、優れた寸法安定性を発現する切込シート基材、あるいは予め樹脂が含浸した切込プリプレグ基材の効率的な製造方法を提供せんとするものである。   In view of the background of such prior art, the present invention has excellent fluidity, complicated shape followability, and exhibits excellent mechanical properties, low variation, and excellent dimensional stability when used as a fiber reinforced plastic. It is an object of the present invention to provide an efficient method for producing a cut sheet substrate or a cut prepreg substrate previously impregnated with a resin.

本発明は、かかる課題を解決するために、次のような手段を採用するものである。すなわち、
(1)一方向に配列した強化繊維を含むシート基材であって、シート厚みHが30〜300μmの範囲内の前記シート基材を繊維配列方向に送り、前記シート基材に、刃を配置した抜き型を間欠的に押し当て、前記刃を前記シート基材に間欠的に進入させて、断続的な切込を挿入して、前記切込の繊維直交方向成分Wsを30μm〜100mmの範囲内とし、実質的にすべての強化繊維の繊維長さLを10〜100mmの範囲内とする切込シート基材の製造方法。
The present invention employs the following means in order to solve such problems. That is,
(1) A sheet base material including reinforcing fibers arranged in one direction, the sheet base material having a sheet thickness H in the range of 30 to 300 μm is sent in the fiber array direction, and a blade is disposed on the sheet base material. The cut die is pressed intermittently, the blade is intermittently entered into the sheet base material, intermittent cuts are inserted, and the fiber orthogonal component Ws of the cuts is in the range of 30 μm to 100 mm. The manufacturing method of the incision sheet base material which makes inside and the fiber length L of substantially all the reinforced fibers is in the range of 10-100 mm.

(2)前記切込の繊維直交方向成分Wsを30μm〜100mmの範囲内とする手段が、前記刃の一部であり、切込を挿入する際に基材を貫通あるいは基材に進入する部位をカット部とし、前記抜き型を前記シート基材に押し当てる方向を押当方向としたときに、前記押当方向に、前記カット部の稜線を前記シート基材に投影した投影線Aの繊維直交方向成分Ws’が30μm〜100mmの範囲内となるように、前記抜き型を前記シート基材に押し当てることである、(1)に記載の切込シート基材の製造方法。   (2) The part which makes the fiber orthogonal direction component Ws of the said incision into the range of 30 micrometers-100 mm is a part of the said blade, and penetrates a base material or inserts into a base material when inserting a notch Is a cut part, and the direction of pressing the punching die against the sheet base material is the pressing direction, and the fiber of the projection line A in which the ridge line of the cut part is projected onto the sheet base material in the pressing direction The method for producing a cut sheet base material according to (1), wherein the die is pressed against the sheet base material so that the orthogonal direction component Ws ′ falls within a range of 30 μm to 100 mm.

(3)実質的にすべての強化繊維の繊維長さLを10〜100mmの範囲内とする手段が、前記刃の一部であり、切込を挿入する際に基材を貫通あるいは基材に進入する部位をカット部とし、前記抜き型を前記シート基材に押し当てる方向を押当方向としたときに、前記抜き型に含まれるすべての前記カット部の稜線を、前記押当方向に、前記シート基材に投影した投影線Aを、繊維配列方向に、同じ繊維直交面に投影して得た投影線B同士が実質的にすべて連結するように前記抜き型に前記シート基材を押し当てることである、(1)または(2)に記載の切込シート基材の製造方法。   (3) The means for setting the fiber length L of substantially all the reinforcing fibers within the range of 10 to 100 mm is part of the blade, and the base material is penetrated or inserted into the base material when inserting the cut. When the site to enter is a cut part, and the pressing direction is the direction in which the punching die is pressed against the sheet base material, the ridge lines of all the cutting parts included in the punching die are in the pressing direction. The sheet base material is pushed into the punching die so that the projection lines A projected onto the sheet base material are projected on the same fiber orthogonal plane in the fiber array direction and substantially all of the projection lines B are connected to each other. The manufacturing method of the cutting sheet base material as described in (1) or (2) which is to apply.

(4)前記刃の一部であり、切込を挿入する際に基材を貫通あるいは基材に進入する部位をカット部とし、前記抜き型を前記シート基材に押し当てる方向を押当方向としたときに、前記押当方向に、前記カット部の稜線を前記シート基材に投影した投影線Aと繊維配列方向とのなす角θが2〜60°の範囲内となるように前記抜き型にシート基材を押し当てる、(1)〜(3)のいずれかに記載の切込シート基材の製造方法。   (4) A portion that is a part of the blade and penetrates the base material or enters the base material when inserting a cut, and a cutting direction is a direction in which the punching die is pressed against the sheet base material. The angle θ between the projection line A obtained by projecting the ridge line of the cut portion on the sheet base material and the fiber arrangement direction in the pressing direction is in the range of 2 to 60 °. The manufacturing method of the cutting sheet base material in any one of (1)-(3) which presses a sheet base material on a type | mold.

(5)前記刃として、板状のミシン刃を用いる、(1)〜(4)のいずれかに記載の切込シート基材の製造方法。   (5) The manufacturing method of the cutting sheet base material in any one of (1)-(4) which uses a plate-shaped sewing blade as said blade.

(6)前記抜き型として、平板状であり、かつ複数の前記ミシン刃を、互いに平行となるように前記抜き型に配置したものを用いる、(5)に記載の切込シート基材の製造方法。   (6) The cutting sheet base material according to (5), wherein the punching die is a flat plate and a plurality of the sewing machine blades are arranged in the punching die so as to be parallel to each other. Method.

(7)前記ミシン刃の一部であり、切込を挿入する際に基材を貫通あるいは基材に進入する部位をカット部とし、同一ミシン刃内で隣接するカット部間の距離をカット部間距離bとしたときに、前記カット部の長さWおよびカット部間距離bがそれぞれ一定となるように前記抜き型をシート基材に押し当てる、(5)または(6)に記載の切込シート基材の製造方法。   (7) A part of the sewing machine blade, which is a part that penetrates the base material or enters the base material when inserting a cut, and a distance between adjacent cut parts in the same sewing machine blade is a cut part The cutting according to (5) or (6), wherein the punching die is pressed against the sheet substrate so that the length W of the cut part and the distance b between the cut parts are constant when the distance b is set. A manufacturing method of a sheet base material.

(8)前記投影線B同士が、互いに端部のみで連結し、かつ前記シート基材を繊維配列方向に10〜100mm移動させる毎に、前記抜き型を前記シート基材に押し当てる、(3)〜(7)のいずれかに記載の切込シート基材の製造方法。   (8) Each time the projection lines B are connected to each other only at the ends and the sheet base material is moved 10 to 100 mm in the fiber array direction, the punching die is pressed against the sheet base material. )-(7) The manufacturing method of the cutting sheet base material in any one of.

(9)前記カット部間距離bに対する前記カット部の長さWの比(W/b)が1〜1.5の範囲内であり、前記投影線B同士が、互いに端部のみで連結するように、前記シート基材を繊維配列方向に10〜100mm移動させる毎に、前記抜き型を前記シート基材に押し当てる、(8)に記載の切込シート基材の製造方法。   (9) The ratio (W / b) of the length W of the cut portion to the distance b between the cut portions is in the range of 1 to 1.5, and the projection lines B are connected to each other only at the end portions. Thus, whenever the said sheet | seat base material is moved 10-100 mm in the fiber arrangement | sequence direction, the said cutting die is pressed against the said sheet | seat base material, The manufacturing method of the cutting sheet base material as described in (8).

(10)前記ミシン刃同士を繊維配列方向に強化繊維の繊維長さLの1.5倍以上離して抜き型に配置する、(9)に記載の切込シート基材の製造方法。   (10) The method for manufacturing a cut sheet substrate according to (9), wherein the sewing blades are separated from each other by 1.5 times or more of the fiber length L of the reinforcing fibers in the fiber arrangement direction and arranged in a punching die.

(11)前記シート基材が強化繊維とマトリックス樹脂とからなるプリプレグ基材である、(1)〜(10)のいずれかに記載の切込シート基材の製造方法。   (11) The manufacturing method of the cut sheet base material in any one of (1)-(10) whose said sheet base material is a prepreg base material which consists of a reinforced fiber and matrix resin.

(12)テープ状支持体によって把持した前記プリプレグ基材を用いて、前記抜き型をテープ状支持体とは反対側の前記プリプレグ基材に押し当て、前記プリプレグ基材を貫通し、かつ、前記テープ状支持体の一部のみ侵入する前記切込を挿入する、(11)に記載の切込シート基材の製造方法。   (12) Using the prepreg base material gripped by the tape-shaped support, the punching die is pressed against the prepreg base on the opposite side of the tape-shaped support, penetrates the prepreg base, and The method for producing a cut sheet base material according to (11), wherein the cut that penetrates only a part of the tape-like support is inserted.

本発明によれば、良好な流動性、複雑な形状の成形追従性を有し、繊維強化プラスチックとした場合、優れた力学物性、その低バラツキ性、優れた寸法安定性を発現する切込シート基材を効率的に製造することができる。   According to the present invention, a cut sheet that has good fluidity, molding conformability of a complicated shape, and exhibits excellent mechanical properties, low variation, and excellent dimensional stability when made into a fiber reinforced plastic. A base material can be manufactured efficiently.

本発明は、前記課題、つまり切込シート基材の効率的な製造方法について、鋭意検討し、一方向に引き揃えられた強化繊維からなるシート基材に対して刃を設けた抜き型を間欠的に押し当て、シート基材に切込を挿入して、切込シート基材を製造することにより、かかる課題を一挙に解決することを究明したものである。本発明により、良好な流動性、複雑な形状の成形追従性を有し、繊維強化プラスチックとした場合、優れた力学物性、その低バラツキ性、優れた寸法安定性を発現する切込シート基材を短時間で大量かつ安定的に生産することができる。   In the present invention, the above-described problem, that is, an efficient manufacturing method for a cut sheet base material, is studied earnestly, and a cutting die provided with a blade is intermittently provided on a sheet base material made of reinforcing fibers aligned in one direction. The present invention has been clarified to solve such a problem at a stroke by manufacturing the cut sheet base material by pressing it and inserting a cut into the sheet base material. According to the present invention, a cut sheet base material having good fluidity, molding conformability of complicated shapes, and excellent mechanical properties, low variation, and excellent dimensional stability when made into a fiber reinforced plastic. Can be produced in large quantities and stably in a short time.

本発明の切込シート基材を製造するにあたり用いるシート基材としては、一方向に配列した強化繊維を含んでいれば何でもよく、強化繊維に強化目的でない繊維をまたいで配置して織り込み、ステッチング、熱融着などの手段で一体化したものや、タッキファイヤなどの樹脂を散布して点融着して一体化したものであってもよい。また、樹脂が強化繊維間に完全に含浸していない状態で一体化した樹脂半含浸基材(セミプレグ)や、樹脂が強化繊維間に完全に含浸したプリプレグであってもよい。上記シート基材に所定の切込を挿入し、切込シート基材を製造した後、さらに積層時に新たに樹脂シートや不織布などを切込シート基材上に配することで樹脂を付与してもよいし、成形時にそれらを切込シート基材に配してもよく、切込シート基材に樹脂を付与することで優れた成形追従性や流動性を発現する。なお、本明細書では、特に断らない限り、繊維あるいは繊維を含む用語(例えば“繊維方向”等)において、繊維とは強化繊維を表すものとする。   The sheet base material used for producing the cut sheet base material of the present invention may be anything as long as it contains reinforcing fibers arranged in one direction, and the reinforcing fibers are woven and arranged across the fibers not intended for reinforcement. It may be integrated by means such as bonding or heat fusion, or may be integrated by spraying a resin such as tackifier and performing point fusion. Further, it may be a resin semi-impregnated base material (semi-preg) integrated in a state where the resin is not completely impregnated between the reinforcing fibers, or a prepreg in which the resin is completely impregnated between the reinforcing fibers. After inserting a predetermined cut into the sheet base material and manufacturing the cut sheet base material, the resin is applied by arranging a new resin sheet or nonwoven fabric on the cut sheet base material during lamination. Alternatively, they may be arranged on the cut sheet substrate at the time of molding, and excellent molding followability and fluidity are exhibited by applying a resin to the cut sheet substrate. In the present specification, unless otherwise specified, in the term including fiber or fiber (for example, “fiber direction” or the like), the fiber represents a reinforcing fiber.

本発明に用いるシート基材3は、強化繊維1が一方向に配列しており、厚みHが30〜300μmの範囲内である。本発明では、図1に示すように、前記シート基材3を繊維配列方向2に送り、前記シート基材3に刃6を配置した抜き型7を間欠的に押し当て、前記刃6を前記シート基材3に間欠的に進入させて、断続的な切込8を挿入する。このとき、図3(A)に示す前記切込8の繊維直交方向成分Ws54を30μm〜100mmの範囲内とし、実質的にすべての強化繊維1の繊維長さL(34)を10〜100mmの範囲内とする切込シート基材を製造する。このようにして得られた切込シート基材の積層体は、切込シート基材そのものが樹脂を含んだものである場合は、当該積層体単独もしくはさらに同種または異種の樹脂を付与することで、切込シート基材が樹脂を含まないドライな基材である場合は、当該積層体に樹脂を付与することで、プレス成形などを用いて成形する際に高い流動性を発揮することができ、また成形によって得られた繊維強化プラスチックは従来SMC材料よりも高い弾性率、強度を発揮することができる。なお、本発明において“実質的にすべての強化繊維の繊維長さLを10〜100mmの範囲内とする”とは、切込シート基材に含まれる強化繊維のうち、繊維長さLが10〜100mmの範囲内である繊維本数が、切込シート基材全体に占める割合の90%以上であることを示す。また、“切込の繊維直交方向成分Ws”とは、図3(A)に示した切込シート基材内の切込の拡大図において、切込8をシート基材3の繊維直交方向4を投影面として、切込8から該投影面に垂直(繊維配列方向2)に投影した際の長さ54を指す。   In the sheet base material 3 used in the present invention, the reinforcing fibers 1 are arranged in one direction, and the thickness H is in the range of 30 to 300 μm. In the present invention, as shown in FIG. 1, the sheet base material 3 is fed in the fiber array direction 2, and a punching die 7 in which a blade 6 is arranged is intermittently pressed to the sheet base material 3, and the blade 6 is Intermittent cuts 8 are inserted by intermittently entering the sheet base 3. At this time, the fiber orthogonal direction component Ws54 of the notch 8 shown in FIG. 3 (A) is in the range of 30 μm to 100 mm, and the fiber length L (34) of all the reinforcing fibers 1 is 10 to 100 mm. A cut sheet base material within the range is manufactured. When the cut sheet base material laminate thus obtained contains the resin, the laminate of the cut sheet base material obtained in this way can be used by giving the laminate alone or further the same or different resin. When the cut sheet base material is a dry base material that does not contain a resin, high fluidity can be exhibited when molding using press molding or the like by applying resin to the laminate. The fiber reinforced plastic obtained by molding can exhibit higher elastic modulus and strength than conventional SMC materials. In the present invention, “substantially all the reinforcing fibers have a fiber length L within the range of 10 to 100 mm” means that among the reinforcing fibers included in the cut sheet substrate, the fiber length L is 10 It shows that the number of fibers within the range of ˜100 mm is 90% or more of the ratio of the entire cut sheet substrate. Further, the “cutting fiber orthogonal direction component Ws” is an enlarged view of the cutting in the cutting sheet base material shown in FIG. Is a projection plane, and refers to a length 54 when projected from the notch 8 perpendicularly to the projection plane (fiber arrangement direction 2).

本発明に用いるシート基材の厚みHは、30〜300μmの範囲である必要がある。本発明は切込を有するため、分断されるシート基材の層厚みが大きければ大きいほど切込部、つまり欠陥のサイズが大きくなり、強度が低下する傾向がある。そのため、構造材に適用することを前提とするならば、Hは300μm以下である必要がある。一方、Hが30μmより小さくなるような、極めて薄いシート基材を安定的に製造するのはプロセス上困難である。そのため、低コストに本発明の効果を得るには好ましくは30μm以上であることを必要とする。力学特性とコストとの関係を鑑みるとさらに好ましくは、50〜150μmの範囲内である。   The thickness H of the sheet base material used in the present invention needs to be in the range of 30 to 300 μm. Since the present invention has a cut, the larger the layer thickness of the sheet substrate to be divided, the larger the size of the cut portion, that is, the defect, and the strength tends to decrease. Therefore, if it is assumed to be applied to a structural material, H needs to be 300 μm or less. On the other hand, it is difficult in terms of process to stably manufacture an extremely thin sheet base material in which H is smaller than 30 μm. Therefore, in order to obtain the effects of the present invention at a low cost, it is necessary to be 30 μm or more. In view of the relationship between mechanical properties and cost, it is more preferably in the range of 50 to 150 μm.

本発明において、シート基材の全面に断続的な切込を挿入し、切込シート基材を製造するにあたり、切込シート基材中の実質的にすべての強化繊維の繊維長さLを100mm以下とすることにより、成形時に繊維は流動可能、特に繊維の配列方向にも流動可能となり、複雑な形状の成形追従性にも優れる。該切込がない場合、すなわち連続繊維のみの場合、繊維の配列方向には流動しないため、複雑形状を形成することは出来ない。一方で繊維長さLを10mm未満にすると、さらに流動性が向上するが、他の要件を満たしても構造材として必要な高力学特性は得られない。好ましくは、10mm以下の繊維が配列している面積が、シート基材面積に占める割合の5%より小さいのがよい。流動性と力学特性との関係を鑑みると、さらに好ましくは20〜60mmの範囲内である。   In the present invention, intermittent cuts are inserted into the entire surface of the sheet base material, and in manufacturing the cut sheet base material, the fiber length L of substantially all the reinforcing fibers in the cut sheet base material is 100 mm. By making the following, the fibers can flow at the time of molding, in particular, the fibers can flow in the arrangement direction of the fibers, and the molding followability of complicated shapes is excellent. When there is no notch, that is, when only continuous fibers are used, a complicated shape cannot be formed because the fibers do not flow in the fiber arrangement direction. On the other hand, when the fiber length L is less than 10 mm, the fluidity is further improved. However, even if other requirements are satisfied, high mechanical properties necessary as a structural material cannot be obtained. Preferably, the area in which fibers of 10 mm or less are arranged is smaller than 5% of the ratio of the sheet base material area. Considering the relationship between fluidity and mechanical properties, it is more preferably in the range of 20 to 60 mm.

