JP5966969B2 - Manufacturing method of prepreg - Google Patents

Manufacturing method of prepreg Download PDF

Info

Publication number
JP5966969B2
JP5966969B2 JP2013035430A JP2013035430A JP5966969B2 JP 5966969 B2 JP5966969 B2 JP 5966969B2 JP 2013035430 A JP2013035430 A JP 2013035430A JP 2013035430 A JP2013035430 A JP 2013035430A JP 5966969 B2 JP5966969 B2 JP 5966969B2
Authority
JP
Japan
Prior art keywords
prepreg
resin
mass
confirmed
pinholes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013035430A
Other languages
Japanese (ja)
Other versions
JP2014162858A (en
JP2014162858A5 (en
Inventor
海峰 坂本
海峰 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2013035430A priority Critical patent/JP5966969B2/en
Publication of JP2014162858A publication Critical patent/JP2014162858A/en
Publication of JP2014162858A5 publication Critical patent/JP2014162858A5/ja
Application granted granted Critical
Publication of JP5966969B2 publication Critical patent/JP5966969B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、スポーツ用途、航空宇宙用途、一般産業用途にて使用されるプリプレグに関し、特に外観品位が良好な繊維強化複合材料を提供することができる、炭素繊維を二方向に配したクロスを用いたプリプレグおよびその製造方法に関するものである。また、かかるクロスプリプレグから得られる繊維強化複合材料に関するものである。   The present invention relates to a prepreg used in sports applications, aerospace applications, and general industrial applications, and particularly uses a cloth in which carbon fibers are arranged in two directions, which can provide a fiber-reinforced composite material having good appearance quality. The present invention relates to a prepreg and a manufacturing method thereof. Moreover, it is related with the fiber reinforced composite material obtained from this cross prepreg.

高性能複合材料の原料としては、一般的に、炭素繊維、ガラス繊維、アラミド繊維等の強化繊維とエポキシ樹脂、不飽和ポリエステル樹脂、フェノール樹脂、ポリイミド樹脂等のマトリックス樹脂から構成されるプリプレグが使用されている。   As raw materials for high-performance composite materials, prepregs composed of reinforced fibers such as carbon fiber, glass fiber, and aramid fiber and matrix resins such as epoxy resin, unsaturated polyester resin, phenol resin, and polyimide resin are generally used. Has been.

かかるプリプレグの成形方法としては、オートクレーブ法、真空バック成形法、プレス成形法、内圧成形法等が挙げられる。例えば、オートクレーブ法は、繊維強化複合材料(以下、FRPと記載することがあり、炭素繊維強化複合材料をCFRPと記載することがある)を製造する際に、一般的に使用される方法であるが、成形型の上にプリプレグを積層し、耐熱フィルム等で全体を覆った後、オートクレーブに入れてフィルム内部を真空に引きながら、外部を加圧・加熱して硬化させる。オートクレーブ法は、大掛かりな装置を使用し、加圧・加熱するため、成形コストがかかるが、得られるFRPの成形品の品質が良く、引張強度を始めとした機械特性が高いことが利点である。また、真空バック成形法は、積層したプリプレグをバッグ材で覆い、内部を真空引きしながら、加熱硬化させる。外部から圧力をかけないため、FRP内にボイドが発生しやすいといった問題点があるが、オートクレーブ法に比べて、成形コストがかからないといった利点がある。   Examples of the prepreg molding method include an autoclave method, a vacuum bag molding method, a press molding method, and an internal pressure molding method. For example, the autoclave method is a method that is generally used when producing a fiber-reinforced composite material (hereinafter sometimes referred to as FRP, and the carbon fiber-reinforced composite material may be referred to as CFRP). However, after the prepreg is laminated on the mold and the whole is covered with a heat-resistant film or the like, the prepreg is placed in an autoclave and the outside is pressurized and heated while being evacuated to be cured. The autoclave method uses a large-scale apparatus and pressurizes and heats, so it costs a molding cost. However, the quality of the obtained FRP molded product is good, and the mechanical properties including tensile strength are high. . Further, in the vacuum bag forming method, the laminated prepreg is covered with a bag material, and is heated and cured while evacuating the inside. Since pressure is not applied from the outside, there is a problem that voids are likely to be generated in the FRP, but there is an advantage that molding costs are not required as compared with the autoclave method.

これらの手法を用いてプリプレグを成形するが、プリプレグはその構造から表面に粘着性(タック)があり、プリプレグを積層する際に層間や型面との間にエアーを噛み込み易い。成形時にこの気泡や、樹脂に溶存する空気が原因となって、内部ボイドが発生する。さらに、強化繊維織物を使用した二方向クロスプリプレグは、強化繊維織物の織目に起因する凹凸により、最外層が成形型に密着しにくいため、凹凸部分で樹脂の流れ不良が発生し、一方向プリプレグに比べ、成形品表面にピンホールが発生しやすい。クロスプリプレグは、大型成形物用途などで広く用いられるだけでなく、成形表面の綺麗な織目模様を利用した意匠性材料としてもニーズが高く、成形性の改善が望まれている。   A prepreg is formed by using these methods. The prepreg has adhesiveness (tack) on the surface due to its structure, and air is easily caught between the layers and the mold surface when the prepreg is laminated. Internal voids are generated due to the bubbles and air dissolved in the resin during molding. Furthermore, bi-directional cross prepregs using reinforced fiber fabrics have unevenness due to the texture of the reinforced fiber fabrics, and the outermost layer is difficult to adhere to the mold. Compared with prepreg, pinholes are likely to occur on the surface of the molded product. Cloth prepregs are not only widely used for large-sized molded products, but also have high needs as design materials that use a beautiful texture on the molding surface, and improvement in moldability is desired.

一般的に、前記のような成形品表面のピンホールの発生は、成形方法や成形条件などに大きく依存することが知られており、従来は成形方法や成形条件を最適化することにより、ピンホールを減少させる努力がなされてきた。しかし、成形条件の最適化により良好な成形品が得られる場合でも、その最適条件の幅は非常に狭いため、熟練技術者に依存するところが多く、安定して生産することが難しいのが現状である。   In general, it is known that the occurrence of pinholes on the surface of a molded product as described above largely depends on the molding method and molding conditions. Conventionally, by optimizing the molding method and molding conditions, Efforts have been made to reduce the hall. However, even when a good molded product can be obtained by optimizing the molding conditions, the range of the optimum conditions is very narrow, so it depends on skilled engineers and is difficult to produce stably. is there.

ピンホールを抑制する手法として、特許文献1には、プリプレグの代替として強化繊維と熱硬化性樹脂のフィルムを用いる方法が開示されている。この方法では、成形時に強化繊維と樹脂フィルムを積層した後加熱することで、樹脂フィルムの樹脂を強化繊維に含浸させると同時に成形させるので、プリプレグ層内・層間のエアーを成形型外に排出し易く、成形体内のボイドや表面に発生するピンホールを低減している。   As a technique for suppressing pinholes, Patent Document 1 discloses a method using a film of reinforcing fibers and a thermosetting resin as an alternative to a prepreg. In this method, the reinforcing fiber and the resin film are laminated at the time of molding and then heated, so that the resin of the resin film is impregnated into the reinforcing fiber and molded at the same time, so the air inside and between the prepreg layers is discharged out of the mold. Easily reduces voids and pinholes generated on the surface of the molded body.

また、特許文献2には、発泡ビーズを含有する未含浸プリプレグを用いた、真空バッグ成形によるCFRPの製造方法が提案されている。未含浸プリプレグとは、強化繊維からなる基材の片面に熱硬化性樹脂フィルムを貼り合わせて、熱硬化性樹脂の一部を基材の一部に含浸させたプリプレグ、または熱硬化性樹脂フィルムの両面に基材を貼り合わせて、熱硬化性樹脂の一部を基材の一部に含浸させたプリプレグである。特許文献2の未含浸プリプレグに含有する発泡ビーズは、未含浸プリプレグ成形時の加熱により発泡・膨張し、成形品内のボイド、およびピンホールの発生を抑制することができる。そのため、従来の未含浸プリプレグを用いた成形品と比べて、ボイド、およびピンホールの発生は低減している。   Patent Document 2 proposes a method for producing CFRP by vacuum bag molding using an unimpregnated prepreg containing foam beads. An unimpregnated prepreg is a prepreg in which a thermosetting resin film is bonded to one side of a base material made of reinforcing fibers, and a part of the thermosetting resin is impregnated into a part of the base material, or a thermosetting resin film Is a prepreg in which a base material is bonded to both sides of the base material, and a part of the thermosetting resin is impregnated into a part of the base material. The expanded beads contained in the unimpregnated prepreg of Patent Document 2 are expanded and expanded by heating at the time of forming the unimpregnated prepreg, and the generation of voids and pinholes in the molded product can be suppressed. Therefore, generation of voids and pinholes is reduced as compared with a molded product using a conventional unimpregnated prepreg.

これらの方法を用いることによって、外部から加圧を行うオートクレーブ成形を行わなくても、ある程度はボイドの発生が低減できるが、成形品の形状が複雑な場合などでは樹脂を含浸させる際にムラが生じるため、ボイドやピンホールを完全に抑制することは難しい。また、いずれの方法においても樹脂を繊維強化材に含浸させるのに時間がかかり、従来のプリプレグと比較して成形時間が長くなるという問題がある。   By using these methods, the generation of voids can be reduced to some extent without performing autoclave molding in which pressure is applied from the outside.However, when the shape of the molded product is complicated, unevenness is caused when impregnating the resin. Therefore, it is difficult to completely suppress voids and pinholes. In any of the methods, it takes time to impregnate the fiber reinforcement with the resin, and there is a problem that the molding time is longer than that of the conventional prepreg.

炭素繊維と同系色の粒子としては、カーボンブラックやカーボンナノチューブが挙げられるが、熱硬化性樹脂にカーボンブラックを混入する技術は、以前より知られており、例えば、特許文献3には、熱硬化性樹脂にカーボンブラックを含有させ、遮光性を向上させた繊維強化複合材料が提案されている。しかしながら、遮光性を上げるために、カーボンブラックを樹脂中に5〜40質量%含有させており、さらに、成形体表面の樹脂量の制御を行わないため、クロスプリプレグの意匠性が考慮されていない。また、得られる成形体の力学特性に関しても考慮されていない。さらに、特許文献4にも、熱硬化性樹脂にカーボンブラックを含有させ、遮光性を向上させた繊維強化複合材料が提案されているが、炭素繊維織物の目付が20g/mと小さいものを対象としており、カーボンブラックを樹脂中に10〜40質量%含有させ、成形体表面の樹脂量の制御を考慮していないために、クロスプリプレグの意匠性を生かす用途には不適当であった。 Carbon black and carbon nanotubes may be mentioned as particles having the same color as carbon fiber. However, a technique for mixing carbon black into a thermosetting resin has been known for some time. For example, Patent Document 3 discloses thermosetting. There has been proposed a fiber reinforced composite material in which carbon black is contained in a functional resin to improve the light shielding property. However, in order to improve the light-shielding property, carbon black is contained in the resin in an amount of 5 to 40% by mass, and further, the amount of resin on the surface of the molded body is not controlled, so the design of the cross prepreg is not taken into consideration. . In addition, no consideration is given to the mechanical properties of the resulting molded body. Further, Patent Document 4 proposes a fiber reinforced composite material in which carbon black is contained in a thermosetting resin to improve the light shielding property, but a carbon fiber woven fabric having a basis weight of 20 g / m 2 is small. Since carbon black is contained in the resin in an amount of 10 to 40% by mass and control of the amount of resin on the surface of the molded body is not taken into consideration, it is unsuitable for applications that make use of the design of the cross prepreg.

また、特許文献5には、炭素繊維目付が7〜150g/mであり、熱硬化性樹脂に対して、カーボンブラックを0.5〜15質量%含有するプリプレグを用いて遮光性を向上させる方法が開示されているが、炭素繊維目付が150g/m以下の一方向プリプレグに限定されており、やはりクロスプリプレグの意匠性を生かす用途には適用できない。 Further, Patent Document 5 has a carbon fiber basis weight of 7 to 150 g / m 2 , and improves the light shielding property by using a prepreg containing 0.5 to 15% by mass of carbon black with respect to the thermosetting resin. Although a method is disclosed, the carbon fiber basis weight is limited to a unidirectional prepreg of 150 g / m 2 or less, and it cannot be applied to an application utilizing the design of a cross prepreg.

さらに、特許文献6には、粒径が1〜30nmのカーボンブラックを、熱硬化性樹脂に対して、0.1〜2質量%配合させることによって、遮光性を向上させる方法が開示されているが、特許文献5と同様に、クロスプリプレグの意匠性やボイドの改良方法については考慮されていない。   Furthermore, Patent Document 6 discloses a method for improving the light-shielding property by blending 0.1 to 2% by mass of carbon black having a particle size of 1 to 30 nm with respect to the thermosetting resin. However, like Patent Document 5, the design properties of the cross prepreg and the void improvement method are not considered.

特開2007−099966号公報JP 2007-099966 A 特開2004−059872号公報JP 2004-059872 A 特許第2526833号明細書Japanese Patent No. 2526833 特開2004−4231号公報JP 2004-4231 A 特公平6−68594号公報Japanese Examined Patent Publication No. 6-68594 特開2011−195723号公報JP 2011-195723 A

本発明の課題は、カーボンブラックを含有したエポキシ樹脂組成物を含有してなるプリプレグを、オートクレーブ成形や真空バック成形を用いて成形した際に、得られる繊維強化複合材料の強度低下がなく、発生するピンホールを目立たなくさせることである。   An object of the present invention is that when a prepreg containing an epoxy resin composition containing carbon black is molded using autoclave molding or vacuum back molding, the resulting fiber-reinforced composite material does not have a decrease in strength and is generated. To make the pinholes inconspicuous.

本発明者らは、意匠性改善として成形品表面に現れるピンホールを目立ち難くさせるため、熱硬化性樹脂に炭素繊維と同系色の粒子を事前に分散させることに着目し本発明に至った。すなわち、前記課題を達成するための本発明は、以下構成からなる。   In order to make the pinhole appearing on the surface of the molded product inconspicuous as an improvement in designability, the present inventors have focused on dispersing particles of the same color as the carbon fiber in the thermosetting resin in advance, and have reached the present invention. That is, this invention for achieving the said subject consists of the following structures.

発明のプリプレグの製造方法は、目付が170〜800g/mである炭素繊維二方向クロスを、平均粒径が0.01〜1.0μmであるカーボンブラックが樹脂組成物中のエポキシ樹脂成分を100質量部としたときに、0.05〜1.0質量部含有するエポキシ樹脂組成物で、含浸温度を70〜90℃、プレスロールによる線圧を5〜200kg/mとして含浸させることによって、プリプレグ中のマトリックス樹脂の質量含有率を30〜50質量%とするに際して、該クロスプリプレグ表面の樹脂層の厚みを0.1〜0.7mmとすることを特徴とする。 In the method for producing a prepreg of the present invention, a carbon fiber bi-directional cloth having a basis weight of 170 to 800 g / m 2 is used , and a carbon black having an average particle size of 0.01 to 1.0 μm is an epoxy resin component in the resin composition. Is impregnated at an impregnation temperature of 70 to 90 ° C. and a linear pressure by a press roll of 5 to 200 kg / m, with an epoxy resin composition containing 0.05 to 1.0 part by mass. When the mass content of the matrix resin in the prepreg is 30 to 50% by mass, the thickness of the resin layer on the surface of the cross prepreg is 0.1 to 0.7 mm.

本発明では、マトリックス樹脂であるエポキシ樹脂組成物にカーボンブラックを含有させ、かつプリプレグ表面の樹脂層の厚みを規定することで、成形時にマトリックス樹脂がフローしても、ピンホールを目立たなくさせることができる。また、得られるCFRPの表面の織組織を確認することができる意匠性に優れた成形体を得ることができ、その成形体の力学特性も優れたものである。   In the present invention, carbon black is contained in the epoxy resin composition which is a matrix resin, and the thickness of the resin layer on the surface of the prepreg is specified, so that even if the matrix resin flows during molding, pinholes are made inconspicuous. Can do. Moreover, the molded object excellent in the design property which can confirm the woven structure of the surface of CFRP obtained can be obtained, and the mechanical characteristics of the molded object are also excellent.

本発明に用いられる強化繊維は、炭素繊維である。本発明に用いられる炭素繊維としては、ピッチ系、ポリアクリロニトリル系などの炭素繊維が用いられるが、引張強さが高いポリアクリロニトリル系炭素繊維の使用が好ましい。   The reinforcing fiber used in the present invention is a carbon fiber. As the carbon fiber used in the present invention, pitch-based and polyacrylonitrile-based carbon fibers are used, and it is preferable to use polyacrylonitrile-based carbon fibers having high tensile strength.

本発明に用いられる二方向クロスは、平織、朱子織、綾織など、いずれの織組織の織物であっても良いが、特に、意匠性・賦形性に優れた綾織の使用が好ましい。   The bi-directional cloth used in the present invention may be a woven fabric having any woven structure such as plain weave, satin weave, twill weave, etc., but it is particularly preferable to use twill weave excellent in design and formability.

本発明のクロスプリプレグは、繊維目付が170〜800g/mが必要である。さらに190〜700g/mであることがより好ましい。繊維目付を800g/m以下とすることにより、賦型性に優れたクロスプリプレグが得られる。また、繊維目付を170g/m以上とすることにより、強化繊維織物の目隙や、強化繊維織物の長手方向に繊維が動くことによる目曲がりを抑制することができる。また、170g/m以上の織物目付を有する強化繊維織物は、成形時の積層枚数が低減できることから、成形コストの低減効果、成形工程における作業の効率化にも寄与することが出来る。 The cloth prepreg of the present invention requires a fiber basis weight of 170 to 800 g / m 2 . Furthermore, it is more preferable that it is 190-700 g / m < 2 >. By setting the fiber basis weight to 800 g / m 2 or less, a cross prepreg excellent in formability can be obtained. In addition, by setting the fiber basis weight to 170 g / m 2 or more, it is possible to suppress the bending of the reinforcing fiber fabric and the bending due to the movement of the fibers in the longitudinal direction of the reinforcing fiber fabric. In addition, the reinforcing fiber woven fabric having a fabric basis weight of 170 g / m 2 or more can reduce the number of laminated layers at the time of molding, and thus can contribute to the effect of reducing the molding cost and the efficiency of work in the molding process.

本発明のプリプレグ中のマトリックス樹脂の質量含有率は、30〜50質量%が必要である。さらに、40〜45質量%であることが好ましい。樹脂の質量含有率が30質量%以上とすることにより、プリプレグ表面に樹脂層を残すことができ、成形した際に樹脂を表面に均一に存在させやすくなる。また、樹脂の質量含有率を50質量%以下とすることにより、プリプレグの製造工程における樹脂のはみ出し量を抑えられるため、安定した目付を有し、力学特性が優れたクロスプリプレグが得られる。また、表面の樹脂量をコントロールすることができるため、意匠性に優れた成形体が得られる。   The mass content of the matrix resin in the prepreg of the present invention needs to be 30 to 50% by mass. Furthermore, it is preferable that it is 40-45 mass%. When the mass content of the resin is 30% by mass or more, the resin layer can be left on the surface of the prepreg, and the resin can be easily present on the surface when molded. Moreover, since the protrusion amount of the resin in the prepreg manufacturing process can be suppressed by setting the mass content of the resin to 50% by mass or less, a cross prepreg having a stable basis weight and excellent mechanical properties can be obtained. Moreover, since the amount of resin on the surface can be controlled, a molded article having excellent design properties can be obtained.

本発明のクロスプリプレグに用いられるマトリックス樹脂は、エポキシ樹脂組成物であって、エポキシ樹脂成分と硬化剤成分、その他からなるが、樹脂成分の具体例としては、ポリオールから得られるグリシジルエーテル、活性水素を複数個有するアミンより得られるグリシジルアミン、ポリカルボン酸より得られるグリシジルエステルや、分子内に複数の2重結合を有する化合物を酸化して得られるポリエポキシド等が挙げられる。例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、テトラブロモビスフェノールA型エポキシ樹脂などのビスフェノール型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂などのノボラック型エポキシ樹脂、テトラグリシジルジアミノジフェニルメタン、トリグリシジルアミノフェノール、テトラグリシジルキシレンジアミンのようなグリシジルアミン型エポキシ樹脂等あるいはこれらの組み合わせが好適に用いられる。   The matrix resin used in the cross prepreg of the present invention is an epoxy resin composition comprising an epoxy resin component, a curing agent component, and others. Specific examples of the resin component include glycidyl ether obtained from polyol, active hydrogen. Glycidylamine obtained from an amine having a plurality of glycidyl esters, glycidyl ester obtained from a polycarboxylic acid, polyepoxide obtained by oxidizing a compound having a plurality of double bonds in the molecule, and the like. For example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, bisphenol type epoxy resin such as tetrabromobisphenol A type epoxy resin, phenol novolac type epoxy resin, novolac type epoxy such as cresol novolac type epoxy resin Resins, glycidylamine type epoxy resins such as tetraglycidyldiaminodiphenylmethane, triglycidylaminophenol, tetraglycidylxylenediamine, and the like, or combinations thereof are preferably used.

硬化剤成分としては、エポキシ基と反応し得る活性基を有する化合物であれば用いることができる。例えば、アミン系硬化剤として、エチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、ヘキサメチレンジアミン、m−キシリレンジアミンのような脂肪族アミン類、メタフェニレンジアミン、ジアミノジフェニルメタン、ジアミノジエチルジフェニルメタン、ジアミノジエチルジフェニルスルホンなどの芳香族アミン類、ベンジルジメチルアミン、テトラメチルグアニジン、2,4,6−トリス(ジメチルアミノメチル)フェノールなどの第3アミン類、また、ジシアンジアミドのような塩基性活性水素化合物や、アジピン酸ジヒドラジドなどの有機酸ジヒドラジド、2−メチルイミダゾール、2−エチル−4−メチルイミダゾール、などのイミダゾール類が挙げられる。本発明においては、比較的低温で硬化し、かつ保存安定性が良好なことから、硬化剤としてアミン系硬化剤である塩基性活性水素化合物の使用が好ましい。中でもジシアンジアミドの使用が好ましい。   As the curing agent component, any compound having an active group capable of reacting with an epoxy group can be used. For example, amine-based curing agents such as ethylenediamine, diethylenetriamine, triethylenetetramine, hexamethylenediamine, aliphatic amines such as m-xylylenediamine, metaphenylenediamine, diaminodiphenylmethane, diaminodiethyldiphenylmethane, diaminodiethyldiphenylsulfone, etc. Tertiary amines such as aromatic amines, benzyldimethylamine, tetramethylguanidine, 2,4,6-tris (dimethylaminomethyl) phenol, basic active hydrogen compounds such as dicyandiamide, adipic acid dihydrazide, etc. Organic acid dihydrazide, 2-methylimidazole, 2-ethyl-4-methylimidazole, and other imidazoles. In the present invention, it is preferable to use a basic active hydrogen compound which is an amine-based curing agent as a curing agent because it is cured at a relatively low temperature and has good storage stability. Of these, use of dicyandiamide is preferred.

本発明においては、エポキシ樹脂組成物の硬化性を高めるために、これら硬化剤に、適当な硬化促進剤を組み合わせて用いることができる。具体的には、硬化剤であるジシアンジアミドなどのアミン系硬化剤に硬化促進剤として尿素誘導体やイミダゾール誘導体を組み合わせる例が挙げられる。本発明においては、硬化促進剤として尿素誘導体からなる尿素系硬化促進剤を併用することが好ましい。中でも尿素系硬化促進剤として3−フェニル−1,1ジメチルウレア、3−(3,4−ジクロロフェニル)−1,1−ジメチルウレア(DCMU)、1,1’−4(メチル−m−フェニレン)ビス(3,3’ジメチルウレア)などが好ましく用いられ、その中でも、硬化性が高いことから、分子内にウレア基を2個有する化合物、例えば1,1’−4(メチル−m−フェニレン)ビス(3,3’ジメチルウレア)が好ましく用いられる。   In the present invention, in order to improve the curability of the epoxy resin composition, these curing agents can be used in combination with an appropriate curing accelerator. Specifically, an example in which a urea derivative or an imidazole derivative is combined as a curing accelerator with an amine curing agent such as dicyandiamide, which is a curing agent. In the present invention, it is preferable to use together a urea-based curing accelerator composed of a urea derivative as a curing accelerator. Among these, urea-based curing accelerators include 3-phenyl-1,1 dimethylurea, 3- (3,4-dichlorophenyl) -1,1-dimethylurea (DCMU), 1,1′-4 (methyl-m-phenylene). Bis (3,3′dimethylurea) and the like are preferably used, and among them, a compound having two urea groups in the molecule, such as 1,1′-4 (methyl-m-phenylene), because of its high curability. Bis (3,3′dimethylurea) is preferably used.

一般的に、硬化性が高くなるに従い、エポキシ樹脂組成物の室温安定性は低くなる。本発明においては、室温での取扱性と成形時の硬化性を両立させるため、前記硬化剤を樹脂成分100質量部に対して3〜8質量部、硬化促進剤を0.5〜5質量部の範囲で加えることが好ましい。また、本発明のエポキシ樹脂組成物にはその粘度特性やプリプレグの取り扱い性の適正化、また極性の高いものに関しては、接着性を改善する効果が期待できるため、熱可塑性樹脂を配合して使用することも好ましい。   Generally, as the curability increases, the room temperature stability of the epoxy resin composition decreases. In the present invention, in order to achieve both handleability at room temperature and curability at the time of molding, 3 to 8 parts by mass of the curing agent with respect to 100 parts by mass of the resin component, and 0.5 to 5 parts by mass of the curing accelerator. It is preferable to add in the range. In addition, the epoxy resin composition of the present invention can be used in combination with a thermoplastic resin because it can be expected to have an effect of improving the adhesive properties of those having high viscosity characteristics and prepreg, and having high polarity. It is also preferable to do.

かかる熱可塑性樹脂としては、主鎖に、炭素−炭素結合、アミド結合、イミド結合、エステル結合、エーテル結合、カーボネート結合、ウレタン結合、尿素結合、チオエーテル結合、スルホン結合、イミダゾール結合、カルボニル結合から選ばれる結合を有する熱可塑性樹脂が好ましく使用される。これら熱可塑性樹脂の中でも、ポリアクリレート、ポリアミド、ポリアラミド、ポリエステル、ポリカーボネート、ポリフェニレンスルフィド、ポリベンズイミダゾール、ポリビニルホルマール、ポリメチルメタクリレート、ポリイミド、ポリエーテルイミド、ポリスルホン、ポリエーテルスルホンのような熱可塑性樹脂がより好ましく使用される。ポリエーテルスルホン、ポリビニルホルマールは炭素繊維との接着性の向上、および層間剪断強度、圧縮 強度の向上に効果があることから、特に好ましく使用される。   The thermoplastic resin is selected from a carbon-carbon bond, amide bond, imide bond, ester bond, ether bond, carbonate bond, urethane bond, urea bond, thioether bond, sulfone bond, imidazole bond, and carbonyl bond in the main chain. A thermoplastic resin having such a bond is preferably used. Among these thermoplastic resins, there are thermoplastic resins such as polyacrylate, polyamide, polyaramid, polyester, polycarbonate, polyphenylene sulfide, polybenzimidazole, polyvinyl formal, polymethyl methacrylate, polyimide, polyetherimide, polysulfone, and polyethersulfone. More preferably used. Polyethersulfone and polyvinyl formal are particularly preferably used because they are effective in improving the adhesion to carbon fibers and improving the interlaminar shear strength and compressive strength.

かかる熱可塑性樹脂の配合量は、樹脂成分100質量部に対して、1〜10質量部配合するのが好ましい。前記部数を配合することによって、成形時にプリプレグが扱いやすくなると共に、得られる成形体の力学特性を高めることができる。本発明の熱硬化性樹脂に配合する粒子としては、強化繊維と同系の色の粒子としてカーボンブラック、カーボンナノチューブ、フラーレンが挙げられるが、カーボンブラックは、クロスプリプレグの凹凸部を埋めるだけでなく、使用する樹脂の物性の低下が抑制でき、安価で取扱性が良いことから、カーボンブラックを使用することが必須である。   The amount of the thermoplastic resin is preferably 1 to 10 parts by mass with respect to 100 parts by mass of the resin component. By blending the number of parts, the prepreg can be easily handled during molding, and the mechanical properties of the obtained molded body can be enhanced. Examples of the particles to be blended in the thermosetting resin of the present invention include carbon black, carbon nanotube, and fullerene as particles having the same color as the reinforcing fiber, but carbon black not only fills the uneven portion of the cross prepreg, It is indispensable to use carbon black because it can suppress a decrease in physical properties of the resin used, is inexpensive and has good handleability.

本発明のエポキシ樹脂組成物に配合する、強化繊維である炭素繊維と同系の色の粒子であるカーボンブラックの、レーザー回折法によって求めた粒度分布における積算値50%での粒径である平均粒径は、0.01〜1.0μmであることが必要で、0.02〜0.7μmであることが好ましい。平均粒径を0.01μm以上とすることによってピンホールを目立ち難くさせることができ、1.0μm以下にすることによって、プリプレグ表面の平滑性を保ち、かつ力学特性の低下を抑制することができる。 The average particle diameter of the carbon black, which is a particle of the same color as the carbon fiber that is the reinforcing fiber, blended in the epoxy resin composition of the present invention is the particle diameter at an integrated value of 50% in the particle size distribution determined by the laser diffraction method. diameter, it is required is 0.01 to 1.0 [mu] m, it is good preferable is 0.02~0.7Myuemu. By making the average particle size 0.01 μm or more, pinholes can be made inconspicuous, and by making the average particle size 1.0 μm or less, the smoothness of the prepreg surface can be maintained and the deterioration of mechanical properties can be suppressed. .

さらに、本発明のエポキシ樹脂組成物に配合する粒子であるカーボンブラックの含有量は、エポキシ樹脂組成物中のエポキシ樹脂成分100質量部に対して0.05〜1.0質量部であることが必要である。0.05質量部以上とすることによって得られるCFRPのピンホールを目立ち難くさせることができ、1.0質量部以下にすることによって、CFRP表面の意匠性が維持できる。本発明における意匠性とは、ピンホールが目立たない、かつ、カーボンブラックを含有しても、炭素繊維二方向クロスの織目が明確に判別できることをいう。さらに、CFRPの力学特性の低下も見られない。   Furthermore, the content of carbon black, which is a particle to be blended in the epoxy resin composition of the present invention, is 0.05 to 1.0 part by mass with respect to 100 parts by mass of the epoxy resin component in the epoxy resin composition. is necessary. The pinhole of CFRP obtained by setting it as 0.05 mass part or more can be made not conspicuous, and the design nature of the CFRP surface can be maintained by setting it as 1.0 mass part or less. The design property in the present invention means that pinholes are not conspicuous, and even if carbon black is contained, the texture of the carbon fiber bi-directional cloth can be clearly distinguished. Further, no deterioration of the mechanical properties of CFRP is observed.

上記エポキシ樹脂組成物と粒子を混練し、公知の方法を用いて製造した樹脂フィルムは、本発明のクロスプリプレグ用フィルムとして好適である。   A resin film produced by kneading the epoxy resin composition and particles and using a known method is suitable as a film for a cross prepreg of the present invention.

本発明のクロスプリプレグは、粒子を含有するエポキシ樹脂組成物からなる樹脂フィルムを繊維強化材に含浸させることで得られる。樹脂フィルムは、取り扱い性向上のため、繊維強化材の両面から含浸させることが好まれるが、少なくとも片面のみに含浸させればよい。また、本発明の繊維強化材は、エポキシ樹脂組成物が含浸した樹脂含浸層および樹脂が含浸していない未含浸層を有していてもよい。   The cloth prepreg of the present invention can be obtained by impregnating a fiber reinforcement with a resin film made of an epoxy resin composition containing particles. The resin film is preferably impregnated from both sides of the fiber reinforcing material in order to improve handleability, but it is sufficient to impregnate at least one side. The fiber reinforcing material of the present invention may have a resin-impregnated layer impregnated with the epoxy resin composition and an unimpregnated layer not impregnated with the resin.

本発明のCFRPは、前記クロスプリプレグを硬化することで得られる。クロスプリプレグを成形・硬化する方法は特に限定しないが、従来公知のオートクレーブ法や、真空バック成形法などを用いることができる。   The CFRP of the present invention can be obtained by curing the cross prepreg. A method for molding and curing the cross prepreg is not particularly limited, and a conventionally known autoclave method, vacuum back molding method, or the like can be used.

本発明のクロスプリプレグは、CFRP表面に発生するピンホールを目立ち難くさせるために、プリプレグ表面の樹脂層の厚みを0.1〜0.7mmにすることが必要で、特に0.2〜0.6mmにすることが好ましい。   In the cross prepreg of the present invention, the thickness of the resin layer on the prepreg surface needs to be 0.1 to 0.7 mm in order to make pinholes generated on the CFRP surface inconspicuous. 6 mm is preferable.

本発明で規定するプリプレグ表面の樹脂層の厚みは、プリプレグをその幅方向に5点サンプリングして、レーザー顕微鏡でプリプレグの断面を測定する。幅方向の5点は、プリプレグの中央部と両端から10cm、25cm離れた点を中央として幅6cmをサンプリングする。また樹脂層の厚みは上記6cmの範囲において炭素繊維織物の縦糸上の最少の樹脂層厚みを2点測定した合計10点の平均値で定義される。   The thickness of the resin layer on the surface of the prepreg defined in the present invention is determined by sampling the prepreg at five points in the width direction and measuring the cross section of the prepreg with a laser microscope. The five points in the width direction are sampled with a width of 6 cm with the center of the prepreg and 10 cm and 25 cm away from both ends. Further, the thickness of the resin layer is defined as an average value of a total of 10 points obtained by measuring the minimum resin layer thickness on the warp of the carbon fiber fabric at 2 points within the range of 6 cm.

プリプレグ表面の樹脂層の厚みを0.1mm以上とすることによって、成形時に樹脂がフローしても、ピンホールを目立ち難くさせることができる。また、0.7mm以下にすることによって、得られるCFRPの内部のボイドを抑制することができる。プリプレグ表面の樹脂層の厚みを制御する方法は、前記の樹脂の質量含有率の範囲を規定したクロスプリプレグにおいて、例えばプリプレグ内部まで樹脂を含浸させないために、含浸温度を70〜90℃、プレスロールによる線圧を5〜200kg/m好ましくは、10〜100kg/mの範囲の中で制御することで、前記範囲に調整することができる。 By setting the thickness of the resin layer on the prepreg surface to 0.1 mm or more, even if the resin flows during molding, the pinhole can be made inconspicuous. Moreover, the void inside CFRP obtained can be suppressed by setting it as 0.7 mm or less. The method for controlling the thickness of the resin layer on the surface of the prepreg is as follows. In the cross prepreg in which the range of the mass content of the resin is defined, for example, the impregnation temperature is 70 to 90 ° C. in order to prevent the resin from being impregnated into the prepreg. It is possible to adjust the linear pressure to 5 to 200 kg / m, preferably within the range of 10 to 100 kg / m , to the above range.

また、本発明のクロスプリプレグは、成形品を製造するときに何枚積層してもよいが、少なくとも最外層に1層配することが好ましい。最外層に1層配することにより該繊維強化複合材料の表面のピンホール数が1mあたり1個以下となり、該繊維強化複合材料の表層の織組織が目視可能となる。 Further, the cross prepreg of the present invention may be laminated in a number of times when a molded product is produced, but it is preferable to arrange at least one layer on the outermost layer. By arranging one layer on the outermost layer, the number of pinholes on the surface of the fiber reinforced composite material becomes 1 or less per 1 m 2 , and the woven structure of the surface layer of the fiber reinforced composite material becomes visible.

本発明の繊維強化複合材料における表面のピンホールは、0.3m×0.3mの成形品を成形し、そのパネル表面に存在する目視可能なボイド数で定義される。この際、成形時の昇温速度を1.5〜2.5℃/分の範囲に調整するとよい。 The surface pinhole in the fiber-reinforced composite material of the present invention is defined by the number of visible voids formed on a panel surface of a molded product of 0.3 m × 0.3 m. At this time, the temperature rising rate during molding may be adjusted to a range of 1.5 to 2.5 ° C./min.

本発明のプリプレグを用いると、繊維強化複合材料の成形時に樹脂が過度に流れ、表面にピンホールが発生することや、層間のエアーが抜け切らず、ボイドが発生するといった問題を改善できるので好ましい。かかる方法によって得られたCFRPは、従来のクロスプリプレグでは避けられなかったピンホールを目立ち難くさせると同時に意匠性を確保することができる。   When the prepreg of the present invention is used, the resin flows excessively at the time of molding the fiber reinforced composite material, and pinholes are generated on the surface, air between layers is not completely removed, and voids are preferably generated. . The CFRP obtained by such a method makes it difficult to notice pinholes that were unavoidable with conventional cross prepregs, and at the same time can ensure design.

以下、実施例により本発明を詳細に記述する。   Hereinafter, the present invention will be described in detail by way of examples.

(実施例1)
熱媒設定温度100℃で、ビスフェノールA型エポキシ樹脂jER828(三菱化学社製)を30質量部、jER1001(三菱化学社製)を35質量部、jER154(三菱化学社製)を35質量部、熱可塑性樹脂としてビニレックK(JNC株式会社製)を3質量部、硬化剤としてDICY−7T(三菱化学社製)を3.5質量部、硬化促進剤としてオミキュア24(PTIジャパン株式会社製)を3質量部配合した樹脂組成を樹脂組成Iとし、これに表1に示す質量部数のカーボンブラックE−V9333(レジノカラー工業株式会社製)を添加して、カーボンブラック配合エポキシ樹脂組成物を調製した。用いたカーボンブラックの平均粒径は0.02μmであり、含有量はエポキシ樹脂組成物の0.2質量部となるよう調整した。前記エポキシ樹脂組成物を使用し、リバースロールコーター法にて、樹脂目付が217g/mになるように離型紙の片面に樹脂を塗工した。
Example 1
At a heating medium set temperature of 100 ° C., 30 parts by mass of bisphenol A type epoxy resin jER828 (manufactured by Mitsubishi Chemical), 35 parts by mass of jER1001 (manufactured by Mitsubishi Chemical), 35 parts by mass of jER154 (manufactured by Mitsubishi Chemical), heat 3 parts by mass of Vinylec K (manufactured by JNC Corporation) as a plastic resin, 3.5 parts by mass of DICY-7T (manufactured by Mitsubishi Chemical Corporation) as a curing agent, and 3 of Omicure 24 (manufactured by PTI Japan Co., Ltd.) as a curing accelerator The resin composition blended in parts by mass was designated as Resin Composition I, and carbon black E-V9333 (manufactured by Resino Color Industry Co., Ltd.) having the parts by mass shown in Table 1 was added thereto to prepare a carbon black-blended epoxy resin composition. The carbon black used had an average particle size of 0.02 μm, and the content was adjusted to be 0.2 parts by mass of the epoxy resin composition. Using the epoxy resin composition, a reverse roll coater method was used to coat the resin on one side of the release paper so that the resin basis weight was 217 g / m 2 .

前記のように得られた樹脂フィルムを、東レ社製T700SC−12K−60E炭素繊維(強度4.9GPa、弾性率230GPa)を用いて、目付650g/mの2/2綾織りの二方向クロスに、70℃に加熱したプレスロールにて両面から圧力をかけることにより、樹脂を含浸させ、クロスプリプレグを作製した。樹脂フィルムを両面から含浸させる際、表面に樹脂層の厚みが平均で0.5mmであるように含浸速度、温度、含浸圧力を調整した。 The resin film obtained as described above is a 2/2 twill weave cloth with a basis weight of 650 g / m 2 using T700SC-12K-60E carbon fiber (strength: 4.9 GPa, elastic modulus: 230 GPa) manufactured by Toray Industries, Inc. In addition, the resin was impregnated by applying pressure from both sides with a press roll heated to 70 ° C. to produce a cross prepreg. When the resin film was impregnated from both sides, the impregnation speed, temperature and impregnation pressure were adjusted so that the average thickness of the resin layer on the surface was 0.5 mm.

前記クロスプリプレグを、0.3m×0.3mの正方形にカットし、4枚を同一方向になるように積層し、オートクレーブ中で、130℃の温度、3.0kg/cmの圧力下で、60分間硬化した。得られたCFRPの表面を目視で確認し、ピンホールの個数を数えたところ、表面にピンホールが0個であることを確認した。 The cross prepreg is cut into a square of 0.3 m × 0.3 m, and four pieces are laminated so as to be in the same direction, in an autoclave at a temperature of 130 ° C. and a pressure of 3.0 kg / cm 2 , Cured for 60 minutes. When the surface of the obtained CFRP was visually confirmed and the number of pinholes was counted, it was confirmed that there were no pinholes on the surface.

また、織模様の評価には、5人の審査員に判定してもらい、4人以上が、織物の織模様が明確に目視で確認でき、良好と認めた場合○、2人以上が良好と認めた場合△、良好と認めた人が0人だった場合を×として評価した。得られたCFRPは全員の判定で良好とされ、○の評価であることを確認した。前記CFRPを使用し、力学特性を評価したところ、参考例のカーボンブラックを配合していない樹脂を使用した積層板と同等の圧縮強度、層間剪断強度であることを確認した。   In the evaluation of the weaving pattern, 5 judges judge and 4 or more people can confirm the weaving pattern of the fabric clearly and visually. The case where it was recognized was evaluated as x, and the case where there were 0 people who were recognized as good was evaluated as x. The obtained CFRP was judged to be good by the judgment of all the members, and it was confirmed that the evaluation was good. When the mechanical properties were evaluated using the CFRP, it was confirmed that the CFRP had the same compressive strength and interlaminar shear strength as the laminate using the resin not containing the carbon black of the reference example.

(実施例2)
実施例1で用いた炭素繊維二方向クロス、樹脂組成を使用し、配合するカーボンブラックをエポキシ樹脂成分100質量部に対して0.05質量部となるように調整したクロスプリプレグを作製した。その際、プリプレグ表面の樹脂層の厚みが0.6mmとなるように製造条件を調節した。
(Example 2)
Using the carbon fiber bi-directional cloth and resin composition used in Example 1, a carbon prepreg was prepared by adjusting the blended carbon black to 0.05 parts by mass with respect to 100 parts by mass of the epoxy resin component. At that time, the production conditions were adjusted so that the thickness of the resin layer on the prepreg surface was 0.6 mm.

得られたクロスプリプレグを実施例1と同じ方法で積層し、成形体を得た。得られたCFRPの表面を目視で確認し、ピンホールの個数を数えたところ、表面にピンホールが0個であることを確認した。また、織模様の評価は、○評価であることを確認した。前記CFRPを使用し、力学特性を評価したところ、参考例と同等であることを確認した。   The obtained cross prepreg was laminated by the same method as in Example 1 to obtain a molded body. When the surface of the obtained CFRP was visually confirmed and the number of pinholes was counted, it was confirmed that there were no pinholes on the surface. In addition, it was confirmed that the evaluation of the woven pattern was ○ evaluation. When the mechanical properties were evaluated using the CFRP, it was confirmed to be equivalent to the reference example.

(実施例3)
実施例で用いた炭素繊維二方向クロス、樹脂組成を使用し、配合するカーボンブラックをエポキシ樹脂成分100質量部に対して1.0質量部を含んだクロスプリプレグを作製した。その際、プリプレグ表面の樹脂層の厚みは0.5mmとなるように製造条件を調節した。
(Example 3)
Using the carbon fiber bidirectional cloth and resin composition used in Example 1 , a carbon prepreg containing 1.0 part by mass of carbon black to be blended with respect to 100 parts by mass of the epoxy resin component was produced. At that time, the manufacturing conditions were adjusted so that the thickness of the resin layer on the prepreg surface was 0.5 mm.

得られたクロスプリプレグを実施例1と同方法で積層し、成形体を得た。得られたCFRPの表面を目視で確認し、ピンホールの個数を数えたところ、表面にピンホールが0個であることを確認した。また、織模様の評価は、○評価であることを確認した。前記CFRPを使用し、力学特性を評価したところ、参考例と同等であることを確認した。   The obtained cross prepreg was laminated in the same manner as in Example 1 to obtain a molded body. When the surface of the obtained CFRP was visually confirmed and the number of pinholes was counted, it was confirmed that there were no pinholes on the surface. In addition, it was confirmed that the evaluation of the woven pattern was ○ evaluation. When the mechanical properties were evaluated using the CFRP, it was confirmed to be equivalent to the reference example.

(比較例1)
実施例1で用いた炭素繊維二方向クロス、樹脂組成を使用し、配合するカーボンブラックを樹脂成分100質量部に対して10質量部含んだクロスプリプレグを作製した。その際、プリプレグ表面の樹脂層の厚みが0.6mmとなるように製造条件を調整した。
(Comparative Example 1)
Using the carbon fiber bidirectional cloth and resin composition used in Example 1, a cross prepreg containing 10 parts by mass of carbon black to be blended with respect to 100 parts by mass of the resin component was produced. At that time, the production conditions were adjusted so that the thickness of the resin layer on the prepreg surface was 0.6 mm.

得られたクロスプリプレグを実施例1と同様に積層し、成形体を得た。得られたCFRPの表面を目視で確認し、ピンホールの個数を数えたところ、表面にピンホールが0個であることを確認した。しかし、織模様の評価は、×評価であることを確認した。前記CFRPを使用し、力学特性を評価したところ、参考例に比べて、圧縮強度、層間剪断強度が低下することを確認した。   The obtained cross prepreg was laminated in the same manner as in Example 1 to obtain a molded body. When the surface of the obtained CFRP was visually confirmed and the number of pinholes was counted, it was confirmed that there were no pinholes on the surface. However, it was confirmed that the evaluation of the woven pattern was x evaluation. When the mechanical properties were evaluated using the CFRP, it was confirmed that the compressive strength and the interlaminar shear strength were reduced as compared with the reference example.

(比較例2)
実施例1で用いた炭素繊維二方向クロス、樹脂組成を使用し、配合するカーボンブラックをエポキシ樹脂成分100質量部に対して0.01質量部含んだクロスプリプレグを作製した。その際、プリプレグ表面の樹脂層の厚みが0.5mmとなるように製造条件を調整した。
(Comparative Example 2)
Using the carbon fiber bidirectional cloth and resin composition used in Example 1, a cross prepreg containing 0.01 part by mass of carbon black to be blended with respect to 100 parts by mass of the epoxy resin component was produced. At that time, the production conditions were adjusted so that the thickness of the resin layer on the prepreg surface was 0.5 mm.

得られたクロスプリプレグを実施例1と同様に積層し、成形体を得た。得られたCFRPの表面を目視で確認し、ピンホールの個数を数えたところ、表面にピンホールが17個あることを確認した。織模様の評価は、○評価であることを確認した。前記CFRPを使用し、力学特性を評価したところ、参考例と同等の圧縮強度、層間剪断強度であることを確認した。   The obtained cross prepreg was laminated in the same manner as in Example 1 to obtain a molded body. When the surface of the obtained CFRP was visually confirmed and the number of pinholes was counted, it was confirmed that there were 17 pinholes on the surface. It was confirmed that the evaluation of the woven pattern was ○ evaluation. When the mechanical properties were evaluated using the CFRP, it was confirmed that the compression strength and interlayer shear strength were the same as those of the reference example.

(実施例4)
実施例1で用いた樹脂組成を使用し、カーボンブラックの粒子の含有量を0.2質量部としたカーボンブラック配合エポキシ樹脂組成物を調製した。このエポキシ樹脂組成物を使用し、クロスプリプレグ中のマトリックス樹脂の質量含有率が30質量%になるように、リバースロールコーター法にて、離型紙の片面に樹脂を塗工した。前記のように得られた樹脂フィルムを、実施例1で用いた方法でクロスプリプレグを作製した。得られるクロスプリプレグの表面の樹脂層の厚みを0.2mmとなるように製造条件を設定した。
Example 4
Using the resin composition used in Example 1, a carbon black-containing epoxy resin composition having a carbon black particle content of 0.2 parts by mass was prepared. Using this epoxy resin composition, the resin was applied to one side of the release paper by the reverse roll coater method so that the mass content of the matrix resin in the cross prepreg was 30% by mass. A cross prepreg was produced from the resin film obtained as described above by the method used in Example 1. Manufacturing conditions were set so that the thickness of the resin layer on the surface of the obtained cross prepreg was 0.2 mm.

得られたクロスプリプレグを実施例1と同様に積層し、成形体を得た。得られたCFRPの表面を目視で確認し、ピンホールの個数を数えたところ、表面にピンホールが0個であることを確認した。また、織模様の評価は、○評価であることを確認した。前記CFRPを使用し、力学特性を評価したところ、参考例と同等の圧縮強度、層間剪断強度であることを確認した。   The obtained cross prepreg was laminated in the same manner as in Example 1 to obtain a molded body. When the surface of the obtained CFRP was visually confirmed and the number of pinholes was counted, it was confirmed that there were no pinholes on the surface. In addition, it was confirmed that the evaluation of the woven pattern was ○ evaluation. When the mechanical properties were evaluated using the CFRP, it was confirmed that the compression strength and interlayer shear strength were the same as those of the reference example.

(実施例5)
実施例1で用いた樹脂組成を使用し、カーボンブラックの粒子の含有量を0.2質量部としたカーボンブラック配合エポキシ樹脂組成物を調製した。この樹脂を使用し、クロスプリプレグ中のマトリックス樹脂の質量含有率が45質量%になるように、リバースロールコーター法にて、離型紙の片面に樹脂を塗工した。 前記のように得られた樹脂フィルムを用い、実施例1で用いた方法でクロスプリプレグを作製した。その際、得られるクロスプリプレグの表面の樹脂層の厚みを0.4mmとなるように製造条件を設定した。得られたクロスプリプレグを実施例1と同様に積層し、成形体を得た。
(Example 5)
Using the resin composition used in Example 1, a carbon black-containing epoxy resin composition having a carbon black particle content of 0.2 parts by mass was prepared. Using this resin, the resin was applied to one side of the release paper by the reverse roll coater method so that the mass content of the matrix resin in the cross prepreg was 45% by mass. A cross prepreg was produced by the method used in Example 1 using the resin film obtained as described above. At that time, the production conditions were set so that the thickness of the resin layer on the surface of the obtained cross prepreg was 0.4 mm. The obtained cross prepreg was laminated in the same manner as in Example 1 to obtain a molded body.

得られたCFRPの表面を目視で確認し、ピンホールの個数を数えたところ、表面にピンホールが0個であることを確認した。また、織模様の評価は、○評価であることを確認した。前記CFRPを使用し、力学特性を評価したところ、参考例と同等の圧縮強度、層間剪断強度であることを確認した。   When the surface of the obtained CFRP was visually confirmed and the number of pinholes was counted, it was confirmed that there were no pinholes on the surface. In addition, it was confirmed that the evaluation of the woven pattern was ○ evaluation. When the mechanical properties were evaluated using the CFRP, it was confirmed that the compression strength and interlayer shear strength were the same as those of the reference example.

(比較例3)
実施例1で用いた樹脂組成を使用し、カーボンブラックの粒子の含有量を0.2質量部としたカーボンブラック配合エポキシ樹脂組成物を調製した。この樹脂を使用し、クロスプリプレグ中のマトリックス樹脂の質量含有率が20質量%になるように、リバースロールコーター法にて、離型紙の片面に樹脂を塗工した。前記のように得られた樹脂フィルムを、実施例1と同様の方法でクロスプリプレグを作製した。その際、得られるクロスプリプレグの表面の樹脂層の厚みを0.1mmとなるように製造条件を設定した。
得られたクロスプリプレグを実施例1と同様の方法で積層し、成形体を得た。
(Comparative Example 3)
Using the resin composition used in Example 1, a carbon black-containing epoxy resin composition having a carbon black particle content of 0.2 parts by mass was prepared. Using this resin, the resin was applied to one side of the release paper by a reverse roll coater method so that the mass content of the matrix resin in the cross prepreg was 20% by mass. A cross prepreg was produced from the resin film obtained as described above in the same manner as in Example 1. At that time, the production conditions were set so that the thickness of the resin layer on the surface of the obtained cross prepreg was 0.1 mm.
The obtained cross prepreg was laminated in the same manner as in Example 1 to obtain a molded body.

得られたCFRPの表面を目視で確認し、ピンホールの個数を数えたところ、表面にピンホールが20個であることを確認した。また、織模様の評価は、○評価であることを確認した。前記CFRPを使用し、力学特性を評価したところ、参考例より低い物性であることを確認した。   When the surface of the obtained CFRP was visually confirmed and the number of pinholes was counted, it was confirmed that there were 20 pinholes on the surface. In addition, it was confirmed that the evaluation of the woven pattern was ○ evaluation. When the mechanical properties were evaluated using the CFRP, it was confirmed that the physical properties were lower than those of the reference examples.

(比較例4)
実施例1で用いた樹脂組成を使用し、カーボンブラックの粒子の含有量を0.2質量部としたカーボンブラック配合エポキシ樹脂組成物を調製した。この樹脂を使用し、クロスプリプレグ中のマトリックス樹脂の質量含有率が60質量%になるように、リバースロールコーター法にて、離型紙の片面に樹脂を塗工した。
(Comparative Example 4)
Using the resin composition used in Example 1, a carbon black-containing epoxy resin composition having a carbon black particle content of 0.2 parts by mass was prepared. Using this resin, the resin was applied to one side of the release paper by the reverse roll coater method so that the mass content of the matrix resin in the cross prepreg was 60% by mass.

前記のように得られた樹脂フィルムを、実施例1と同様にクロスプリプレグを作製した。その際、得られるクロスプリプレグの表面の樹脂層の厚みを1.2mmとなるように製造条件を設定した。
得られたクロスプリプレグを実施例1と同様に積層し、成形体を得た。
A cross prepreg was produced from the resin film obtained as described above in the same manner as in Example 1. At that time, the manufacturing conditions were set so that the thickness of the resin layer on the surface of the obtained cross prepreg was 1.2 mm.
The obtained cross prepreg was laminated in the same manner as in Example 1 to obtain a molded body.

得られたCFRPの表面を目視で確認し、ピンホールの個数を数えたところ、表面にピンホールが0個であることを確認した。しかし、織模様の評価は、△評価であることを確認した。前記CFRPを使用し、力学特性を評価したところ、樹脂含有率が高いこともあって、参考例に比べて、圧縮強度、層間剪断強度が低下することを確認した。   When the surface of the obtained CFRP was visually confirmed and the number of pinholes was counted, it was confirmed that there were no pinholes on the surface. However, it was confirmed that the evaluation of the woven pattern was Δ evaluation. When the CFRP was used and the mechanical properties were evaluated, it was confirmed that the compressive strength and the interlaminar shear strength were reduced as compared with the reference example due to the high resin content.

(実施例6)
炭素繊維として強度3.5GPa、弾性率230GPaの東レ社製T300B−3K−40Bを用い、炭素繊維二方向クロスで目付が198g/mのものを作製し、実施例1と同様に作製したプリプレグを得た。その際、得られるクロスプリプレグの表面の樹脂層の厚みを0.4mmとなるように製造条件を設定した。
(Example 6)
Using T300B-3K-40B manufactured by Toray Industries with a strength of 3.5 GPa and an elastic modulus of 230 GPa as a carbon fiber, a carbon fiber bi-directional cloth having a basis weight of 198 g / m 2 was prepared. Got. At that time, the production conditions were set so that the thickness of the resin layer on the surface of the obtained cross prepreg was 0.4 mm.

得られたクロスプリプレグを実施例1のように積層し、成形体を得た。得られたCFRPの表面を目視で確認し、ピンホールの個数を数えたところ、表面にピンホールが0個であることを確認した。また、織模様の評価は、○評価であることを確認した。前記CFRPを使用し、力学特性を評価したところ、参考例と同等の圧縮強度、層間剪断強度であることを確認した。   The obtained cross prepreg was laminated as in Example 1 to obtain a molded body. When the surface of the obtained CFRP was visually confirmed and the number of pinholes was counted, it was confirmed that there were no pinholes on the surface. In addition, it was confirmed that the evaluation of the woven pattern was ○ evaluation. When the mechanical properties were evaluated using the CFRP, it was confirmed that the compression strength and interlayer shear strength were the same as those of the reference example.

(実施例7)
炭素繊維二方向クロス目付が400g/mのものを使用し、実施例1と同様に作製したプリプレグを得た。その際、得られるクロスプリプレグの表面の樹脂層の厚みを0.5mmとなるように製造条件を設定した。得られたクロスプリプレグを実施例1と同様に積層し、成形体を得た。
(Example 7)
A prepreg produced in the same manner as in Example 1 was obtained using a carbon fiber bi-directional cloth basis weight of 400 g / m 2 . At that time, the production conditions were set so that the thickness of the resin layer on the surface of the obtained cross prepreg was 0.5 mm. The obtained cross prepreg was laminated in the same manner as in Example 1 to obtain a molded body.

得られたCFRPの表面を目視で確認し、ピンホールの個数を数えたところ、表面にピンホールが0個であることを確認した。また、織模様の評価は、○評価であることを確認した。前記CFRPを使用し、力学特性を評価したところ、参考例と同等の圧縮強度、層間剪断強度であることを確認した。   When the surface of the obtained CFRP was visually confirmed and the number of pinholes was counted, it was confirmed that there were no pinholes on the surface. In addition, it was confirmed that the evaluation of the woven pattern was ○ evaluation. When the mechanical properties were evaluated using the CFRP, it was confirmed that the compression strength and interlayer shear strength were the same as those of the reference example.

Figure 0005966969
Figure 0005966969

Claims (1)

炭素繊維二方向クロス、および平均粒径が0.01〜1.0μmであるカーボンブラックを含有したマトリックス樹脂からなるクロスプリプレグの製造方法であって、目付が170〜800g/mである炭素繊維二方向クロスを、エポキシ樹脂成分100質量部に対して、0.05〜1.0質量部のカーボンブラックを含有するエポキシ樹脂組成物で、含浸温度を70〜90℃、プレスロールによる線圧を5〜200kg/mとして含浸させることによって、プリプレグ中のマトリックス樹脂の質量含有率を30〜50質量%とするに際して、該プリプレグ表面の樹脂層の厚みを0.1〜0.7mmとすることを特徴とする、プリプレグの製造方法。 A method for producing a cross prepreg comprising a carbon fiber bi-directional cloth and a matrix resin containing carbon black having an average particle diameter of 0.01 to 1.0 μm , and having a basis weight of 170 to 800 g / m 2 The bi-directional cloth is an epoxy resin composition containing 0.05 to 1.0 part by mass of carbon black with respect to 100 parts by mass of the epoxy resin component , the impregnation temperature is 70 to 90 ° C., and the linear pressure by the press roll is When the mass content of the matrix resin in the prepreg is set to 30 to 50% by impregnation as 5 to 200 kg / m, the thickness of the resin layer on the surface of the prepreg is set to 0.1 to 0.7 mm. A method for producing a prepreg, which is characterized.
JP2013035430A 2013-02-26 2013-02-26 Manufacturing method of prepreg Expired - Fee Related JP5966969B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013035430A JP5966969B2 (en) 2013-02-26 2013-02-26 Manufacturing method of prepreg

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013035430A JP5966969B2 (en) 2013-02-26 2013-02-26 Manufacturing method of prepreg

Publications (3)

Publication Number Publication Date
JP2014162858A JP2014162858A (en) 2014-09-08
JP2014162858A5 JP2014162858A5 (en) 2015-06-25
JP5966969B2 true JP5966969B2 (en) 2016-08-10

Family

ID=51613782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013035430A Expired - Fee Related JP5966969B2 (en) 2013-02-26 2013-02-26 Manufacturing method of prepreg

Country Status (1)

Country Link
JP (1) JP5966969B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6961326B2 (en) * 2016-03-30 2021-11-05 古河電気工業株式会社 Laser light shielding material
CN107446152A (en) * 2016-05-30 2017-12-08 洛阳尖端技术研究院 The preparation method and prepreg of prepreg
JP2018178089A (en) * 2017-04-03 2018-11-15 東レ株式会社 Cloth prepreg
CN110382189A (en) * 2017-04-25 2019-10-25 三菱化学株式会社 Fiber-reinforced resin moulding material and its manufacturing method and fiber-reinforced resin molded product

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1135794A (en) * 1997-07-11 1999-02-09 Toray Ind Inc Production of resin composition for fiber reinforced composite material
JP2001179844A (en) * 1999-12-27 2001-07-03 Mitsubishi Rayon Co Ltd Carbon fiber-reinforced plastic molded body
JP2003105109A (en) * 2001-09-28 2003-04-09 Toray Ind Inc Method for manufacturing molded article
JP2004323755A (en) * 2003-04-25 2004-11-18 Mitsubishi Rayon Co Ltd Prepreg and fiber-reinforced composite material
JP2007099966A (en) * 2005-10-06 2007-04-19 Mitsubishi Rayon Co Ltd Prepreg
JP2011195723A (en) * 2010-03-19 2011-10-06 Toho Tenax Co Ltd Frp molded article excellent in light shielding and molding method thereof
JP5605622B2 (en) * 2010-07-27 2014-10-15 三菱レイヨン株式会社 Resin composition, prepreg using the same, and fiber reinforced composite material
EP2690128B1 (en) * 2011-03-25 2015-10-28 Toray Industries, Inc. Prepreg and fiber reinforced composite material

Also Published As

Publication number Publication date
JP2014162858A (en) 2014-09-08

Similar Documents

Publication Publication Date Title
JP4762239B2 (en) Continuous pultrusion process for producing high performance structural features
JP5090701B2 (en) Partially impregnated prepreg and method for producing fiber reinforced composite material using the same
JP6007914B2 (en) Pre-preg for vacuum forming, fiber reinforced composite material and method for producing the same
JP4177041B2 (en) Manufacturing method of fiber reinforced composite material
EP3161199B1 (en) Non-woven fabrics
KR20140127868A (en) Fiber-reinforced composite material
WO2018003694A1 (en) Prepreg and production method therefor
JP5966969B2 (en) Manufacturing method of prepreg
KR20140127867A (en) Fiber-reinforced composite material
JP5173358B2 (en) Prepreg with protective film
JP6956300B1 (en) Reinforced fiber stitch base material, preform material, and fiber reinforced composite material, and methods for manufacturing them.
JP5441437B2 (en) Partially impregnated prepreg, method for producing the same, and method for producing a fiber-reinforced composite material using the same
JP2010150311A (en) Epoxy resin composition, fiber-reinforced composite material and manufacturing method of fiber-reinforced composite material
JP2013181112A (en) Binder composition, reinforcing fiber base material, preform, fiber-reinforced composite material and method for producing the same
JP7204659B2 (en) Laminates and reinforcing sheets
CN113811439A (en) Fiber-reinforced resin base material, integrated molded article, and method for producing fiber-reinforced resin base material
JPWO2019107276A1 (en) Carbon fiber bundle, prepreg, fiber reinforced composite material
JP2020163584A (en) Manufacturing method of sandwich molded product
KR102461792B1 (en) Tow prepreg having high impact strength for the filament winding
JP2020050833A (en) Prepreg and molded article thereof
CN110035883B (en) Improvements in or relating to moulding
JP2006218782A (en) Molding method of molded product made of frp having foam core
JP2007098818A (en) Manufacturing method of fiber reinforced plastic panel
JP2022170112A (en) Fiber-reinforced molding, method for manufacturing fiber-reinforced molding, and resin sheet
KR20110079033A (en) A method of preparing thermoplastic prepreg and thermoplastic prepreg prepared by the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150511

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150511

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160607

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160620

R151 Written notification of patent or utility model registration

Ref document number: 5966969

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees