JP2007261141A - Prepreg laminate and fiber-reinforced plastic - Google Patents

Prepreg laminate and fiber-reinforced plastic Download PDF

Info

Publication number
JP2007261141A
JP2007261141A JP2006090629A JP2006090629A JP2007261141A JP 2007261141 A JP2007261141 A JP 2007261141A JP 2006090629 A JP2006090629 A JP 2006090629A JP 2006090629 A JP2006090629 A JP 2006090629A JP 2007261141 A JP2007261141 A JP 2007261141A
Authority
JP
Japan
Prior art keywords
prepreg
fiber
laminate
fibers
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006090629A
Other languages
Japanese (ja)
Other versions
JP4779754B2 (en
Inventor
Shunei Sekido
俊英 関戸
Masahiro Yamauchi
雅浩 山内
Akihiko Kitano
彰彦 北野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2006090629A priority Critical patent/JP4779754B2/en
Publication of JP2007261141A publication Critical patent/JP2007261141A/en
Application granted granted Critical
Publication of JP4779754B2 publication Critical patent/JP4779754B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B15/00Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00
    • B29B15/08Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00 of reinforcements or fillers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/10Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
    • B29C70/16Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length
    • B29C70/20Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length oriented in a single direction, e.g. roofing or other parallel fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2793/00Shaping techniques involving a cutting or machining operation
    • B29C2793/0036Slitting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2793/00Shaping techniques involving a cutting or machining operation
    • B29C2793/0081Shaping techniques involving a cutting or machining operation before shaping

Abstract

<P>PROBLEM TO BE SOLVED: To provide a laminate of prepreg base materials which have a favorable fluidity and followability to complicated shapes and, when processed into a fiber-reinforced plastic, exhibit reduced variations and a high dimensional stability and a fiber-reinforced plastic obtained by thermally curing the prepreg laminate. <P>SOLUTION: The prepreg base material is constituted of carbon fibers 7 oriented in one direction and a thermally curable resin. The prepreg laminate 1 is composed of a laminate 2 of prepreg base materials 2a-2d in which the prepreg base material has more than on line comprising notches 6a and 6b with limited lengths intermittently notched in the direction crossing the carbon fibers and prepreg base materials 3 and 4 in which continuous carbon fibers composed of carbon fibers oriented in one direction or carbon fiber fabrics are used at least on one of the outermost surfaces of the laminate for the only reinforce fiber. The fiber-reinforced plastic is obtained by thermally curing and molding the prepreg laminate 1. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、例えば自動車部材、スポーツ用具等に好適に用いられる繊維強化プラスチックの中間基材であるプリプレグ積層体及び該プリプレグ積層体を加熱・硬化せしめた繊維強化プラスチックに関する。詳しくは、成形時に良好な流動性と成形追従性とを有するとともに、繊維強化プラスチックに成形した場合に、優れた力学物性と、その低バラツキ性および優れた寸法安定性を発現し得るプリプレグ基材の積層体及び繊維強化プラスチックに関する。   The present invention relates to a prepreg laminate which is an intermediate substrate of fiber reinforced plastic suitably used for, for example, automobile members, sports equipment, and the like, and a fiber reinforced plastic obtained by heating and curing the prepreg laminate. Specifically, a prepreg base material that has good fluidity and molding followability during molding and can exhibit excellent mechanical properties, low variation and excellent dimensional stability when molded into fiber reinforced plastic. The present invention relates to a laminate and a fiber reinforced plastic.

強化繊維にマトリックス樹脂を含浸・硬化させた繊維強化プラスチックは、比強度、比弾性率が高く、力学特性に優れること、耐候性、耐薬品性などの高機能特性を有することなどから、あらゆる産業用途において注目され、その需要は年々高まりつつある。   Fiber reinforced plastics, in which reinforced fibers are impregnated with matrix resin and cured, have high specific strength, high specific modulus, excellent mechanical properties, and high functional properties such as weather resistance and chemical resistance. The application is attracting attention and its demand is increasing year by year.

かかる繊維強化プラスチックの成形方法としては、連続した強化繊維にマトリックス樹脂を含浸せしめた半硬化状態の中間基材(プリプレグ)を成形型内に積層し、全体を真空パックした状態で高温高圧釜やオーブン内で加熱・加圧して、型内のマトリックス樹脂を硬化させるオートクレーブ成形やオーブン成形法が一般的である。また、近年では、生産効率の向上を目的として、予め成形部材の形状に賦形した樹脂が未含浸の連続強化繊維基材にマトリックス樹脂を注入して含浸後硬化させるRTM(レジントランスファーモールディング)成形法も行われている。   As a method of molding such fiber reinforced plastic, a semi-cured intermediate base material (prepreg) obtained by impregnating continuous reinforcing fibers with a matrix resin is laminated in a mold, and the whole is vacuum-packed, Autoclave molding and oven molding methods are generally used in which the matrix resin in the mold is cured by heating and pressing in an oven. Also, in recent years, for the purpose of improving production efficiency, RTM (resin transfer molding) molding in which a matrix resin is injected into a continuous reinforcing fiber base that has not been impregnated with a resin that has been shaped in advance into the shape of a molded member and then cured after impregnation. Laws are also in place.

これらの成形法により得られた繊維強化プラスチックは、強化繊維が連続繊維であるため、優れた力学物性を有する。また、連続繊維は規則的な配列であるため、基材の配置により、必要とする力学物性に設計することが可能であり、また、力学物性のバラツキが小さいという利点も有する。   The fiber reinforced plastics obtained by these molding methods have excellent mechanical properties because the reinforced fibers are continuous fibers. In addition, since the continuous fibers are regularly arranged, it is possible to design the required mechanical properties by arranging the base material, and there is an advantage that the variation in the mechanical properties is small.

しかしながら、一方でプリプレグ基材を構成する強化繊維の総てが連続繊維である故に強化繊維の腰が強く、三次元形状等の複雑な凹凸形状を有する成形体を形成することは難しい。その為、現在においては主として平面形状に近い部材に用途が限られる。特に、プリプレグの場合は、強化繊維に予め樹脂が含浸されているので、剛性アップとなり、一層困難である。   However, on the other hand, since all of the reinforcing fibers constituting the prepreg base material are continuous fibers, the reinforcing fibers are strong and it is difficult to form a molded body having a complicated uneven shape such as a three-dimensional shape. For this reason, at present, the application is limited to members mainly having a planar shape. In particular, in the case of a prepreg, the reinforcing fiber is impregnated with a resin in advance, so that the rigidity is increased and it is further difficult.

このような点から、三次元形状等の複雑な形状に適した成形方法として、SMC(シートモールディングコンパウンド)成形法がある。SMC成形法は、通常12から25mm程度に切断されたチョップドストランドに熱硬化性樹脂のマトリックス樹脂を含浸せしめて半硬化状態としたSMCシートを、加熱型プレス機(ホットプレス機)を用いて加熱・加圧することにより成形を行うものである。多くの場合、加圧前にSMCシートを成形体の形状より小さな集合体として成形型上に配置し、加圧により成形体の形状までSMCシートを流動させて成形を行う。そのため、その流動性により、三次元形状等の複雑な形状にも追従可能となる。   From such a point, there is an SMC (sheet molding compound) molding method as a molding method suitable for a complicated shape such as a three-dimensional shape. In the SMC molding method, an SMC sheet which is semi-cured by impregnating a chopped strand, which is usually cut to about 12 to 25 mm, with a matrix resin of a thermosetting resin, is heated using a heating type press machine (hot press machine). -Molding is performed by applying pressure. In many cases, the SMC sheet is arranged on the mold as an aggregate smaller than the shape of the molded body before pressing, and the SMC sheet is flowed to the shape of the molded body by pressing to perform molding. Therefore, it is possible to follow a complicated shape such as a three-dimensional shape by the fluidity.

しかしながら、SMCはそのシート化工程において、チョップドストランドの分量分布ムラ、配向ムラが必然的に生じてしまうため、得られた成形体の力学的物性が低下し、あるいはその値のバラツキが大きくなってしまう欠点がある。さらには、そのチョップドストランドの分量分布ムラ、配向ムラにより、特に薄物の部材ではソリ、ヒケ等が発生しやすくなり、構造材としては不適な場合が多い。   However, SMC is inevitably caused by uneven distribution of chopped strands and uneven alignment in the sheeting process, resulting in a decrease in mechanical properties of the obtained molded product or a large variation in its value. There is a drawback. Furthermore, the uneven distribution of the chopped strands and the uneven alignment tend to cause warpage, sink marks, etc., particularly in a thin material, which is often unsuitable as a structural material.

上述のような材料の欠点を埋めるべく、連続強化繊維と熱可塑性樹脂からなるプリプレグに切り込みを入れることにより、流動性可能で力学物性のバラツキも小さくなるとされる基材が開示されている(例えば特許文献1参照)。   In order to fill in the drawbacks of the above-described materials, a base material that can be made fluid and small in variation in mechanical properties by cutting into a prepreg composed of continuous reinforcing fibers and a thermoplastic resin is disclosed (for example, Patent Document 1).

しかしながら、特許文献1の技術では、熱可塑性樹脂をマトリックス樹脂として用いているため、タック性(粘着性)がないという理由により、積層時に基材同士が滑り積層構成がずれるという問題や、ドレープ性(変形性)を有しないという理由や熱可塑性樹脂であるため粘度が高く流動し難いことにより、凹凸部を有する部材においては賦形が困難であるという問題を有している。また、熱可塑性樹脂はタック性がないためプリプレグ基材同士を積層させて積層体として保持できず、またそのために、賦形後の形態保持もできないため、設計どおりの成形が困難という問題もある。さらに、力学的物性面では、前述の総て連続繊維で強化された強化繊維プラスチックに比較して、総ての強化繊維が切り込まれているが為に必然的に大きく劣るという問題がある。
特公平8−5079号公報(請求項1、2、第1図)
However, in the technique of Patent Document 1, since a thermoplastic resin is used as a matrix resin, there is a problem in that the base material is slipped during lamination and the drape property due to the absence of tackiness (adhesiveness). There is a problem that it is difficult to shape a member having an uneven part because it is not deformable or because it is a thermoplastic resin and has a high viscosity and is difficult to flow. In addition, since the thermoplastic resin does not have tackiness, it cannot be held as a laminate by laminating prepreg base materials, and therefore, there is also a problem that it is difficult to mold as designed because shape cannot be maintained after shaping. . Furthermore, in terms of mechanical properties, there is a problem in that all the reinforcing fibers are cut as compared with the above-described reinforcing fiber plastics reinforced with continuous fibers.
Japanese Patent Publication No. 8-5079 (Claims 1, 2 and 1)

本発明は、かかる従来技術の問題点を解消し、良好な流動性と複雑形状への追従性とを有すると共に、繊維強化プラスチックとした場合に優れた力学物性とその低バラツキ性および優れた寸法安定性を発現し得るプリプレグ積層体ならびに繊維強化プラスチックを提供することを目的とする。   The present invention eliminates the problems of the prior art, has good fluidity and followability to complex shapes, and has excellent mechanical properties and low variation and excellent dimensions when used as a fiber reinforced plastic. An object of the present invention is to provide a prepreg laminate and a fiber-reinforced plastic that can exhibit stability.