本発明において、シート基材に挿入された切込により生成された繊維束端部は、繊維強化プラスチックにおいては、荷重が加わったときに応力集中が起こり、破壊の起点となる可能性が高い。したがって、強化繊維をできるだけ分断しない方が強度上有利である。切込の繊維直交方向成分Wsが100mmより大きい場合には強度は一定となる。力学特性の観点から好ましくは、Wsが1.5mm以下とすると、強度向上が著しい。一方で、Wsが30μmより小さくなると、抜き型をシート基材に押し当てた際に刃から繊維が逃げやすく、切込の位置制御が難しいため、シート基材全面に渡って強化繊維の繊維長さLが10〜100mmとなるよう、保障することが難しい。すなわち、設計通りに分断されない繊維が存在すると基材の流動性は著しく低下するが、切込長さを過剰に長くとると、繊維長さLが10mmを下回る部位が多くなってしまう、という問題点がある。好ましくはWsを1mm以上とすることにより、簡易な装置で切込を挿入することができる。逆に、Wsが10mmより大きいときにはほぼ強度が一定に落ち着く。すなわち、繊維束端部がある一定以上に大きくなると、破壊が始まる荷重がほぼ同等となる。Wsが1.5mm以下であるときに、強度向上が著しくさらに好ましい。すなわち、簡易な装置で切込を挿入することができるという観点からは、Wsは1〜10mmであることが好ましく、一方、切込の制御のしやすさと力学特性との関係を鑑みると、Wsは30μm〜1.5mmであることが好ましく、さらに好ましくは50μm〜1mmの範囲内である。   In the present invention, the fiber bundle end generated by the cut inserted into the sheet base material is highly likely to become a starting point of fracture in the fiber reinforced plastic when stress is applied when a load is applied. Therefore, it is advantageous in strength that the reinforcing fiber is not divided as much as possible. When the cut fiber orthogonal direction component Ws is larger than 100 mm, the strength is constant. From the viewpoint of mechanical characteristics, preferably, when Ws is 1.5 mm or less, the strength is significantly improved. On the other hand, when Ws is smaller than 30 μm, the fibers easily escape from the blade when the punching die is pressed against the sheet base material, and it is difficult to control the cutting position. It is difficult to ensure that the length L is 10 to 100 mm. That is, if there is a fiber that is not divided as designed, the fluidity of the base material is remarkably lowered, but if the cut length is excessively long, there are many problems that the fiber length L is less than 10 mm. There is a point. Preferably, by setting Ws to 1 mm or more, it is possible to insert the cut with a simple device. On the contrary, when Ws is larger than 10 mm, the strength is almost constant. That is, when the fiber bundle end becomes larger than a certain value, the load at which breakage starts becomes substantially equal. When Ws is 1.5 mm or less, the strength improvement is significantly more preferable. That is, Ws is preferably 1 to 10 mm from the viewpoint that the cutting can be inserted with a simple device. On the other hand, in view of the relationship between the ease of controlling the cutting and the mechanical characteristics, Ws Is preferably 30 μm to 1.5 mm, more preferably in the range of 50 μm to 1 mm.

シート基材に断続的な切込を挿入する代表的な方法としては、次の3つが考えられる。1つ目は、カッターナイフのような一枚刃を用いて手作業で切込を挿入したり、自動裁断機(指定したCAD図面に沿って切り刃や丸刃を移動させ、基材を裁断する装置)を用いてシート基材に切込を挿入したりするカッター法である。2つ目は、予め刃を配置した回転ローラーに連続的にシート基材を押し当てることにより、シート基材に切込を挿入する回転刃法である。3つ目は、プレス機(昇降機)を用いて、シート基材に刃を配置した抜き型を押し当てることによって、シート基材に切込を挿入する押切法である。カッター法は、簡易的にシート基材に切込を入れる場合には適しているが、切込の数が多くなればなるほど切込の挿入にかかる時間が長くなり、量産には向かない。回転刃法は、切込の挿入速度は速く設定できるが、断続的な切込を入れるために回転ローラーの曲面上に1つ1つの切込に対応する刃を精度良く位置決めして設けるのが困難である。一方、押切法は、1回のプレスにより多量の切込を一度にシート基材に挿入することができるなど生産効率もよく、抜き型の加工も容易であるため、シート基材に断続的な切込を挿入する方法として最適である。なお、押切法において抜き型をプレス機に取り付ける方法としては、例えば、刃を土台となる木型などに埋め込み、抜き型としてプレス機に取り付けるのが好ましい。この手法を用いれば、抜き型の作製が容易であり、また刃の突出量などを簡単に調整することもできる。本発明はこの押切法を用いたものである。   The following three methods can be considered as typical methods for inserting intermittent cuts into the sheet base material. The first is to insert a cut manually using a single blade such as a cutter knife, or an automatic cutting machine (moving the cutting blade or round blade along the specified CAD drawing to cut the substrate) This is a cutter method in which a notch is inserted into a sheet base material using an apparatus that performs such a process. The second is a rotary blade method in which a cut is inserted into a sheet base material by continuously pressing the sheet base material against a rotary roller on which a blade is previously arranged. The third is a pressing method in which a notch is inserted into the sheet base material by pressing a punching die having a blade disposed on the sheet base material using a press machine (elevator). The cutter method is suitable for making a cut in a sheet base material in a simple manner. However, the larger the number of cuts, the longer the time required for the insertion of the cut, and it is not suitable for mass production. In the rotary blade method, the insertion speed of the cut can be set fast, but in order to make intermittent cuts, it is necessary to accurately position and provide blades corresponding to each cut on the curved surface of the rotary roller. Have difficulty. On the other hand, the press-cutting method has a high production efficiency such as being able to insert a large amount of cuts into the sheet base material at a time by one press, and the punching process is easy, so the sheet base material is intermittent. It is the best way to insert a notch. In addition, as a method of attaching the punching die to the press machine in the press-cutting method, for example, it is preferable to embed the blade in a wooden mold as a base and attach it to the press machine as a punching die. If this method is used, it is easy to produce a punching die, and the amount of protrusion of the blade can be easily adjusted. The present invention uses this pressing method.

本発明は、シート基材を繊維配列方向に送り、シート基材に刃を配置した抜き型を間欠的に押し当てることによって、シート基材に切込を挿入する。繊維配列方向にシート基材を送ることで、繊維に張力をかけてシート基材を搬送でき、安定してシート基材を扱うことができる。また、シート基材を繊維配列方向に送りながら、間欠的に抜き型をシート基材に押し当てることにより、連続的に切込シート基材を製造できる。ここで、間欠的に抜き型をシート基材に押し当てる際、シート基材が常に移動していてもよいし、刃と基材が接触しているときのみ停止させ、それ以外の時間にシート基材を移動させる手段をとってもよい。前者には、裁断時に刃にかかる負荷が大きくなるが、裁断速度を高く設定できるというメリットがある。また、後者には、裁断速度は遅いが、刃にかかる負担は軽減でき、安定的に切込シート基材を量産することが出来るというメリットがある。   The present invention inserts a cut into a sheet base material by feeding the sheet base material in the fiber array direction and intermittently pressing a die having a blade disposed on the sheet base material. By feeding the sheet base material in the fiber array direction, the sheet base material can be conveyed by applying tension to the fibers, and the sheet base material can be handled stably. Moreover, a cutting sheet base material can be manufactured continuously by intermittently pressing the punching die against the sheet base material while feeding the sheet base material in the fiber array direction. Here, when the punching die is pressed against the sheet base material intermittently, the sheet base material may always move, or is stopped only when the blade and the base material are in contact with each other, and at other times the sheet Means for moving the substrate may be taken. The former has an advantage that the cutting speed can be set high although the load applied to the blade during cutting becomes large. The latter has the merit that the cutting speed is slow, but the burden on the blade can be reduced, and the cut sheet base material can be stably mass-produced.

さらに、本発明の製造方法を用いることにより奏される画期的な効果として、間欠的に抜き型を押し当てることで、一度に挿入する切込の量を減らすことができ、切込の挿入に必要な荷重も小さく抑えられる点がある。例として、図4(A)のようなパターンの切込8をシート基材3に挿入する場合を考える。仮に、このパターンの切込8を1回抜き型をシート基材3に押し当てる(以降、“プレス”と記す)だけで挿入しようとする場合、一度に挿入する切込8の量が多いため、繊維を分断するために大きな荷重が必要となる。そのため、一気に切込を挿入するのに十分な荷重を負荷することのできるプレス機を導入しようとすれば、プレス機が大型化し、生産コストが高騰するとともに、昇降速度が低下する。しかし、一度にすべての切込を挿入するのではなく、1回目のプレスでは図4(B)の実線部10、2回目のプレスでは点線部11を裁断するといったように、1回のプレスで挿入する切込8の本数を少なくし、複数回のプレスで切込8の挿入を行えば、一度に挿入する切込8の量が少なくなり、プレス機に要求される負荷荷重も小さく抑えられる。これに伴い、切込8の挿入に用いるプレス機も小さくすることができ、生産コストの低減につながるとともに、昇降速度を早くすることができ、切込シート基材の製造速度が向上する。また、供給するシート基材は1枚でもよいが、複数枚のシート基材を重ねることで、一気に複数枚の切込シート基材を製造することが出来る。   Furthermore, as an epoch-making effect achieved by using the manufacturing method of the present invention, the amount of cuts inserted at a time can be reduced by pressing the punching die intermittently, and the insertion of the cuts There is a point that the load necessary for the can be kept small. As an example, let us consider a case where notches 8 having a pattern as shown in FIG. Temporarily, when it is going to insert the notch 8 of this pattern only by pressing a die once on the sheet | seat base material 3 (henceforth "press"), since there is much quantity of the notch 8 inserted at once. A large load is required to break the fiber. Therefore, if it is going to introduce the press machine which can load sufficient load to insert a notch at a stretch, a press machine will enlarge, production cost will rise, and raising / lowering speed will fall. However, instead of inserting all the cuts at a time, the first press presses the solid line portion 10 in FIG. 4B and the second press cuts the dotted line portion 11 in one press. If the number of the cuts 8 to be inserted is reduced and the cuts 8 are inserted by a plurality of presses, the amount of the cuts 8 to be inserted at one time is reduced, and the load load required for the press machine can be kept small. . Along with this, the press used to insert the cut 8 can be made smaller, leading to a reduction in production cost, increasing the lifting speed, and improving the production speed of the cut sheet base material. Moreover, although the sheet | seat base material to supply may be 1 sheet | seat, a several sheet | seat base material can be manufactured at a stretch by laminating | stacking several sheet | seat base materials.

さらに、間欠的にプレスすることによって切込を挿入するメリットとしては、抜き型に配置する刃の密度を低く抑えることができるという点も挙げられる。たとえば、図4(B)の実線部のように一回のプレスによって同時に挿入される切込が密集している場合、各切込に対応するようにそれぞれ独立した刃を抜き型に配置しようとすれば、各刃同士の距離が短いため、刃を配置する作業が困難となる場合がある。その場合、図4(B)のように、一度に挿入する切込を狭い領域に密集させるのではなく、好ましくは、例えば、図4(C)の実線部のように、一度に挿入する切込が密集しないように抜き型を設計するのがよい。図4(B)と図4(C)は異なる抜き型を用いて切込8を挿入した例であるが、シート基材3を矢印12の量だけ移動させることによって、いずれの抜き型を用いた場合にも、図4(A)に示すパターンの切込を挿入することが可能となる。このように抜き型を設計することにより、より簡易かつ安価に抜き型を作製することが可能となる。このように、刃の密度を低く抑えることができるという点も、本発明により奏される画期的な効果のひとつである。   Further, as an advantage of inserting the cut by intermittently pressing, the density of the blades arranged in the punching die can be kept low. For example, when the cuts simultaneously inserted by one press are dense like the solid line part of FIG. 4 (B), an attempt is made to arrange independent blades in the punching die so as to correspond to the respective cuts. Then, since the distance between each blade is short, the operation | work which arrange | positions a blade may become difficult. In such a case, it is preferable that the cuts to be inserted at a time are not concentrated in a narrow area as shown in FIG. 4B, but preferably the cuts to be inserted at a time like the solid line part in FIG. It is better to design the punching die so that it is not crowded. 4 (B) and 4 (C) are examples in which the notches 8 are inserted using different punching dies, but any of the punching dies can be used by moving the sheet base material 3 by the amount of the arrow 12. Even in the case where it has occurred, it becomes possible to insert the notch of the pattern shown in FIG. By designing the punching die in this way, it becomes possible to produce the punching die more easily and at a low cost. Thus, the point that the blade density can be kept low is one of the epoch-making effects achieved by the present invention.

本発明に用いる抜き型としては、挿入したい切込毎に独立した刃を配置してもよいが、複数のカット部が一体となる刃を用いるのがよい。ここで“カット部”とは、図2B)に示すように、抜き型7に設けられた刃6の領域であり、シート基材3に切込を挿入する際に、シート基材3に進入するか、あるいはシート基材3を貫通する領域を指す。図2に切込挿入時のシート基材と刃とを模式的に示したが、本発明に定義するカット部は図2の斜線部にあたる。シート基材に挿入する切込をそれぞれ独立した刃で作製しようとした場合、非常に多くの刃をそれぞれ抜き型に配置する必要があるため、刃の取り付けに時間がかかる。また、切込シート基材においては、切込の位置精度が成形時の流動性や成形品の力学強度に大きく影響を与えるため、抜き型に刃を精度よく配置することが重要となる。したがって、取り付ける刃の数が多ければ多いほど、高精度に刃の位置調整をするにあたって、多くの時間がかかる。一方、予め複数のカット部が一体となる刃を用いれば、刃を抜き型に取り付ける回数を大幅に減少することが出来る。複数のカット部が一体となる刃の例としては、金属塊から切削により複数の鋭凸部を削りだした彫刻刃、金属塊をエッチング処理、その後機械加工するなどして得られる腐食刃、板状の刃であって、端部に複数の鋭凸部が設けられたミシン刃などが挙げられる。   As the punching die used in the present invention, an independent blade may be arranged for each notch to be inserted, but it is preferable to use a blade in which a plurality of cut portions are integrated. Here, the “cut portion” is an area of the blade 6 provided in the punching die 7 as shown in FIG. 2B), and enters the sheet base 3 when inserting the cut into the sheet base 3. Or a region penetrating the sheet substrate 3. Although the sheet | seat base material and blade at the time of cutting insertion were typically shown in FIG. 2, the cut part defined to this invention corresponds to the shaded part of FIG. When an incision to be inserted into a sheet base material is to be produced with independent blades, it is necessary to arrange a large number of blades in a punching die, and it takes time to attach the blades. Further, in the cut sheet base material, the position accuracy of the cut greatly affects the fluidity at the time of molding and the mechanical strength of the molded product. Therefore, it is important to accurately arrange the blades in the die. Therefore, as the number of blades to be attached increases, it takes more time to adjust the blade position with high accuracy. On the other hand, if a blade in which a plurality of cut portions are integrated in advance is used, the number of times of attaching the blade to the punching die can be greatly reduced. Examples of blades in which a plurality of cut parts are integrated include engraving blades obtained by cutting a plurality of sharp protrusions from a metal lump by cutting, corrosion blades obtained by etching the metal lump, and then machining, etc. And a sewing blade having a plurality of sharp protrusions at its end.

本発明において、所望のパターンの切込をシート基材に挿入する手段としては、次の2つの方法が有効である。ここで、図23(A)、(B)には、本発明における切込シート基材を製造方法の一例を示しており、また図23(C)、(D)には、それぞれの手法を用いて作製された切込シート基材の一例を示している。まず1つ目の手段としては、抜き型をシート基材に押し当てる方向(以下、押当方向と称する)に、抜き型に含まれる刃の刃先の稜線をシート基材3に投影した投影線を投影線O(59)としたとき、図23(C)に示すように、前記投影線O(59)と所望の切込パターンとが一致し、かつ図23(A)に示すように、前記刃の側面が前記押当方向に対して平行となるように刃を抜き型に配置する方法である。このようにして作製された抜き型をシート基材に押し当てることによって、所望のパターンの切込を前記シート基材に挿入することができる。2つ目は、図23(D)に示すように、所望とする切込のパターンが前記投影線O(59)上にあり、かつ、図23(B)のように、刃先に向かうにつれて先細りとなる刃を抜き型に配置し、所望のパターンの切込が挿入される位置まで前記抜き型をシート基材に押し当てる方法である。前者では、刃の刃先がシート基材を貫通しさえすれば、抜き型を押し当てる量を任意にとることができるというメリットがある。一方、後者では、抜き型をシート基材に押し当てる量を制御しなければならないが、基材を裁断するうちに刃が劣化し、シート基材を適切に裁断できず連続繊維が残るようになった場合、抜き型をシート基材に押し当てる量を多くするだけで連続繊維を残すことなく基材を裁断することができるというメリットがある。なお、図23(C)、(D)に示すように、前記押当方向に、抜き型に含まれるすべてのカット部の稜線をシート基材3に投影した投影線を投影線Aとしたとき、いずれの手法を用いた場合であっても投影線Aと切込は一致する。   In the present invention, the following two methods are effective as means for inserting a cut of a desired pattern into the sheet base material. Here, FIGS. 23 (A) and (B) show an example of the manufacturing method of the cut sheet substrate in the present invention, and FIGS. 23 (C) and (D) show the respective methods. An example of the cut sheet base material produced by using is shown. First, as a first means, a projection line obtained by projecting a ridge line of the blade edge of the blade included in the punching die onto the sheet base material 3 in a direction in which the punching die is pressed against the sheet base material (hereinafter referred to as a pressing direction). Is the projection line O (59), as shown in FIG. 23C, the projection line O (59) matches the desired cutting pattern, and as shown in FIG. In this method, the blade is disposed in the punching die so that the side surface of the blade is parallel to the pressing direction. By pressing the punching die thus produced against the sheet base material, a desired pattern of cuts can be inserted into the sheet base material. Second, as shown in FIG. 23 (D), the desired notch pattern is on the projection line O (59) and, as shown in FIG. 23 (B), tapers toward the cutting edge. The blade is arranged in a punching die, and the punching die is pressed against the sheet base material until a desired pattern of cuts is inserted. The former has an advantage that the amount of pressing the punching die can be arbitrarily set as long as the blade tip penetrates the sheet base material. On the other hand, in the latter case, it is necessary to control the amount of pressing the die against the sheet base material, but the blade deteriorates while the base material is cut, so that the continuous fiber remains without properly cutting the sheet base material. In this case, there is an advantage that the base material can be cut without leaving continuous fibers only by increasing the amount of pressing the punching die against the sheet base material. 23C and 23D, when the projection line A is a projection line obtained by projecting the ridge lines of all the cut portions included in the punching die onto the sheet base material 3 in the pressing direction. In any case, the projection line A coincides with the notch.

本発明において、切込の繊維直交方向成分Wsを30μm〜100mmの範囲内とする手段としては、前記投影線Aの繊維直交方向成分Ws’が30μm〜100mmの範囲内となるように、抜き型をシート基材に押し当てるのがよい。本発明では、基材の裁断時に基材自身の大きな変形を伴わず、また強化繊維の配列方向に基材を送る。そのため、本発明の製造方法では、図3(A)と図3(B)の関係のように、投影線Aのパターンがそのまま切込8の形状となる。したがって、前記投影線Aの繊維直交成分Ws’の値を30μm〜100mmの範囲内とすることによって、同時に切込の繊維直交成分Wsを30μm〜100mmの範囲内とすることが可能となる。   In the present invention, as a means for setting the fiber orthogonal direction component Ws of the incision within the range of 30 μm to 100 mm, the die cutting is performed so that the fiber orthogonal direction component Ws ′ of the projection line A is within the range of 30 μm to 100 mm. Is preferably pressed against the sheet substrate. In the present invention, the base material is not greatly deformed when the base material is cut, and the base material is fed in the direction in which the reinforcing fibers are arranged. Therefore, in the manufacturing method of the present invention, the pattern of the projection line A has the shape of the notch 8 as it is, as in the relationship between FIG. 3 (A) and FIG. 3 (B). Therefore, by setting the value of the fiber orthogonal component Ws ′ of the projection line A within the range of 30 μm to 100 mm, it becomes possible to simultaneously set the fiber orthogonal component Ws of the cut within the range of 30 μm to 100 mm.

さらに本発明において、実質的にすべての強化繊維の繊維長さLを10〜100mmの範囲内とする具体的な手段としては、次の方法が好ましい。すなわち、図5(A)に示すように、前記投影線A(47)を、さらに繊維配列方向2に、同じ繊維直交面48に投影して得た投影線B(13)同士が実質的にすべて連結するように抜き型をシート基材に押し当てるのがよい。図5(A)、図5(B)に、前記投影線A(47)および該投影線A(47)を繊維配列方向2に同じ繊維直交面48に投影した投影線B(13)を示す。図5(A)に示すように、前記投影線B(13)がすべて連結するように抜き型に刃を配置し、該抜き型をシート基材に押し当てる場合は、シート基材3を繊維配列方向2に送るに際し、前記カット部を強化繊維の配列方向2に10〜100mmの間隔でシート基材3に押し当てることによって、シート基材3内の強化繊維を10〜100mmの範囲に分断することが可能である。一方、投影線B(13)同士が「実質的に」すべて連結する、とあるように、その一部が連結されていない場合であっても本発明の範囲に含まれる場合があるが、かかる場合については、以下に説明するとおりである。すなわち、図5(B)に示すように、投影線B(13)に不連結部14が存在する場合、何度抜き型をシート基材3に押し当てたとしても、該箇所を通る繊維は切断されることなく連続繊維として存在することになる。その結果、切込シート基材は、十分な流動性を発揮することができない。ただし、この不連結部の幅15が0.5mm以下で、若干連続繊維が残る程度であれば、切込シート基材は良好な流動性を発揮することができる。すなわち、本発明における“投影線B同士が実質的にすべて連結する”とは、投影線Bをすべて重ね合わせたときに、0.5mmより大きな隙間が存在しないことを指す。好ましくは、不連結部の幅15が0.1mm以下とするのがよく、さらに好ましくは完全に不連結部が存在しない、すなわち連続繊維がまったく存在しないのが最もよい。   Furthermore, in the present invention, the following method is preferable as a specific means for setting the fiber length L of substantially all the reinforcing fibers within the range of 10 to 100 mm. That is, as shown in FIG. 5 (A), the projection lines B (13) obtained by projecting the projection line A (47) onto the same fiber orthogonal plane 48 in the fiber arrangement direction 2 are substantially equal. It is preferable to press the punching die against the sheet base so that all are connected. 5A and 5B show the projection line A (47) and the projection line B (13) obtained by projecting the projection line A (47) onto the same fiber orthogonal plane 48 in the fiber arrangement direction 2. FIG. . As shown in FIG. 5 (A), when the blade is arranged on the punching die so that all the projection lines B (13) are connected, and the punching die is pressed against the sheet base material, the sheet base material 3 is made of fiber. When sending in the arrangement direction 2, the cut portion is pressed against the sheet base material 3 in the arrangement direction 2 of the reinforcing fibers at intervals of 10 to 100 mm, thereby dividing the reinforcing fibers in the sheet base material 3 into the range of 10 to 100 mm. Is possible. On the other hand, even if some of the projection lines B (13) are not connected, as in the case where all of the projection lines B (13) are connected, they may fall within the scope of the present invention. The case is as described below. That is, as shown in FIG. 5 (B), when the unconnected portion 14 is present in the projection line B (13), the fiber passing through the portion is no matter how many times the punching die is pressed against the sheet base material 3. It exists as a continuous fiber without being cut. As a result, the cut sheet base material cannot exhibit sufficient fluidity. However, the cut sheet base material can exhibit good fluidity if the width 15 of the non-connected portion is 0.5 mm or less and some continuous fibers remain. That is, “substantially all the projection lines B are connected” in the present invention means that there is no gap larger than 0.5 mm when all the projection lines B are overlapped. Preferably, the width 15 of the unconnected portion is 0.1 mm or less, and more preferably, the unconnected portion is completely absent, that is, it is best that there is no continuous fiber.

前述の通り、図3(A)に示すように、切込の繊維直交方向成分Ws(54)は、切込シート基材3において切込8により分断される繊維量を示しており、好ましくは、Wsが1.5mm以下とすると、強度向上が著しい。Wsを小さくする、すなわち前記投影線分A(47)の繊維直交方向成分Ws’(5)を小さくする手段としては、まずカット部の長さW(19)を小さくする方法が考えられる。ここで、カット部の長さW(19)は、抜き型をシート基材に押し当てる方向に、カット部の稜線9をシート基材3に投影した投影線分A(47)の長さを示し、曲線の場合は図2(A)の右に示すように該投影線Aに沿った長さを示す。しかし、極度にカット部の長さWが小さいと刃が細かくなるため耐久性が低下し、裁断時に刃が破損し易くなる。裁断時の刃の破損を抑制するためには、カット部の長さWを100μm以上とすることが好ましい。また、Wsを小さくするもうひとつの手段としては、投影線Aと繊維配列方向とのなす角(絶対値)をθとしたとき、θが鋭角となるように刃をシート基材に押し当てるという方法がある。なお、本発明においては、図3(B)に示すように、投影線Aが曲線の場合は、投影線A上の点で繊維配列方向とのなす角が最大となる点における角をθとする。これによって、カット部の長さWが同じであっても、θを小さくすることにより、Ws(Ws’)の値も小さく抑えることが可能となる。その結果、この切込シート基材を用いて成形された繊維強化プラスチックの力学強度も向上する。   As described above, as shown in FIG. 3 (A), the cut fiber orthogonal direction component Ws (54) indicates the amount of fiber cut by the cut 8 in the cut sheet substrate 3, and preferably When Ws is 1.5 mm or less, the strength is significantly improved. As a means for reducing Ws, that is, for reducing the fiber orthogonal direction component Ws ′ (5) of the projection line segment A (47), first, a method of reducing the length W (19) of the cut portion is conceivable. Here, the length W (19) of the cut portion is the length of the projection line segment A (47) obtained by projecting the ridge line 9 of the cut portion onto the sheet base material 3 in the direction in which the punching die is pressed against the sheet base material. In the case of a curve, the length along the projection line A is shown as shown on the right side of FIG. However, if the length W of the cut portion is extremely small, the blade becomes fine and durability is lowered, and the blade is easily damaged during cutting. In order to suppress breakage of the blade during cutting, it is preferable that the length W of the cut portion is 100 μm or more. As another means for reducing Ws, when the angle (absolute value) formed between the projection line A and the fiber arrangement direction is θ, the blade is pressed against the sheet substrate so that θ is an acute angle. There is a way. In the present invention, as shown in FIG. 3B, when the projection line A is a curve, the angle at the point where the angle formed with the fiber arrangement direction at the point on the projection line A is the maximum is θ. To do. As a result, even if the length W of the cut portion is the same, the value of Ws (Ws ′) can be kept small by reducing θ. As a result, the mechanical strength of the fiber reinforced plastic molded using this cut sheet substrate is also improved.

また、θが鋭角となるように刃をシート基材に押し当てることによって、切込シート基材の成形品内の樹脂リッチ部を小さくすることもできる。図6(A)にθを90°とした場合の切込シート基材の模式図を、図6(B)にプレス成形によって得られた該切込シート基材の成形体の一部を示す。前記切込シート基材3をプレス成形した際、まず、図6(A)の切込8が開口し、繊維が強化繊維の配列方向2に移動しようとする。さらに、切込8の開口に伴い、開口部に樹脂が流入するが、これと同時に開口部と繊維直交方向4に隣接する強化繊維も若干同開口部に流入することになる。その結果、図6(B)に示すように、繊維端部近傍に繊維を含まない領域、すなわち樹脂リッチ部16が生成されることになる。繊維強化プラスチックでは、負荷された荷重のほとんどを繊維が負担するため、樹脂リッチ部近傍で応力集中が起こり、破壊の起点となり易い。一方、θを鋭角とした場合の切込シート基材の模式図を図7(A)に、プレス成形によって得られた該切込シート基材の成形体の一部を図7(B)に、前記成形体の開口部の拡大図を図7(C)に示す。θが鋭角となる切込シート基材3をプレス成形した場合、まず、θ=90°の成形品同様に、切込部8が開口しようとする。しかし、θが鋭角の場合は、切込が開口する際に開口部の繊維配列方向2の長さ17が大きくなるために、開口部に繊維直交方向4から繊維が流入し易くなる。さらに開口部の繊維直交方向4の長さ(Ws)も小さくなることも合わさり、樹脂リッチ部16の面積が小さくなる。さらに、θが鋭角となるように刃をシート基材に押し当てることによって、抜き型を強化繊維に押し付けた際に刃から強化繊維が逃げにくくなり、生産安定性が増す。すなわち、シート基材に含まれる強化繊維は、繊維配列方向にはほとんど変形しないが、繊維直交方向には蛇行し易く、刃から逃れようとするため、投影線Aと強化繊維の直交方向が揃う場合、カットミスが発生し易い。   Moreover, the resin rich part in the molded article of a cut sheet base material can also be made small by pressing a blade against the sheet base material so that θ becomes an acute angle. FIG. 6 (A) shows a schematic diagram of the cut sheet base material when θ is 90 °, and FIG. 6 (B) shows a part of the molded body of the cut sheet base material obtained by press molding. . When the cut sheet base material 3 is press-molded, first, the cut 8 in FIG. 6A is opened, and the fibers try to move in the arrangement direction 2 of the reinforcing fibers. Further, the resin flows into the opening with the opening of the notch 8, and at the same time, the reinforcing fibers adjacent to the opening and the fiber orthogonal direction 4 also slightly flow into the opening. As a result, as shown in FIG. 6 (B), a region not containing fibers, that is, a resin rich portion 16 is generated in the vicinity of the fiber end portion. In the fiber reinforced plastic, since the fiber bears most of the applied load, stress concentration occurs in the vicinity of the resin-rich portion, which tends to be a starting point of fracture. On the other hand, a schematic diagram of the cut sheet base material when θ is an acute angle is shown in FIG. 7A, and a part of the cut sheet base material obtained by press molding is shown in FIG. 7B. FIG. 7C shows an enlarged view of the opening of the molded body. When the cut sheet base material 3 having an acute angle θ is press-formed, first, the cut part 8 tends to open like a molded product of θ = 90 °. However, when θ is an acute angle, the length 17 of the opening in the fiber arrangement direction 2 becomes large when the incision is opened, so that fibers easily flow into the opening from the fiber orthogonal direction 4. Furthermore, the length (Ws) in the fiber orthogonal direction 4 of the opening is also reduced, and the area of the resin rich portion 16 is reduced. Furthermore, by pressing the blade against the sheet substrate so that θ is an acute angle, the reinforcing fiber is difficult to escape from the blade when the punching die is pressed against the reinforcing fiber, and the production stability is increased. That is, the reinforcing fibers contained in the sheet base material hardly deform in the fiber arrangement direction, but easily meander in the fiber orthogonal direction and try to escape from the blade, so that the orthogonal direction of the projection line A and the reinforcing fibers are aligned. In this case, cut mistakes are likely to occur.

以上のように、θが鋭角となるように刃をシート基材に押し当てることは、得られた切込シート基材の力学特性の観点からも、製造プロセスの観点からも都合がよい。特に、θが60°以下であれば、刃から強化繊維が逃げにくくなる。さらに強度的な側面も鑑みると、好ましくは、θが45°以下、さらに好ましくは30°以下である。一方で、θが2°より小さくても流動性も力学特性も十分得ることが出来るが、切込を安定して挿入することが難しくなる。すなわち、繊維に対して切込が寝てくると、繊維間を刃が裂きやすくなる。また、繊維長さLを100mm以下とするためには、θが2°より小さいと少なくとも切込同士の最短距離が1.8mmより小さくなる。切込が多く挿入されることで、切込シート基材が形状を維持しにくくなり、取り扱い性に欠ける場合がある。   As described above, pressing the blade against the sheet base material so that θ is an acute angle is convenient both from the viewpoint of the mechanical properties of the obtained cut sheet base material and from the viewpoint of the manufacturing process. In particular, if θ is 60 ° or less, the reinforcing fibers are difficult to escape from the blade. Further, considering the strength aspect, θ is preferably 45 ° or less, more preferably 30 ° or less. On the other hand, even if θ is smaller than 2 °, sufficient fluidity and mechanical properties can be obtained, but it is difficult to insert the cut stably. That is, when the incision lies on the fibers, the blades easily break between the fibers. Further, in order to set the fiber length L to 100 mm or less, when θ is smaller than 2 °, at least the shortest distance between the cuts becomes smaller than 1.8 mm. By inserting a large number of cuts, the cut sheet base material is difficult to maintain its shape, and the handleability may be lacking.

前述のように、カット部の長さWを短くすることと、投影線Aを基材配列方向に対して斜めとなるように刃を抜き型に配置することの2つの手段によって、切込の繊維直交方向成分Wsを小さくすることができ、切込シート基材を用いた成形体を高強度化できる。しかし、前述のように、カット部の長さWが極端に短い、あるいは投影線Aと繊維配列方向とのなす角θがあまりに小さい場合、生産安定性に欠ける可能性がある。その場合は、これら2つの手段を同時に行うことが好ましく、これにより切込の繊維直交方向成分Wsの値をさらに小さくし、さらに強度を向上することが出来る。   As described above, by the two means of shortening the length W of the cut portion and arranging the blade in the die so that the projection line A is inclined with respect to the substrate arrangement direction, The fiber orthogonal direction component Ws can be reduced, and the molded body using the cut sheet base material can be increased in strength. However, as described above, when the length W of the cut portion is extremely short or the angle θ between the projection line A and the fiber arrangement direction is too small, the production stability may be lacking. In that case, it is preferable to perform these two means at the same time, whereby the value of the cut fiber orthogonal direction component Ws can be further reduced and the strength can be further improved.

本発明の製造方法では、前述のように、彫刻刃、腐食刃、ミシン刃など、様々な刃を抜き型に配置することができる。その中でも、ミシン刃を用いるのが特に好ましい。一般的にミシン刃は、紙などに破線状の切込を挿入する際用いられる。この際、前記破線状の切込は、指定された線に沿って手で容易に裁断できるよう設計される。このミシン刃の形状に着目し、ミシン刃を一方向に配列した強化繊維を含むシート基材に断続的な切込を挿入するためのカット部として用いたことが、本発明の大きな特徴のひとつである。ミシン刃は、腐食刃、彫刻刃と比較しても、工業的にも安価に製造することが可能である。また、腐食刃では製法上の都合から高硬度な材料を使用することができないが、ミシン刃は鍛造のブレードに切り欠き加工することでも得られるため、より高硬度な材料を使用することが可能であり、耐久性に優れている。   In the manufacturing method of the present invention, as described above, various blades such as engraving blades, corrosion blades, and sewing blades can be arranged in the punching die. Among these, it is particularly preferable to use a sewing blade. Generally, the sewing machine blade is used when inserting a broken line-like cut into paper or the like. At this time, the broken line-shaped cut is designed so that it can be easily cut by hand along a designated line. Focusing on the shape of this sewing blade, one of the major features of the present invention is that it is used as a cut portion for inserting intermittent cuts into a sheet base material including reinforcing fibers in which the sewing blades are arranged in one direction. It is. The sewing blade can be manufactured industrially at a lower cost than the corrosion blade and the engraving blade. In addition, high-hardness materials cannot be used with corrosion blades due to manufacturing reasons, but higher-hardness materials can be used because sewing blades can also be obtained by cutting into forging blades. And has excellent durability.

さらに好ましくは、本発明は平板状のミシン刃を用いるのがよい。ミシン刃を繊維配列方向に対して斜めに配置したり(前記投影線Aを繊維配列方向に対して斜めとする)、鋭凸部の大きさ、間隔を小さくすれば効果的に切込の繊維直交方向成分Wsを小さくすることができ、非常に容易かつ安価に抜き型を作製することができる。なお、仮にミシン刃を回転刃法に適用した場合、刃を取り付ける回転ローラーが湾曲しているため、本発明のようにミシン刃を繊維配列方向に対して斜めに配置するだけでは切込の繊維直交方向成分Wsを小さくすることができない。そのため、回転刃法では削り出しやエッチングといった手法により刃をローラー上に設けざるを得ず、製造コストが高くなる。   More preferably, the present invention uses a flat sewing blade. If the sewing blade is disposed obliquely with respect to the fiber arrangement direction (the projection line A is inclined with respect to the fiber arrangement direction), or the sharp protrusions are reduced in size and spacing, the fibers can be effectively cut. The orthogonal direction component Ws can be reduced, and a die can be produced very easily and inexpensively. If the sewing blade is applied to the rotating blade method, the rotating roller to which the blade is attached is curved, so that the cutting fiber can be obtained simply by arranging the sewing blade obliquely with respect to the fiber arrangement direction as in the present invention. The orthogonal direction component Ws cannot be reduced. Therefore, in the rotating blade method, the blade must be provided on the roller by a method such as cutting or etching, and the manufacturing cost is increased.

ここで、本発明に好適に用いられるミシン刃の例を図8に示す。例えばミシン刃は、図8(A)のように、平面状のミシン刃であり、溝部が所定ピッチで削りだされているのがよい。その他、図8(B)のように、平板状のミシン刃であり、刃先が山・谷・山・谷の波型形状となっているもの、図8(C)、(D)のように、刃が平面状ではなく、面外方向に波状となっているものなどが好ましく用いられる。いずれの刃を用いても本発明を実施することは可能であるが、加工の容易性、コスト面を鑑みると、図8(A)の平板状のミシン刃が最も適している。また、ミシン刃を作製する具体的な方法としては、刃先を機械加工した連続刃またはエッチング刃(連続刃)にローレットを押し付ける方法、あるいは、刃先加工を行った連続刃を、工作機械を用いて所定ピッチで分割する方法などがある。   Here, an example of a sewing machine blade suitably used in the present invention is shown in FIG. For example, the sewing blade is a flat sewing blade as shown in FIG. 8A, and the grooves are preferably cut out at a predetermined pitch. In addition, as shown in FIG. 8 (B), it is a flat plate-like sewing blade, and the cutting edge has a wave shape of a mountain, a valley, a mountain, a valley, as shown in FIGS. 8 (C) and (D). A blade having a wave shape in the out-of-plane direction is preferable. Although any blade can be used to carry out the present invention, the plate-like sewing blade shown in FIG. 8A is most suitable in view of ease of processing and cost. In addition, as a specific method for producing a sewing machine blade, a method of pressing a knurl against a continuous blade or an etching blade (continuous blade) obtained by machining the blade edge, or a continuous blade obtained by machining the blade edge using a machine tool There is a method of dividing at a predetermined pitch.

前述の通り、本発明の切込シート基材を用いた成形体の力学強度は、前記投影線Aと繊維配列方向との角θに強く依存する。そのため、θが場所によって異なる場合、力学物性が不均一となり設計が困難となる。したがって、ミシン刃が平面状であり、かつ該ミシン刃を互いに平行に抜き型に配置するのが好ましい。   As described above, the mechanical strength of the molded body using the cut sheet base material of the present invention strongly depends on the angle θ between the projection line A and the fiber arrangement direction. Therefore, when θ differs depending on the location, the mechanical properties are non-uniform and the design becomes difficult. Therefore, it is preferable that the sewing machine blade is flat and the sewing machine blades are arranged in a punching die in parallel with each other.

また、前記ミシン刃の一部であり、切込を挿入する際に基材を貫通あるいは基材に進入する部位をカット部とし、同一ミシン刃内で隣接するカット部間の距離をカット部間距離bとしたときに、前記カット部の長さWおよびカット部間距離bがそれぞれ一定となるように前記抜き型をシート基材に押し当てるのが好ましい。ミシン刃のカット部の長さWと前記カット部間距離bが場所毎に異なる場合も、切込シート基材内の切込長さが場所毎に異なることになり、それに伴い材料の物性も変化する。そこで、カット部の長さWと前記カット部間距離bを、それぞれ一定とするのが好ましい。これにより、力学物性が均一となり、設計も容易となる。なお、本発明における前記カット部間距離bとは、図9に示すように、ミシン刃18において隣接するカット部46間の最小直線長さb(20)を指す。   Further, a part that is a part of the sewing machine blade and penetrates the base material or enters the base material when inserting a cut is defined as a cut part, and a distance between adjacent cut parts in the same sewing machine blade is defined between the cut parts. When the distance b is set, it is preferable that the punching die is pressed against the sheet substrate so that the length W of the cut portion and the distance b between the cut portions are constant. Even when the length W of the cutting part of the sewing blade and the distance b between the cutting parts are different from place to place, the cutting length in the cut sheet base material is different from place to place. Change. Therefore, it is preferable that the length W of the cut portion and the distance b between the cut portions are constant. As a result, the mechanical properties are uniform and the design is facilitated. In addition, as shown in FIG. 9, the said distance between cut parts b in this invention points out the minimum linear length b (20) between the cut parts 46 adjacent in the sewing machine blade 18. As shown in FIG.

本発明では、抜き型を前記シート基材に押し当てる方向に、前記投影線Aを、繊維配列方向に、同じ繊維直交面に投影して得た投影線B同士が、互いに端部のみで連結するように、かつシート基材を繊維配列方向に10〜100mm移動するごとに抜き型をシート基材に押し当て、シート基材の裁断を行うのがよい。これにより、抜き型内でカット部が繊維配列方向に重複する箇所がなくなり、基材の裁断に使用する刃の量を最小限とすることができる。さらに、設計したい切込シート基材に含まれる強化繊維の繊維長さL分だけ、シート基材を繊維配列方向に移動しては、抜き型をシート基材に押し当てることによって、所定の繊維長さLを得ることができる。前述のように、抜き型に配置する刃の量を少なくすることで一度に挿入する切込の量が少なくなり、切込の挿入に必要な荷重も小さく抑えられる。本発明において、“投影線B同士が、互いに端部のみで連結する”とは、任意の投影線Bを投影線B1とし、その線分の長さをWs1、それに隣接する投影線Bを投影線B2とし、その線分の長さをWs2としたとき、両線分の共通部分の長さが(Ws1+Ws2)×0.1以下であることを指す。   In the present invention, the projection lines B obtained by projecting the projection line A onto the same fiber orthogonal plane in the fiber array direction in the direction in which the punching die is pressed against the sheet base material are connected to each other only at the ends. It is preferable to press the punching die against the sheet base material and cut the sheet base material every time the sheet base material is moved 10 to 100 mm in the fiber array direction. Thereby, there is no place where the cut portion overlaps in the fiber arrangement direction in the punching die, and the amount of blades used for cutting the substrate can be minimized. Furthermore, by moving the sheet base material in the fiber array direction by the fiber length L of the reinforcing fiber contained in the cut sheet base material to be designed, the predetermined fiber is pressed against the sheet base material. The length L can be obtained. As described above, by reducing the amount of blades arranged in the punching die, the amount of cuts inserted at a time is reduced, and the load required for inserting the cuts can be kept small. In the present invention, “projection lines B are connected to each other only at their ends” means that an arbitrary projection line B is a projection line B1, the length of the line segment is Ws1, and a projection line B adjacent thereto is projected. When the line is B2 and the length of the line segment is Ws2, it indicates that the length of the common part of both line segments is (Ws1 + Ws2) × 0.1 or less.

さらに好ましい手段としては、平板状のミシン刃を抜き型に平行に配置するにあたり、前記カット部間距離bに対するカット部の長さWの比(W/b)が1〜1.5の範囲内であり、投影線B同士が、互いに端部のみで連結するように、前記シート基材を繊維配列方向に10〜100mm移動させる毎に、前記抜き型を前記シート基材に押し当てるのが好ましい。一例を挙げると、抜き型を図10(A)に、また抜き型を用いて作製された切込シート基材を図10(B)に示す。このとき、シート基材の送り量は強化繊維の繊維長さLに相当する。これにより、シート基材の強化繊維の繊維長さを一定とすることができ、また使用する刃の量を最小限に抑えることができる。設計した繊維長さL以下の強化繊維を出来るだけ少なくするという観点からは、好ましくは前記カット部間距離bに対するカット部の長さWの比が1〜1.1の範囲内であるのがよい。   As a more preferable means, the ratio (W / b) of the length W of the cut part to the distance b between the cut parts (W / b) is within the range of 1 to 1.5 when the flat sewing blade is arranged in parallel with the punching die. It is preferable to press the punching die against the sheet base material every time the sheet base material is moved 10 to 100 mm in the fiber array direction so that the projection lines B are connected to each other only at the ends. . As an example, FIG. 10 (A) shows a punching die, and FIG. 10 (B) shows a cut sheet substrate produced using the punching die. At this time, the feed amount of the sheet base material corresponds to the fiber length L of the reinforcing fiber. Thereby, the fiber length of the reinforcing fiber of the sheet base material can be made constant, and the amount of blades to be used can be minimized. From the viewpoint of reducing the number of the reinforcing fibers having the designed fiber length L or less as much as possible, the ratio of the length W of the cut part to the distance b between the cut parts is preferably in the range of 1 to 1.1. Good.

さらに好ましくは、切込シート基材に含まれるすべての強化繊維の繊維長さLが一定であり、かつミシン刃同士を繊維配列方向に1.5L以上離して抜き型に配置するのが良い。図10(B)のような繊維配列方向から傾いた直線状の切込8をミシン刃を用いて挿入する場合、直線状に並んだ切込8の列(すなわち、ミシン刃によって一度に挿入される断続的な切込)同士の距離が小さくなる傾向にある。図10(A)のように、直線状に並んだ切込の列に対応するようにミシン刃18を用意すると、ミシン刃18同士の距離が小さくなり、ミシン刃18の抜き型への配置が難しくなる。また抜き型をシート基材に押し付ける際、荷重が局所化することで、抜き型が傾きやすい。シート基材を繊維配列方向にLずつ送りながら、間欠的に切込8を挿入するにあたり、ミシン刃同士を繊維配列方向に(0.5+n)L(ただし、nは0以上の整数)ずらして抜き型に配置することで、図10(B)のような切込を挿入できる。そこで、nを自然数とする、すなわち、ミシン刃同士を繊維配列方向に1.5L以上はなして抜き型に配置することで、容易にミシン刃を抜き型に配置し、バランスよく抜き型をシート基材に押し当てることが可能となる。   More preferably, the fiber length L of all the reinforcing fibers contained in the cut sheet base material is constant, and the sewing blades are spaced apart from each other by 1.5 L or more in the fiber arrangement direction and arranged in the punching die. When the straight cuts 8 inclined from the fiber arrangement direction as shown in FIG. 10B are inserted using a sewing machine blade, the straight cuts 8 are inserted at a time (that is, inserted at a time by the sewing machine blade). There is a tendency that the distance between each other) becomes smaller. As shown in FIG. 10A, when the sewing blades 18 are prepared so as to correspond to the rows of cuts arranged in a straight line, the distance between the sewing blades 18 is reduced, and the sewing blades 18 are arranged on the punching die. It becomes difficult. Further, when the punching die is pressed against the sheet base material, the punching die tends to be inclined because the load is localized. While intermittently inserting the notches 8 while feeding the sheet base material L by L in the fiber arrangement direction, the sewing machine blades are shifted by (0.5 + n) L (where n is an integer of 0 or more) in the fiber arrangement direction. By arranging in the punching die, it is possible to insert a cut as shown in FIG. Therefore, n is a natural number, that is, the sewing blades are arranged in the punching die with 1.5L or more in the fiber arrangement direction, so that the sewing blade can be easily placed in the punching die and the punching die can be easily balanced. It can be pressed against the material.

本発明においては、ミシン刃を繊維配列方向と傾けて設ける場合、図10(A)に示すように、最小2枚のミシン刃で実施可能であるが、1枚あたりのミシン刃の長さが大きくなり、同時に抜き型もかなり長いものとなってしまうため、経済的ではない。そこで、図11に示すように、図10(A)のミシン刃を複数に分割し、それらを繊維直交方向にずらして配置するのがよい。これにより、抜き型の基材送り方向の長さを小さく抑えることができ、必要とされるプレス機(昇降機)も小さくなり、生産コストを低減させることができるとともに、昇降速度も向上する。   In the present invention, when the sewing blades are provided to be inclined with respect to the fiber arrangement direction, as shown in FIG. 10 (A), it is possible to carry out with a minimum of two sewing blades. It is not economical because it becomes large and the punching die becomes considerably long at the same time. Therefore, as shown in FIG. 11, it is preferable to divide the sewing machine blade of FIG. 10A into a plurality of parts and to dispose them in the direction perpendicular to the fiber. Thereby, the length of the punching die in the substrate feeding direction can be kept small, the required press machine (elevating machine) is also reduced, the production cost can be reduced, and the elevating speed is also improved.

本発明の切込シート基材に用いられる強化繊維としては、例えば、アラミド繊維、ポリエチレン繊維、ポリパラフェニレンベンズオキサドール(PBO)繊維などの有機繊維、ガラス繊維、炭素繊維、炭化ケイ素繊維、アルミナ繊維、チラノ繊維、玄武岩繊維、セラミックス繊維などの無機繊維、ステンレス繊維やスチール繊維などの金属繊維、その他、ボロン繊維、天然繊維、変性した天然繊維など、およびそれら2種類以上を混繊したものが挙げられる。その中でも特に炭素繊維は、これら強化繊維の中でも軽量であり、しかも比強度および比弾性率において特に優れた性質を有しており、さらに耐熱性や耐薬品性にも優れていることから、軽量化が望まれる自動車パネルなどの部材に好適である。なかでも、高強度の炭素繊維が得られやすいPAN系炭素繊維が好ましい。   Examples of the reinforcing fiber used for the cut sheet substrate of the present invention include organic fibers such as aramid fibers, polyethylene fibers, polyparaphenylene benzoxador (PBO) fibers, glass fibers, carbon fibers, silicon carbide fibers, and alumina. Inorganic fibers such as fiber, Tyranno fiber, basalt fiber, ceramics fiber, metal fiber such as stainless steel fiber and steel fiber, etc., boron fiber, natural fiber, modified natural fiber, etc., and a mixture of two or more of them Can be mentioned. Among them, carbon fiber is particularly lightweight among these reinforcing fibers, and has particularly excellent properties in specific strength and specific modulus, and is also excellent in heat resistance and chemical resistance. It is suitable for members such as automobile panels that are desired to be made. Among these, PAN-based carbon fibers that can easily obtain high-strength carbon fibers are preferable.

本発明で用いるシート基材としては、強化繊維とマトリックス樹脂からなるプリプレグ基材を用いるのが好ましい。シート基材が強化繊維のみからなる場合、裁断時に基材がばらけ易く、安定的に裁断を行うことが困難な場合がある。プリプレグ基材であれば、強化繊維の周囲が樹脂によって満たされているため、基材裁断時に強化繊維がばらけることなく、安定的に切込シート基材を作製することが可能となる。プリプレグ基材の樹脂の量としては、繊維体積含有率Vfが65%以下であれば、十分な流動性を得ることができる。Vfが低いほど流動性は向上するが、Vfが45%より小さくなると、構造材に必要な高力学特性は得られない。流動性と力学特性との関係を鑑みると、さらに好ましくは50〜60%の範囲内である。   As the sheet substrate used in the present invention, it is preferable to use a prepreg substrate composed of reinforcing fibers and a matrix resin. In the case where the sheet base material is composed only of reinforcing fibers, the base material is likely to be scattered at the time of cutting, and it may be difficult to perform stable cutting. If it is a prepreg base material, since the circumference | surroundings of the reinforced fiber are satisfy | filled with resin, it becomes possible to produce a cutting sheet base material stably, without a reinforced fiber separating at the time of base material cutting. When the fiber volume content Vf is 65% or less as the amount of the resin of the prepreg base material, sufficient fluidity can be obtained. The lower the Vf, the better the fluidity. However, if Vf is less than 45%, the high mechanical properties required for the structural material cannot be obtained. Considering the relationship between fluidity and mechanical properties, it is more preferably in the range of 50 to 60%.

本発明に用いるプリプレグ基材に用いられるマトリックス樹脂としては、例えば、エポキシ樹脂、不飽和ポリエステル樹脂、ビニルエステル樹脂、フェノール樹脂、エポキシアクリレート樹脂、ウレタンアクリレート樹脂、フェノキシ樹脂、アルキド樹脂、ウレタン樹脂、マレイミド樹脂、シアネート樹脂などの熱硬化性樹脂や、ポリアミド、ポリアセタール、ポリアクリレート、ポリスルフォン、ABS、ポリエステル、アクリル、ポリブチレンテレフタラート(PBT)、ポリエチレンテレフタレート(PET)、ポリエチレン、ポリプロピレン、ポリフェニレンスルフィド(PPS)、ポリエーテルエーテルケトン(PEEK)、液晶ポリマー、塩ビ、ポリテトラフルオロエチレンなどのフッ素系樹脂、シリコーンなどの熱可塑性樹脂が挙げられる。その中でも特に熱硬化性樹脂を用いるのが好ましい。マトリックス樹脂が熱硬化性樹脂であることにより、切込プリプレグ基材は室温においてタック性を有しているため、該基材を積層した際に上下の該基材と粘着により一体化され、意図したとおりの積層構成を保ったままで成形することができる。   Examples of the matrix resin used for the prepreg base material used in the present invention include epoxy resins, unsaturated polyester resins, vinyl ester resins, phenol resins, epoxy acrylate resins, urethane acrylate resins, phenoxy resins, alkyd resins, urethane resins, and maleimides. Thermosetting resins such as resin and cyanate resin, polyamide, polyacetal, polyacrylate, polysulfone, ABS, polyester, acrylic, polybutylene terephthalate (PBT), polyethylene terephthalate (PET), polyethylene, polypropylene, polyphenylene sulfide (PPS) ), Polyether ether ketone (PEEK), liquid crystal polymer, vinyl chloride, polytetrafluoroethylene and other fluororesins, silicone and other thermoplastic resins And the like. Among these, it is particularly preferable to use a thermosetting resin. Since the matrix resin is a thermosetting resin, the cut prepreg base material has tackiness at room temperature, so when the base material is laminated, it is integrated with the upper and lower base materials by adhesion, It can shape | mold, keeping the laminated structure as it was.

さらに、本発明により製造された熱硬化性樹脂から構成される切込プリプレグ基材は、室温において優れたドレープ性を有するため、例えば、凹凸部を有する型を用いて成形する場合、予めその凹凸に沿わした予備賦形を容易に行うことが出来る。この予備賦形により成形性は向上し、流動の制御も容易になる。   Furthermore, since the cut prepreg base material composed of the thermosetting resin produced according to the present invention has excellent drapability at room temperature, for example, when it is molded using a mold having a concavo-convex part, It is possible to easily perform preliminary shaping along the line. This pre-shaping improves moldability and facilitates flow control.

さらに好ましくは熱硬化性樹脂の中でも、エポキシ樹脂や不飽和ポリエステル樹脂、ビニルエステル樹脂、フェノール樹脂、アクリル樹脂等や、それらの混合樹脂がよい。これらの樹脂の常温(25℃)における樹脂粘度としては、1×10Pa・s以下であることが好ましく、この範囲内であれば本発明を満たすタック性およびドレープ性を有するプリプレグ基材を得ることができる。中でもエポキシ樹脂は炭素繊維と組み合わせて得られる強化繊維複合材料としての力学特性に最も優れている。 More preferably, among the thermosetting resins, an epoxy resin, an unsaturated polyester resin, a vinyl ester resin, a phenol resin, an acrylic resin, or a mixed resin thereof is preferable. The resin viscosity at normal temperature (25 ° C.) of these resins is preferably 1 × 10 6 Pa · s or less, and if within this range, a prepreg base material having tackiness and draping properties satisfying the present invention is used. Obtainable. Among them, the epoxy resin is most excellent in mechanical properties as a reinforced fiber composite material obtained in combination with carbon fiber.

切込プリプレグ基材は、切込が多くなればなるほど、また切込が長ければ長いほど、切込プリプレグ基材の剛性が低下し、基材が変形し易くなる。これによって、積層作業時に切込プリプレグ基材を持ち上げた際、切込プリプレグ基材の形状が崩れるなど、取り扱いが難しくなる。そのような問題を回避するために、図12に示すように、前記プリプレグ基材28において抜き型7を押し当てる側とは反対側をテープ状支持体29によって把持し、テープ状支持体29を残したままプリプレグ基材28のみを裁断する、いわゆるハーフカットを実施するのがよい。これにより、切込の量が多くても、テープ状支持体が切込プリプレグ基材の変形を抑制するため、基材の取り扱い性が大幅に向上する。ここで、テープ状支持体とは、クラフト紙などの紙類やポリエチレン・ポリプロピレンなどのポリマーフィルム類、アルミなどの金属箔類などが挙げられ、さらに樹脂との離型性を得るために、シリコーン系や“テフロン(登録商標)”系の離型剤や金属蒸着等を表面に付与しても構わない。このとき、カット部46の先端30がプリプレグ基材28に進入する量としては、カット部46の先端30の進入する量がプリプレグ基材28をちょうど切断する深さであってもよいが、この場合、幾多の裁断によってカット部46が磨耗すると、切り残しが多発する可能性がある。カット部46がプリプレグ基材28を貫通し、テープ状支持体29の一部のみ侵入するのがよい。さらに、テープ状支持体29の厚みとしては、厚みが大きいと材料コストが増し経済的ではない。しかし、厚みが薄すぎると、プリプレグ基材28に抜き型7を押し当てた際に、カット部46の先端30をテープ状支持体29の内部に留めることが難しくなる。その結果、カット部46の先端30がテープ状支持体29を完全に貫通した場合には、切込プリプレグ基材の取り扱い性が低下し、カット部の先端がテープ状支持体に到達しなかった場合には、繊維を切断することができず、切込プリプレグ基材中に連続繊維が残り、成形時の流動性が低下する。そのため、テープ状支持体29の厚みは30〜300μmが好ましく、さらに好ましくは50〜200μmである。   The cut prepreg base material is more likely to be deformed as the number of cuts increases and the longer the cut, the lower the rigidity of the cut prepreg base material. Accordingly, when the cut prepreg base material is lifted during the laminating operation, handling becomes difficult, for example, the shape of the cut prepreg base material is broken. In order to avoid such a problem, as shown in FIG. 12, the opposite side of the prepreg base material 28 from which the die 7 is pressed is gripped by a tape-like support 29, and the tape-like support 29 is removed. It is preferable to carry out a so-called half cut in which only the prepreg base material 28 is cut while remaining. Thereby, even if there is much amount of cutting, since a tape-shaped support body suppresses a deformation | transformation of a cutting prepreg base material, the handleability of a base material improves significantly. Here, the tape-like support includes papers such as kraft paper, polymer films such as polyethylene / polypropylene, metal foils such as aluminum and the like, and in order to obtain releasability from the resin, silicone. A surface or “Teflon (registered trademark)” type release agent, metal vapor deposition, or the like may be applied to the surface. At this time, the amount of the tip 30 of the cut portion 46 entering the prepreg base material 28 may be the depth at which the tip 30 of the cut portion 46 enters just the prepreg base material 28, In this case, if the cut portion 46 is worn due to many cuttings, there is a possibility that uncut portions frequently occur. It is preferable that the cut portion 46 penetrates the prepreg base material 28 and only a part of the tape-like support 29 enters. Further, as the thickness of the tape-shaped support 29, a large thickness is not economical because the material cost increases. However, if the thickness is too thin, it is difficult to keep the tip 30 of the cut portion 46 inside the tape-shaped support 29 when the punching die 7 is pressed against the prepreg base material 28. As a result, when the tip 30 of the cut portion 46 completely penetrates the tape-like support 29, the handleability of the cut prepreg base material was lowered, and the tip of the cut portion did not reach the tape-like support. In some cases, the fibers cannot be cut, and continuous fibers remain in the cut prepreg base material, resulting in a decrease in fluidity during molding. Therefore, the thickness of the tape-shaped support 29 is preferably 30 to 300 μm, more preferably 50 to 200 μm.

以下、実施例により本発明をさらに具体的に説明するが、本発明は、実施例に記載の発明に限定されるというものではない。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the inventions described in the examples.

<刃数の比較(実施例1〜2)>
(実施例1):抜き型中の各カット部をすべて独立した刃で構成
すべて独立した刃で構成された抜き型を用いて、切込シート基材の製造を行った。
<Comparison of the number of blades (Examples 1-2)>
(Example 1): Each cut part in a cutting die was configured with an independent blade. A cutting sheet base was manufactured using a cutting die configured with all independent blades.

使用した基材は、以下の手順により得られたプリプレグ基材である。エポキシ樹脂(ジャパンエポキシレジン(株)製“エピコート(登録商標)”828:30重量部、“エピコート(登録商標)”1001:35重量部、“エピコート(登録商標)”154:35重量部)に、熱可塑性樹脂ポリビニルホルマール(チッソ(株)製“ビニレック(登録商標)”K)5重量部をニーダーで加熱混練してポリビニルホルマールを均一に溶解させた後、硬化剤ジシアンジアミド(ジャパンエポキシレジン(株)製DICY7)3.5重量部と、硬化促進剤3−(3,4−ジクロロフェニル)−1,1−ジメチルウレア(保土谷化学工業(株)製DCMU99)4重量部を、ニーダーで混練して未硬化のエポキシ樹脂組成物を調整した。このエポキシ樹脂組成物を、リバースロールコーターを用いてシリコーンコーティング処理された厚さ100μmの離型紙上に塗布して樹脂フィルムを作製した。次に、一方向に配列させた炭素繊維(引張強度4,900MPa、引張弾性率235GPa)の両面に樹脂フィルムをそれぞれ重ね、加熱・加圧することによって樹脂を含浸させ、単位面積あたりの炭素繊維重さ125g/m、繊維体積含有率Vf55%、厚み0.125mmのプリプレグ基材を作製した。 The used base material is a prepreg base material obtained by the following procedure. Epoxy resin ("Epicoat (registered trademark)" 828: 30 parts by weight, "Epicoat (registered trademark)" 1001: 35 parts by weight, "Epicoat (registered trademark)" 154: 35 parts by weight, manufactured by Japan Epoxy Resin Co., Ltd. Then, 5 parts by weight of thermoplastic resin polyvinyl formal ("Vinylec (registered trademark) K" manufactured by Chisso Corporation) was kneaded with a kneader to uniformly dissolve the polyvinyl formal, and then the curing agent dicyandiamide (Japan Epoxy Resin Co., Ltd.) ) DICY7) 3.5 parts by weight and 4 parts by weight of curing accelerator 3- (3,4-dichlorophenyl) -1,1-dimethylurea (Hodogaya Chemical Co., Ltd. DCMU99) were kneaded in a kneader. Thus, an uncured epoxy resin composition was prepared. This epoxy resin composition was applied onto a release paper having a thickness of 100 μm that had been subjected to silicone coating using a reverse roll coater to prepare a resin film. Next, a resin film is laminated on both sides of carbon fibers arranged in one direction (tensile strength 4,900 MPa, tensile elastic modulus 235 GPa), and the resin is impregnated by heating and pressing, so that the carbon fiber weight per unit area is increased. A prepreg base material having a thickness of 125 g / m 2 , a fiber volume content Vf of 55%, and a thickness of 0.125 mm was produced.

前記手段によって得られたプリプレグ基材に、本発明の製造方法により図13に示すような切込を連続的に挿入することによって、等間隔で規則的な切込を有する切込プリプレグ基材を得た。図13は、切込プリプレグ基材の一領域の切込パターンを示したものである。切込の方向は繊維直交方向4で、切込長さW(33)は5mm(すなわち、切込の繊維直交方向成分Ws=5mm)であり、間隔L(繊維長さ)34は30mmである。また、隣り合う切込の列35aと35bは繊維直交方向に5mm移動すると、幾何的に同等である。また、繊維長手方向に対になる切込の列には、35aと35c、35bと35dの組があり、切込の列のパターンは2パターン存在した。本発明に使用した抜き型は、図14に示すように、500mm×500mm×15mmのベニヤ板36を土台として、前記ベニヤ板の中央300mm×300mmの領域37に、図14(A)に示す幅5mm、長さ20mmの矩形状の刃を図13に示した切込パターンと抜き型をシート基材に押し当てる方向(シート基材に垂直)に、前記刃の稜線をシート基材に投影した投影線分Aが一致するように配置した。このとき、刃のベニヤ板からの突出量は5mmとした。また、使用した刃の総数は約600個であり、前記稜線の長さの総長は約3mであった。図14(B)に前記抜き型の模式図を示す。この抜き型を油圧式プレス機に取り付け、1回のプレスあたり300mmずつ基材を送りながら、1分間に30回の速度でプリプレグ基材に離型紙とは反対側から垂直に前記抜き型を押し当て、切込プリプレグ基材を作製した。このとき、基材の送り方向と、強化繊維の配列方向が一致するように、プリプレグ基材をプレス機に9m/分の一定速度で供給した。これにより、9m/分の速度で切込プリプレグ基材を作製することができ、本手法が切込シート基材を量産化する上で十分な製造速度を発揮できることが確認できた。   A prepreg base material having regular cuts at regular intervals is inserted into the prepreg base material obtained by the above means by continuously inserting cuts as shown in FIG. 13 by the production method of the present invention. Obtained. FIG. 13 shows a cutting pattern of one region of the cutting prepreg base material. The cutting direction is the fiber orthogonal direction 4, the cutting length W (33) is 5 mm (that is, the cutting fiber orthogonal direction component Ws = 5 mm), and the interval L (fiber length) 34 is 30 mm. . Further, the adjacent cut rows 35a and 35b are geometrically equivalent when moved 5 mm in the fiber orthogonal direction. In addition, there are pairs of cuts 35a and 35c, and 35b and 35d in the cut rows that are paired in the fiber longitudinal direction, and there are two patterns of cut rows. As shown in FIG. 14, the punching die used in the present invention is based on a veneer plate 36 of 500 mm × 500 mm × 15 mm, and a region 37 of the center 300 mm × 300 mm of the plywood plate has a width of 5 mm shown in FIG. A projection line in which a ridge line of the blade is projected onto the sheet base material in a direction (perpendicular to the sheet base material) in which the cutting blade and the cutting die shown in FIG. Arranged so that the minutes A coincided. At this time, the protruding amount of the blade from the plywood plate was 5 mm. The total number of blades used was about 600, and the total length of the ridge lines was about 3 m. FIG. 14B shows a schematic diagram of the punching die. Attach this punching die to a hydraulic press machine and push the punching die vertically from the side opposite to the release paper to the prepreg base at a speed of 30 times per minute while feeding the base by 300 mm per press. A cut prepreg base material was produced. At this time, the prepreg base material was supplied to the press machine at a constant speed of 9 m / min so that the feeding direction of the base material and the arrangement direction of the reinforcing fibers coincided. Thereby, the cutting prepreg base material can be produced at a speed of 9 m / min, and it was confirmed that this method can exhibit a sufficient production speed for mass-producing the cutting sheet base material.

作製された切込プリプレグ基材を図15の点線部に示す繊維配列方向に11cm、繊維直交方向に2cmの矩形状に切り出し、これをNMP溶液(N-メチル−2−ピロリドン)に浸漬し、樹脂部を溶解させた。このとき、切込の端部が短冊状基材の中央に位置するように、前記短冊状基材を切り出した。1時間後、NMP溶液から前記短冊状基材を取り出し、前記短冊状基材を上質紙の上に平面状に並べ、光学顕微鏡で炭素繊維の画像撮影を行い、繊維の本数をカウントした。その結果、およそ2600本の連続繊維が確認された。なお、切込をまったく含まないプリプレグ基材についても同様の試験を行ったが、そのときの繊維本数はおよそ38000本であった。これより、連続繊維の存在する割合は約7%で、残り93%の繊維については繊維長さが100mm以下となるように裁断できており、本検討により実質的にすべての強化繊維が分断されていることが確認できた。なお、わずかに連続繊維が残った理由としては、一度にプリプレグ基材に押し当てる刃の総長が長いことから、圧力不足が生じ、このようにわずかに切り残しが発生したものと考えられる。   The produced cut prepreg base material was cut into a rectangular shape of 11 cm in the fiber arrangement direction shown in the dotted line part of FIG. 15 and 2 cm in the fiber orthogonal direction, and this was immersed in an NMP solution (N-methyl-2-pyrrolidone). The resin part was dissolved. At this time, the said strip-shaped base material was cut out so that the edge part of a notch may be located in the center of a strip-shaped base material. After 1 hour, the strip-shaped substrate was taken out of the NMP solution, the strip-shaped substrate was arranged in a plane on a fine paper, carbon fiber images were taken with an optical microscope, and the number of fibers was counted. As a result, about 2600 continuous fibers were confirmed. The same test was performed on a prepreg base material containing no notches at all, but the number of fibers at that time was approximately 38000. As a result, the ratio of continuous fibers is about 7%, and the remaining 93% of the fibers can be cut so that the fiber length is 100 mm or less. By this study, substantially all the reinforcing fibers are cut. It was confirmed that In addition, it is considered that the reason why the continuous fibers remained slightly is that the total length of the blades pressed against the prepreg base material at a time is long, resulting in insufficient pressure, and thus a slight uncut portion.

このようにして作製された切込プリプレグ基材から、繊維配列方向と、繊維配列方向から45度ずらした方向に、それぞれ250×250mmの大きさに切り出した。切り出したプリプレグ基材を16層疑似等方([45/0/−45/90]2S)に積層し、300×300mmの金型上に配置した後、加熱型プレス成型機により、6MPaの加圧下、150℃×30分間の条件により硬化せしめ、300×300×1.7mmの平板状の成形体を得た。前記繊維強化プラスチックは繊維のうねりがなく、その端部まで繊維が均等に流動していた。切込プリプレグ基材の一部に連続繊維がわずかに存在していたためか、切込の端部に繊維配向方向に沿って筋状の模様が観察されたものの、この連続繊維によって流動が阻害している箇所は見られなかった。また、切込部は幅5mm、長さ5mm程度開口し樹脂リッチ部を形成しており、前記開口部からは内側の層の強化繊維を観察することができた。 The cut prepreg base material thus produced was cut into a size of 250 × 250 mm in the fiber array direction and in a direction shifted by 45 degrees from the fiber array direction. The cut prepreg base material is laminated in a 16-layer pseudo-isotropic ([45/0 / −45 / 90] 2S ), placed on a 300 × 300 mm mold, and then heated by a 6 MPa Curing was performed under the conditions of 150 ° C. × 30 minutes under pressure to obtain a plate-like molded body of 300 × 300 × 1.7 mm. The fiber reinforced plastic had no fiber undulation, and the fibers were flowing evenly to the end. Although a continuous fiber was slightly present in a part of the cut prepreg base material, a streak pattern was observed along the fiber orientation direction at the end of the cut, but this continuous fiber hindered flow. There was no spot. Further, the cut portion was opened with a width of about 5 mm and a length of about 5 mm to form a resin rich portion, and the reinforcing fibers of the inner layer could be observed from the opening.

得られた平板状の成形体より、長さ250±1mm、幅25±0.2mmの引張強度試験片を切り出した。JIS K−7073(1988)「炭素繊維強化プラスチックの引張試験方法」に規定する試験方法に従い、標点間距離を150mmとし、クロスヘッド速度2.0mm/分で引張強度を測定した。なお、本実施例においては、試験機としてインストロン(登録商標)万能試験機4208型を用いた。測定した試験片の数はn=5とし、平均値を引張強度とした。引張試験を行った結果、その引張強度は430MPa、弾性率は44GPaと非常に高い値が発現した。   A tensile strength test piece having a length of 250 ± 1 mm and a width of 25 ± 0.2 mm was cut out from the obtained flat molded body. According to the test method specified in JIS K-7073 (1988) “Tensile test method for carbon fiber reinforced plastic”, the tensile strength was measured at a crosshead speed of 2.0 mm / min with a distance between the gauge points of 150 mm. In this example, an Instron (registered trademark) universal testing machine 4208 type was used as a testing machine. The number of test pieces measured was n = 5, and the average value was the tensile strength. As a result of the tensile test, the tensile strength was 430 MPa and the elastic modulus was 44 GPa, which was very high.

(実施例2)
実施例1と比較して、抜き型に取り付ける刃の量を減らして、切込プリプレグ基材の製造を行った。具体的には、抜き型に刃を取り付ける領域37を、図16に示すように300mm×30mmとした。また、1回のプレスあたり30mmずつ基材を送りながら、1分間に90回の速度でプリプレグ基材に前記抜き型を押し当てた。これ以外の条件は、実施例1と同様にして切込プリプレグ基材を作製した。これにより、2.7m/分の速度で切込プリプレグ基材を作製した。このとき使用した刃の総数は約60個であり、刃の総長は約0.3mであった。
(Example 2)
Compared with Example 1, the amount of blades attached to the punching die was reduced, and a cut prepreg base material was produced. Specifically, the area 37 for attaching the blade to the punching die was set to 300 mm × 30 mm as shown in FIG. Further, the die was pressed against the prepreg substrate at a speed of 90 times per minute while feeding the substrate by 30 mm per press. Other conditions were the same as in Example 1, and a cut prepreg base material was produced. Thus, a cut prepreg base material was produced at a speed of 2.7 m / min. The total number of blades used at this time was about 60, and the total length of the blades was about 0.3 m.

作製された切込プリプレグ基材を、実施例1同様にNMP溶液に浸漬し、10cmを上回る強化繊維の本数をカウントした。その結果、短冊状の基材に含まれていた10cmより長い強化繊維の本数は1800本(約5%)であり、実質的にすべての炭素繊維が100mm以下に分断されていることが確認できた。また、実施例1と比べて切り残しの量が少なくなっているが、これは刃数を減らすことで、各刃にかかる圧力が大きくなったことによると考えられる。   The produced cut prepreg base material was immersed in the NMP solution in the same manner as in Example 1, and the number of reinforcing fibers exceeding 10 cm was counted. As a result, the number of reinforcing fibers longer than 10 cm contained in the strip-shaped base material is 1800 (about 5%), and it can be confirmed that substantially all the carbon fibers are divided to 100 mm or less. It was. Further, the amount of uncut residue is smaller than in Example 1, but this is considered to be due to the fact that the pressure applied to each blade is increased by reducing the number of blades.

こうして得られた切込プリプレグ基材を実施例1と同様の手順で成形し、平板状の繊維強化プラスチックを得た。実施例1に比べ、切込端部での連続繊維の量が少なくなったためか、筋状の模様も観察されず、実施例1よりもさらに良好な表面品位を保っていた。   The cut prepreg base material thus obtained was molded in the same procedure as in Example 1 to obtain a flat fiber reinforced plastic. Compared to Example 1, the amount of continuous fibers at the cut end was reduced, and no streak pattern was observed, and the surface quality better than Example 1 was maintained.

<刃形態の検討(ミシン刃:実施例3)>
(実施例3)
抜き型に配置する刃をカット部の長さW5mm、カット部間距離b5mmのミシン刃とする以外は、実施例2と同様の手順により、切込プリプレグ基材の作製、評価を行った。実施例3で用いたミシン刃の模式図を図17(A)に示した。抜き型として、図17(B)に示すように、前記ミシン刃を繊維直交方向かつ15mm離して配置し、さらに互いのミシン刃の位相(カット部の長さWまたはカット部間距離b)が繊維直交方向に半位相(カット部の長さWまたはカット部間距離bの半分の長さ)ずれるように配置したものを使用した。実施例2では刃を60個抜き型に取り付ける必要があったのに比べ、実施例3では2枚のミシン刃を抜き型に設置するだけでよく、抜き型作製に要する時間を大幅に短縮することができた。
<Examination of blade form (sewing blade: Example 3)>
(Example 3)
A cut prepreg base material was prepared and evaluated by the same procedure as in Example 2 except that the blade disposed in the punching die was a sewing blade having a cut portion length W5 mm and a cut portion distance b5 mm. A schematic diagram of the sewing machine blade used in Example 3 is shown in FIG. As a punching die, as shown in FIG. 17 (B), the sewing machine blades are arranged in the direction perpendicular to the fiber and separated by 15 mm, and the phase of each sewing machine blade (the length W of the cut part or the distance b between the cut parts) is set. What was arrange | positioned so that a half phase (length W of a cut part or the half length of the distance b between cut parts) may shift | deviate in the fiber orthogonal direction was used. Compared to the need to attach 60 blades to the punching die in Example 2, in Example 3, it is only necessary to install two sewing blades in the punching die, and the time required for making the punching die is greatly reduced. I was able to.

作製された切込プリプレグ基材を、実施例1、2同様にNMP溶液に浸漬し、10cmを上回る強化繊維の本数をカウントした。その結果、短冊状の基材に含まれていた10cmより長い強化繊維の本数は1400本(約4%)であり、実質的にすべての炭素繊維が100mm以下に分断されていることが確認できた。また、実施例2と比べて切り残しの量が少なくなっているが、これはミシン刃を用いたことにより、カット部をより高精度に配置できたことによると考えられる。   The produced cut prepreg base material was immersed in the NMP solution in the same manner as in Examples 1 and 2, and the number of reinforcing fibers exceeding 10 cm was counted. As a result, the number of reinforcing fibers longer than 10 cm contained in the strip-shaped base material is 1400 (about 4%), and it can be confirmed that substantially all the carbon fibers are divided to 100 mm or less. It was. In addition, the amount of uncut residue is smaller than that in Example 2, which is considered to be due to the fact that the cut portion can be arranged with higher accuracy by using the sewing machine blade.

<投影長さWsの検討(実施例4〜7)>
(実施例4〜7)
実施例4〜7では、ミシン刃のカット部の長さWとカット部間距離bを変更する以外は、実施例3と同様にして、切込プリプレグ基材を作製、評価を行った。具体的には、ミシン刃のカット部の長さWとカット部間距離bを1:1とし、それらの長さを実施例4では10mm、実施例5では2.5mm、実施例6では1.3mm、実施例7では0.63mm、とした。ここで、実施例4〜7では、切込と繊維直交方向とが一致するため、切込の長さWは、切込の繊維直交方向成分Wsに一致する。
<Examination of Projection Length Ws (Examples 4 to 7)>
(Examples 4 to 7)
In Examples 4 to 7, a cut prepreg base material was produced and evaluated in the same manner as in Example 3 except that the length W of the cut part of the sewing machine blade and the distance b between the cut parts were changed. Specifically, the length W of the cutting portion of the sewing machine blade and the distance b between the cutting portions are set to 1: 1, and these lengths are 10 mm in Example 4, 2.5 mm in Example 5, and 1 in Example 6. 3 mm, and 0.63 mm in Example 7. Here, in Examples 4-7, since the incision and the fiber orthogonal direction coincide with each other, the length W of the incision coincides with the fiber orthogonal direction component Ws of the incision.

各実施例において作製された切込プリプレグ基材を実施例1、2同様にNMP溶液に浸漬し、10cmを上回る強化繊維の本数をカウントした。その結果、短冊状の基材に含まれていた10cmより長い強化繊維の本数は、実施例4では1400本(約3%)、実施例5では1500本(約3%)、実施例6では1500本(約3%)、実施例7では1600本(約4%)であった。したがって、実質的にすべての炭素繊維が100mm以下に分断されていることが確認できた。   The cut prepreg base material produced in each example was immersed in the NMP solution in the same manner as in Examples 1 and 2, and the number of reinforcing fibers exceeding 10 cm was counted. As a result, the number of reinforcing fibers longer than 10 cm contained in the strip-shaped base material was 1400 (about 3%) in Example 4, 1500 (about 3%) in Example 5, and in Example 6 1500 (about 3%), and in Example 7, it was 1600 (about 4%). Therefore, it was confirmed that substantially all the carbon fibers were divided to 100 mm or less.

作製された切込プリプレグ基材を前記手順に従い成形し、実施例1〜3同様に平板状の繊維強化プラスチックを得た。外観品位、樹脂リッチ部の大きさは、実施例4〜7いずれもほぼ実施例1〜3と同等となった。また、引張強度については、表2に示すように、実施例4では410MPa、実施例5では460MPa、実施例6では520MPa、実施例7では560MPaと切込長さWが小さくなるにつれて強度が向上することが示された。弾性率については、表2に示すとおりであるが、いずれの水準も43GPa前後であった。   The produced cut prepreg base material was molded according to the above procedure, and a flat fiber-reinforced plastic was obtained in the same manner as in Examples 1 to 3. The appearance quality and the size of the resin rich portion were almost the same as those of Examples 1 to 3 in Examples 4 to 7. As shown in Table 2, the tensile strength is 410 MPa in Example 4, 460 MPa in Example 5, 520 MPa in Example 6, 560 MPa in Example 7, and the strength is improved as the cut length W is reduced. Was shown to do. The elastic modulus is as shown in Table 2, but all the levels were around 43 GPa.

<切込角θの検討(実施例8〜10)>
(実施例8〜10)
実施例8〜10では、実施例4のミシン刃を繊維配列方向に対して傾けて配置する以外は、実施例4と同様に切込プリプレグ基材を作製、評価を行った。使用した抜き型は、カット部の長さWとカット部間距離bが共に10mmとなるミシン刃を、図18に示すように、互いに平行かつ強化繊維の配列方向に対してθ(39)傾けて配置したものである。図18において、上側に並んだミシン刃21同士、または下側に並んだミシン刃22同士は互いに同位相(カット部の繊維配列方向の座標が同じ)であり、また、繊維配列方向に隣接するミシン刃(21と22)は繊維直交方向に互いに半位相(カット部の繊維配向方向成分の半分)ずれている。抜き型に配置したミシン刃は、繊維直交方向に互いに同位相となるもの21と互いに同位相となるもの22に分類され、ミシン刃の集合体21とミシン刃の集合体22は、互いに繊維配列方向に15mm離れている。また、各ミシン刃の繊維直交方向の長さは50mmとする。角θについては、実施例8ではθ=60°、実施例9ではθ=30°、実施例10ではθ=10°とした。
<Examination of Cutting Angle θ (Examples 8 to 10)>
(Examples 8 to 10)
In Examples 8 to 10, a cut prepreg base material was produced and evaluated in the same manner as in Example 4 except that the sewing machine blade of Example 4 was inclined with respect to the fiber arrangement direction. As shown in FIG. 18, the punching die used is that the cutting blade length W and the distance b between the cutting portions are both 10 mm, and they are inclined by θ (39) with respect to the arrangement direction of the reinforcing fibers as shown in FIG. Are arranged. In FIG. 18, the sewing blades 21 arranged on the upper side or the sewing blades 22 arranged on the lower side are in phase with each other (the coordinates in the fiber arrangement direction of the cut portion are the same), and are adjacent in the fiber arrangement direction. The sewing blades (21 and 22) are shifted from each other by a half phase (half the fiber orientation direction component of the cut portion) in the fiber orthogonal direction. The sewing blades arranged in the punching die are classified into those 21 having the same phase in the direction perpendicular to the fiber and those 22 having the same phase in the direction perpendicular to the fiber, and the assembly 21 of the sewing blade and the assembly 22 of the sewing blade have a fiber arrangement with each other. 15 mm away in the direction. The length of each sewing blade in the direction perpendicular to the fiber is 50 mm. Regarding the angle θ, θ = 60 ° in Example 8, θ = 30 ° in Example 9, and θ = 10 ° in Example 10.

各実施例において作製された切込プリプレグ基材をこれまでの実施例同様にNMP溶液に浸漬し、10cmを上回る強化繊維の本数をカウントした。その結果、短冊状の基材に含まれていた10cmより長い強化繊維の本数は、実施例8では1000本(約3%)、実施例9では900本(約2%)、実施例10では800本(約2%)であった。したがって、実質的にすべての炭素繊維が100mm以下に分断されていることが確認できた。また、角θが小さくなるにつれて繊維の切り残し量も少なくなった。θが小さくなることで、刃から繊維が逃げにくくなり、このような差異が生まれたと考えられる。   The cut prepreg base material produced in each example was immersed in the NMP solution as in the previous examples, and the number of reinforcing fibers exceeding 10 cm was counted. As a result, the number of reinforcing fibers longer than 10 cm contained in the strip-shaped base material was 1000 (about 3%) in Example 8, 900 (about 2%) in Example 9, and in Example 10 There were 800 (about 2%). Therefore, it was confirmed that substantially all the carbon fibers were divided to 100 mm or less. In addition, the amount of uncut fibers decreased as the angle θ decreased. It is considered that such a difference was born by reducing θ, making it difficult for fibers to escape from the blade.

また、作製された切込プリプレグ基材を前記手順に従い成形し、実施例1〜4同様に平板状の繊維強化プラスチックを得た。繊維強化プラスチック表面を観察すると、実施例4のモデルでは、図6(B)のように、切込開口部16に繊維直交方向4から強化繊維1がほとんど流入しておらず、開口部の形状もおおよそ矩形状であった。しかし、実施例8、9、10とθが小さくなるにつれて、図7(B)のように、切込開口部16に繊維直交方向4から強化繊維1が流入し、切込開口部16の大きさも減少した。実施例10のθが10°の場合には、開口部はおおよそ曲線状であり、内側の層の繊維を確認することができず、高い表面品位を得た。また、引張強度については、表3に示すように、θが小さくなるにつれて、前記投影長さWsも小さくなり、さらには引張強度が向上することが確認できた。切込を繊維直交方向とは斜めに配置し、前記投影長さWsを小さくしたことにより、樹脂リッチ部を小さくできたことが、強度向上の一因であると考えられる。また、弾性率については表3に示すとおり43GPaと、これまでの実施例と同等であった。   Moreover, the produced cut prepreg base material was shape | molded according to the said procedure, and the flat fiber reinforced plastic was obtained similarly to Examples 1-4. When the surface of the fiber reinforced plastic is observed, in the model of Example 4, as shown in FIG. 6B, the reinforcing fiber 1 hardly flows into the cut opening 16 from the fiber orthogonal direction 4, and the shape of the opening Was also roughly rectangular. However, as Examples 8, 9, 10 and θ become smaller, the reinforcing fiber 1 flows into the cut opening 16 from the fiber orthogonal direction 4 as shown in FIG. It also decreased. When θ in Example 10 was 10 °, the opening was approximately curved, and the fibers in the inner layer could not be confirmed, and high surface quality was obtained. As for the tensile strength, as shown in Table 3, it was confirmed that as the θ became smaller, the projected length Ws also became smaller, and further the tensile strength improved. It is considered that the resin-rich portion can be made small by arranging the notches obliquely with respect to the direction perpendicular to the fiber and reducing the projection length Ws, which contributes to the strength improvement. The elastic modulus was 43 GPa as shown in Table 3, which was the same as the previous examples.

<刃間隔の検討(実施例11)>
(実施例11)
抜き型に配置する2枚のミシン刃の間隔を45mmとし、プレス1回あたりの基材の送り量を30mmとする以外は、実施例3と同様の手順により、切込プリプレグ基材の作製、評価を行った。実施例11で用いた抜き型は、図19に示すように、2本の前記ミシン刃を繊維直交方向かつ互いに45mm離して配置し、さらに互いのミシン刃の位相(カット部の長さWおよびカット部間距離b)が繊維直交方向に半位相(カット部の長さWまたはカット部間距離bの半分)ずれるように配置したものである。
<Examination of Blade Interval (Example 11)>
(Example 11)
Production of a cut prepreg base material by the same procedure as in Example 3, except that the interval between the two sewing blades arranged in the punching die is 45 mm, and the feed amount of the base material per press is 30 mm, Evaluation was performed. In the punching die used in Example 11, as shown in FIG. 19, the two sewing blades are arranged in a direction perpendicular to the fiber and separated from each other by 45 mm, and the phase of each sewing blade (the length W of the cut portion and the length of the cutting portion). The distance b) between the cut parts is arranged so as to be shifted by a half phase (the length W of the cut part or half the distance b between the cut parts) in the fiber orthogonal direction.

実施例1〜10では隣接する刃の間隔が短い(15mm以下)であったために、大型の工具が使用できず、刃の取り付けが困難であったが、本実施例では刃の間隔が45mmと広く、工具の制限なく刃の取り付けを行うことができた。   In Examples 1 to 10, since the distance between adjacent blades was short (15 mm or less), a large tool could not be used and it was difficult to attach the blades. In this example, the distance between the blades was 45 mm. Widely, it was possible to install the blade without any tool restrictions.

作製された切込プリプレグ基材をこれまでの実施例同様にNMP溶液に浸漬し、10cmを上回る強化繊維の本数をカウントした。その結果、短冊状の基材に含まれていた10cmより長い強化繊維の本数は、1500本(約4%)であった。したがって、実質的にすべての炭素繊維が100mm以下に分断されていることが確認できた。   The produced cut prepreg base material was immersed in the NMP solution in the same manner as in the previous examples, and the number of reinforcing fibers exceeding 10 cm was counted. As a result, the number of reinforcing fibers longer than 10 cm contained in the strip-shaped base material was 1500 (about 4%). Therefore, it was confirmed that substantially all the carbon fibers were divided to 100 mm or less.

さらに、作製された切込プリプレグ基材を前記手順に従い成形し、実施例3同様に平板状の繊維強化プラスチックを得た。外観品位、樹脂リッチ部の大きさは実施例3とほぼ同等であった。引張強度、弾性率については、それぞれ420MPa、43GPaと、いずれをとっても実施例3とほぼ同等であった。   Further, the produced cut prepreg base material was molded according to the above procedure, and a flat fiber-reinforced plastic was obtained in the same manner as in Example 3. The appearance quality and the size of the resin rich portion were almost the same as in Example 3. The tensile strength and elastic modulus were 420 MPa and 43 GPa, respectively, which were almost the same as those in Example 3.

<使用基材の検討(実施例12)>
(実施例12)
使用する基材を一方向に炭素繊維を配列したシート基材(樹脂を含まない)とする以外は、実施例10と同様に切込を挿入し、切込シート基材を得た。本実施例で使用した基材は、炭素繊維を一方向に配列し、それをガラス繊維で織り込んだUD織物UT70−30(東レ(株)製)である。また、RTM用の樹脂としては、エポキシ樹脂である“エピコート807”(油化シェルエポキシ社製)70重量部、“エピコート630”(油化シェルエポキシ社製)30重量部とアミン硬化剤である“アンカミン2049”(パシフィックアンカーケミカル社製)43重量部を混合して得た液状エポキシ樹脂を用いた。裁断後の基材を観察すると、連続繊維が存在する箇所もなく、概ね順調に裁断を行うことができた。
<Examination of substrate used (Example 12)>
Example 12
Cuts were inserted in the same manner as in Example 10 except that the base material to be used was a sheet base material (not including a resin) in which carbon fibers were arranged in one direction to obtain a cut sheet base material. The base material used in this example is a UD fabric UT70-30 (manufactured by Toray Industries, Inc.) in which carbon fibers are arranged in one direction and woven with glass fibers. The RTM resin is 70 parts by weight of “Epicoat 807” (manufactured by Yuka Shell Epoxy), 30 parts by weight of “Epicoat 630” (manufactured by Yuka Shell Epoxy), and an amine curing agent. A liquid epoxy resin obtained by mixing 43 parts by weight of “Ancamine 2049” (Pacific Anchor Chemical Co., Ltd.) was used. When the base material after cutting was observed, there was no portion where continuous fibers were present, and cutting was able to be performed smoothly.

実施例1同様に、作製された切込シート基材から短冊状の基材を切り出し、10cmを上回る強化繊維の本数をカウントした(ただし、本実施例では樹脂を溶解する必要がないため、NMP溶液には浸漬する作業のみ省略した)。その結果、短冊状の基材に含まれていた10cmより長い強化繊維の本数は1800本(約5%)であり、実質的にすべての炭素繊維が100mm以下に分断されていることが確認できた。   In the same manner as in Example 1, a strip-shaped base material was cut out from the produced cut sheet base material, and the number of reinforcing fibers exceeding 10 cm was counted (However, in this example, it is not necessary to dissolve the resin, so NMP Only the work of immersing in the solution was omitted). As a result, the number of reinforcing fibers longer than 10 cm contained in the strip-shaped base material is 1800 (about 5%), and it can be confirmed that substantially all the carbon fibers are divided to 100 mm or less. It was.

さらに前記基材の積層体に樹脂を注入して繊維強化プラスチックを得るVa−RTM成形を行った。使用した成形型は図20に示すように、立ち面高さ5cm、幅30cm、長さ20cmの凸部を有する成形型40を使用した。また、この成形型のR部44の曲率半径は10mmとした。この成形型の端部にナイロンチューブからなる注入口41と減圧口42を設け、成形材料を含む全体をバギングフィルムで上面を覆って密封した。このとき、金型に配置した基材は、前記切込シート基材を400mm×100mmに切り出し、基材の長手方向を0°として、16層疑似等方([45/0/−45/90]2S)に積層したものとした。さらに、この基材の長手方向と、金型の長手方向とが一致するように基材を金型に配置した。注入口41とエポキシ樹脂を入れたディスポカップが接続しており、減圧口42から真空ポンプで吸引を行い、Va−RTM成形を行った。注入終了後、型ごとオーブンに入れて100℃に加熱し、2時間その状態を保持して樹脂を硬化させ、型を冷却後脱型を行い、未含浸部のない繊維強化プラスチックを得た。 Further, Va-RTM molding was performed to obtain a fiber-reinforced plastic by injecting a resin into the laminate of the base materials. As shown in FIG. 20, the mold used was a mold 40 having convex portions having a height of 5 cm, a width of 30 cm, and a length of 20 cm. The radius of curvature of the R portion 44 of this mold was 10 mm. An injection port 41 made of a nylon tube and a decompression port 42 were provided at the end of the mold, and the whole including the molding material was sealed with a bagging film covering the upper surface. At this time, the base material arranged in the mold is a 16-layer pseudo-isotropic ([45/0 / −45 / 90], with the cut sheet base material cut into 400 mm × 100 mm and the longitudinal direction of the base material as 0 °. 2S ). Furthermore, the base material was arrange | positioned at the metal mold | die so that the longitudinal direction of this base material might correspond with the longitudinal direction of a metal mold | die. The injection port 41 and a disposable cup containing an epoxy resin were connected, and suction was performed with a vacuum pump from the decompression port 42 to perform Va-RTM molding. After completion of the injection, the mold was placed in an oven and heated to 100 ° C., and the state was maintained for 2 hours to cure the resin. After the mold was cooled, demolding was performed to obtain a fiber reinforced plastic having no unimpregnated portion.

得られた繊維強化プラスチックは、繊維のうねりもなく、切込部での開口も小さく、外観品位は良好であった。さらに、R部44に相当する箇所を切り出し、切断面を研磨した後、光学顕微鏡で観察を行った。その結果、前記繊維強化プラスチックは、R部44においても厚み方向に均等に層構造を維持していることが確認された。   The obtained fiber reinforced plastic had no fiber undulations, a small opening at the notch, and good appearance quality. Further, a portion corresponding to the R portion 44 was cut out and the cut surface was polished, and then observed with an optical microscope. As a result, it was confirmed that the fiber reinforced plastic maintained the layer structure evenly in the thickness direction even in the R portion 44.

以下、比較例を示す。   Hereinafter, a comparative example is shown.

<他製造法との比較>
(比較例1)
実施例1で作製した切込プリプレグ基材をカッター法(自動裁断機により、切込を挿入)により作製した。裁断装置の一例を図21に示す。刃はステンレス製の一枚刃であり、これをマシンのヘッド45に取り付け、サーボモーターによりヘッドのXY方向の移動量を制御した。目標とする切込パターンは、図13に示すものであり、繊維長さ30.0mm、切込長さ5.0mmとなるように、繊維を分断したものである。また、裁断に用いた基材は、実施例1と同様とした。
<Comparison with other manufacturing methods>
(Comparative Example 1)
The incision prepreg base material produced in Example 1 was produced by a cutter method (incision was inserted by an automatic cutting machine). An example of the cutting device is shown in FIG. The blade was a single blade made of stainless steel, which was attached to the head 45 of the machine, and the movement amount of the head in the XY directions was controlled by a servo motor. The target cutting pattern is shown in FIG. 13 and is obtained by dividing the fiber so that the fiber length is 30.0 mm and the cutting length is 5.0 mm. The base material used for the cutting was the same as in Example 1.

しかし、すべての切込を一枚の刃で裁断することになるため、基材の生産速度は0.6m/分と極めて遅かった。実施例1の押切法と比較して、15倍もの時間を費やしており、工業的に量産できる手法ではないことが確認された。
(比較例2)
実施例1で作製した切込プリプレグ基材と同じものを回転刃法により作製した。裁断風景の模式図を図22(B)に示す。基材の裁断に用いた刃は図22(A)に示す幅10mmの矩形状の刃であり、これを直径95mmの金属製ローラー56に複数埋め込み、これを抜き型とした。抜き型の周方向の展開図が実施例1で作製した切込プリプレグ基材の切込パターンに一致するように、刃を埋め込む位置を定めた。さらに、ローラー表面から刃が突出している高さは約0.5mmとした。これにより、前記抜き型が1回転する間に搬送される基材長さは300mmとなった。しかし、ローラーの表面に刃を埋め込む作業は容易ではなく、抜き型作製にかなりの時間を要した。
However, since all the cuts were cut with a single blade, the production rate of the base material was extremely slow at 0.6 m / min. Compared with the press-cutting method of Example 1, it took 15 times as much time, and it was confirmed that this is not a technique that can be industrially mass-produced.
(Comparative Example 2)
The same cut prepreg base material produced in Example 1 was produced by the rotary blade method. A schematic diagram of the cutting scenery is shown in FIG. The blade used for cutting the substrate was a rectangular blade having a width of 10 mm shown in FIG. 22A, and a plurality of these blades were embedded in a metal roller 56 having a diameter of 95 mm, and this was used as a punching die. The position in which the blade was embedded was determined so that the developed view in the circumferential direction of the punching die coincided with the cutting pattern of the cutting prepreg base material produced in Example 1. Further, the height at which the blade protrudes from the roller surface was about 0.5 mm. As a result, the length of the substrate conveyed while the punching die was rotated once was 300 mm. However, it was not easy to embed the blade on the surface of the roller, and it took a considerable amount of time to produce the punching die.

前記抜き型を用いて、プリプレグ基材の裁断を行った。裁断時の前記ローラーの回転速度は10回転/分とした。そのため、切込プリプレグ基材の製造速度は、約3.0m/分であった。しかし、300mほど基材を裁断した時点で、刃の先端が劣化したためか、切込の長さが他切込より短くなる箇所が観察され、シート基材に連続繊維が多く残るようになった。実施例1のように、ベニヤ板に刃を埋め込むタイプの抜き型では、例えば抜き型の裏面(刃が突出していない面)にムラ取りテープと呼ばれる金属製テープを貼り付けることで、刃の突出量を調整することができるが、本比較例で実施した回転刃では前記方法によるムラ取りが実施できない。そのため、該当する刃そのものを交換する必要があり、シート基材の生産性が大幅に低下した。
(比較例3)
刃の取り付ける角をローラーの周方向に30°傾ける以外は比較例2と同様にして抜き型を作製し、切込プリプレグ基材の作製を試みた。しかし、矩形状の刃をローラーに斜めに取り付ける作業は比較例2よりもさらに困難であり、抜き型作製にかなりの時間を要した。また、作成後の抜き型を試用してみても各刃に過度の負担がかかるためか、刃の取り付け位置がすぐにずれてしまい、適切に切込を挿入することができなかった。抜き型の作製方法や刃の形状を工夫すれば適切に切込を挿入可能な抜き型を作製できるのかもしれないが、コスト的に負担が大きくなり、現実的ではなかったため、検討を断念した。
The prepreg base material was cut using the punching die. The rotation speed of the roller at the time of cutting was 10 rotations / minute. Therefore, the production speed of the cut prepreg base material was about 3.0 m / min. However, at the time when the base material was cut by about 300 m, it was observed that the tip of the blade was deteriorated, or a part where the length of the cut was shorter than the other cuts, and a lot of continuous fibers remained on the sheet base material. . As in Example 1, in a punching type in which a blade is embedded in a plywood plate, for example, a metal tape called unevenness removal tape is attached to the back surface (the surface on which the blade does not protrude) of the punching die, so that the protruding amount of the blade However, unevenness removal by the above method cannot be performed with the rotary blade implemented in this comparative example. Therefore, it is necessary to replace the corresponding blade itself, and the productivity of the sheet base material is greatly reduced.
(Comparative Example 3)
A punching die was prepared in the same manner as in Comparative Example 2 except that the angle at which the blade was attached was inclined by 30 ° in the circumferential direction of the roller, and an attempt was made to prepare a cut prepreg base material. However, the operation of attaching the rectangular blade to the roller at an angle is more difficult than Comparative Example 2, and it took a considerable amount of time to produce the punching die. Moreover, even if it tried using the punching die after preparation, since the excessive load was applied to each blade, the attachment position of the blade shifted | deviated immediately and the cutting could not be inserted appropriately. It may be possible to produce a die that can be inserted properly by devising the method of making the die and the shape of the blade, but the cost was increased and it was not practical, so we abandoned the study. .

(比較例4)
シート基材に切込を挿入しないこと以外は、実施例11と同様に繊維強化プラスチックを成形した。全体的に実施例11同様に繊維のうねりもなく、外観品位は良好であったが、R部44に相当する箇所では一部プラスチックの色が黄色がかっているように観察された。さらに、実施例11同様にR部での断面を観察したところ、強化繊維が金型側に偏っていたり、また90°方向に配列した層が抜け落ちている箇所が観察された。そのため、R部の金型とは反対側においては樹脂リッチ部が形成されることになり、表面がやや黄色がかって見えたものと推測される。なお、繊維強化プラスチックの表面に樹脂リッチ部が存在すると、欠けなどの原因となる。今回の場合は、R部をまたいで連続繊維を賦形してしまったために、強化繊維が張力を受け、金型側に偏ってしまったものと考えられる。
(Comparative Example 4)
A fiber reinforced plastic was molded in the same manner as in Example 11 except that the cut was not inserted into the sheet base material. Overall, there was no fiber undulation as in Example 11 and the appearance quality was good, but at the portion corresponding to the R portion 44, it was observed that the color of the plastic was partly yellowish. Further, when the cross section at the R portion was observed in the same manner as in Example 11, the portions where the reinforcing fibers were biased toward the mold side and the layers arranged in the 90 ° direction were dropped off were observed. Therefore, a resin rich portion is formed on the opposite side of the R portion from the mold, and it is presumed that the surface appears slightly yellowish. In addition, when a resin rich part exists in the surface of a fiber reinforced plastic, it will cause a chip etc. In this case, since the continuous fiber was shaped across the R portion, the reinforcing fiber was considered to have been subjected to tension and biased toward the mold side.

(比較例5)
実施例1と同様のプリプレグ基材を自動裁断機により短冊状に切り出し、シート状かつランダムに散布してSMC基材のシートを作製した。ここで、短冊状の基材の大きさは、幅5mm、長さ30mmとし、シート基材の目付はプリプレグ基材の16層分に相当する2.4kg/mとした。
(Comparative Example 5)
A prepreg base material similar to that in Example 1 was cut into strips by an automatic cutting machine, and dispersed in a sheet shape and randomly to produce a sheet of an SMC base material. Here, the size of the strip-shaped substrate was 5 mm in width and 30 mm in length, and the basis weight of the sheet substrate was 2.4 kg / m 2 corresponding to 16 layers of the prepreg substrate.

得られたSMC基材を実施例1と同様の手順に従い成形し、平板状の繊維強化プラスチックを得た。強化繊維がランダムに配向しているためか、平板状のプラスチックには若干のそりが観察された。また、金型の端部に基材の未充填部が観察され、実施例1で作製した切込プリプレグ基材よりも流動性が劣ることが確認された。さらに、実施例1と同様の手順により引張強度を行った結果、その引張強度は180MPaであり、また弾性率は35GPaと実施例1と比べてもはるかに低い値であった。   The obtained SMC substrate was molded according to the same procedure as in Example 1 to obtain a flat fiber reinforced plastic. Some warpage was observed in the flat plastic because the reinforcing fibers were randomly oriented. Moreover, the unfilled part of the base material was observed at the end of the mold, and it was confirmed that the fluidity was inferior to that of the cut prepreg base material produced in Example 1. Furthermore, as a result of carrying out the tensile strength by the same procedure as in Example 1, the tensile strength was 180 MPa, and the elastic modulus was 35 GPa, which is much lower than that in Example 1.

Figure 2009220480
Figure 2009220480

Figure 2009220480
Figure 2009220480

Figure 2009220480
Figure 2009220480

本発明の製造方法の一例を示す斜視図である。It is a perspective view which shows an example of the manufacturing method of this invention. 本発明の抜き型の一例を示す上面図(A)と、断面図(B)である。It is the top view (A) which shows an example of the cutting die of this invention, and sectional drawing (B). 本発明により製造された切込シート基材の一例を示す平面図(A)と本発明に用いる抜き型の一例を示す上面図(B)である。It is the top view (B) which shows an example of the cutting die used for this invention, and the top view (A) which shows an example of the cutting sheet base material manufactured by this invention. 本発明により製造された切込シート基材の一例を示す平面図である。It is a top view which shows an example of the cutting sheet base material manufactured by this invention. 本発明の抜き型の一例を示す上面図である。It is a top view which shows an example of the cutting die of this invention. 本発明により製造された切込シート基材の一例を示す平面図(A)と、該切込シート基材から成形された繊維強化プラスチックの一例を示す図(B)である。It is a top view (A) which shows an example of the cutting sheet base material manufactured by this invention, and a figure (B) which shows an example of the fiber reinforced plastic shape | molded from this cutting sheet base material. 本発明により製造された切込シート基材の一例を示す平面図(A)と、該切込シート基材から成形された繊維強化プラスチックの一例を示す図(B)である。It is a top view (A) which shows an example of the cutting sheet base material manufactured by this invention, and a figure (B) which shows an example of the fiber reinforced plastic shape | molded from this cutting sheet base material. 本発明に用いるミシン刃の例を示す平面図である。It is a top view which shows the example of the sewing machine blade used for this invention. 本発明に用いるミシン刃の一例を示す平面図である。It is a top view which shows an example of the sewing machine blade used for this invention. 本発明に用いる抜き型の一例を示す平面図(A)と前記抜き型を用いて製造された切込シート基材の一例を示す平面図(B)である。It is a top view (A) which shows an example of the cutting die used for this invention, and a top view (B) which shows an example of the cutting sheet base material manufactured using the said cutting die. 本発明に用いる抜き型の一例を示す平面図である。It is a top view which shows an example of the cutting die used for this invention. 本発明における切込プリプレグ基材の製造方法の一例を示す断面図である。It is sectional drawing which shows an example of the manufacturing method of the cutting prepreg base material in this invention. 本発明に用いる切込シート基材の切込の一例を示す平面図である。It is a top view which shows an example of the cutting of the cutting sheet base material used for this invention. 本発明に用いる刃の一例を示した斜視図(A)と、該刃を複数配置した抜き型の一例を示した斜視図(B)である。It is the perspective view (A) which showed an example of the blade used for this invention, and the perspective view (B) which showed an example of the punching die which has arranged this blade a plurality. 本発明に用いる切込シート基材の切込の一例を示す平面図である。It is a top view which shows an example of the cutting of the cutting sheet base material used for this invention. 本発明に用いる抜き型の一例を示した斜視図である。It is the perspective view which showed an example of the cutting die used for this invention. 本発明に用いるミシン刃の一例を示した斜視図(A)と、該ミシン刃を2つ配置した抜き型の一例を示した斜視図(B)である。They are a perspective view (A) showing an example of a sewing machine blade used in the present invention and a perspective view (B) showing an example of a punching die in which two sewing machine blades are arranged. 本発明に用いる抜き型の一例を示す平面図である。It is a top view which shows an example of the cutting die used for this invention. 本発明に用いる抜き型の一例を示した上面図である。It is the top view which showed an example of the cutting die used for this invention. 本発明により製造された切込シート基材を用いた成形法の一例を示す斜視図である。It is a perspective view which shows an example of the shaping | molding method using the cutting sheet base material manufactured by this invention. 従来の切込シート基材の製造方法の一例を示す斜視図である。It is a perspective view which shows an example of the manufacturing method of the conventional cutting sheet base material. 従来の切込シート基材の製造方法に用いる刃の一例を示す斜視図(A)と、製造方法の一例を示す斜視図で(B)ある。It is the perspective view which shows an example of the blade used for the manufacturing method of the conventional cutting sheet base material, and a perspective view which shows an example of a manufacturing method (B). 本発明の切込シート基材の製造方法の一例を示す斜視図(A)、(B)と、本発明により製造された切込シート基材の一例を示す平面図(C)、(D)である。The perspective view (A) which shows an example of the manufacturing method of the cutting sheet base material of this invention, (B), The top view (C) which shows an example of the cutting sheet base material manufactured by this invention, (D) It is.

符号の説明Explanation of symbols

1:強化繊維
2:繊維配列方向
3:シート基材
4:繊維直交方向
5:カット部の稜線をシート基材に投影した投影線Aの繊維直交方向成分Ws’
6:刃
7:抜き型
8:切込
9:カット部の稜線
10:1回目のプレスで挿入する切込
11:2回目のプレスで挿入する切込
12:基材の送り量
13:投影線B
14:投影線Bの不連結部
15:投影線Bの不連結部の幅
16:樹脂リッチ部
17:開口部の繊維配列方向の長さ
18:ミシン刃
19:カット部の長さW
20:カット部間距離の長さb
21:互いに繊維配列方向に同位相となるミシン刃の集合1
22:互いに繊維配列方向に同位相となるミシン刃の集合2
28:プリプレグ基材
29:テープ状支持体
30:カット部の先端
31:離型フィルム
32:土台
33:切込長さW
34:繊維長さL
35:断続的な切込の列
35a:第1の断続的な切込の列
35b:第2の断続的な切込の列
35c:第3の断続的な切込の列
35d:第4の断続的な切込の列
36:ベニヤ板
37:ベニヤ板の中央領域
38:矩形状の刃
39:投影線Aと繊維配列方向とのなす角θ
40:成形型
41:注入口
42:減圧口
43:切込シート基材
44:R部
45:ヘッド
46:カット部
47:投影線分A
48:繊維直交面
49:n=1のときの領域A
50:n=3のときの領域B
51:L/2の長さ
52:ミシン刃A
53:ミシン刃B
54:切込の繊維直交方向成分Ws
55:切込の曲線に沿った長さ
56:回転ローラー
57:観察対象領域
58:押当方向
59:投影線O
1: Reinforcing fiber 2: Fiber arrangement direction 3: Sheet substrate 4: Fiber orthogonal direction 5: Fiber orthogonal direction component Ws ′ of projection line A obtained by projecting the ridge line of the cut portion onto the sheet substrate
6: Blade 7: Die 8: Cut 9: Ridge line 10 of the cut part: Cut inserted by the first press 11: Cut inserted by the second press 12: Feed amount 13 of the base material: Projection line B
14: Unconnected portion of projection line B 15: Width of unconnected portion of projection line B 16: Resin rich portion 17: Length of opening in fiber array direction 18: Sewing blade 19: Length W of cut portion
20: Length b between the cut portions
21: A set 1 of sewing blades having the same phase in the fiber arrangement direction.
22: A set of sewing blades 2 in phase with each other in the fiber arrangement direction
28: Pre-preg base material 29: Tape-like support 30: Cutting edge 31: Release film 32: Base 33: Cutting length W
34: Fiber length L
35: Intermittent cut row 35a: First intermittent cut row 35b: Second intermittent cut row 35c: Third intermittent cut row 35d: Fourth Intermittent notch row 36: plywood plate 37: central region 38 of the plywood plate: rectangular blade 39: angle θ between the projection line A and the fiber arrangement direction
40: Mold 41: Injection port 42: Decompression port 43: Cutting sheet base material 44: R part
45: Head 46: Cut section 47: Projected line segment A
48: Fiber orthogonal plane 49: Region A when n = 1
50: Region B when n = 3
51: Length of L / 2 52: Sewing blade A
53: Sewing machine blade B
54: Fiber orthogonal component Ws of cut
55: Length 56 along the cutting curve 56: Rotating roller 57: Observation target region 58: Pushing direction 59: Projection line O

Claims (12)

一方向に配列した強化繊維を含むシート基材であって、シート厚みHが30〜300μmの範囲内の前記シート基材を繊維配列方向に送り、前記シート基材に、刃を配置した抜き型を間欠的に押し当て、前記刃を前記シート基材に間欠的に進入させて、断続的な切込を挿入して、前記切込の繊維直交方向成分Wsを30μm〜100mmの範囲内とし、実質的にすべての強化繊維の繊維長さLを10〜100mmの範囲内とする切込シート基材の製造方法。 A sheet base material including reinforcing fibers arranged in one direction, the sheet base material having a sheet thickness H in the range of 30 to 300 μm is sent in the fiber array direction, and a cutting die in which a blade is arranged on the sheet base material Are intermittently pressed, the blade is allowed to enter the sheet base material intermittently, intermittent cuts are inserted, and the fiber orthogonal component Ws of the cuts is within a range of 30 μm to 100 mm, A method for producing a cut sheet substrate, wherein the fiber length L of substantially all the reinforcing fibers is in the range of 10 to 100 mm. 前記切込の繊維直交方向成分Wsを30μm〜100mmの範囲内とする手段が、前記刃の一部であり、切込を挿入する際に基材を貫通あるいは基材に進入する部位をカット部とし、前記抜き型を前記シート基材に押し当てる方向を押当方向としたときに、前記押当方向に、前記カット部の稜線を前記シート基材に投影した投影線Aの繊維直交方向成分Ws’が30μm〜100mmの範囲内となるように、前記抜き型を前記シート基材に押し当てることである、請求項1に記載の切込シート基材の製造方法。 The means for setting the fiber perpendicular direction component Ws of the incision within a range of 30 μm to 100 mm is a part of the blade, and a portion that penetrates the base material or enters the base material when inserting the incision is cut. And when the direction in which the punching die is pressed against the sheet base material is the pressing direction, the fiber orthogonal direction component of the projection line A in which the ridge line of the cut portion is projected onto the sheet base material in the pressing direction. The manufacturing method of the cutting sheet base material of Claim 1 which is pressing the said cutting die | mold against the said sheet base material so that Ws' may exist in the range of 30 micrometers-100 mm. 実質的にすべての強化繊維の繊維長さLを10〜100mmの範囲内とする手段が、前記刃の一部であり、切込を挿入する際に基材を貫通あるいは基材に進入する部位をカット部とし、前記抜き型を前記シート基材に押し当てる方向を押当方向としたときに、前記抜き型に含まれるすべての前記カット部の稜線を、前記押当方向に、前記シート基材に投影した投影線Aを、繊維配列方向に、同じ繊維直交面に投影して得た投影線B同士が実質的にすべて連結するように前記抜き型に前記シート基材を押し当てることである、請求項1または2に記載の切込シート基材の製造方法。 The part which makes the fiber length L of substantially all the reinforcing fibers within the range of 10 to 100 mm is a part of the blade, and penetrates the base material or enters the base material when inserting the cut. , And the ridge line of all the cut portions included in the punching die in the pressing direction, when the direction in which the punching die is pressed against the sheet base material is the pressing direction. By pressing the sheet base material against the punching die so that projection lines A projected onto the material are projected in the fiber arrangement direction onto the same fiber orthogonal plane, and all the projection lines B are connected to each other. The manufacturing method of the cutting sheet base material of Claim 1 or 2. 前記刃の一部であり、切込を挿入する際に基材を貫通あるいは基材に進入する部位をカット部とし、前記抜き型を前記シート基材に押し当てる方向を押当方向としたときに、前記押当方向に、前記カット部の稜線を前記シート基材に投影した投影線Aと繊維配列方向とのなす角θが2〜60°の範囲内となるように前記抜き型にシート基材を押し当てる、請求項1〜3のいずれかに記載の切込シート基材の製造方法。 When part of the blade is a part that penetrates the base material or enters the base material when inserting a cut, and the pressing direction is the direction in which the punching die is pressed against the sheet base material Further, in the pressing direction, the sheet is placed in the punching die so that an angle θ formed by the projection line A obtained by projecting the ridge line of the cut portion on the sheet base material and the fiber arrangement direction is within a range of 2 to 60 °. The manufacturing method of the cutting sheet base material in any one of Claims 1-3 which presses a base material. 前記刃として、板状のミシン刃を用いる、請求項1〜4のいずれかに記載の切込シート基材の製造方法。 The manufacturing method of the cutting sheet base material in any one of Claims 1-4 which uses a plate-shaped sewing blade as the said blade. 前記抜き型として、平板状であり、かつ複数の前記ミシン刃を、互いに平行となるように前記抜き型に配置したものを用いる、請求項5に記載の切込シート基材の製造方法。 The manufacturing method of the cutting sheet base material of Claim 5 which uses what was arrange | positioned at the said punching die so that it may be flat and used as the said punching die so that it may become mutually parallel. 前記ミシン刃の一部であり、切込を挿入する際に基材を貫通あるいは基材に進入する部位をカット部とし、同一ミシン刃内で隣接するカット部間の距離をカット部間距離bとしたときに、前記カット部の長さWおよびカット部間距離bがそれぞれ一定となるように前記抜き型をシート基材に押し当てる、請求項5または6に記載の切込シート基材の製造方法。 A part that is a part of the sewing machine blade and penetrates the base material or enters the base material when inserting a cut is defined as a cut part, and the distance between adjacent cut parts in the same sewing machine blade is the distance b between the cut parts. The cutting die base material according to claim 5 or 6, wherein the cutting die is pressed against the sheet base material so that the length W of the cut part and the distance b between the cut parts are constant. Production method. 前記投影線B同士が、互いに端部のみで連結し、かつ前記シート基材を繊維配列方向に10〜100mm移動させる毎に、前記抜き型を前記シート基材に押し当てる、請求項3〜7のいずれかに記載の切込シート基材の製造方法。 The projection lines B are connected to each other only at the ends, and each time the sheet base material is moved 10 to 100 mm in the fiber array direction, the punching die is pressed against the sheet base material. The manufacturing method of the cut sheet base material in any one of. 前記カット部間距離bに対する前記カット部の長さWの比(W/b)が1〜1.5の範囲内であり、前記投影線B同士が、互いに端部のみで連結するように、前記シート基材を繊維配列方向に10〜100mm移動させる毎に、前記抜き型を前記シート基材に押し当てる、請求項8に記載の切込シート基材の製造方法。 The ratio (W / b) of the length W of the cut part to the distance b between the cut parts is in the range of 1 to 1.5, and the projection lines B are connected to each other only at the end part. The manufacturing method of the cutting sheet base material of Claim 8 which presses the said cutting die against the said sheet base material whenever the said sheet base material is moved 10-100 mm in the fiber arrangement | sequence direction. 前記ミシン刃同士を繊維配列方向に強化繊維の繊維長さLの1.5倍以上離して抜き型に配置する、請求項9に記載の切込シート基材の製造方法。 The manufacturing method of the cutting sheet base material of Claim 9 which arrange | positions the said sewing-machine blades 1.5 times or more of the fiber length L of a reinforced fiber in a fiber arrangement direction, and arrange | positions them in a punching die. 前記シート基材が強化繊維とマトリックス樹脂とからなるプリプレグ基材である、請求項1〜10のいずれかに記載の切込シート基材の製造方法。 The manufacturing method of the cutting sheet base material in any one of Claims 1-10 whose said sheet base material is a prepreg base material which consists of a reinforced fiber and matrix resin. テープ状支持体によって把持した前記プリプレグ基材を用いて、前記抜き型をテープ状支持体とは反対側の前記プリプレグ基材に押し当て、前記プリプレグ基材を貫通し、かつ、前記テープ状支持体の一部のみ侵入する前記切込を挿入する、請求項11に記載の切込シート基材の製造方法。 Using the prepreg base material gripped by the tape-shaped support, the punching die is pressed against the prepreg base on the side opposite to the tape-shaped support, penetrates the prepreg base, and the tape-shaped support The manufacturing method of the cutting sheet base material of Claim 11 which inserts the said cutting which penetrates only a part of body.
JP2008068934A 2008-03-18 2008-03-18 Manufacturing method of notched sheet base material Pending JP2009220480A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008068934A JP2009220480A (en) 2008-03-18 2008-03-18 Manufacturing method of notched sheet base material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008068934A JP2009220480A (en) 2008-03-18 2008-03-18 Manufacturing method of notched sheet base material

Publications (1)

Publication Number Publication Date
JP2009220480A true JP2009220480A (en) 2009-10-01

Family

ID=41237793

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008068934A Pending JP2009220480A (en) 2008-03-18 2008-03-18 Manufacturing method of notched sheet base material

Country Status (1)

Country Link
JP (1) JP2009220480A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012041657A (en) * 2010-08-19 2012-03-01 Daio Paper Corp Reinforced sheet, and sheet-like structural material using the same
JP2012087191A (en) * 2010-10-18 2012-05-10 Mitsubishi Rayon Co Ltd Method for production of prepreg having discontinuous fiber
JP2015051629A (en) * 2013-08-06 2015-03-19 三菱レイヨン株式会社 Method for producing laminate substrate and laminate substrate
JP5858171B2 (en) * 2013-09-10 2016-02-10 三菱レイヨン株式会社 Thermoplastic prepreg, laminated substrate and molded product
JP2017528553A (en) * 2014-07-25 2017-09-28 ダウ グローバル テクノロジーズ エルエルシー One-component structural adhesive containing an isocyanate-terminated prepolymer
EP3369768A4 (en) * 2015-10-27 2020-06-17 Toray Industries, Inc. Nicked prepreg, cross-ply laminate, and nicked prepreg production method
US11517870B2 (en) 2012-08-10 2022-12-06 Aspen Aerogels, Inc. Segmented flexible gel composites and rigid panels manufactured therefrom

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012041657A (en) * 2010-08-19 2012-03-01 Daio Paper Corp Reinforced sheet, and sheet-like structural material using the same
JP2012087191A (en) * 2010-10-18 2012-05-10 Mitsubishi Rayon Co Ltd Method for production of prepreg having discontinuous fiber
US11517870B2 (en) 2012-08-10 2022-12-06 Aspen Aerogels, Inc. Segmented flexible gel composites and rigid panels manufactured therefrom
JP2015051629A (en) * 2013-08-06 2015-03-19 三菱レイヨン株式会社 Method for producing laminate substrate and laminate substrate
JP5858171B2 (en) * 2013-09-10 2016-02-10 三菱レイヨン株式会社 Thermoplastic prepreg, laminated substrate and molded product
US10604633B2 (en) 2013-09-10 2020-03-31 Mitsubishi Chemical Corporation Thermoplastic prepreg and laminate
JP2017528553A (en) * 2014-07-25 2017-09-28 ダウ グローバル テクノロジーズ エルエルシー One-component structural adhesive containing an isocyanate-terminated prepolymer
EP3369768A4 (en) * 2015-10-27 2020-06-17 Toray Industries, Inc. Nicked prepreg, cross-ply laminate, and nicked prepreg production method
US10913236B2 (en) 2015-10-27 2021-02-09 Toray Industries, Inc. Incised prepreg, cross-ply laminate, and production method for incised prepreg
US11926074B2 (en) 2015-10-27 2024-03-12 Toray Industries, Inc. Incised prepreg, cross-ply laminate, and production method for incised prepreg

Similar Documents

Publication Publication Date Title
JP5353099B2 (en) Manufacturing method of fiber reinforced plastic
JP5223354B2 (en) Cut prepreg base material, laminated base material, fiber reinforced plastic, and method for producing cut prepreg base material
JP5272418B2 (en) Cut prepreg base material, composite cut prepreg base material, laminated base material, fiber reinforced plastic, and method for producing cut prepreg base material
JP5167953B2 (en) Laminated substrate, fiber reinforced plastic, and production method thereof
US8354156B2 (en) Prepreg base material, layered base material, fiber-reinforced plastic, process for producing prepreg base material, and process for producing fiber-reinforced plastic
JP2009220480A (en) Manufacturing method of notched sheet base material
JP5315692B2 (en) Manufacturing method of fiber reinforced plastic
KR101643114B1 (en) Layered substrate and method for manufacturing same
JP5572947B2 (en) Molding material, fiber reinforced plastic, and production method thereof
JP2008207544A5 (en)
JP5292972B2 (en) Manufacturing method of fiber reinforced plastic
JP2010023359A (en) Method of manufacturing laminate
JP2010018724A (en) Prepreg layered substrate and fiber-reinforced plastic
JP6185350B2 (en) Prepreg automatic laminating apparatus, prepreg laminated body manufacturing method, and fiber reinforced composite material manufacturing apparatus
JP2008279753A (en) Manufacturing method of fiber-reinforced plastics
JP2009114611A (en) Method for producing chopped fiber bundle and molding material, molding material, and fiber-reinforced plastic
WO2018055932A1 (en) Notched prepreg and method for producing notched prepreg
JP2009274412A (en) Manufacturing process of unidirectional sheet base material consisting of discontinuous fibers
JP2010018723A (en) Incised prepreg substrate, prepreg layered product, and fiber-reinforced plastic
JP2007146151A (en) Prepreg substrate material, laminated substrate material and fiber-reinforced plastic
US20220040935A1 (en) Method for manufacturing molded article of fiber-reinforced composite material, reinforcing fiber substrate and molded article of fiber-reinforced composite material
JP2008238809A (en) Method of manufacturing laminate
JP2008208343A (en) Cut prepreg substrate, laminated substrate, fiber reinforced plastics and preparation method of cut prepreg substrate
JP2012167252A (en) Method for producing narrow prepreg, and fiber-reinforced plastic
JP2010274612A (en) Manufacturing method for frp molded article by rtm molding method, and die for the same