本発明は、係る課題を解決するために、次のような手段を採用するものである。即ち、
(1)一方向に引き揃えられて平面状に配列された強化繊維にマトリックス樹脂が含浸されてなるシート状プリプレグを、複数層積み重ねたプリプレグ積層体において、
(A)前記シート状プリプレグは、強化繊維を連続した炭素繊維とするとともに、前記マトリックス樹脂を熱硬化性樹脂とし、かつ、
(B)前記シート状プリプレグは、前記連続した炭素繊維の繊維方向を横切る方向に断続的に有限長の切り込みを入れたプリプレグ基材を複数層積層してなるプリプレグ基材積層体と、前記切り込みを入れないで連続した炭素繊維を強化繊維とし、かつ、前記プリプレグ基材積層体の最表層の少なくとも片側に配設されたプリプレグ基材と、で構成されていることを特徴とするプリプレグ積層体。
(2)前記積層体の最表層の少なくとも片側に配設されたプリプレグ基材の連続する炭素繊維が、一方向のみに引き揃えられた炭素繊維であることを特徴とする(1)項に記載のプリプレグ積層体。
(3)前記積層体の最表層の少なくとも片側に配設されたプリプレグ基材が、二方向に引き揃えられた連続する炭素繊維で織成された織物を含むことを特徴とする(1)項に記載のプリプレグ積層体。
(4)前記プリプレグ基材積層体を構成する全てのプリプレグ基材が、該プリプレグ基材の全面に繊維を横切る方向に、2〜50mm(L)の有限長の切り込み列が強化繊維の繊維方向に10〜100mmの距離(L2)を隔てて複数列設けられており、前記複数列のうちの隣り合う列は繊維直交方向にずれており、かつ、隣り合う該列の切り込みが切り込みの重なり幅(L1)で互いに切り込んでいることを特徴とする(1)〜(3)項のいずれかに記載のプリプレグ積層体。
(5)前記互いに切り込んでいる切り込みの重なり幅(L1)が、0.1mm以上で、かつ、隣り合う列の切り込みのうち、短い方の切り込みの長さの0.1倍以下であることを特徴とする(1)〜(4)項のいずれかに記載のプリプレグ積層体。
(6)前記隣り合う列の切り込みの形状、寸法および方向のうちのいずれかが、同一であることを特徴とする(1)〜(5)項のいずれかに記載のプリプレグ積層体。
(7)前記切り込みが、前記強化繊維の繊維方向を横切る方向に等間隔で設けられていることを特徴とする(1)〜(6)項のいずれかに記載のプリプレグ積層体。
(8)前記切り込みの横切る方向は、全てが前記炭素繊維の繊維方向と直交する方向であることを特徴とする(1)〜(7)項のいずれかに記載のプリプレグ積層体。
(9)任意の1つの切り込みにより切断される繊維本数が、5,000〜50,000本の範囲である(1)〜(8)項のいずれかに記載のプリプレグ積層体。
(10)少なくとも、前記連続する炭素繊維を強化繊維とするプリプレグ基材が、事前に製品形状に賦形されていることを特徴とする(1)〜(9)項のいずれかに記載のプリプレグ積層体。
(11)(1)〜(10)項のいずれかに記載のプリプレグ積層体を加熱・硬化せしめてなることを特徴とする繊維強化プラスチックである。
The present invention employs the following means in order to solve such problems. That is,
(1) In a prepreg laminate in which a plurality of layers of sheet-like prepregs obtained by impregnating a matrix resin into reinforcing fibers arranged in one direction and arranged in a plane,
(A) The sheet-like prepreg is a continuous carbon fiber as a reinforcing fiber, the matrix resin as a thermosetting resin, and
(B) The sheet-like prepreg includes a prepreg base material laminate formed by laminating a plurality of prepreg base materials in which cuts of a finite length are intermittently cut in a direction crossing the fiber direction of the continuous carbon fibers, and the incision. A prepreg laminate comprising: a continuous carbon fiber without reinforcing fiber as a reinforcing fiber, and a prepreg substrate disposed on at least one side of the outermost layer of the prepreg substrate laminate. .
(2) The continuous carbon fiber of the prepreg base material disposed on at least one side of the outermost layer of the laminate is a carbon fiber that is aligned in only one direction. Prepreg laminate.
(3) Item (1), wherein the prepreg substrate disposed on at least one side of the outermost layer of the laminate includes a woven fabric woven with continuous carbon fibers aligned in two directions. The prepreg laminate according to 1.
(4) All the prepreg base materials constituting the prepreg base material laminate are in the direction of crossing the fibers over the entire surface of the prepreg base material. Are provided in a plurality of rows with a distance (L2) of 10 to 100 mm, the adjacent rows of the plurality of rows are shifted in the fiber orthogonal direction, and the cuts of the adjacent rows are the overlap width of the cuts The prepreg laminate according to any one of (1) to (3), wherein the prepreg laminate is cut into each other at (L1).
(5) The overlap width (L1) of the cuts that are cut into each other is 0.1 mm or more and 0.1 or less times the length of the shorter cut among the cuts in adjacent rows. The prepreg laminate according to any one of (1) to (4), which is characterized.
(6) The prepreg laminate according to any one of (1) to (5), wherein any one of the shapes, dimensions, and directions of the notches in the adjacent rows is the same.
(7) The prepreg laminate according to any one of (1) to (6), wherein the cuts are provided at equal intervals in a direction crossing the fiber direction of the reinforcing fibers.
(8) The prepreg laminate according to any one of (1) to (7), wherein the crossing direction of the cuts is a direction orthogonal to the fiber direction of the carbon fiber.
(9) The prepreg laminate according to any one of (1) to (8), wherein the number of fibers cut by any one cut is in the range of 5,000 to 50,000.
(10) The prepreg according to any one of (1) to (9), wherein at least the prepreg base material having the continuous carbon fiber as a reinforcing fiber is shaped into a product shape in advance. Laminated body.
(11) A fiber-reinforced plastic obtained by heating and curing the prepreg laminate according to any one of (1) to (10).

本発明によれば、成形時に良好な流動性と、複雑形状への追従性とを有するプリプレグ積層体が得られるとともに、該積層体を加熱・成形した場合に、優れた力学物性と、その低バラツキ性と、優れた寸法安定性とを発現し得る繊維強化プラスチックを得ることができる。   According to the present invention, it is possible to obtain a prepreg laminate having good fluidity at the time of molding and followability to complicated shapes, and when the laminate is heated and molded, excellent mechanical properties and low It is possible to obtain a fiber reinforced plastic capable of exhibiting variation and excellent dimensional stability.

本発明は、前記従来技術の問題点、すなわち連続する強化繊維の繊維方向と直交する方向に切れ目を入れたプリプレグ基材を加熱、成形した繊維強化プラスチックは、マトリックス樹脂を熱硬化性樹脂をとし、繊維長が12から25mm程度の短繊維を強化繊維としたSMC成形品に比べると、遙かに高い引張強度、引張弾性率等の力学特性を示すが、それでも切り込みの全くない連続繊維のみを強化繊維とするプリプレグ基材を加熱成形した繊維強化プラスチックに比べると、特に引張強度、曲げ強度および曲げ弾性率が低いと言う問題を改善すべく鋭意検討したところ、繊維強化プラスチックに曲げ負荷等の外力が作用した時に、最も負荷が大きい表層部分にだけ切れ目のない連続繊維で補強されたプリプレグを配置することによって、上記問題点を一挙に解決できることを究明したものである。   The fiber reinforced plastic obtained by heating and molding the prepreg base material having a notch in the direction perpendicular to the fiber direction of the continuous reinforcing fibers is a matrix resin as a thermosetting resin. Compared to SMC molded products using short fibers with a fiber length of about 12 to 25 mm as reinforced fibers, they exhibit much higher mechanical properties such as tensile strength and tensile elastic modulus, but still only continuous fibers with no cuts. Compared to fiber reinforced plastics, which are reinforced prepreg base materials that have been thermoformed, we have intensively studied to improve the problem of low tensile strength, bending strength and bending elastic modulus. By placing a prepreg reinforced with continuous fibers only on the surface layer part where the load is greatest when an external force is applied, It is obtained by investigation to be able to solve serial problems to one fell swoop.

以下、本発明を実施するための最良の形態を図面に基づいて、具体的に説明する。なお、図面は本発明の一実施例であり、これに限定されないことはいうまでもない。   Hereinafter, the best mode for carrying out the present invention will be specifically described with reference to the drawings. Note that the drawings are only examples of the present invention, and the present invention is not limited thereto.

まず、本発明に係るプリプレグ積層体の全体構成について説明する。   First, the overall configuration of the prepreg laminate according to the present invention will be described.

図1は、本発明に係るプリプレグ積層体1の全体図であり、このうち図1Aは積層構成を示すために最下層のプリプレグ基材4以外の各プリプレグ基材2、3を一部破断して積層した平面図、図1Bは図1の一部破断を行っていない積層状態でのA−A矢視の断面図である。図2〜図7は、図1のプリプレグ積層基材2の中の各プリプレグ基材における種々のパターン例を示す部分平面図である。   FIG. 1 is an overall view of a prepreg laminate 1 according to the present invention. Among these, FIG. 1A is a partially broken view of each prepreg substrate 2, 3 other than the prepreg substrate 4 in the lowermost layer in order to show a laminated configuration. FIG. 1B is a cross-sectional view taken along the line AA in FIG. 2-7 is a partial top view which shows the example of various patterns in each prepreg base material in the prepreg laminated base material 2 of FIG.

図1において、本発明のプリプレグ積層体1は、大別するとプリプレグ積層基材2と、その表裏面に配置したプリプレグ基材3、4とで構成される。   In FIG. 1, the prepreg laminated body 1 of this invention is comprised roughly by the prepreg laminated base material 2 and the prepreg base materials 3 and 4 arrange | positioned on the front and back.

プリプレグ積層基材2は、いずれもプリプレグ基材の強化繊維(図2符号7参照)に対して繊維方向と直交する方向または所定角度を持って切り込み6を入れたプリプレグ基材2a〜2dを積層してなるもので、最終製品の繊維強化プラスチックとした場合に前述した強化繊維の流動性および成形型の凹凸表面への追従効果を発揮するものである。また、プリプレグ基材3、4は、表面に切れ目を有するプリプレグの弱点であった引張強度、曲げ強度および曲げ弾性率を補うため、強化繊維に切れ目を入れていない連続繊維のみで構成したものである。図では、プリプレグ基材3、4は、連続繊維のタテ糸とヨコ糸からなる織物の態様とした基材である。   The prepreg laminated substrate 2 is formed by laminating prepreg substrates 2a to 2d each having a notch 6 with a direction or a predetermined angle perpendicular to the fiber direction with respect to the reinforcing fibers of the prepreg substrate (see reference numeral 7 in FIG. 2). Thus, when the final product is a fiber reinforced plastic, the fluidity of the reinforcing fiber and the effect of following the uneven surface of the mold are exhibited. Further, the prepreg base materials 3 and 4 are composed of continuous fibers having no cuts in the reinforcing fibers in order to compensate for the tensile strength, bending strength, and bending elastic modulus, which are weak points of the prepreg having cuts on the surface. is there. In the figure, the prepreg base materials 3 and 4 are base materials in the form of a woven fabric composed of warp yarns and weft yarns of continuous fibers.

これらプリプレグ基材2a〜2d、3、4を構成する強化繊維としては、本発明においては比強度および比弾性率の点で特に優れた性質を有している炭素繊維を用いる。この炭素繊維としては、PAN系、ピッチ系の2種類のものが挙げられるが、高強度の炭素繊維が得られやすいPAN系炭素繊維が好ましい。炭素繊維は、上記特性の他、軽量であり、しかも耐熱性や耐薬品性にも優れている点で好適である。   As the reinforcing fibers constituting these prepreg base materials 2a to 2d, 3, and 4, carbon fibers having particularly excellent properties in terms of specific strength and specific elastic modulus are used in the present invention. Examples of the carbon fiber include two types of PAN-based and pitch-based carbon fibers, and PAN-based carbon fibers from which high-strength carbon fibers can be easily obtained are preferable. In addition to the above properties, the carbon fiber is light in weight, and is preferable in that it has excellent heat resistance and chemical resistance.

マトリックス樹脂としては、本発明では従来技術の問題点の原因の一つでもあった熱可塑性樹脂に代え、熱硬化性樹脂を用いる。熱可塑性樹脂としては、エポキシ樹脂や不飽和ポリエステル樹脂、ビニルエステル樹脂、フェノール樹脂等が挙げられ、それらの混合樹脂であっても良い。これら樹脂の常温(25℃)における樹脂粘度としては、1×10Pa・s以下であることが好ましく、この範囲内であれば本発明を満たすタック性およびドレープ性を有するプリプレグ基材を得ることができる。 As the matrix resin, a thermosetting resin is used in place of the thermoplastic resin which has been one of the causes of the problems of the prior art in the present invention. Examples of the thermoplastic resin include an epoxy resin, an unsaturated polyester resin, a vinyl ester resin, and a phenol resin, and a mixed resin thereof may be used. The resin viscosity at normal temperature (25 ° C.) of these resins is preferably 1 × 10 6 Pa · s or less, and within this range, a prepreg substrate having tackiness and draping properties satisfying the present invention is obtained. be able to.

各プリプレグ基材2a〜2d、3、4の1層の厚みとしては、成形品の厚みにもよるが0.02〜1mmの範囲が好ましい。0.02mmより薄い場合は、必然的に任意の1つの切り込みにより切断される繊維本数が少なくなり、成形に過度に流動し易くなり繊維がうねり等の変形を生じやすくなる。また、例えば、成形品の厚みが2mmの繊維強化プラスチック部材を得るためには100層以上のプリプレグ基材の積層が必要となり、生産効率の面からも現実的ではない。一方、プリプレグ基材1層の厚みが1mmよりも厚い場合は、積層した時に1つの層が受け持つ繊維占有率(配分率)が大きくなるので、異方性が顕著に表れ、成形部材にソリ等が生じる可能性がある。   The thickness of one layer of each of the prepreg base materials 2a to 2d, 3 and 4 is preferably in the range of 0.02 to 1 mm although it depends on the thickness of the molded product. When the thickness is smaller than 0.02 mm, the number of fibers cut by any one notch is inevitably reduced, and the fibers are liable to flow excessively during molding, and the fibers are liable to be deformed such as waviness. For example, in order to obtain a fiber reinforced plastic member having a molded product thickness of 2 mm, it is necessary to laminate 100 or more prepreg base materials, which is not realistic from the viewpoint of production efficiency. On the other hand, when the thickness of one layer of the prepreg base material is thicker than 1 mm, the fiber occupancy (distribution rate) that one layer takes up when laminated is increased, so that anisotropy appears remarkably, and the molded member has a warp or the like. May occur.

次に、本発明のプリプレグ積層体1の構成基材であるプリプレグ積層基材2について詳細に説明する。   Next, the prepreg laminated substrate 2 which is a constituent substrate of the prepreg laminated body 1 of the present invention will be described in detail.

図2は、図1のプリプレグ積層基材2のうちのプリプレグ基材2bの部分拡大平面図であり、図のY軸方向が強化繊維7の繊維軸方向(以下、単に繊維方向と言う)を、X軸方向が繊維方向とは直交する方向を示している。   FIG. 2 is a partially enlarged plan view of the prepreg base material 2b of the prepreg laminated base material 2 of FIG. 1, and the Y-axis direction in the figure is the fiber axis direction of the reinforcing fibers 7 (hereinafter simply referred to as the fiber direction). The X-axis direction indicates a direction orthogonal to the fiber direction.

図2に示すように、プリプレグ基材2bは、強化繊維7として、図のY方向へ一方向に引き揃えられた炭素繊維に、マトリックス樹脂として、熱硬化性樹脂(図示せず)が含浸されたプリプレグ5から構成され、繊維方向と直交するX方向に複数の切り込み6a、6bが入れられた状態で、離型紙(図示せず)に密着・支持され、且つゴミ付着等から保護されている。   As shown in FIG. 2, the prepreg base material 2b is impregnated with a thermosetting resin (not shown) as a matrix resin in a carbon fiber aligned in one direction in the Y direction of the figure as the reinforcing fiber 7. The prepreg 5 is in close contact with and supported by a release paper (not shown) in a state in which a plurality of cuts 6a and 6b are inserted in the X direction orthogonal to the fiber direction, and is protected from dust adhesion and the like. .

このように、プリプレグ基材は、離型紙によって密着・支持されていることにより、全ての強化繊維7が切り込み6により切断されてもその形態を保持することが可能となり、搬送時に繊維が個々に分離してバラバラになってしまうという問題はない。この密着・支持は、マトリックス樹脂がタック性を有する熱硬化性樹脂であることによって初めて可能になることであり、タック性を持たない従来技術の熱可塑性樹脂から構成されるプリプレグ基材では離型紙を密着出来ないため、搬送やプリプレグ基材の積層が困難である。なお、本発明において、「離型紙」とは、例えばクラフト紙などの紙類やポリエチレン・ポリプロピレンなどのポリマーフィルム類、アルミなどの金属箔類などをシート状に形成したもので、樹脂との離型性を得るために、支持体表面にシリコーン系や“テフロン(登録商標)”系の離型剤や金属蒸着等を付与してもよい。   As described above, the prepreg base material is closely attached and supported by the release paper, so that it is possible to maintain the form even when all the reinforcing fibers 7 are cut by the notches 6, and the fibers are individually conveyed at the time of conveyance. There is no problem of separating and falling apart. This adhesion / support is possible only when the matrix resin is a thermosetting resin having tackiness, and in the case of a prepreg base material composed of a thermoplastic resin of the prior art that does not have tackiness, release paper is used. Therefore, it is difficult to convey and laminate the prepreg base material. In the present invention, the “release paper” is a sheet formed of paper such as kraft paper, polymer films such as polyethylene / polypropylene, metal foil such as aluminum, etc., and is separated from the resin. In order to obtain moldability, a silicone-based or “Teflon (registered trademark)” release agent, metal vapor deposition, or the like may be applied to the support surface.

切り込み6a、6bは、いずれも強化繊維7を横切るX方向に断続して一列上に設けられている。例えば、切り込み6aは、切り込み長さLが2〜50mmの範囲の有限長のもので、次の切り込み6aまでの切り込みなしの間隔L3を経て、複数本が一列上に設けられている。切り込み長さLが2mmよりも小さい場合は、ひとまとまりの繊維の集合体が小さくなるため、成形時の流動により繊維がうねりなどの変形を生じやすく力学特性の低下を招き、50mmより大きい場合は、ひとまとまりの繊維の集合体が大きくなるため、繊維の流動性が悪くなり力学物性のバラツキが大きくなる。この点から、切り込み長さLは5〜30mmがより好ましい。   The cuts 6a and 6b are both provided in a row in an intermittent manner in the X direction across the reinforcing fiber 7. For example, the notches 6a have a finite length with a notch length L in the range of 2 to 50 mm, and a plurality of notches 6a are provided in a line through a non-notched interval L3 up to the next notch 6a. When the cut length L is less than 2 mm, the aggregate of the fibers is small, so that the fibers are likely to be deformed due to flow during molding, resulting in a decrease in mechanical properties. Since the aggregate of a group of fibers becomes large, the fluidity of the fibers deteriorates and the variation in mechanical properties increases. In this respect, the cut length L is more preferably 5 to 30 mm.

また、切り込み6aの両側には、切り込み6aの切り込みなしの間隔L3を跨ぐ位置に、切り込み6bが断続して一列上に設けられている。すなわち、切り込み6bは、該列を繊維長手方向に平行移動した際に最初に重なる切り込み6b列との間隔L2が、繊維長さとして10〜100mmの範囲の位置関係に設けられている。   In addition, on both sides of the notch 6a, the notches 6b are intermittently provided in a row at a position across the non-notched interval L3 of the notch 6a. That is, the notch 6b is provided in a positional relationship in the range of 10 to 100 mm as the fiber length, with a distance L2 from the notch 6b row that first overlaps when the row is translated in the fiber longitudinal direction.

また、切り込み6bは、切り込み6aに比べると、切り込み6bが切り込み6aを跨ぐ位置まで繊維直交方向にずれているとともに、隣り合う列の切り込み6aとのX方向における相対的位置は、切り込み6aによって長さL1だけ切り込まれて、切り込みが重なり合う関係を有する。一方、切り込み6a側から見ても同様であり、切り込み6bによって長さL1だけ切り込まれている関係を有する。本発明では、この切り込みの重なりが存在することが必須の要件であり、その切り込みの重なり幅L1は0.1mm以上である。   Further, the notch 6b is displaced in the fiber orthogonal direction to the position where the notch 6b straddles the notch 6a as compared with the notch 6a, and the relative position in the X direction with the notch 6a in the adjacent row is longer by the notch 6a. The length L1 is cut and the cuts overlap each other. On the other hand, the same is true when viewed from the side of the notch 6a, and the length 6 is cut by the notch 6b. In the present invention, it is an essential requirement that the cut overlap exists, and the cut overlap width L1 is 0.1 mm or more.

L1が0.1mmよりも小さい場合、現実上機械的裁断の制御が難しく、切り込み操作により切断されず所望繊維長さより長い繊維が発生することがあり、その繊維が流動性を著しく阻害するため好ましくない。   When L1 is smaller than 0.1 mm, it is practically difficult to control mechanical cutting, and a fiber longer than the desired fiber length may be generated without being cut by the cutting operation, which is preferable because the fiber significantly impedes fluidity. Absent.

また、切り込み6a、6bを有するそれぞれの切り込み列は、図6に示すように、切り込み長さLが必ずしも同じではなく、それぞれ切り込み長さが異なる(La、Lbで、La>Lb)場合もある。この場合は、隣り合う切り込み(6a、6b)のうち短い方の長さ(Lb)の0.1倍以下の長さであることも必須の条件である。(従って、この場合の切り込みの重なり幅L1は、L1≦0.1×Lbということになる。)
一方、切り込みの重なり幅L1が隣り合う切り込みのうち短い方(Lb)の0.1倍より大きい場合は、任意の1つの切り込みにより切断される繊維本数に対する互いに切り込んでいる繊維本数の割合、すなわち所望繊維長さL2より短い繊維(L4、L5)の割合が多くなり、成形後の繊維強化プラスチックの力学特性の低下が顕著に表れるため好ましくない。なお、ここでいう「隣り合う切り込みのうち短い方」とは、プリプレグ基材の端部で切り込みが途切れているような場合は含めないものとし、このような場合には、端部に掛からない一つ内側の切り込みを基準として判断するものとする。なお、各隣り合う該列がX方向に長さL3だけずれていない場合は、切り込みにより切断されない繊維が存在するので、成形型へのマトリックス樹脂充填時における強化繊維の流動性が著しく低下する。
Further, as shown in FIG. 6, the respective cut rows having the cuts 6 a and 6 b do not necessarily have the same cut length L, and may have different cut lengths (La and Lb, La> Lb). . In this case, it is also an essential condition that the length is not more than 0.1 times the shorter length (Lb) of the adjacent cuts (6a, 6b). (Thus, the overlap width L1 of the cuts in this case is L1 ≦ 0.1 × Lb.)
On the other hand, when the overlap width L1 of the cuts is larger than 0.1 times the shorter one of the adjacent cuts (Lb), the ratio of the number of fibers cut into each other relative to the number of fibers cut by any one cut, ie, Since the ratio of fibers (L4, L5) shorter than the desired fiber length L2 increases and the mechanical properties of the fiber-reinforced plastic after molding are significantly reduced, it is not preferable. The “shorter of adjacent cuts” here does not include the case where the cut is interrupted at the end of the prepreg base material. In such a case, the end is not hooked. Judgment is based on the inner notch. In addition, when each adjacent row is not shifted by the length L3 in the X direction, there are fibers that are not cut by the cutting, so that the fluidity of the reinforcing fibers at the time of filling the molding die with the matrix resin is remarkably lowered.

また、前述の「間隔L2」とは、強化繊維7に対する切断長さであるから、成形すべき繊維強化プラスチックの力学特性に大きく影響する値であり、本発明では以下「所望繊維長さ」と称することにする。前述したとおり、間隔L2は10〜100mmの範囲が好ましいが、10mmより小さい場合は、繊維の長さも短くなるため、繊維による補強効果が低下し、繊維強化プラスチックとしたときに十分な力学特性を得ることができない。一方、100mmよりも大きい場合は、成形時の流動性が悪くなり複雑形状を形成するのは難しい。よって、より好ましい該間隔は10〜50mmである。図2の場合、所望繊維長さL2を有する短冊状のプリプレグの幅はL3であり、因みに上記切り込み6b自体の長さLbと、切り込み重なり幅L1との関係は、Lb=L3+2L1の関係にある。そして、任意の1つの切り込みにより切断される繊維本数は、5,000〜50,000本の範囲であるのが好ましい。繊維の本数が5,000本より少ない場合、成形時の流動により繊維がうねり等の変形を生じやすく、力学特性が低下することがある。繊維の本数が50,000本より多い場合、繊維長手方向に隣り合う切り込みの間隔に囲まれたひとまとまりの繊維の集合体が大きくなるため、繊維の流動性が悪くなり、力学特性の低下だけでなくバラツキも大きくなり好ましくない。   Further, since the above-mentioned “interval L2” is a cutting length with respect to the reinforcing fiber 7, it is a value that greatly affects the mechanical properties of the fiber-reinforced plastic to be molded. I will call it. As described above, the distance L2 is preferably in the range of 10 to 100 mm. However, if the distance L2 is smaller than 10 mm, the length of the fiber is also shortened, so that the reinforcing effect by the fiber is reduced, and sufficient mechanical properties are obtained when a fiber reinforced plastic is obtained. Can't get. On the other hand, when it is larger than 100 mm, the fluidity at the time of molding deteriorates and it is difficult to form a complicated shape. Therefore, the more preferable interval is 10 to 50 mm. In the case of FIG. 2, the width of the strip-shaped prepreg having the desired fiber length L2 is L3, and the relationship between the length Lb of the notch 6b itself and the notch overlap width L1 is Lb = L3 + 2L1. . And it is preferable that the fiber number cut | disconnected by arbitrary 1 cut | disconnect is the range of 5,000-50,000. When the number of fibers is less than 5,000, the fibers are likely to be deformed such as waviness due to the flow during molding, and the mechanical properties may be deteriorated. When the number of fibers is more than 50,000, the aggregate of the fibers surrounded by the notch spacing adjacent to each other in the longitudinal direction of the fiber becomes large, so that the fluidity of the fiber is deteriorated and only the mechanical properties are lowered. In addition, the variation becomes large, which is not preferable.

切り込みの基本構成は上述の通りあるが、プリプレグ基材2a〜2dに適用する場合、以下の種々の形態とすることができる。   Although the basic structure of the cutting is as described above, when applied to the prepreg base materials 2a to 2d, the following various forms can be adopted.

すなわち、各プリプレグ基材2a〜2dに適用する切り込みの方向としては、後述する図5や図7のように繊維方向に対して傾斜させることもできるが、切り込みの方向が全て繊維直交方向であることが好ましい。切り込みの方向が全て繊維直交方向であると、特定の本数の繊維を切断するのに要する切り込みの長さが最小となり、力学特性の低下を最小限に抑えることが可能となる。さらには、等方性に流動させるためには、切り込みの方向が全て繊維直交方向であることが好ましい。   That is, as the cutting direction applied to each of the prepreg base materials 2a to 2d, the cutting direction can be inclined with respect to the fiber direction as shown in FIGS. It is preferable. When the cutting directions are all in the direction perpendicular to the fibers, the length of the cutting required to cut a specific number of fibers is minimized, and the deterioration of mechanical properties can be minimized. Furthermore, in order to make it flow isotropic, it is preferable that all the cutting directions are fiber orthogonal directions.

また、切り込みの形状、寸法および方向としては、同一であることが好ましい。切り込みの形状、寸法および方向が2種以上であっても本発明の効果は得られるが、全て同一であることにより、繊維の流動性が異方性でなく均等となるため繊維の流動性制御が容易になり、反りの発生も抑制され、かつ繊維方向の配向制御により任意の力学物性を有する成形体の設計も容易になるからである。   Moreover, it is preferable that the shape, size, and direction of the cut are the same. Although the effect of the present invention can be obtained even if the shape, size, and direction of the cut are two or more, the fluidity of the fibers is uniform rather than anisotropic because all of them are the same. This is because the occurrence of warpage is suppressed, the occurrence of warpage is suppressed, and the design of a molded article having arbitrary mechanical properties is facilitated by controlling the orientation in the fiber direction.

また、各プリプレグ基材2a〜2dは、該切り込みが繊維を横切る方向に沿って等間隔で連続して分布してなることが好ましい。等間隔の場合、上記の切り込みの形状、寸法および方向と同様に、繊維の流動が均等となるため繊維の流動性の制御が容易になり、反りの発生も抑制され、かつ繊維方向の配向制御により任意の力学特性を有する成形体の構造設計も容易になるため好ましい。   Moreover, it is preferable that each prepreg base material 2a-2d is continuously distributed at equal intervals along the direction in which the cuts cross the fibers. In the case of equal intervals, the flow of the fibers becomes uniform as in the shape, size and direction of the above-mentioned cuts, so that the fluidity of the fibers can be easily controlled, the occurrence of warpage is suppressed, and the orientation control in the fiber direction is performed. Therefore, it is preferable because the structure design of a molded body having an arbitrary mechanical property is facilitated.

また、プリプレグ積層基材2を構成するプリプレグ基材2a〜2dのパターンとしては、2〜6パターンの複数のものを含むことが好ましい。すなわち、強化繊維が0/90゜方向ばかりではなく±45゜様な斜行方向を有するパターンがこの範囲内であると、パターンが一つだけである欠点を他のパターンを有するプリプレグ基材が互いに補い合い、強化繊維の流動性において、より等方性を発現することができる。しかし、構成プリプレグ基材のパターンが1つだけの場合、切り込みにより切断されない繊維が存在し、繊維の流動性が著しく低下する。一方、該切り込みからなる列のパターンが7以上ある場合、繊維の流動制御が困難になり、設計どおりの成形体の成形が困難となる。   Moreover, as a pattern of the prepreg base materials 2a-2d which comprise the prepreg laminated base material 2, it is preferable to include the 2-6 patterns of several things. That is, if the reinforcing fiber has not only the 0/90 ° direction but also a pattern having a skew direction of ± 45 ° within this range, the prepreg base material having another pattern has the disadvantage that there is only one pattern. It complements each other and can exhibit more isotropic properties in the fluidity of the reinforcing fibers. However, when there is only one pattern of the constituent prepreg base material, there are fibers that are not cut by cutting, and the fluidity of the fibers is significantly reduced. On the other hand, when there are 7 or more patterns of rows formed of the notches, it becomes difficult to control the flow of fibers, and it becomes difficult to form a molded body as designed.

次に、図3〜図7は、図2の切り込み6a、6bとは異なる切り込みパターンを示す平面図で、図3は、切込みが第1の切り込み列9と第2の切り込み列10とからなる2パターンのもので、切り込みの形状、寸法および方向が同一のものである。図4は、切り込み列が3列9〜11からなる3パターンのもの、図5は、図3のパターン列9、10を45°傾斜させたもの、図6は、図3の切り込み列9、10のうち切り込み列10の長さを短くして配置したもの、図7は、図3のパターン列9、10を交互に方向を変えて45°傾斜させたものである。   3 to 7 are plan views showing a notch pattern different from the notches 6a and 6b in FIG. 2, and FIG. 3 shows a notch comprising a first notch row 9 and a second notch row 10. FIG. The two patterns have the same shape, size and direction of the cut. FIG. 4 shows three patterns in which the cut rows are composed of three rows 9 to 11, FIG. 5 shows the pattern rows 9 and 10 in FIG. 3 inclined by 45 °, and FIG. 6 shows the cut rows 9 and 10 in FIG. 7 in which the length of the cut row 10 is shortened, FIG. 7 is a view in which the pattern rows 9 and 10 of FIG.

このように、切り込みパターンは、成形型、成形すべき繊維強化プラスチックの構造および強化繊維の流動方向に応じて種々のパターンとすることができる。すなわち、本発明では、該プリプレグ積層基材の隣り合う該列の切り込みが互いに切り込み合うことによって、所望繊維長さと所望繊維長さよりも短い強化繊維とにより構成され、繊維の流動性は非常に良好となる。一方、隣り合う該列の切り込みが互いに切り込んでいない場合、切り込みにより切断されず所望繊維長さよりも長い繊維が発生し、その繊維が流動性を著しく阻害する。これは、一方向に引き揃えられた連続繊維を強化繊維とするプリプレグにおいて、繊維はその繊維自体の特性上、およびプリプレグ化の工程上の理由により厳密には一方向に真直にはなっておらず、うねり・ヨレ等の変形を伴っていることに起因する。そのため、切り込みを有するプリプレグ基材の隣り合う列の切り込みが互いに切り込むこと、すなわち切り込みの重なり合う部分を有することにより、確実に所望繊維長さよりも長い強化繊維が発生することを防ぐことができ、プリプレグ積層基材2は、全ての強化繊維が連続繊維ではなく、少なくとも2種以上の異なる長さの短繊維の強化繊維により構成される。なお、本発明でいう「短繊維」とは、長さが100mm以下のものとする。切り込みを有する該プリプレグ基材の全面に上記の条件を満たす切り込みが挿入されることにより、成形時に強化繊維は流動可能、特に繊維長手方向にも流動可能となり、複雑形状への追従性、即ち賦形性に極めて優れる。該切り込みがない場合、即ち総ての強化繊維が連続繊維のみの場合、繊維長手方向には流動しないため、複雑形状を形成することは出来ず、かなり限られた形状にしか適用できない。図1に示すように、プリプレグ積層基材2は、前述のプリプレグ基材2a〜2dを順次積層し、一体化したものであるが、積層構成としては、用途に応じてそれぞれに適した積層構成とすればよく、特に制限はないが中でも積層体の繊維配向が[0/±45/90]s、[60/0/−60]等の如く疑似等方積層が、得られる成形体を均等な物性とし、反りの発生抑制効果が大である。さらに、積層して一体化させることにより、成形時の取扱い性が向上し、更に設計通りの積層構成を保ったままで成形することができる。また、本発明のプリプレグ基材のマトリックス樹脂は熱硬化性樹脂であるため、タック性を有し、基材同士は粘着により容易に一体化させることが可能となり、相乗効果を有する。   Thus, the cutting pattern can be various patterns depending on the mold, the structure of the fiber reinforced plastic to be molded, and the flow direction of the reinforcing fibers. That is, in the present invention, the adjacent rows of the prepreg laminated base material are cut into each other to form a desired fiber length and a reinforcing fiber shorter than the desired fiber length, and the fluidity of the fiber is very good. It becomes. On the other hand, when the cuts in the adjacent rows are not cut from each other, fibers longer than the desired fiber length are generated without being cut by the cuts, and the fibers remarkably impair the fluidity. This is because, in a prepreg having a continuous fiber aligned in one direction as a reinforcing fiber, the fiber is strictly straight in one direction due to the characteristics of the fiber itself and the reason for the prepreg process. This is due to the occurrence of deformation such as swell and twist. Therefore, the adjacent rows of cuts of the prepreg base material having the cuts cut each other, that is, by having the portions where the cuts overlap, it is possible to reliably prevent generation of reinforcing fibers longer than the desired fiber length. In the laminated base material 2, all the reinforcing fibers are not continuous fibers but are composed of at least two kinds of reinforcing fibers of short fibers having different lengths. In the present invention, the “short fiber” has a length of 100 mm or less. By inserting notches that satisfy the above conditions into the entire surface of the prepreg base material having notches, the reinforcing fibers can flow during molding, particularly in the longitudinal direction of the fibers. Excellent formability. When there is no notch, that is, when all the reinforcing fibers are continuous fibers only, they do not flow in the longitudinal direction of the fibers, so that a complicated shape cannot be formed and can be applied only to a considerably limited shape. As shown in FIG. 1, the prepreg laminated substrate 2 is formed by sequentially laminating and integrating the above-described prepreg substrates 2a to 2d. However, as the laminated configuration, a laminated configuration suitable for each application is used. Although there is no particular limitation, pseudo-isotropic lamination such that the fiber orientation of the laminate is [0 / ± 45/90] s, [60/0 / -60] or the like is obtained, and the resulting molded product is evenly distributed. It has excellent physical properties and has a great effect of suppressing the occurrence of warpage. Furthermore, by laminating and integrating, the handleability at the time of molding is improved, and further, the molding can be performed while maintaining the laminated structure as designed. Moreover, since the matrix resin of the prepreg base material of the present invention is a thermosetting resin, it has tackiness, and the base materials can be easily integrated with each other by adhesion, and has a synergistic effect.

次に、本発明のプリプレグ積層体1の構成基材であるプリプレグ基材3、4について説明する。   Next, the prepreg base materials 3 and 4 that are constituent base materials of the prepreg laminate 1 of the present invention will be described.

プリプレグ基材3、4は、前述したように、プリプレグ積層基材2の欠点である短繊維構成のための力学特性低下を改善するために設けるものである。すなわち、切り込み6a、6bのない連続した繊維のみを強化繊維とするプリプレグ基材で構成されたプリプレグ積層基材の場合は、前述の通り、形状追随性、即ち賦形性が悪く、成形形状に制限を有するという問題があるため、本発明では図1に示すように、厚み方向の中心部分は切り込みが入ったプリプレグ積基材2で構成し、曲げ負荷が作用した時、最も負荷が大きい表層部分にだけ切れ目のない連続繊維補強プリプレグを配置する。この連続繊維補強プリプレグ3、4は、必ずしもプリプレグ積層基材2の両面に配置する必要はなく、用途や負荷条件によっては片側だけに配置しても大きな改善に繋がる。   As described above, the prepreg base materials 3 and 4 are provided in order to improve the deterioration of the mechanical properties due to the short fiber structure, which is a drawback of the prepreg laminated base material 2. That is, in the case of a prepreg laminated base material composed of a prepreg base material having only continuous fibers without cuts 6a and 6b as reinforcing fibers, as described above, the shape followability, that is, the formability is poor, and the molded shape is reduced. In the present invention, as shown in FIG. 1, the central portion in the thickness direction is constituted by a prepreg product base material 2 with a cut, and when the bending load is applied, the surface layer having the largest load is present. Place a continuous fiber reinforced prepreg with no breaks only in the part. The continuous fiber reinforced prepregs 3 and 4 are not necessarily arranged on both surfaces of the prepreg laminated base material 2, and depending on the application and load conditions, the arrangement can be greatly improved.

また、この連続繊維補強プリプレグ3、4の積層枚数は、プリプレグ基材の条件(繊維の品種や目付など)や成形形状などによって異なるが、例えば目付が200g/m以上の場合は、片側で8層以下、好ましくは4層以下が好適である。なお、目付としては、150〜450g/mの範囲のものが好ましい。150g/m未満では、強化繊維の量が少ないため補強効果が低下したり、繊維が過度に流動し易いことから繊維の乱れを生じ易く、450g/mを超えると基材の剛性が高くて複雑形状に追随し難いからである。 Further, the number of laminated continuous fiber reinforced prepregs 3 and 4 varies depending on the conditions of the prepreg base material (fiber type, basis weight, etc.) and molding shape. For example, when the basis weight is 200 g / m 2 or more, 8 layers or less, preferably 4 layers or less are suitable. In addition, as a fabric weight, the thing of the range of 150-450 g / m < 2 > is preferable. Is less than 150 g / m 2, may decrease the reinforcing effect for a small amount of reinforcing fibers, the fibers tend to cause turbulence of the fiber since it tends to flow excessively, stiffness exceeds 450 g / m 2 substrate is high This is because it is difficult to follow complicated shapes.

更に、このプリプレグ基材3、4の形態としては、平織、綾織、繻子織等の織組織を有する織物や、一方向基材が挙げられる。なお、繊維が曲がっているマット状基材は不適である。   Furthermore, examples of the prepreg base materials 3 and 4 include woven fabrics having a woven structure such as plain weave, twill weave and satin weave, and unidirectional base materials. In addition, the mat-like base material in which the fiber is bent is not suitable.

本発明のプリプレグ積層体は、その構成としては以上の通りであるが、以下のような優れた作用、効果を有する。   The prepreg laminate of the present invention is as described above, but has the following excellent actions and effects.

プリプレグ積層体1を構成するプリプレグ積層基材2は、強化繊維7の方向が一方向で、かつ、繊維配向の角度を変えた種々のパターンのプリプレグ基材2a〜2dを含むので、流動時の繊維方向の配向制御が容易になり、任意の力学特性を有する繊維強化プラスチック成形体の構造設計が可能となる。強化繊維の炭素繊維は、軽量であり、しかも比強度および比弾性率において特に優れた性質を有し、さらに耐熱性や耐薬品性にも優れていることから、軽量化が望まれる自動車部材、自転車・オートバイ部品や風車などの各種部材に好適である。
また、マトリックス樹脂が熱硬化性樹脂であることにより、プリプレグ基材が室温においてタック性を有している。よって、該基材を積層した際に隣接する基材と粘着により一体化され易く、意図したとおりの積層構成を保ったままで成形することができる。すなわち、熱硬化性樹脂から構成されるプリプレグ基材は、室温において優れたドレープ性を有するため、例えば、凹凸部を有する成形型を用いて成形する場合、予めその凹凸に沿わした予備賦形を容易に行うことが出来る。この予備賦形により成形性は格段に向上し、成形型の凹凸に沿った強化繊維とマトリックス樹脂に対する流動制御も容易になる。一方、室温においてタック性のない従来技術の熱可塑性樹脂をマトリックス樹脂とするプリプレグ基材では、室温でのプリプレグ基材の積層自体が困難であるため、予め加熱して軟化した状態でしか賦形が出来ず、取扱いが難しいため結果として繊維の配向ムラの大きい繊維強化プラスチックとなる。特に、凹凸部を有する成形型で成形する際は、その差異が顕著に現れる。
The prepreg laminated base material 2 constituting the prepreg laminated body 1 includes prepreg base materials 2a to 2d having various patterns in which the direction of the reinforcing fiber 7 is one direction and the fiber orientation angle is changed. The orientation control in the fiber direction becomes easy, and the structural design of a fiber-reinforced plastic molded article having arbitrary mechanical characteristics becomes possible. The carbon fiber of the reinforcing fiber is lightweight, yet has particularly excellent properties in specific strength and specific elastic modulus, and is also excellent in heat resistance and chemical resistance. It is suitable for various members such as bicycle / motorcycle parts and windmills.
Moreover, since the matrix resin is a thermosetting resin, the prepreg base material has tackiness at room temperature. Therefore, when the base material is laminated, it is easy to be integrated with the adjacent base material by adhesion, and it can be molded while maintaining the intended laminated structure. That is, since a prepreg base material composed of a thermosetting resin has excellent drapeability at room temperature, for example, when molding using a mold having a concavo-convex part, pre-shaped along the concavo-convex part in advance. It can be done easily. By this pre-shaping, the moldability is remarkably improved, and the flow control for the reinforcing fibers and the matrix resin along the unevenness of the mold becomes easy. On the other hand, in the case of a prepreg base material using a conventional thermoplastic resin having no tack property at room temperature as a matrix resin, it is difficult to laminate the prepreg base material at room temperature. Can be difficult to handle, resulting in a fiber-reinforced plastic with large fiber orientation unevenness. In particular, the difference appears remarkably when molding with a mold having an uneven portion.

以上に説明した本発明に係るプリプレグ積層体及び繊維強化プラスチックは、例えば次のようにして製造することができる。   The prepreg laminate and fiber reinforced plastic according to the present invention described above can be produced, for example, as follows.

まず、公知の方法により、一方向に引き揃えた炭素繊維を強化繊維、熱硬化性樹脂をマトリックス樹脂とするプリプレグ基材を作成し、前述の離型紙で支持する。   First, a prepreg base material using carbon fibers aligned in one direction as reinforcing fibers and a thermosetting resin as a matrix resin is prepared by a known method and supported by the aforementioned release paper.

次に、プリプレグ基材表面に種々の方向の切り込み6a、6bを入れて、図1のプリプレグ基材2a〜2dの個々の基材を作成する。プリプレグ基材に切り込みを入れる方法としては、カッターを用いての手作業や自動裁断機により切り込みを入れる方法、あるいは一方向に引き揃えられた連続繊維のプリプレグ製造工程において所望繊維長さの間隔を隔てて切断刃を配置した回転ローラ等を介して連続的に切り込みを入れる方法等がある。簡易的にプリプレグ基材に切り込みを入れる場合には前者が、生産効率を考慮し大量に作製する場合には後者が適している。また、プリプレグ積層基材2としては、強化繊維を切断する方向のみに切り込みを入れることにより期待される効果は発現するが、横方向への繊維同士の繋がりを除きたい場合は、加えて繊維長手方向に切り込みを入れても差し支えない。そして、得られたプリプレグ基材2a〜2dをこの順に積層し、図1のプリプレグ積層基材2を得る。   Next, cuts 6a and 6b in various directions are made on the surface of the prepreg base material to create individual base materials of the prepreg base materials 2a to 2d in FIG. As a method of cutting into the prepreg base material, a method of cutting with a manual operation using a cutter or an automatic cutting machine, or a desired fiber length interval in a prepreg manufacturing process of continuous fibers aligned in one direction. There is a method of continuously cutting through a rotating roller or the like in which a cutting blade is arranged at a distance. The former is suitable when the prepreg base material is simply cut, and the latter is suitable when producing a large amount in consideration of production efficiency. In addition, as the prepreg laminated base material 2, the effect expected by cutting only in the direction of cutting the reinforcing fibers is expressed, but in the case where it is desired to remove the connection between the fibers in the lateral direction, You can make a cut in the direction. And the obtained prepreg base materials 2a-2d are laminated | stacked in this order, and the prepreg laminated base material 2 of FIG. 1 is obtained.

次に、タテ糸とヨコ糸を連続した炭素繊維で織成した織物とし、これに熱硬化性樹脂をマトリックス樹脂とするプリプレグ基材3、4を準備し、前述のプリプレグ積層基材2の最表面の両側に積層し、本発明のプリプレグ積層体1とする。   Next, a prepreg base material 3 or 4 is prepared by using a woven fabric made of continuous carbon fibers of warp and weft yarns, and a thermosetting resin as a matrix resin, and the outermost surface of the prepreg laminated base material 2 described above. The prepreg laminate 1 of the present invention is laminated on both sides.

得られたプリプレグ積層体1は、成形型内の凹凸形状沿って必要枚数が設置場所に応じて更に積層され、成形型とともに全体が所定時間、所定温度にて加熱硬化され、脱型されて本発明の繊維強化プラスチックとなる。加熱硬化せしめる方法としては、真空バッグ成形、金型プレス成形、オートクレーブ加圧成形、シートワインディング成形等が挙げられ、生産効率を考慮すると金型プレス成形、即ちホットプレス成形が好ましい。   The obtained prepreg laminate 1 is further laminated according to the installation location according to the uneven shape in the mold, and the entire prepreg laminate 1 is heated and cured at a predetermined temperature for a predetermined time together with the mold, and is removed from the mold. It becomes the fiber-reinforced plastic of the invention. Examples of the heat-curing method include vacuum bag molding, mold press molding, autoclave pressure molding, sheet winding molding, and the like, and mold press molding, that is, hot press molding is preferable in consideration of production efficiency.

本発明のプリプレグ積層体及びこれを成形した繊維強化プラスチックは、あらゆる産業用途に好適に使用できることは勿論であるが、特に強度、剛性、軽量性が要求される、自転車のクランクやフレームなどの部材、ゴルフ等のスポーツ部材のシャフトやヘッド、ドアやシートフレームなどの自動車部材、ロボットアームなどの機械部品に適用できる。中でも、強度、軽量に加え、部材形状が複雑で、本材料のように形状追従性が要求されるクランクなどの自転車部材、シートパネルやシートフレーム等の自動車部品に好ましく適用できる。   The prepreg laminate of the present invention and the fiber reinforced plastic formed from the laminate can be used suitably for all industrial applications, but members such as bicycle cranks and frames are particularly required to have strength, rigidity and light weight. It can be applied to shafts and heads of sports members such as golf, automobile members such as doors and seat frames, and machine parts such as robot arms. Among them, in addition to strength and light weight, the member shape is complicated, and it can be preferably applied to a bicycle member such as a crank, which requires shape followability like this material, and automobile parts such as a seat panel and a seat frame.

以下、実施例により本発明をさらに具体的に説明するが、本発明は、特にこれに限定されるものではない。なお、本実施例で用いた平板成形方法および機械特性評価方法は次のとおりとした。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not particularly limited thereto. The flat plate forming method and the mechanical property evaluation method used in this example were as follows.

<平板成形方法>
一方向に引き揃えられた炭素繊維と熱硬化性樹脂からなるプリプレグ5を作成し、これから繊維長手方向と、繊維長手方向から45゜回転してずらした方向の二方向に、それぞれ250×250mmの大きさに切り出した。切り出した各プリプレグ基材を16層疑似等方(([45/0/−45/90]2Sに積層してプリプレグ積層体1を作製した。そして、外形寸法が300×300mmの金型上に該プリプレグ積層体を配置した後、加熱型プレス成形機により、6MPaの加圧下で、150℃×30分間の加熱条件により加熱硬化せしめ、外形が同様に300×300×1.7mmの平板状の成形体を得た。
<Flat plate forming method>
A prepreg 5 made of carbon fiber and thermosetting resin aligned in one direction is prepared, and from this, the fiber longitudinal direction and a direction shifted by 45 ° from the fiber longitudinal direction and shifted in two directions are 250 × 250 mm, respectively. Cut to size. Each cut prepreg base material was laminated on 16-layer pseudo-isotropic (([45/0 / -45 / 90] 2S to prepare a prepreg laminate 1. Then, on a mold having an outer dimension of 300 × 300 mm. After the prepreg laminate was placed, it was cured by heating under a heating condition of 150 ° C. for 30 minutes under a pressure of 6 MPa using a heating press molding machine, and the outer shape was similarly 300 × 300 × 1.7 mm. A molded body was obtained.

<機械特性評価方法>
得られた平板状の成形体より、長さが250mm±1mm、幅が25mm±0.2mmの引張強度試験片を切り出した。そして、これをJIS K−7073に規定する試験方法に従い、標点間距離を150mmとし、クロスヘッド速度2.0mm/分で引張強度を測定した。なお、本実施例においては、試験機としてインストロン(登録商標)万能試験機4208型を用いた。測定した試験片の数はn=10とし、平均値を引張強度とした。
<Mechanical property evaluation method>
A tensile strength test piece having a length of 250 mm ± 1 mm and a width of 25 mm ± 0.2 mm was cut out from the obtained flat plate-shaped body. And according to the test method prescribed | regulated to this in JIS K-7073, the distance between gages was set to 150 mm, and the tensile strength was measured at a crosshead speed of 2.0 mm / min. In this example, an Instron (registered trademark) universal testing machine 4208 type was used as a testing machine. The number of test pieces measured was n = 10, and the average value was the tensile strength.

(実施例1)
図2において、プリプレグ5として、一方向に引き揃えられた炭素繊維7にエポキシ樹脂が含浸され、表面がシリコーンコーティング処理された厚さ100μmの離型紙上に巻き取られたプリプレグ(東レ(株)製品P3052S−15:繊維重さ150g/mで、樹脂含有率33wt%、厚み0.15mm)を得た。そして、このプリプレグ5に対し、自動裁断機を用いて図2に示すような切り込み6a、6bを炭素繊維の繊維方向と直交する方向に断続的に入れたプリプレグ基材2cを得た。
Example 1
In FIG. 2, as a prepreg 5, a prepreg (Toray Industries, Inc.) wound up on a release paper having a thickness of 100 μm, in which carbon fibers 7 aligned in one direction are impregnated with an epoxy resin and the surface is coated with a silicone coating. Product P3052S-15: Fiber weight 150 g / m, resin content 33 wt%, thickness 0.15 mm) was obtained. And the prepreg base material 2c which cut | disconnected notches 6a and 6b as shown in FIG. 2 with respect to this prepreg 5 intermittently in the direction orthogonal to the fiber direction of carbon fiber was obtained.

切り込みの長さL(La=Lb)は、10.5mmであり、所望繊維長さL2は30mmである。また、隣り合う切り込み6bの列は、切り込み6aの列に対して、繊維直交方向に10mmずれている。すなわち、切り込み列のパターンは、切り込み6aと切り込み6bとからなる2パターンである。更に、隣り合う列の切り込みは切り込みの重なり幅L1として0.5mmずつ切り込み合っている。また、任意の1つの切り込みにより切断された繊維本数は23,625本である。エポキシ樹脂の25℃雰囲気下における粘度は、2×10Pa・sであり、該基材はタック性を有していた。上記切り込み入りのプリプレグ基材から、繊維長手方向と、繊維長手方向から45゜回転してずらした方向に、それぞれ外形寸法が250mm×250mmの大きさに切り出し、各プリプレグ基材を16層疑似等方([45/0/−45/90]2S)に積層した。 The cut length L (La = Lb) is 10.5 mm, and the desired fiber length L2 is 30 mm. Moreover, the row | line | column of the adjacent notch 6b has shifted | deviated 10 mm in the fiber orthogonal direction with respect to the row | line | column of the notch 6a. That is, the pattern of the cut row is two patterns including the cut 6a and the cut 6b. Further, the cuts in adjacent rows are cut by 0.5 mm as the overlap width L1 of the cuts. Further, the number of fibers cut by any one cut is 23,625. The viscosity of the epoxy resin in an atmosphere at 25 ° C. was 2 × 10 4 Pa · s, and the substrate had tackiness. From the above-mentioned prepreg base material with cuts, the outer dimension is cut into a size of 250 mm × 250 mm in a fiber longitudinal direction and a direction shifted by 45 ° from the fiber longitudinal direction, and each prepreg base material is 16-layer pseudo etc. ([45/0 / −45 / 90] 2S ).

次に、その16層からなるプリプレグ積層基材の両側表層に、外形寸法が300×300mmの大きさで平織からなる連続繊維強化プリプレグ(東レ(株)製品F6343B−05)を各々1plyずつ配置したプリプレグ積層体を作製した。その積層体を、キャビティ部分の外形寸法が300mm×300mmの金型上に配置した後、加熱型プレス成型機により、6MPaの加圧下、150℃×30分間の条件にて硬化せしめ、300mm×300mm×2.1mmの平板状の成形体を得た。   Next, a continuous fiber reinforced prepreg (Toray Industries, Inc. product F6343B-05) having an outer dimension of 300 × 300 mm and a plain weave was arranged on each side surface layer of the 16-layer prepreg laminated substrate. A prepreg laminate was produced. The laminate was placed on a mold having an outer dimension of the cavity portion of 300 mm × 300 mm, and then cured by a heating type press molding machine under a condition of 150 ° C. × 30 minutes under a pressure of 6 MPa, and 300 mm × 300 mm. A plate-like molded body of × 2.1 mm was obtained.

得られた成形体は、強化繊維のうねり等の変形を伴うことなく、切り込み入りプリプレグの繊維も成形体端部まで均等かつ充分に流動していた。また、反りもなく良好な平面平滑性であった。また、成形体の機械特性を前述の機械特性評価方法で評価した結果、引張強度は440MPa、引張弾性率は48GPaであり、平織の0/90方向に曲げ負荷を掛けて測定した曲げ強度は630MPa、曲げ弾性率は52GPaと高い値であった。   In the obtained molded product, the fibers of the cut prepreg were evenly and sufficiently flowed to the end of the molded product without being accompanied by deformations such as swells of reinforcing fibers. Moreover, it was favorable plane smoothness without curvature. Moreover, as a result of evaluating the mechanical properties of the molded article by the above-described mechanical property evaluation method, the tensile strength was 440 MPa, the tensile modulus was 48 GPa, and the bending strength measured by applying a bending load in the 0/90 direction of plain weave was 630 MPa. The flexural modulus was as high as 52 GPa.

(実施例2)
本実施例では、それぞれの切り込みの長さを12mmとし、隣り合う列の切り込みが互いにL1=2mm切り込んでおり、また、任意の1つの切り込みにより切断された繊維本数を27000本としたこと以外は、実施例1と同様(16層疑似等方積層)にして、切り込みを有するプリプレグ積層基材を作製した。
(Example 2)
In this example, the length of each cut is 12 mm, the cuts in adjacent rows are cut by L1 = 2 mm, and the number of fibers cut by any one cut is 27000. In the same manner as in Example 1 (16-layer pseudo isotropic lamination), a prepreg laminated substrate having a cut was produced.

次に、該プリプレグ積層基材の両側表層に、300×300mmの大きさで一方向からなる連続繊維強化プリプレグ(東レ(株)製品P3052S−15)を各々2plyずつ(表面側[0/90]、裏面側[90/0])配置したプリプレグ積層体を作製した。このプリプレグ積層体を実施例1と同様の金型、加熱型プレス機を用い、実施例1と同様の成形条件でホットプレス成形した。その結果、外形寸法が300mm×300mm×2.2mmの平板状の成形体を得た。得られた成形体は繊維のうねりを伴うことなく、成形体端部まで切り込み入りプリプレグの繊維が均等かつ充分に流動していた。また、反りもなく良好な平面平滑性であった。   Next, 2 ply each of continuous fiber reinforced prepreg (Toray Industries, Inc. product P3052S-15) having a size of 300 × 300 mm and being formed in one direction on both side surface layers of the prepreg laminated base material (surface side [0/90]) , Back side [90/0]) A prepreg laminate was prepared. This prepreg laminate was hot press molded under the same molding conditions as in Example 1 using the same mold and heating press as in Example 1. As a result, a plate-shaped molded body having an outer dimension of 300 mm × 300 mm × 2.2 mm was obtained. The resulting molded body was not even accompanied by fiber undulations, and the fibers of the prepreg that had been cut into the ends of the molded body were flowing evenly and sufficiently. Moreover, it was favorable plane smoothness without curvature.

そして、この成形体の機械特性を連続繊維方向に負荷を掛けて前述の方法によって評価した結果、引張強度は640MPa、引張弾性率は51GPaと実施例1に比べ、高い値であり、曲げ強度は840MPa、曲げ弾性率は62GPaと非常に高い値であった。
(比較例)
今度は使用したプリプレグ基材は実施例1と全く同様で、両側表層に配置した連続繊維補強プリプレグを除去した16層からなる切り込みを有するプリプレグ積層基材だけを用いて、実施例1と同様の成形条件にて成形して、外形寸法が300×300×1.7mmの平板状の成形体を得た。
And as a result of applying the load to the continuous fiber direction and evaluating the mechanical properties of this molded body by the method described above, the tensile strength is 640 MPa, the tensile elastic modulus is 51 GPa, which is a higher value than in Example 1, and the bending strength is The bending elastic modulus was 840 MPa and the value of 62 GPa was very high.
(Comparative example)
This time, the prepreg base material used was exactly the same as that of Example 1, and only the prepreg laminated base material having a notch consisting of 16 layers from which the continuous fiber reinforced prepregs arranged on both surface layers were removed was used. Molding was performed under molding conditions to obtain a flat molded body having an outer dimension of 300 × 300 × 1.7 mm.

得られた成形体は繊維のうねりを伴うことなく、繊維が成形体端部まで均等かつ充分に流動しており、実施例1同様に反りもなく良好な平面平滑性であった。   The obtained molded product was free of warping of the fibers, the fibers were flowing evenly and sufficiently to the end of the molded product, and had good flat smoothness without warping as in Example 1.

しかし、成形体の機械特性を連続繊維の前述の方法で評価した結果、引張強度は390MPa、引張弾性率は43GPaであり、曲げ強度は560MPa、曲げ弾性率は42GPaと、実施例1や実施例2と比べて低い値であった。   However, as a result of evaluating the mechanical properties of the molded body by the above-described method of continuous fibers, the tensile strength was 390 MPa, the tensile elastic modulus was 43 GPa, the bending strength was 560 MPa, and the bending elastic modulus was 42 GPa. The value was lower than 2.

以上の実施例と比較例のデータを纏めたのが次の表1である。   Table 1 below summarizes the data of the above examples and comparative examples.

Figure 2007261141
Figure 2007261141

上記表1から、切り込みを有するプリプレグ積層基材の最表層に(少なくとも片側に)連続繊維で強化されたプリプレグを配置することによって、かかるプリプレグを配置しない場合と比較して、引張強度や引張弾性率も向上しており、特に曲げ強度、曲げ弾性率が大幅に向上していることが判る。   From Table 1 above, by placing a prepreg reinforced with continuous fibers (at least on one side) on the outermost layer of a prepreg laminated base material having a cut, the tensile strength and tensile elasticity compared to the case where such a prepreg is not arranged. It can also be seen that the bending strength and the bending elastic modulus are greatly improved.

本発明に係るプリプレグ積層体の全体図で、このうち図1Aは最下層のプリプレグ基材以外のプリプレグ基材を一部破断して積層した平面図、図1Bは一部破断を行っていない図1におけるA−A矢視の断面図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1A is an overall view of a prepreg laminate according to the present invention, in which FIG. 1A is a plan view in which a prepreg substrate other than the lowermost prepreg substrate is partially broken and laminated, and FIG. 1 is a cross-sectional view taken along line AA in FIG. 図1のプリプレグ積層基材2を構成する基材のパターン例を示す部分平面図である。It is a partial top view which shows the example of a pattern of the base material which comprises the prepreg laminated base material 2 of FIG. 図2とは異なるパターンの図1のプリプレグ基材のパターン例を示す部分平面図である。It is a partial top view which shows the example of a pattern of the prepreg base material of FIG. 1 of a pattern different from FIG. 図3とは異なるパターンの図1のプリプレグ基材のパターン例を示す部分平面図である。It is a partial top view which shows the example of a pattern of the prepreg base material of FIG. 1 of a pattern different from FIG. 図4とは異なるパターンの図1のプリプレグ基材のパターン例を示す部分平面図である。It is a partial top view which shows the example of a pattern of the prepreg base material of FIG. 1 of a pattern different from FIG. 図5とは異なるパターンの図1のプリプレグ基材のパターン例を示す部分平面図である。FIG. 6 is a partial plan view showing a pattern example of the prepreg base material of FIG. 1 having a pattern different from that of FIG. 5. 図6とは異なるパターンの図1のプリプレグ基材のパターン例を示す部分平面図である。FIG. 7 is a partial plan view showing a pattern example of the prepreg base material of FIG. 1 having a pattern different from that of FIG. 6.

符号の説明Explanation of symbols

1:プリプレグ積層体
2:プリプレグ積層基材
2a〜2d:切り込みを有するプリプレグ基材
3:最表層の連続炭素繊維を強化繊維とするプリプレグ基材(表面側)
4:最表層の連続炭素繊維を強化繊維とするプリプレグ基材(裏面側)
5:プリプレグ
6、6a〜6c:切り込み
7:強化繊維
9:第1の切り込み列
10:第2の切り込列
11:第3の切り込み列
L :切り込み長さ
La:切り込み6aの切り込み長さ
Lb:切り込み6bの切り込み長さ
L1:切り込みの重なり幅
L2:所望繊維長さ
L3:切込みのない長さ
L4:切り込み6a、6b間の長さ
L5:切り込み6a、6b間の他方の長さ
X:強化繊維の長手方向
Y:強化繊維の長手方向と直交する方向
1: Pre-preg laminated body 2: Pre-preg laminated base material 2a to 2d: Pre-preg base material having notches 3: Pre-preg base material (surface side) having continuous carbon fibers of the outermost layer as reinforcing fibers
4: Pre-preg base material (back side) with continuous carbon fiber of outermost layer as reinforcing fiber
5: Prepreg 6, 6a to 6c: Cut 7: Reinforcing fiber 9: First cut row 10: Second cut row 11: Third cut row L: Cut length La: Cut length Lb of cut 6a : Cut length L1 of the cut 6b: Overlapping width L2: Desired fiber length L3: Length without cut L4: Length between the cuts 6a and 6b L5: The other length between the cuts 6a and 6b X: Longitudinal direction of reinforcing fiber Y: direction orthogonal to the longitudinal direction of reinforcing fiber

Claims (11)

一方向に引き揃えられて平面状に配列された強化繊維にマトリックス樹脂が含浸されてなるシート状プリプレグを、複数層積み重ねたプリプレグ積層体において、
(A)前記シート状プリプレグは、強化繊維を連続した炭素繊維とするとともに、前記マトリックス樹脂を熱硬化性樹脂とし、かつ、
(B)前記シート状プリプレグは、前記連続した炭素繊維の繊維方向を横切る方向に断続的に有限長の切り込みを入れたプリプレグ基材を複数層積層してなるプリプレグ基材積層体と、前記切り込みを入れないで連続した炭素繊維を強化繊維とし、かつ、前記プリプレグ基材積層体の最表層の少なくとも片側に配設されたプリプレグ基材と、で構成されていることを特徴とするプリプレグ積層体。
In a prepreg laminate in which a plurality of layers of sheet-like prepregs obtained by impregnating a matrix resin with reinforcing fibers arranged in one direction and arranged in a plane,
(A) The sheet-like prepreg is a continuous carbon fiber as a reinforcing fiber, the matrix resin as a thermosetting resin, and
(B) The sheet-like prepreg includes a prepreg base material laminate formed by laminating a plurality of prepreg base materials in which cuts of a finite length are intermittently cut in a direction crossing the fiber direction of the continuous carbon fibers, and the incision. A prepreg laminate comprising: a continuous carbon fiber without reinforcing fiber as a reinforcing fiber, and a prepreg substrate disposed on at least one side of the outermost layer of the prepreg substrate laminate. .
前記積層体の最表層の少なくとも片側に配設されたプリプレグ基材の連続する炭素繊維が、一方向のみに引き揃えられた炭素繊維であることを特徴とする請求項1に記載のプリプレグ積層体。 2. The prepreg laminate according to claim 1, wherein the continuous carbon fibers of the prepreg substrate disposed on at least one side of the outermost layer of the laminate are carbon fibers that are aligned only in one direction. . 前記積層体の最表層の少なくとも片側に配設されたプリプレグ基材が、二方向に引き揃えられた連続する炭素繊維で織成された織物を含むことを特徴とする請求項1に記載のプリプレグ積層体。 2. The prepreg according to claim 1, wherein the prepreg base material disposed on at least one side of the outermost layer of the laminate includes a woven fabric woven with continuous carbon fibers aligned in two directions. Laminated body. 前記プリプレグ基材積層体を構成する全てのプリプレグ基材が、該プリプレグ基材の全面に繊維を横切る方向に、2〜50mm(L)の有限長の切り込み列が強化繊維の繊維方向に10〜100mmの距離(L2)を隔てて複数列設けられており、前記複数列のうちの隣り合う列は繊維直交方向にずれており、かつ、隣り合う該列の切り込みが切り込みの重なり幅(L1)で互いに切り込んでいることを特徴とする請求項1〜3項のいずれかに記載のプリプレグ積層体。 All the prepreg base materials constituting the prepreg base material laminate are 10 to 10 mm in the fiber direction of the reinforcing fibers in the direction of crossing the fibers on the entire surface of the prepreg base material, A plurality of rows are provided at a distance (L2) of 100 mm, adjacent rows of the plurality of rows are shifted in the fiber orthogonal direction, and the cuts of the adjacent rows are the overlap width of the cuts (L1) The prepreg laminate according to any one of claims 1 to 3, wherein the prepreg laminate is cut into each other. 前記互いに切り込んでいる切り込みの重なり幅(L1)が、0.1mm以上で、かつ、隣り合う列の切り込みのうち、短い方の切り込みの長さの0.1倍以下であることを特徴とする請求項1〜4項のいずれかに記載のプリプレグ積層体。 The overlap width (L1) of the cuts that are cut into each other is 0.1 mm or more, and is 0.1 times or less the length of the shorter cut among the cuts in adjacent rows. The prepreg laminated body in any one of Claims 1-4. 前記隣り合う列の切り込みの形状、寸法および方向のうちのいずれかが、同一であることを特徴とする請求項1〜5項のいずれかに記載のプリプレグ積層体。 The prepreg laminate according to any one of claims 1 to 5, wherein any one of the shapes, dimensions, and directions of the cuts in the adjacent rows is the same. 前記切り込みが、前記強化繊維の繊維方向を横切る方向に等間隔で設けられていることを特徴とする請求項1〜6項のいずれかに記載のプリプレグ積層体。 The prepreg laminate according to any one of claims 1 to 6, wherein the cuts are provided at equal intervals in a direction crossing a fiber direction of the reinforcing fibers. 前記切り込みの横切る方向は、全てが前記炭素繊維の繊維方向と直交する方向であることを特徴とする請求項1〜7項のいずれかに記載のプリプレグ積層体。 The prepreg laminate according to any one of claims 1 to 7, wherein all the crossing directions of the cuts are directions orthogonal to a fiber direction of the carbon fibers. 任意の1つの切り込みにより切断される繊維本数が、5,000〜50,000本の範囲である請求項1〜8項のいずれかに記載のプリプレグ積層体。 The prepreg laminate according to any one of claims 1 to 8, wherein the number of fibers cut by any one incision is in the range of 5,000 to 50,000. 少なくとも、前記連続する炭素繊維を強化繊維とするプリプレグ基材が、事前に製品形状に賦形されていることを特徴とする請求項1〜9項のいずれかに記載のプリプレグ積層体。 The prepreg laminate according to any one of claims 1 to 9, wherein at least the prepreg base material containing the continuous carbon fibers as reinforcing fibers is shaped in advance into a product shape. 請求項1〜10項のいずれかに記載のプリプレグ積層体を加熱・硬化せしめてなることを特徴とする繊維強化プラスチック。 A fiber-reinforced plastic obtained by heating and curing the prepreg laminate according to any one of claims 1 to 10.
JP2006090629A 2006-03-29 2006-03-29 Prepreg laminate and fiber reinforced plastic Expired - Fee Related JP4779754B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006090629A JP4779754B2 (en) 2006-03-29 2006-03-29 Prepreg laminate and fiber reinforced plastic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006090629A JP4779754B2 (en) 2006-03-29 2006-03-29 Prepreg laminate and fiber reinforced plastic

Publications (2)

Publication Number Publication Date
JP2007261141A true JP2007261141A (en) 2007-10-11
JP4779754B2 JP4779754B2 (en) 2011-09-28

Family

ID=38634600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006090629A Expired - Fee Related JP4779754B2 (en) 2006-03-29 2006-03-29 Prepreg laminate and fiber reinforced plastic

Country Status (1)

Country Link
JP (1) JP4779754B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010030193A (en) * 2008-07-30 2010-02-12 Toray Ind Inc Method for manufacturing fiber-reinforced plastic
JP2010046956A (en) * 2008-08-22 2010-03-04 Toyota Industries Corp Fiber structure, fiber reinforced composite material, production process of fiber structure, and production process of fiber reinforced composite material
JP2011056816A (en) * 2009-09-10 2011-03-24 Nippon Steel Materials Co Ltd Molding method of structure made of fiber-reinforced plastic, and structure made of fiber-reinforced plastic
JP2011512267A (en) * 2008-01-09 2011-04-21 ザ・ボーイング・カンパニー Composite parts with curved outer shape
JPWO2009119830A1 (en) * 2008-03-28 2011-07-28 株式会社Ihi Blade of aircraft gas turbine engine and method of manufacturing the same
JP2014159099A (en) * 2013-02-19 2014-09-04 Toray Ind Inc Substrate for preparation of preform, method and apparatus for production of the same, preform and methods of producing preform and fiber-reinforced plastic
EP2966117A1 (en) 2013-03-07 2016-01-13 Mitsubishi Rayon Co., Ltd. Carbon-fiber-reinforced thermoplastic-resin composite material and molded body using same
CN107672240A (en) * 2017-10-17 2018-02-09 深圳市零壹创新科技有限公司 A kind of carbon fiber sheet and its manufacture method
KR101900826B1 (en) * 2016-12-15 2018-11-02 재단법인 포항산업과학연구원 Mehtod for manufacturing continuous fiber-reinforced sheet, the continuous fiber-reinforced sheet, mehtod for manufacturing board using the continuous fiber-reinforced sheet
WO2019031111A1 (en) 2017-08-10 2019-02-14 東レ株式会社 Prepreg laminate, method for manufacturing fiber-reinforced plastic using prepreg laminate, and fiber-reinforced plastic
CN109415525A (en) * 2016-09-26 2019-03-01 东丽株式会社 The manufacturing method of notch prepreg and notch prepreg
JP2019210487A (en) * 2017-04-25 2019-12-12 三菱ケミカル株式会社 Fiber reinforced resin molding material and manufacturing method therefor, and fiber reinforced resin molded article
US10576695B2 (en) 2015-08-04 2020-03-03 Mitsubishi Chemical Corporation Fiber-reinforced plastic and method for producing same
JP7472480B2 (en) 2019-12-10 2024-04-23 東レ株式会社 Manufacturing method of fiber reinforced plastic

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02115236A (en) * 1988-10-25 1990-04-27 Sumitomo Chem Co Ltd Fiber-reinforced resin sheet for molding, its production and production of fiber-reinforced resin molding
JPH08276514A (en) * 1995-04-07 1996-10-22 Mitsui Toatsu Chem Inc Joint of corrugated pipe and manufacture thereof
JP2003311856A (en) * 2002-04-26 2003-11-06 Honda Motor Co Ltd Fiber-reinforced plastic part
JP2005298713A (en) * 2004-04-14 2005-10-27 Toray Ind Inc Epoxy resin composition for fiber-reinforced composite material, prepreg and fiber-reinforced composite material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02115236A (en) * 1988-10-25 1990-04-27 Sumitomo Chem Co Ltd Fiber-reinforced resin sheet for molding, its production and production of fiber-reinforced resin molding
JPH08276514A (en) * 1995-04-07 1996-10-22 Mitsui Toatsu Chem Inc Joint of corrugated pipe and manufacture thereof
JP2003311856A (en) * 2002-04-26 2003-11-06 Honda Motor Co Ltd Fiber-reinforced plastic part
JP2005298713A (en) * 2004-04-14 2005-10-27 Toray Ind Inc Epoxy resin composition for fiber-reinforced composite material, prepreg and fiber-reinforced composite material

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011512267A (en) * 2008-01-09 2011-04-21 ザ・ボーイング・カンパニー Composite parts with curved outer shape
JPWO2009119830A1 (en) * 2008-03-28 2011-07-28 株式会社Ihi Blade of aircraft gas turbine engine and method of manufacturing the same
US8715556B2 (en) 2008-03-28 2014-05-06 Ihi Corporation Gas turbine engine blade for aircraft and manufacturing method thereof
JP2010030193A (en) * 2008-07-30 2010-02-12 Toray Ind Inc Method for manufacturing fiber-reinforced plastic
JP2010046956A (en) * 2008-08-22 2010-03-04 Toyota Industries Corp Fiber structure, fiber reinforced composite material, production process of fiber structure, and production process of fiber reinforced composite material
JP2011056816A (en) * 2009-09-10 2011-03-24 Nippon Steel Materials Co Ltd Molding method of structure made of fiber-reinforced plastic, and structure made of fiber-reinforced plastic
JP2014159099A (en) * 2013-02-19 2014-09-04 Toray Ind Inc Substrate for preparation of preform, method and apparatus for production of the same, preform and methods of producing preform and fiber-reinforced plastic
EP2966117A1 (en) 2013-03-07 2016-01-13 Mitsubishi Rayon Co., Ltd. Carbon-fiber-reinforced thermoplastic-resin composite material and molded body using same
US20160009054A1 (en) * 2013-03-07 2016-01-14 Mitsubishi Rayon Co., Ltd. Carbon-fiber-reinforced thermoplastic-resin composite material and molded body using the same
US10843437B2 (en) 2013-03-07 2020-11-24 Mitsubishi Chemical Corporation Carbon-fiber-reinforced thermoplastic-resin composite material and molded body using the same
US10576695B2 (en) 2015-08-04 2020-03-03 Mitsubishi Chemical Corporation Fiber-reinforced plastic and method for producing same
CN109415525A (en) * 2016-09-26 2019-03-01 东丽株式会社 The manufacturing method of notch prepreg and notch prepreg
EP3517564A4 (en) * 2016-09-26 2020-05-13 Toray Industries, Inc. Notched prepreg and method for producing notched prepreg
KR101900826B1 (en) * 2016-12-15 2018-11-02 재단법인 포항산업과학연구원 Mehtod for manufacturing continuous fiber-reinforced sheet, the continuous fiber-reinforced sheet, mehtod for manufacturing board using the continuous fiber-reinforced sheet
JP2019210487A (en) * 2017-04-25 2019-12-12 三菱ケミカル株式会社 Fiber reinforced resin molding material and manufacturing method therefor, and fiber reinforced resin molded article
JP6996535B2 (en) 2017-04-25 2022-01-17 三菱ケミカル株式会社 Fiber reinforced resin molding material and its manufacturing method, and fiber reinforced resin molded product
KR20200034965A (en) 2017-08-10 2020-04-01 도레이 카부시키가이샤 Prepreg laminate, manufacturing method of fiber reinforced plastic using prepreg laminate and fiber reinforced plastic
CN110997769A (en) * 2017-08-10 2020-04-10 东丽株式会社 Prepreg laminate, method for producing fiber-reinforced plastic using prepreg laminate, and fiber-reinforced plastic
JPWO2019031111A1 (en) * 2017-08-10 2020-07-30 東レ株式会社 Prepreg laminate, method for producing fiber reinforced plastic using prepreg laminate, and fiber reinforced plastic
EP3666818A4 (en) * 2017-08-10 2021-05-05 Toray Industries, Inc. Prepreg laminate, method for manufacturing fiber-reinforced plastic using prepreg laminate, and fiber-reinforced plastic
WO2019031111A1 (en) 2017-08-10 2019-02-14 東レ株式会社 Prepreg laminate, method for manufacturing fiber-reinforced plastic using prepreg laminate, and fiber-reinforced plastic
CN110997769B (en) * 2017-08-10 2022-04-26 东丽株式会社 Prepreg laminate, method for producing fiber-reinforced plastic using prepreg laminate, and fiber-reinforced plastic
TWI793144B (en) * 2017-08-10 2023-02-21 日商東麗股份有限公司 Prepreg laminate and method for producing fiber-reinforced plastic using prepreg laminate
US11926129B2 (en) 2017-08-10 2024-03-12 Toray Industries, Inc. Prepreg laminate, method for manufacturing fiber-reinforced plastic using prepreg laminate, and fiber-reinforced plastic
CN107672240A (en) * 2017-10-17 2018-02-09 深圳市零壹创新科技有限公司 A kind of carbon fiber sheet and its manufacture method
JP7472480B2 (en) 2019-12-10 2024-04-23 東レ株式会社 Manufacturing method of fiber reinforced plastic

Also Published As

Publication number Publication date
JP4779754B2 (en) 2011-09-28

Similar Documents

Publication Publication Date Title
JP4779754B2 (en) Prepreg laminate and fiber reinforced plastic
JP5167953B2 (en) Laminated substrate, fiber reinforced plastic, and production method thereof
TWI415738B (en) Fiber reinforced plastic and method for producing the same
JP5223354B2 (en) Cut prepreg base material, laminated base material, fiber reinforced plastic, and method for producing cut prepreg base material
JP5320742B2 (en) Method for producing composite prepreg substrate, laminated substrate and fiber reinforced plastic
KR101435967B1 (en) Prepreg base material, layered base material, fiber-reinforced plastic, process for producing prepreg base material, and process for producing fiber-reinforced plastic
JP5292972B2 (en) Manufacturing method of fiber reinforced plastic
JP5272418B2 (en) Cut prepreg base material, composite cut prepreg base material, laminated base material, fiber reinforced plastic, and method for producing cut prepreg base material
JP5353099B2 (en) Manufacturing method of fiber reinforced plastic
JP2008207544A5 (en)
JP6907503B2 (en) Manufacturing method of cross-ply laminate and fiber reinforced plastic
WO2018055932A1 (en) Notched prepreg and method for producing notched prepreg
JP2010023359A (en) Method of manufacturing laminate
JP2007146151A (en) Prepreg substrate material, laminated substrate material and fiber-reinforced plastic
JP5896048B2 (en) Thermoplastic substrate and method for producing fiber-reinforced molded body using the same
JP2007126793A (en) Cutting method and preform substrate for laminate, and preform production method using the same
JP2010214704A (en) Base material for preform using binder including superfine fiber, and method of manufacturing the same
KR101307627B1 (en) Conveyance member made of cfrp and robot hand employing the same
JP7249404B2 (en) Composite material panel structure and manufacturing method thereof
JP5966969B2 (en) Manufacturing method of prepreg
JP2008208343A (en) Cut prepreg substrate, laminated substrate, fiber reinforced plastics and preparation method of cut prepreg substrate
JP2005336407A (en) Composite material excellent in surface smoothness
JP2005262818A (en) Reinforcing fiber substrate, preform and reinforcing fiber substrate manufacturing method
JP4558398B2 (en) Composite material with smooth surface
JP2012051151A (en) Fiber reinforced molding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080807

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110607

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110620

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4779754

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees