JP2022170112A - Fiber-reinforced molding, method for manufacturing fiber-reinforced molding, and resin sheet - Google Patents

Fiber-reinforced molding, method for manufacturing fiber-reinforced molding, and resin sheet Download PDF

Info

Publication number
JP2022170112A
JP2022170112A JP2021076007A JP2021076007A JP2022170112A JP 2022170112 A JP2022170112 A JP 2022170112A JP 2021076007 A JP2021076007 A JP 2021076007A JP 2021076007 A JP2021076007 A JP 2021076007A JP 2022170112 A JP2022170112 A JP 2022170112A
Authority
JP
Japan
Prior art keywords
resin
fiber
base material
reinforced molded
sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021076007A
Other languages
Japanese (ja)
Other versions
JP7419291B2 (en
Inventor
尚幸 田辺
Naoyuki Tanabe
直弥 原田
Naoya Harada
達彦 安井
Tatsuhiko YASUI
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inoac Corp
Original Assignee
Inoue MTP KK
Inoac Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inoue MTP KK, Inoac Corp filed Critical Inoue MTP KK
Priority to JP2021076007A priority Critical patent/JP7419291B2/en
Priority to EP21835931.3A priority patent/EP4177047A1/en
Priority to PCT/JP2021/023675 priority patent/WO2022009671A1/en
Priority to CN202180042674.6A priority patent/CN115835945A/en
Priority to US17/925,228 priority patent/US20230235140A1/en
Priority to TW110123546A priority patent/TW202204137A/en
Publication of JP2022170112A publication Critical patent/JP2022170112A/en
Application granted granted Critical
Publication of JP7419291B2 publication Critical patent/JP7419291B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

To provide a fiber-reinforced molding which can be inexpensively manufactured.SOLUTION: In a fiber-reinforced molding 10, a fiber base material 11 is integrated by a thermosetting resin of a resin sheet 15, which contains the thermosetting resin. The thermosetting resin has a viscosity at a curing reaction start temperature Tb°C of 2,000 Pa s or less, and a highest viscosity in the range of the curing reaction start temperature of Tb°C to 190°C of 1,000 Pa s or more.SELECTED DRAWING: Figure 1

Description

本開示は、繊維強化成形体、繊維強化成形体の製造方法、及び樹脂シートに関する。 TECHNICAL FIELD The present disclosure relates to a fiber-reinforced molded article, a method for manufacturing a fiber-reinforced molded article, and a resin sheet.

近年、軽量化や機械強度の向上を目的として、炭素繊維やガラス繊維などの強化繊維基材と樹脂の複合材料(FRP)が、様々な分野・用途に広く利用されている。特に、自動車や鉄道、航空機などの輸送機器においては、低燃費化の要求が高く、機体の軽量化による効果が高いため、これらの用途にFRPが金属代替材料として期待されている。
FRPの成形方法としては、強化繊維基材に樹脂を含浸させ、プリプレグ化した後に、プリプレグをオートクレーブや熱プレスなどを用いて成形する方法がある。強化繊維に含浸する樹脂は、液状が一般的であるが、樹脂のポットライフの問題や、溶剤を使用する場合は、作業環境や大気汚染の問題がある。これらを解決するための方法として、粉体樹脂を含浸したプリプレグが提案されている(特許文献1参照)。
BACKGROUND ART In recent years, composite materials (FRPs) of reinforcing fiber base materials such as carbon fibers and glass fibers and resins have been widely used in various fields and applications for the purpose of weight reduction and improvement of mechanical strength. In particular, transportation equipment such as automobiles, railroads, and aircraft are in high demand for low fuel consumption, and the weight reduction of the aircraft is highly effective, so FRP is expected as a metal substitute material for these applications.
As a molding method of FRP, there is a method of impregnating a reinforcing fiber base material with a resin, forming a prepreg, and then molding the prepreg using an autoclave, a hot press, or the like. The resin impregnated into the reinforcing fibers is generally in a liquid state, but there are problems with the pot life of the resin, and when a solvent is used, there are problems with the working environment and air pollution. As a method for solving these problems, a prepreg impregnated with powdered resin has been proposed (see Patent Document 1).

特開2006-232915号公報JP 2006-232915 A

上記の特許文献において、樹脂含浸体(プリプレグ)を作製した後、最終成形体を成形している。
プリプレグを用いる成形では、プリプレグ化する工程において、大掛かりな設備が必要となること、プリプレグ化の工程の管理が煩雑であることなどから、製造コストが高くなる問題がある。
本開示は、上記実情に鑑みてなされたものであり、安価に製造可能な繊維強化成形体を提供することを目的とする。
本開示は、以下の形態として実現することが可能である。
In the above patent document, after the resin-impregnated body (prepreg) is produced, the final molded body is formed.
In the molding using prepreg, there is a problem that the manufacturing cost is high because the prepreg process requires large-scale equipment and the management of the prepreg process is complicated.
The present disclosure has been made in view of the above circumstances, and an object of the present disclosure is to provide a fiber-reinforced molded article that can be manufactured at low cost.
The present disclosure can be implemented as the following forms.

繊維基材が、熱硬化性樹脂を含有する樹脂シートの前記熱硬化性樹脂によって一体化された、繊維強化成形体であって、
前記熱硬化性樹脂は、硬化反応開始温度Tb℃の粘度が2,000Pa・s以下であり、硬化反応開始温度Tb℃~190℃の範囲における最高粘度が1,000Pa・s以上である、繊維強化成形体。
A fiber-reinforced molded body in which a fiber base material is integrated by the thermosetting resin of a resin sheet containing a thermosetting resin,
The thermosetting resin has a viscosity of 2,000 Pa s or less at the curing reaction start temperature Tb ° C., and a maximum viscosity of 1,000 Pa s or more in the range of the curing reaction start temperature Tb ° C. to 190 ° C. Fiber. Reinforced molding.

本開示の繊維強化成形体は、安価に製造可能である。 The fiber-reinforced molded article of the present disclosure can be manufactured at low cost.

図1は、本開示の一実施形態に係る繊維強化成形体の断面図である。FIG. 1 is a cross-sectional view of a fiber-reinforced molded body according to one embodiment of the present disclosure. 図2は、本開示の繊維強化成形体の製造方法の一実施形態における積層及び加熱圧縮を示す断面図である。FIG. 2 is a cross-sectional view showing lamination and heat compression in one embodiment of the method for producing a fiber-reinforced molded body of the present disclosure. 図3は、本開示の繊維強化成形体の製造方法の一実施形態における積層及び加熱圧縮を示す断面図である。FIG. 3 is a cross-sectional view showing lamination and heat compression in one embodiment of the method for producing a fiber-reinforced molded body of the present disclosure. 図4は、本開示の繊維強化成形体の製造方法の一実施形態における積層及び加熱圧縮を示す断面図である。FIG. 4 is a cross-sectional view showing lamination and heat compression in one embodiment of the method for producing a fiber-reinforced molded body of the present disclosure. 実施例1,6―10と比較例1,2で使用した混合樹脂の粘度測定結果を示すグラフである。4 is a graph showing viscosity measurement results of mixed resins used in Examples 1 and 6 to 10 and Comparative Examples 1 and 2. FIG.

ここで、本開示の望ましい例を示す。
・前記樹脂シートは、シート基材を備える、繊維強化成形体。
・前記熱硬化性樹脂は、溶融開始温度をTa℃、硬化反応開始温度をTb℃とすると、
(Tb-Ta)の値が、
30≦(Tb-Ta)≦100
を満たす、繊維強化成形体。
・前記熱硬化性樹脂は、フェノール樹脂、フェノール樹脂とエポキシ樹脂の混合樹脂、フェノール樹脂とシアネート樹脂の混合樹脂、エポキシ樹脂とシアネート樹脂の混合樹脂、及び、フェノール樹脂とエポキシ樹脂とシアネート樹脂の混合樹脂からなる群より選ばれた樹脂である、繊維強化成形体。
・繊維強化成形体の製造方法であって、
前記繊維基材と前記樹脂シートとを重ねた状態で、金型によって加熱圧縮し、前記熱硬化性樹脂を前記繊維基材に含浸させて硬化させる、繊維強化成形体の製造方法。
・加熱圧縮時の温度Tc℃は、
[Tb+(Tb-Ta)/3]-15≦Tc≦[Tb+(Tb-Ta)/3]+20である、繊維強化成形体の製造方法。
繊維強化成形体の製造用の樹脂シートであって、
熱硬化性樹脂を含有する、樹脂シート。
・繊維基材が、熱硬化性樹脂を含有する樹脂シートの前記熱硬化性樹脂によって一体化された、繊維強化成形体であって、
前記樹脂シートは、シート基材を備える、繊維強化成形体。
A preferred example of the present disclosure will now be presented.
- The said resin sheet is a fiber reinforced molding provided with a sheet|seat base material.
When the thermosetting resin has a melting start temperature of Ta ° C. and a curing reaction start temperature of Tb ° C.,
The value of (Tb-Ta) is
30≦(Tb−Ta)≦100
A fiber-reinforced molded body that satisfies
- The thermosetting resin is a phenol resin, a mixed resin of phenol resin and epoxy resin, a mixed resin of phenol resin and cyanate resin, a mixed resin of epoxy resin and cyanate resin, and a mixture of phenol resin, epoxy resin and cyanate resin. A fiber-reinforced molded article, which is a resin selected from the group consisting of resins.
- A method for producing a fiber-reinforced molded body,
A method for producing a fiber-reinforced molded body, wherein the fiber base material and the resin sheet are superimposed and heat-compressed with a mold, and the fiber base material is impregnated with the thermosetting resin and cured.
・Temperature Tc°C at the time of heating and compression is
A method for producing a fiber-reinforced molded article, wherein [Tb+(Tb-Ta)/3]-15≤Tc≤[Tb+(Tb-Ta)/3]+20.
A resin sheet for manufacturing a fiber-reinforced molded body,
A resin sheet containing a thermosetting resin.
- A fiber-reinforced molded body in which a fiber base material is integrated by the thermosetting resin of a resin sheet containing a thermosetting resin,
A fiber-reinforced molded article, wherein the resin sheet includes a sheet base material.

以下、本開示を詳しく説明する。なお、本明細書において、数値範囲について「~」を用いた記載では、特に断りがない限り、下限値及び上限値を含むものとする。例えば、「10~20」という記載では、下限値である「10」、上限値である「20」のいずれも含むものとする。すなわち、「10~20」は、「10以上20以下」と同じ意味である。 The present disclosure will be described in detail below. In this specification, the description using "-" for the numerical range includes the lower limit and the upper limit unless otherwise specified. For example, the description “10 to 20” includes both the lower limit “10” and the upper limit “20”. That is, "10 to 20" has the same meaning as "10 or more and 20 or less".

1.繊維強化成形体10
繊維強化成形体10は、繊維基材11が、熱硬化性樹脂を含有する樹脂シート15の熱硬化性樹脂によって一体化されている。熱硬化性樹脂は、硬化反応開始温度Tb℃の粘度が2,000Pa・s以下であり、硬化反応開始温度Tb℃~190℃の範囲における最高粘度が1,000Pa・s以上である。
1. Fiber reinforced molding 10
In the fiber-reinforced molded body 10, the fiber base material 11 is integrated with the thermosetting resin of the resin sheet 15 containing the thermosetting resin. The thermosetting resin has a viscosity of 2,000 Pa·s or less at the curing reaction start temperature Tb°C, and a maximum viscosity of 1,000 Pa·s or more in the range of the curing reaction start temperature Tb°C to 190°C.

(1)繊維基材11
繊維基材11は、単層でも複数層でもよく、繊維強化成形体10の用途等に応じて層の数が決定される。図1,2の形態では、繊維基材11は4層からなるものが例示されている。繊維基材11としては、ガラス繊維、アラミド繊維、バサルト繊維、炭素繊維などによる織物や不織布などがあり、特に限定されるものではないが、炭素繊維織物が軽量及び高剛性に優れるために好ましいものである。炭素繊維織物としては、繊維が一方向のみではない織り方のものが好ましく、例えば、縦糸と横糸で構成される平織、綾織、朱子織及び3方向の糸で構成される三軸織などが好適である。また、前記炭素繊維織物は、樹脂シート15に含有された熱硬化性樹脂の含浸及び繊維強化成形体10の剛性の点から、繊維重さが50~600g/mのものが好ましい。
(1) Fiber base material 11
The fiber base material 11 may have a single layer or multiple layers, and the number of layers is determined according to the application of the fiber-reinforced molded article 10 and the like. In the form of FIGS. 1 and 2, the fiber base material 11 is exemplified as having four layers. The fiber base material 11 includes woven fabrics and non-woven fabrics made of glass fiber, aramid fiber, basalt fiber, carbon fiber, etc., and is not particularly limited, but carbon fiber fabrics are preferable because they are lightweight and highly rigid. is. As the carbon fiber fabric, a weaving method in which the fibers are not unidirectional is preferable. For example, plain weave, twill weave, satin weave composed of warp and weft, and triaxial weave composed of yarn in three directions are preferable. is. The carbon fiber fabric preferably has a fiber weight of 50 to 600 g/m 2 from the viewpoint of impregnation of the thermosetting resin contained in the resin sheet 15 and rigidity of the fiber reinforced molding 10 .

(2)熱硬化性樹脂を含有する樹脂シート15
熱硬化性樹脂は、繊維強化成形体10の製造時に、常温(5℃~35℃)で固形であるものが用いられる。固形の形状は、特に限定されるものではない。固形の形状は、球状、針状、フレーク状等の粉体等が例示される。
(2) Resin sheet 15 containing thermosetting resin
A thermosetting resin that is solid at room temperature (5° C. to 35° C.) is used when the fiber-reinforced molding 10 is manufactured. The solid form is not particularly limited. The solid shape is exemplified by spherical, needle-like, flake-like powders, and the like.

樹脂シート15は、シート基材を備えていることが好ましい。樹脂シート15がシート基材を備えることで、樹脂シート15の強度が強くなるから、樹脂シート15のハンドリング性が向上する。なお、樹脂シート15がシート基材を備えていない場合であっても、粉末の樹脂を用いる場合に比べて、ハンドリング性は良好である。
シート基材の構造は、特に限定されない。シート基材は、溶融樹脂が浸透可能な構造を有することが好ましい。溶融樹脂が浸透可能な構造は、特に限定されないが、連通孔を有する構造等が例示される。また、シート基材は熱硬化性樹脂の反応開始温度(Tb)で溶融しないことが好ましい。
シート基材は、発泡体、不織布、及び繊維シートからなる群より選択される1種以上であることが好ましい。シート基材がこれらの構造を有すると、シート基材内の空間に熱硬化性樹脂を十分に保持できる。
シート基材の材質は、特に限定されない。シート基材の材質は、ウレタン、レーヨン、ポリエステル、及び炭素からなる群より選択される1種以上であることが好ましい。
シート基材は、具体的には、ウレタン発泡体、レーヨンとポリエステル(PET)の不織布、PET不織布、及び炭素繊維シートからなる群より選択される1種以上であることが好ましい。
樹脂シート基材の厚みは、特に限定されない。樹脂シート基材の厚みは、接着に必要な熱硬化性樹脂を十分に保持する観点から、0.05mm以上1.0mm以下が好ましく、0.08mm以上0.7mm以下がより好ましい。
樹脂シート基材の目付は、特に限定されない。樹脂シート基材の目付は、20g/m以上50g/m以下が好ましく、30g/m以上45g/m以下がより好ましい。
The resin sheet 15 preferably has a sheet base material. Since the strength of the resin sheet 15 is increased by providing the resin sheet 15 with the sheet base material, the handleability of the resin sheet 15 is improved. Even when the resin sheet 15 does not have a sheet base material, handling is better than when powdered resin is used.
The structure of the sheet base material is not particularly limited. The sheet substrate preferably has a structure that allows the molten resin to permeate. The structure through which the molten resin can permeate is not particularly limited, but a structure having communication holes is exemplified. Moreover, it is preferable that the sheet base material does not melt at the reaction initiation temperature (Tb) of the thermosetting resin.
The sheet base material is preferably one or more selected from the group consisting of foams, nonwoven fabrics, and fiber sheets. When the sheet base material has these structures, the thermosetting resin can be sufficiently retained in the space within the sheet base material.
The material of the sheet base material is not particularly limited. The material of the sheet substrate is preferably one or more selected from the group consisting of urethane, rayon, polyester, and carbon.
Specifically, the sheet base material is preferably one or more selected from the group consisting of urethane foam, rayon and polyester (PET) nonwoven fabric, PET nonwoven fabric, and carbon fiber sheet.
The thickness of the resin sheet substrate is not particularly limited. The thickness of the resin sheet substrate is preferably 0.05 mm or more and 1.0 mm or less, more preferably 0.08 mm or more and 0.7 mm or less, from the viewpoint of sufficiently holding the thermosetting resin necessary for adhesion.
The basis weight of the resin sheet substrate is not particularly limited. The basis weight of the resin sheet substrate is preferably 20 g/m 2 or more and 50 g/m 2 or less, more preferably 30 g/m 2 or more and 45 g/m 2 or less.

樹脂シート15は、繊維基材11と接するように配置される。繊維基材11が樹脂シート15と共に加熱圧縮されると、樹脂シート15に含有された熱硬化性樹脂が溶融して繊維基材11に含浸して硬化する。樹脂シート15が繊維基材11と接して配置される態様としては、繊維基材11が単層の場合には、樹脂シート15が単層の繊維基材11の上面又は下面の少なくとも一方の面に配置される。また、繊維基材11が複数層の場合には、少なくとも一つの面、すなわち複数層における最上面、最下面、積層面(繊維基材間)のうちの少なくとも一つの面に樹脂シート15が配置される態様が挙げられる。 The resin sheet 15 is arranged so as to be in contact with the fiber base material 11 . When the fiber base material 11 is heat-compressed together with the resin sheet 15, the thermosetting resin contained in the resin sheet 15 is melted, impregnated into the fiber base material 11, and cured. As a mode in which the resin sheet 15 is arranged in contact with the fiber base material 11, when the fiber base material 11 is a single layer, the resin sheet 15 is arranged on at least one of the upper surface and the lower surface of the single layer fiber base material 11. placed in When the fiber base material 11 has multiple layers, the resin sheet 15 is arranged on at least one surface, that is, at least one of the top surface, the bottom surface, and the laminated surface (between the fiber base materials) in the multiple layers. The aspect to be carried out is mentioned.

熱硬化性樹脂は、溶融開始温度Ta℃、硬化反応開始温度Tb℃とすると、30≦(Tb-Ta)≦100を満たすことが好ましい。(Tb-Ta)をこの範囲とすることにより、溶融した熱硬化性樹脂を繊維基材11に十分に含浸させることができ、均一な物性を有する繊維強化成形体10を得ることができる。 The thermosetting resin preferably satisfies 30≦(Tb−Ta)≦100, where Ta° C. is the melting initiation temperature and Tb° C. is the curing reaction initiation temperature. By setting (Tb-Ta) within this range, the fiber base material 11 can be sufficiently impregnated with the molten thermosetting resin, and the fiber-reinforced molded body 10 having uniform physical properties can be obtained.

熱硬化性樹脂は、溶融開始温度Ta℃以上の温度において、最低粘度が、2,000Pa・s以下である。この最低粘度は、1,500Pa・s以下であることが好ましい。最低粘度をこの範囲とすることにより、溶融した熱硬化性樹脂を繊維基材11に十分に含浸させることができ、均一な物性を有する繊維強化成形体10を得ることができる。最低粘度の下限値は特に限定されない。最低粘度の下限値は、0.005Pa・sが好ましい。
なお、溶融開始温度Ta℃以上の温度における最低粘度は、硬化反応開始温度Tb℃の粘度と同じである。
The thermosetting resin has a minimum viscosity of 2,000 Pa·s or less at temperatures equal to or higher than the melting initiation temperature Ta°C. This minimum viscosity is preferably 1,500 Pa·s or less. By setting the minimum viscosity within this range, the fiber base material 11 can be sufficiently impregnated with the molten thermosetting resin, and the fiber-reinforced molding 10 having uniform physical properties can be obtained. The lower limit of the lowest viscosity is not particularly limited. The lower limit of the lowest viscosity is preferably 0.005 Pa·s.
The minimum viscosity at temperatures equal to or higher than the melting initiation temperature Ta°C is the same as the viscosity at the curing reaction initiation temperature Tb°C.

また、熱硬化性樹脂は、硬化反応開始温度Tb℃~190℃の温度範囲において、最高粘度が、1,000Pa・s以上であることが好ましい。最高粘度をこの範囲とすることにより、溶融した熱硬化性樹脂を繊維基材11内に含浸させて留めることができ、繊維強化成形体10の賦形性がよく、短時間で十分な強度が得られる。最高粘度の上限値は、特に限定されないが、上限値は300,000Pa・sが好ましい。
熱硬化性樹脂は、溶融開始温度Ta℃が60~100℃にあることが好ましい。熱硬化性樹脂の溶融開始温度Ta℃をこの範囲とすることにより、繊維基材11間の少なくとも一つに樹脂シート15が配置された積層体を、加熱圧縮して熱硬化性樹脂を溶融硬化させる際に、温調を容易に行うことができる。
The thermosetting resin preferably has a maximum viscosity of 1,000 Pa·s or more in the temperature range of the curing reaction starting temperature Tb°C to 190°C. By setting the maximum viscosity within this range, the molten thermosetting resin can be impregnated and retained in the fiber base material 11, and the fiber-reinforced molding 10 has good shapeability and sufficient strength in a short time. can get. The upper limit of the maximum viscosity is not particularly limited, but the upper limit is preferably 300,000 Pa·s.
The thermosetting resin preferably has a melting initiation temperature Ta°C of 60 to 100°C. By setting the melting start temperature Ta ° C. of the thermosetting resin within this range, the laminate in which the resin sheet 15 is arranged at least one between the fiber base materials 11 is heated and compressed to melt and harden the thermosetting resin. Temperature control can be easily performed at the time of heating.

前記の溶融開始温度Ta℃、硬化反応開始温度Tb℃、(Tb-Ta)の範囲、最低粘度、最高粘度を満たすことができる熱硬化性樹脂は、フェノール樹脂、フェノール樹脂とエポキシ樹脂の混合樹脂、フェノール樹脂とシアネート樹脂の混合樹脂、エポキシ樹脂とシアネート樹脂の混合樹脂、及び、フェノール樹脂とエポキシ樹脂とシアネート樹脂の混合樹脂からなる群より選ばれた樹脂であることが好ましい。フェノール樹脂は難燃性に優れるため、繊維強化成形体10に優れた強度と難燃性を付与することができる。
フェノール樹脂として、例えばノボラック型粉末フェノールレジンが好ましく用いられる。フェノール樹脂の物性は特に限定されない。例えば、以下の物性のフェノール樹脂が好適に採用される。
・融点:80℃以上100℃以下

エポキシ樹脂として、例えばビスフェノールA型固形樹脂が好ましく用いられる。エポキシ樹脂の物性は特に限定されない。例えば、以下の物性のエポキシ樹脂が好適に採用される。
・エポキシ当量:400g/eq以上1000g/eq以下
・軟化点:60℃以上100℃以下
・粘度:0.10Pa・s以上0.30Pa・s以下(25℃)

シアネート樹脂は、シアナト基をもつ熱硬化性樹脂であり、シアネートモノマーとも呼ばれている。硬化前のシアネート樹脂の物性は特に限定されない。例えば、以下の物性のシアネート樹脂が好適に採用される。
・融点:75℃以上85℃以下
・粘度:0.010Pa・s以上0.015Pa・s以下(80℃)

なお、熱硬化性樹脂には、熱硬化性樹脂の粘度、反応性に影響を与えない範囲において、顔料、抗菌剤、紫外線吸収剤などの各種粉体添加剤を添加してもよい。
The thermosetting resin that can satisfy the melting initiation temperature Ta ° C., the curing reaction initiation temperature Tb ° C., the range of (Tb-Ta), the minimum viscosity, and the maximum viscosity is a phenolic resin, a mixed resin of a phenolic resin and an epoxy resin. , mixed resin of phenol resin and cyanate resin, mixed resin of epoxy resin and cyanate resin, and mixed resin of phenol resin, epoxy resin and cyanate resin. Since the phenol resin is excellent in flame retardancy, it can impart excellent strength and flame retardancy to the fiber-reinforced molding 10 .
As the phenolic resin, for example, a novolac type powdered phenolic resin is preferably used. Physical properties of the phenol resin are not particularly limited. For example, phenol resins having the following physical properties are preferably employed.
・Melting point: 80°C or higher and 100°C or lower

As the epoxy resin, for example, a bisphenol A solid resin is preferably used. The physical properties of the epoxy resin are not particularly limited. For example, epoxy resins having the following physical properties are preferably employed.
・ Epoxy equivalent: 400 g / eq to 1000 g / eq ・ Softening point: 60 ° C to 100 ° C ・ Viscosity: 0.10 Pa s to 0.30 Pa s (25 ° C)

A cyanate resin is a thermosetting resin having a cyanato group, and is also called a cyanate monomer. Physical properties of the cyanate resin before curing are not particularly limited. For example, a cyanate resin having the following physical properties is preferably employed.
・Melting point: 75°C or higher and 85°C or lower ・Viscosity: 0.010 Pa s or higher and 0.015 Pa s or lower (80°C)

Various powder additives such as pigments, antibacterial agents, and ultraviolet absorbers may be added to the thermosetting resin as long as they do not affect the viscosity and reactivity of the thermosetting resin.

樹脂シート15における熱硬化性樹脂の目付は、特に限定されない。熱硬化性樹脂の目付は、繊維強化成形体10の強度を確保する観点及び外観を損なわないようにする観点から、200g/m以上800g/m以下が好ましく、400g/m以上600g/m以下がより好ましい。 The basis weight of the thermosetting resin in the resin sheet 15 is not particularly limited. The basis weight of the thermosetting resin is preferably 200 g/m 2 or more and 800 g/m 2 or less, and 400 g/m 2 or more and 600 g/m 2 or more, from the viewpoint of ensuring the strength of the fiber reinforced molded body 10 and not impairing the appearance. m 2 or less is more preferable.

(3)繊維強化成形体10の物性
繊維強化成形体10の曲げ弾性率(JIS K7074 A法)は、特に限定されない。繊維強化成形体10の曲げ弾性率は、高剛性の観点から、40GPa以上が好ましく、50GPa以上がより好ましい。
繊維強化成形体10の曲げ強度(JIS K7074 A法)は、特に限定されない。繊維強化成形体10の曲げ強度は、高強度の観点から、400MPa以上が好ましく、800MPa以上がより好ましい。
繊維強化成形体10の比重は、特に限定されない。繊維強化成形体10の比重は、軽量化及び外観を損なわないようにする観点から、1.10以上1.80以下が好ましく、1.30以上1.69以下がより好ましい。
(3) Physical Properties of Fiber-Reinforced Molded Body 10 The bending elastic modulus (JIS K7074 A method) of the fiber-reinforced molded body 10 is not particularly limited. From the viewpoint of high rigidity, the bending elastic modulus of the fiber-reinforced molded body 10 is preferably 40 GPa or more, more preferably 50 GPa or more.
The bending strength (JIS K7074 A method) of the fiber-reinforced molding 10 is not particularly limited. From the viewpoint of high strength, the bending strength of the fiber-reinforced molded body 10 is preferably 400 MPa or more, more preferably 800 MPa or more.
The specific gravity of the fiber-reinforced molding 10 is not particularly limited. The specific gravity of the fiber-reinforced molded body 10 is preferably 1.10 or more and 1.80 or less, more preferably 1.30 or more and 1.69 or less, from the viewpoint of reducing the weight and not impairing the appearance.

2.繊維強化成形体10の製造方法
本開示の繊維強化成形体10の製造方法は、繊維基材11と樹脂シート15とを重ねた状態で、金型によって加熱圧縮し、熱硬化性樹脂を繊維基材11に含浸させて硬化させることにより行う。繊維基材11、樹脂シート15、及び熱硬化性樹脂は、「1.繊維強化成形体10」における記載をそのまま引用する。
2. Method for Producing Fiber-Reinforced Molded Body 10 In the method for producing the fiber-reinforced molded body 10 of the present disclosure, the fiber base material 11 and the resin sheet 15 are stacked and heat-compressed with a mold to form a thermosetting resin into the fiber base material. This is done by impregnating the material 11 and hardening it. As for the fiber base material 11, the resin sheet 15, and the thermosetting resin, the description in "1. Fiber-reinforced molding 10" is cited as it is.

樹脂シート15を配置する態様は、前記の通り、単層の場合は、繊維基材11の上面又は下面の少なくとも一方の面に配置し、また、繊維基材11が複数層の場合には、複数層における最上面、最下面、積層面(繊維基材11間)のうちの少なくとも一つの面に配置する。
なお、樹脂シート15を、複数層の繊維基材11における積層面(繊維基材11間)に配置する場合は、一つの積層面(一つの繊維基材11間)に限られず、全ての積層面(全ての繊維基材間)、あるいは所定数おきの積層面(所定数おきの繊維基材11間)に配置してもよく、配置する面の位置及び配置する面の数は繊維基材11の積層数等に応じて適宜決定される。
また、単層の繊維基材11の上面又は下面、あるいは複数層の繊維基材11の最上面又は最下面に接して樹脂シート15を配置する場合、作業の便宜のために、樹脂シート15と金型の型面との間に離型シートを配置してもよい。
As described above, the resin sheet 15 is arranged on at least one of the upper surface and the lower surface of the fiber base material 11 in the case of a single layer, and when the fiber base material 11 has multiple layers, It is arranged on at least one of the uppermost surface, the lowermost surface, and the laminated surface (between the fiber base materials 11) in the multiple layers.
In addition, when the resin sheet 15 is arranged on the laminated surface (between the fiber base materials 11) of the plurality of layers of the fiber base material 11, it is not limited to one laminated surface (between one fiber base material 11). It may be arranged on the plane (between all the fiber base materials), or on every predetermined number of laminated planes (between the predetermined number of fiber base materials 11). It is appropriately determined according to the number of layers of 11 and the like.
Further, when the resin sheet 15 is arranged in contact with the upper surface or the lower surface of the single-layer fiber base material 11 or the uppermost surface or the lowermost surface of the multi-layer fiber base material 11, the resin sheet 15 and the A release sheet may be arranged between the mold surface of the mold.

図1に示した繊維基材11が4層からなる繊維強化成形体10の製造方法の一実施形態について、図2を用いて説明する。なお、以下の製造方法の説明では、複数の繊維基材11について、その上下位置関係を把握し易くするために「11A」等のように「11」と「アルファベット」を組み合わせた符号で複数の繊維基材11を示す。同様に、複数の樹脂シート15について、その上下位置関係を把握し易くするために「15A」等のように「15」と「アルファベット」を組み合わせた符号で複数の樹脂シート15を示す。 An embodiment of the method for manufacturing the fiber-reinforced molding 10 shown in FIG. 1, in which the fiber base material 11 is composed of four layers, will be described with reference to FIG. In addition, in the following description of the manufacturing method, for the plurality of fiber base materials 11, in order to make it easier to grasp the vertical positional relationship, a code combining "11" and "alphabet" such as "11A" will be used. A fibrous substrate 11 is shown. Similarly, for the plurality of resin sheets 15, the plurality of resin sheets 15 are indicated by a reference numeral combining "15" and "alphabet" such as "15A" in order to easily grasp the vertical positional relationship.

図2に示す実施形態では、4枚の繊維基材11A~11Dを積層する際に、下側の2枚の繊維基材11A、11Bと、上側の2枚の繊維基材11C、11Dとの間の繊維基材11間(繊維基材11Bと繊維基材11Cの間)に、樹脂シート15A,15Bを配置する。
樹脂シート15A,15Bに含有される熱硬化性樹脂の量は、繊維強化成形体10のVF値(%)が40~70%となるように調整するのが好ましい。VF値(%)は、(繊維基材の全重量/繊維の密度)/(繊維強化成形体の体積)×100で算出される値である。
In the embodiment shown in FIG. 2, when laminating the four fiber base materials 11A to 11D, the lower two fiber base materials 11A and 11B and the upper two fiber base materials 11C and 11D Resin sheets 15A and 15B are arranged between the fiber bases 11 (between the fiber bases 11B and 11C).
The amount of thermosetting resin contained in the resin sheets 15A, 15B is preferably adjusted so that the VF value (%) of the fiber-reinforced molded body 10 is 40-70%. The VF value (%) is a value calculated by (total weight of fiber base/density of fiber)/(volume of fiber-reinforced molding)×100.

樹脂シート15A,15Bを、繊維基材11Bと繊維基材11Cとの繊維基材11間に配置して積層した繊維基材11A~11Dの積層体を、加熱した金型30の下型31と上型32に挟んで、加熱圧縮する。金型30は、電熱ヒーター等の加熱手段によって熱硬化性樹脂が溶融、硬化可能な温度Tc℃に加熱されている。
加熱圧縮時の温度Tc℃(金型30の温度Tc℃)は、熱硬化性樹脂の溶融開始温度Ta℃、硬化反応開始温度Tb℃との関係において、
[Tb+(Tb-Ta)/3]-15≦Tc≦[Tb+(Tb-Ta)/3]+20
であることが好ましい。例えば、Ta℃=70℃、Tb℃=130℃の場合、Tc℃は135℃~170℃となる。
A laminate of the fiber base materials 11A to 11D in which the resin sheets 15A and 15B are arranged and laminated between the fiber base materials 11B and 11C is placed with the lower mold 31 of the heated mold 30. It is sandwiched between upper molds 32 and heated and compressed. The mold 30 is heated to a temperature Tc° C. at which the thermosetting resin can be melted and cured by heating means such as an electric heater.
The temperature Tc°C during heat compression (the temperature Tc°C of the mold 30) is related to the melting start temperature Ta°C of the thermosetting resin and the curing reaction start temperature Tb°C.
[Tb+(Tb-Ta)/3]-15≤Tc≤[Tb+(Tb-Ta)/3]+20
is preferably For example, when Ta°C=70°C and Tb°C=130°C, Tc°C is 135°C to 170°C.

金型30による加熱圧縮時における繊維基材11A~11Dの加圧(圧縮)は、繊維基材11間の樹脂シート15A,15Bに含まれる熱硬化性樹脂が溶融した後、繊維基材11A~11Dに良好に含浸できるようにするため、2MPa~20MPaが好ましい。
また、繊維基材11A~11Dの圧縮率(%)は、(下型31の型面と上型32の型面間の間隔)/(繊維基材の全層の厚みの合計)×100で算出される値であり、60~100%が好ましい。
The pressure (compression) of the fiber base materials 11A to 11D during heat compression by the mold 30 is performed after the thermosetting resin contained in the resin sheets 15A and 15B between the fiber base materials 11 is melted, and then the fiber base materials 11A to 11D are 2 MPa to 20 MPa is preferred for good impregnation with 11D.
In addition, the compression rate (%) of the fiber base materials 11A to 11D is (the gap between the mold surface of the lower mold 31 and the mold surface of the upper mold 32)/(total thickness of all layers of the fiber base material)×100. It is a calculated value, preferably 60 to 100%.

金型30による積層体の加熱により、繊維基材11間(繊維基材11Bと繊維基材11Cの間)の樹脂シート15A,15Bに含まれる熱硬化性樹脂が溶融し、また、溶融した熱硬化性樹脂が積層体の圧縮により、下側の繊維基材11B,11A、及び上側の繊維基材11C,11Dに含浸する。そして、繊維基材11A~11Dに含浸した熱硬化性樹脂が硬化することにより、繊維基材11A~11Dが圧縮された状態で一体化し、下型31及び上型32の型面形状に賦形された図1の繊維強化成形体10が得られる。 Heating of the laminate by the mold 30 melts the thermosetting resin contained in the resin sheets 15A and 15B between the fiber bases 11 (between the fiber bases 11B and 11C), and the molten heat Compression of the laminate impregnates the lower fiber base materials 11B and 11A and the upper fiber base materials 11C and 11D with the curable resin. Then, by curing the thermosetting resin impregnated into the fiber base materials 11A to 11D, the fiber base materials 11A to 11D are integrated in a compressed state and shaped into the mold surface shape of the lower mold 31 and the upper mold 32. The fiber-reinforced molded body 10 shown in FIG. 1 is obtained.

図3には、4枚の繊維基材11A~11Dを積層し、繊維基材間の全てに樹脂シート15A~15Cを配置して金型30で加熱圧縮する実施形態を示す。
熱硬化性樹脂の量(全量)、金型30の加熱温度、積層体の加圧等は、図2の実施形態で説明した通りである。
FIG. 3 shows an embodiment in which four fiber base materials 11A to 11D are laminated, resin sheets 15A to 15C are placed between all of the fiber base materials, and heat-compressed by a mold 30. FIG.
The amount (total amount) of the thermosetting resin, the heating temperature of the mold 30, the pressure applied to the laminate, etc. are as described in the embodiment of FIG.

図4に示す実施形態では、10枚の繊維基材11A~11Jを積層する際に、下側の5枚の繊維基材11A~11Eと、上側の5枚の繊維基材11F~11Jとの間の繊維基材11間(繊維基材11Eと繊維基材11Fの間)に、5枚の樹脂シート15A~15Eを配置する。 In the embodiment shown in FIG. 4, when ten fiber base materials 11A to 11J are laminated, the lower five fiber base materials 11A to 11E and the upper five fiber base materials 11F to 11J Five resin sheets 15A to 15E are arranged between the fiber bases 11 (between the fiber bases 11E and 11F).

3.樹脂シート15
繊維強化成形体10の製造用の樹脂シート15は、熱硬化性樹脂を含有する。すなわち、樹脂シート15は、熱硬化性樹脂を未硬化の状態で担持している。樹脂シート15、及び熱硬化性樹脂は、「1.繊維強化成形体10」における記載をそのまま引用する。
3. Resin sheet 15
The resin sheet 15 for manufacturing the fiber-reinforced molding 10 contains a thermosetting resin. That is, the resin sheet 15 carries the thermosetting resin in an uncured state. For the resin sheet 15 and the thermosetting resin, the description in "1. Fiber-reinforced molding 10" is cited as it is.

表1,2に示す熱硬化性樹脂を用いて実施例1~10及び比較例1,2の繊維強化成形体を以下のようにして作製した。表4には、繊維強化成形体の作製に用いた各種のシート基材の特性をまとめて記載した。なお、熱硬化性樹脂の粘度は、株式会社ユービーエム社製のレオメーター:Rheosol-G3000を用い、次の条件で測定した。
1)試料の0.4gをペレット(直径φ18mm、厚さ0.4mm程度)に成形し、成形したペレットを直径φ18mmのパラレルプレートに挟む。
2)昇温速度5℃/min、周波数1Hz、回転角(ひずみ)0.1deg、等速昇温下、40℃~200℃間にわたって、2℃間隔で動的粘度を測定した。
Using the thermosetting resins shown in Tables 1 and 2, fiber-reinforced moldings of Examples 1 to 10 and Comparative Examples 1 and 2 were produced as follows. Table 4 summarizes the properties of various sheet substrates used to produce the fiber-reinforced moldings. The viscosity of the thermosetting resin was measured using a rheometer: Rheosol-G3000 manufactured by UBM Co., Ltd. under the following conditions.
1) 0.4 g of the sample is molded into pellets (diameter φ18 mm, thickness about 0.4 mm), and the molded pellets are sandwiched between parallel plates with a diameter φ18 mm.
2) Dynamic viscosity was measured at intervals of 2°C from 40°C to 200°C under a constant heating rate of 5°C/min, frequency of 1Hz, rotation angle (strain) of 0.1deg.

Figure 2022170112000002
Figure 2022170112000002

Figure 2022170112000003
Figure 2022170112000003

Figure 2022170112000004
Figure 2022170112000004

Figure 2022170112000005
Figure 2022170112000005

1.繊維強化成形体の作製
(1)実施例1
固形熱硬化性樹脂として、シアネート樹脂(三菱ガス化学株式会社製、品名:CYTESTER TA、平均粒径:100μm)とエポキシ樹脂(DIC株式会社製、品名:AM-020-P、平均粒径:100μm)とフェノール樹脂(住友ベークライト株式会社製、品名;PR-50235D、平均粒径:90μm)を3:1:1の重量比にて均一に混合した混合樹脂を用いた。
実施例1の混合樹脂の特性は以下の通りであり、表1,2に記載されている。実施例1の混合樹脂の粘度測定結果を、図5グラフに示す。

・溶融開始温度Ta:69℃
・反応開始温度Tb:135℃
・(Tb-Ta):66℃
・最低粘度(溶融開始温度Ta℃以上の温度における最低粘度):59Pa・s
・最高粘度(硬化反応開始温度Tb℃~190℃の温度範囲における最高粘度)
:8,768Pa・s
・(Tb-Ta)/3の値:22℃
・Tb+(Tb-Ta)/3の値:157℃

樹脂シートのシート基材として、表4に示すPET不織布(日本バイリーン株式会社製、品名:JH-1004N1、目付量:45g/m、厚み0.08mm)を200mm×250mmに裁断したものを用いた。
シート基材1枚の上に、上記の固形熱硬化性樹脂20gを配置し、成形前シート基材を作製した。
次いで、100℃に加熱された金型の下型の成形面に、成形前シート基材を1枚配置し、その後に金型を閉じて1分間、圧力1MPaで加熱圧縮し、シート基材に固形熱硬化性樹脂を溶融して担持させた。その後、冷却することで、樹脂シートを作製した。
このようにして作製した樹脂シートを2枚用意した。なお、下型と上型間には厚み1mmのSUS製スペーサ、成形前シート基材の上下には厚み0.05mmのPETフィルムを介在させて樹脂シートの厚みを調整した。
強化用の繊維基材として、炭素繊維織物(帝人株式会社製、品名:W-3101、目付量:200g/m、厚み0.22mm)を200mm×250mmに裁断したものを4枚用意した。裁断後の炭素繊維織物の1枚当りの重量は12gであった。まず、炭素繊維織物2枚を配置し、その上に樹脂シート2枚、更に2枚の炭素繊維織物を順に配置し、成形前積層体を作製した。図2において、積層の状態を模式的に示す。実施例1では、図2に示すように、中央の繊維基材(炭素繊維織物)の間に樹脂シートを2枚配置して成形前積層体としている。
次いで、160℃に加熱された金型の下型の成形面に、成形前積層体を配置し、その後に金型を閉じて10分間、圧力10MPaで加熱圧縮して、固形熱硬化性樹脂を溶融硬化させた。固形熱硬化性樹脂が溶融し、圧力が加わることで、各層の繊維基材に樹脂が含浸し、その後に固形熱硬化性樹脂の熱硬化が完了することで、樹脂シートの熱硬化性樹脂によって繊維基材が一体化された繊維強化成形体が作製された。なお、プレス成形用の下型と上型間には厚み1mmのSUS製スペーサを介在させて、下型と上型間の間隔を調整することで、繊維強化成形体の厚みを調整した。
1. Fabrication of Fiber Reinforced Molded Body (1) Example 1
As solid thermosetting resins, cyanate resin (manufactured by Mitsubishi Gas Chemical Co., Ltd., product name: CYTESTER TA, average particle size: 100 μm) and epoxy resin (manufactured by DIC Corporation, product name: AM-020-P, average particle size: 100 μm). ) and a phenol resin (manufactured by Sumitomo Bakelite Co., Ltd., product name: PR-50235D, average particle diameter: 90 μm) were uniformly mixed at a weight ratio of 3:1:1.
The properties of the mixed resin of Example 1 are as follows and are listed in Tables 1 and 2. The viscosity measurement results of the mixed resin of Example 1 are shown in the graph of FIG.

・ Melting start temperature Ta: 69 ° C.
・Reaction initiation temperature Tb: 135°C
・(Tb-Ta): 66°C
・Minimum viscosity (minimum viscosity at temperatures above the melting start temperature Ta ° C.): 59 Pa s
・ Maximum viscosity (maximum viscosity in the temperature range from the curing reaction start temperature Tb ° C. to 190 ° C.)
: 8,768 Pa s
・(Tb-Ta)/3 value: 22°C
・Tb + (Tb - Ta) / 3 value: 157 ° C

As the sheet base material of the resin sheet, the PET nonwoven fabric shown in Table 4 (manufactured by Nippon Vilene Co., Ltd., product name: JH-1004N1, basis weight: 45 g/m 2 , thickness: 0.08 mm) was cut into 200 mm × 250 mm. board.
20 g of the solid thermosetting resin was placed on one sheet substrate to prepare a pre-molding sheet substrate.
Next, one pre-molded sheet base material is placed on the molding surface of the lower mold of the mold heated to 100 ° C., and then the mold is closed and heat-compressed at a pressure of 1 MPa for 1 minute to form a sheet base material. A solid thermosetting resin was melted and supported. Then, the resin sheet was produced by cooling.
Two resin sheets thus produced were prepared. The thickness of the resin sheet was adjusted by interposing a SUS spacer with a thickness of 1 mm between the lower mold and the upper mold and a PET film with a thickness of 0.05 mm above and below the sheet base material before molding.
As a fiber base material for reinforcement, four carbon fiber fabrics (manufactured by Teijin Limited, product name: W-3101, weight per unit area: 200 g/m 2 , thickness: 0.22 mm) cut into 200 mm × 250 mm sheets were prepared. The weight per sheet of the carbon fiber fabric after cutting was 12 g. First, two carbon fiber fabrics were placed, and two resin sheets and two carbon fiber fabrics were placed thereon in that order to prepare a pre-molding laminate. FIG. 2 schematically shows the lamination state. In Example 1, as shown in FIG. 2, two resin sheets are arranged between the center fiber base materials (carbon fiber fabric) to form a pre-molding laminate.
Next, the pre-molded laminate is placed on the molding surface of the lower mold of the mold heated to 160 ° C., and then the mold is closed and heated and compressed at a pressure of 10 MPa for 10 minutes to form a solid thermosetting resin. Melt hardened. When the solid thermosetting resin melts and pressure is applied, the fiber base material of each layer is impregnated with the resin, and then the thermosetting of the solid thermosetting resin is completed. A fiber-reinforced molded article in which the fiber base material was integrated was produced. The thickness of the fiber-reinforced compact was adjusted by interposing a SUS spacer having a thickness of 1 mm between the lower mold and the upper mold for press molding to adjust the gap between the lower mold and the upper mold.

(2)実施例2
固形熱硬化性樹脂として、シアネート樹脂(三菱ガス化学株式会社製、品名:CYTESTER TA、平均粒径:100μm)とエポキシ樹脂(DIC株式会社製、品名:AM-030-P、平均粒径:100μm)とフェノール樹脂(住友ベークライト株式会社製、品名;PR-50235D、平均粒径:90μm)を1:1:1の重量比にて均一に混合した混合樹脂を使用し、繊維強化成形体成形時の金型温度を150℃とした以外は、実施例1と同様に繊維強化成形体を作製した。
実施例2の混合樹脂の特性は以下の通りであり、表1,2に記載されている。

・溶融開始温度Ta:95℃
・反応開始温度Tb:135℃
・(Tb-Ta):40℃
・最低粘度(溶融開始温度Ta℃以上の温度における最低粘度):1,500Pa・s
・最高粘度(硬化反応開始温度Tb℃~190℃の温度範囲における最高粘度)
:209,004Pa・s
・(Tb-Ta)/3の値:13℃
・Tb+(Tb-Ta)/3の値:148℃
(2) Example 2
As solid thermosetting resins, cyanate resin (manufactured by Mitsubishi Gas Chemical Co., Ltd., product name: CYTESTER TA, average particle size: 100 μm) and epoxy resin (manufactured by DIC Corporation, product name: AM-030-P, average particle size: 100 μm). ) and phenol resin (manufactured by Sumitomo Bakelite Co., Ltd., product name: PR-50235D, average particle size: 90 μm) are uniformly mixed at a weight ratio of 1:1:1. A fiber-reinforced molded article was produced in the same manner as in Example 1, except that the mold temperature was 150°C.
The properties of the mixed resin of Example 2 are as follows and are listed in Tables 1 and 2.

・ Melting start temperature Ta: 95 ° C.
・Reaction initiation temperature Tb: 135°C
・(Tb-Ta): 40°C
・Minimum viscosity (minimum viscosity at temperatures above the melting start temperature Ta ° C.): 1,500 Pa s
・ Maximum viscosity (maximum viscosity in the temperature range from the curing reaction start temperature Tb ° C. to 190 ° C.)
: 209,004 Pa·s
・(Tb-Ta)/3 value: 13°C
・Tb + (Tb - Ta) / 3 value: 148 ° C

(3)実施例3
固形熱硬化性樹脂として、フェノール樹脂(住友ベークライト株式会社製、品名:PR-50252、平均粒径:30μm)とエポキシ樹脂(三菱ケミカル株式会社製、品名:jER-1001、平均粒径:100μm)を1:1の重量比にて均一に混合した混合樹脂を使用し、繊維強化成形体成形時の金型温度を150℃とした以外は、実施例1と同様に繊維強化成形体を作製した。
実施例3の混合樹脂の特性は以下の通りであり、表1,2に記載されている。

・溶融開始温度Ta:73℃
・反応開始温度Tb:140℃
・(Tb-Ta):67℃
・最低粘度(溶融開始温度Ta℃以上の温度における最低粘度):22Pa・s
・最高粘度(硬化反応開始温度Tb℃~190℃の温度範囲における最高粘度)
:5,180Pa・s
・(Tb-Ta)/3の値:22℃
・Tb+(Tb-Ta)/3の値:163℃
(3) Example 3
Phenolic resin (manufactured by Sumitomo Bakelite Co., Ltd., product name: PR-50252, average particle size: 30 μm) and epoxy resin (manufactured by Mitsubishi Chemical Corporation, product name: jER-1001, average particle size: 100 μm) are used as solid thermosetting resins. A fiber-reinforced molded body was produced in the same manner as in Example 1, except that a mixed resin obtained by uniformly mixing at a weight ratio of 1:1 was used, and the mold temperature during molding of the fiber-reinforced molded body was set to 150 ° C. .
The properties of the mixed resin of Example 3 are as follows and are listed in Tables 1 and 2.

・ Melting start temperature Ta: 73 ° C.
・Reaction initiation temperature Tb: 140°C
・(Tb-Ta): 67°C
・Minimum viscosity (minimum viscosity at temperatures above the melting start temperature Ta ° C.): 22 Pa s
・ Maximum viscosity (maximum viscosity in the temperature range from the curing reaction start temperature Tb ° C. to 190 ° C.)
: 5,180 Pa·s
・(Tb-Ta)/3 value: 22°C
・Tb + (Tb - Ta) / 3 value: 163 ° C

(4)実施例4
固形熱硬化性樹脂として、フェノール樹脂(住友ベークライト株式会社製、品名;PR-50235D、平均粒径:90μm)とシアネート樹脂(三菱ガス化学株式会社製、品名:CYTESTER TA、平均粒径:100μm)を1:1の重量比にて均一に混合した混合樹脂を使用し、繊維強化成形体成形時の金型温度を170℃とした以外は、実施例1と同様に繊維強化成形体を作製した。
実施例4の混合樹脂の特性は以下の通りであり、表1,2に記載されている。

・溶融開始温度Ta:76℃
・反応開始温度Tb:138℃
・(Tb-Ta):62℃
・最低粘度(溶融開始温度Ta℃以上の温度における最低粘度):475Pa・s
・最高粘度(硬化反応開始温度Tb℃~190℃の温度範囲における最高粘度)
:51,895Pa・s
・(Tb-Ta)/3の値:21℃
・Tb+(Tb-Ta)/3の値:159℃
(4) Example 4
Phenolic resin (manufactured by Sumitomo Bakelite Co., Ltd., product name: PR-50235D, average particle size: 90 μm) and cyanate resin (manufactured by Mitsubishi Gas Chemical Co., Ltd., product name: CYTESTER TA, average particle size: 100 μm) are used as solid thermosetting resins. was uniformly mixed at a weight ratio of 1:1, and a fiber-reinforced molded body was produced in the same manner as in Example 1, except that the mold temperature during molding of the fiber-reinforced molded body was 170 ° C. .
The properties of the mixed resin of Example 4 are as follows and are listed in Tables 1 and 2.

・ Melting start temperature Ta: 76 ° C.
・Reaction initiation temperature Tb: 138°C
・(Tb-Ta): 62°C
・Minimum viscosity (minimum viscosity at temperatures above the melting start temperature Ta ° C.): 475 Pa s
・ Maximum viscosity (maximum viscosity in the temperature range from the curing reaction start temperature Tb ° C. to 190 ° C.)
: 51,895 Pa·s
・(Tb-Ta)/3 value: 21°C
・Tb + (Tb - Ta) / 3 value: 159 ° C

(5)実施例5
固形熱硬化性樹脂として、エポキシ樹脂(三菱ケミカル株式会社製、品名:jER-1001、平均粒径:100μm)とシアネート樹脂(三菱ガス化学株式会社製、品名:CYTESTER TA、平均粒径:100μm)とを1:1の重量比にて均一に混合した混合樹脂を使用し、繊維強化成形体成形時の金型温度を170℃とした以外は、実施例1と同様に繊維強化成形体を作製した。
実施例5の混合樹脂の特性は以下の通りであり、表1,2に記載されている。

・溶融開始温度Ta:75℃
・反応開始温度Tb:139℃
・(Tb-Ta):64℃
・最低粘度(溶融開始温度Ta℃以上の温度における最低粘度):575Pa・s
・最高粘度(硬化反応開始温度Tb℃~190℃の温度範囲における最高粘度)
:19,025Pa・s
・(Tb-Ta)/3の値:21℃
・Tb+(Tb-Ta)/3の値:160℃
(5) Example 5
As solid thermosetting resins, epoxy resin (manufactured by Mitsubishi Chemical Corporation, product name: jER-1001, average particle size: 100 μm) and cyanate resin (manufactured by Mitsubishi Gas Chemical Company, product name: CYTESTER TA, average particle size: 100 μm). A fiber-reinforced molded body was produced in the same manner as in Example 1, except that a mixed resin obtained by uniformly mixing the above with a weight ratio of 1:1 was used, and the mold temperature during molding of the fiber-reinforced molded body was set to 170 ° C. did.
The properties of the mixed resin of Example 5 are as follows and are listed in Tables 1 and 2.

・ Melting start temperature Ta: 75 ° C.
・Reaction initiation temperature Tb: 139°C
・(Tb-Ta): 64°C
・Minimum viscosity (minimum viscosity at temperatures above the melting start temperature Ta ° C.): 575 Pa s
・ Maximum viscosity (maximum viscosity in the temperature range from the curing reaction start temperature Tb ° C. to 190 ° C.)
: 19,025Pa·s
・(Tb-Ta)/3 value: 21°C
・Tb + (Tb - Ta) / 3 value: 160 ° C

(6)実施例6
実施例1と同様の強化用の繊維基材を4枚、実施例1と同様の樹脂シート3枚を用意し、図3に示すように、各繊維基材層間にそれぞれ1枚の樹脂シートを配置した以外は実施例1と同様に繊維強化成形体を作製した。
(6) Example 6
Four reinforcing fiber base materials similar to those in Example 1 and three resin sheets similar to those in Example 1 were prepared, and as shown in FIG. A fiber-reinforced molded article was produced in the same manner as in Example 1, except that they were arranged.

(7)実施例7
実施例1と同様の強化用の繊維基材を10枚用意し、その繊維基材を5枚積層し、その上に、樹脂シート5枚を配置し、更にその上に残りの5枚の繊維基材を積層することで成形前基材を作製した以外は、実施例1と同様に繊維強化成形体を作製した。図4において、積層の状態を模式的に示す。
(7) Example 7
Ten fiber base materials for reinforcement similar to those in Example 1 are prepared, five fiber base materials are laminated, five resin sheets are placed thereon, and the remaining five fibers are placed thereon. A fiber-reinforced molded article was produced in the same manner as in Example 1, except that the base material before molding was produced by laminating the base materials. FIG. 4 schematically shows the lamination state.

(8)実施例8
シート基材として、厚み0.7mm、平面サイズ200mm×300mmに切り出したウレタン樹脂発泡体(株式会社イノアックコーポレーション製、品名:MF-50、目付量 35g/m)用いた以外は、実施例1と同様に繊維強化成形体を作製した。
(8) Example 8
Example 1 except that a urethane resin foam (manufactured by Inoac Corporation, product name: MF-50, weight per unit area: 35 g/m 2 ) cut to a thickness of 0.7 mm and a plane size of 200 mm × 300 mm was used as the sheet base material. A fiber-reinforced molded body was produced in the same manner as in the above.

(9)実施例9
シート基材として、厚み0.22mm、平面サイズ200mm×300mmに切り出したレーヨン/ポリエステル不織布(クラレトレーディング株式会社製、品名:SF-30C、目付量 31g/m)用いた以外は、実施例1と同様に繊維強化成形体を作製した。
(9) Example 9
Example 1 except that a rayon/polyester nonwoven fabric (manufactured by Kuraray Trading Co., Ltd., product name: SF-30C, weight per unit area: 31 g/m 2 ) cut to a thickness of 0.22 mm and a plane size of 200 mm × 300 mm was used as the sheet base material. A fiber-reinforced molded body was produced in the same manner as in the above.

(10)実施例10
シート基材として、厚み0.34mm、平面サイズ200mm×300mmに切り出した炭素繊維シート(阿波製紙株式会社製、品名:CARMIX C-2、目付量 31g/m)用意した以外は、実施例1と同様に繊維強化成形体を作製した。
(10) Example 10
Example 1 except that a carbon fiber sheet (manufactured by Awa Paper Mfg. Co., Ltd., product name: CARMIX C-2, weight per unit area: 31 g/m 2 ) cut to a thickness of 0.34 mm and a plane size of 200 mm × 300 mm was prepared as a sheet base material. A fiber-reinforced molded body was produced in the same manner as in the above.

(11)比較例1
固形熱硬化性樹脂として、フェノール樹脂(住友ベークライト株式会社製、品名:PR-50699、平均粒径:30μm)を使用し、樹脂シート作製時の金型温度を80℃、繊維強化成形体の成形時の金型温度を100℃とした以外は、実施例1と同様に繊維強化成形体を作製した。樹脂の粘度が高く(反応が速い)、樹脂の含浸性が悪く、均一な繊維強化成形体を得ることができなかった。
比較例1の樹脂の特性は以下の通りであり、表1,2に記載されている。比較例1の樹脂の粘度測定結果を、図5のグラフに示す。

・溶融開始温度Ta:72℃
・反応開始温度Tb:91℃
・(Tb-Ta):19℃
・最低粘度(溶融開始温度Ta℃以上の温度における最低粘度):118,908Pa・s
・最高粘度(硬化反応開始温度Tb℃~190℃の温度範囲における最高粘度)
:164,468Pa・s
・(Tb-Ta)/3の値:6℃
・Tb+(Tb-Ta)/3の値:100℃
(11) Comparative Example 1
Phenolic resin (manufactured by Sumitomo Bakelite Co., Ltd., product name: PR-50699, average particle size: 30 μm) is used as the solid thermosetting resin, and the mold temperature is 80 ° C. when producing the resin sheet. A fiber-reinforced molded article was produced in the same manner as in Example 1, except that the mold temperature at that time was 100°C. The viscosity of the resin was high (reaction was fast), the impregnability of the resin was poor, and a uniform fiber-reinforced molded article could not be obtained.
The properties of the resin of Comparative Example 1 are as follows and are listed in Tables 1 and 2. The viscosity measurement results of the resin of Comparative Example 1 are shown in the graph of FIG.

・ Melting start temperature Ta: 72 ° C.
・ Reaction start temperature Tb: 91 ° C.
・(Tb-Ta): 19°C
・Minimum viscosity (minimum viscosity at temperatures above the melting start temperature Ta ° C.): 118,908 Pa s
・ Maximum viscosity (maximum viscosity in the temperature range from the curing reaction start temperature Tb ° C. to 190 ° C.)
: 164,468 Pa·s
・(Tb-Ta)/3 value: 6°C
・Tb + (Tb - Ta) / 3 value: 100 ° C

(12)比較例2
固形熱硬化性樹脂として、2種類のフェノール樹脂(住友ベークライト株式会社製、品名:PR-50252、平均粒径:30μmと住友ベークライト株式会社製、品名:PR-50235D、平均粒径:90μm)の1:2混合樹脂(重量比)、を使用し、繊維強化成形体の成形時の金型温度を160℃とした以外は、実施例1と同様に繊維強化成形体を作製した。樹脂の硬化が十分では無く、脱型時に変形が生じてしまった。
比較例2の樹脂の特性は以下の通りであり、表1,2に記載されている。比較例2の樹脂の粘度測定結果を、図5のグラフに示す。

・溶融開始温度Ta:80℃
・反応開始温度Tb:140℃
・(Tb-Ta):60℃
・最低粘度(溶融開始温度Ta℃以上の温度における最低粘度):21Pa・s
・最高粘度(硬化反応開始温度Tb℃~190℃の温度範囲における最高粘度):260Pa・s
・(Tb-Ta)/3の値:20℃
・Tb+(Tb-Ta)/3の値:160℃
(12) Comparative Example 2
As solid thermosetting resins, two types of phenolic resins (manufactured by Sumitomo Bakelite Co., Ltd., product name: PR-50252, average particle size: 30 μm and Sumitomo Bakelite Co., Ltd., product name: PR-50235D, average particle size: 90 μm). A fiber-reinforced molded article was produced in the same manner as in Example 1, except that a 1:2 mixed resin (weight ratio) was used and the mold temperature during molding of the fiber-reinforced molded article was set to 160°C. The resin was not sufficiently hardened, and deformation occurred when demolding.
The properties of the resin of Comparative Example 2 are as follows and are listed in Tables 1 and 2. The viscosity measurement results of the resin of Comparative Example 2 are shown in the graph of FIG.

・Melting start temperature Ta: 80°C
・Reaction initiation temperature Tb: 140°C
・(Tb-Ta): 60°C
・Minimum viscosity (minimum viscosity at temperatures above the melting start temperature Ta ° C.): 21 Pa s
・ Maximum viscosity (maximum viscosity in the temperature range from the curing reaction start temperature Tb ° C. to 190 ° C.): 260 Pa s
・(Tb-Ta)/3 value: 20°C
・Tb + (Tb - Ta) / 3 value: 160 ° C

2.繊維強化成形体の物性等
(1)測定方法
実施例1~10及び比較例1、2の繊維強化成形体について、厚み(mm)、曲げ強度(MPa)、曲げ弾性率(GPa)の測定及び外観を判断した。その結果を表3に示す。
曲げ強度、曲げ弾性率は繊維強化成形体から試験片を切り出し、JIS K7074 A法に基づいて測定した。
外観は目視により確認した。外観の判断は、繊維強化成形体の表面に変形や樹脂の含浸不均一等からなる不具合が存在するか否かを目視で確認し、不具合が無い場合「〇」、不具合がある場合「×」とした。
繊維強化成形体の各部分の厚みは、繊維強化成形体の断面をデジタルマイクロスコープVHX-5000(株式会社キーエンス社製)にて観察し測定した。表3における厚みは、繊維強化成形体の中央部付近の厚みである。
比重は、繊維強化成形体の重量と繊維強化成形体の体積から算出した。繊維強化成形体の体積は、繊維強化成形体の厚みと面積から算出した。
2. Physical Properties of Fiber-Reinforced Molded Articles (1) Measurement Method For the fiber-reinforced molded articles of Examples 1 to 10 and Comparative Examples 1 and 2, measurement of thickness (mm), bending strength (MPa), bending elastic modulus (GPa) and Judged the appearance. Table 3 shows the results.
The flexural strength and flexural modulus were measured according to the JIS K7074 A method by cutting out a test piece from the fiber-reinforced molding.
The appearance was confirmed visually. Appearance is judged by visually confirming whether or not there are any defects such as deformation or uneven resin impregnation on the surface of the fiber reinforced molded body. and
The thickness of each portion of the fiber-reinforced molded body was measured by observing the cross section of the fiber-reinforced molded body with a digital microscope VHX-5000 (manufactured by Keyence Corporation). The thickness in Table 3 is the thickness near the central portion of the fiber-reinforced molding.
The specific gravity was calculated from the weight of the fiber-reinforced molded article and the volume of the fiber-reinforced molded article. The volume of the fiber-reinforced molded article was calculated from the thickness and area of the fiber-reinforced molded article.

(2)測定結果
測定結果を表3に示す。
実施例1-10の繊維強化成形体は、下記要件(a)(b)を満たしている。これに対して比較例1の繊維強化成形体は、要件(a)を満たしていない。要件(a)を満たしていない比較例1では、樹脂の粘度が高いため、樹脂の含浸性が悪く、均一な繊維強化成形体を得ることができなかった。また、比較例2の繊維強化成形体は、要件(b)を満たしていない。要件(b)を満たしていない比較例2の維強化成形体では、樹脂の硬化が十分では無く、脱型時に変形が生じてしまった。
要件(a)(b)を満たす実施例1-10の繊維強化成形体では、固形熱硬化性樹脂の溶融特性及び硬化特性をコントロールすることで、プリプレグを用いることなく、簡便な方法で、外観、強度、及び軽量化に優れた繊維強化樹脂複合体を得ることができた。また、実施例1-10の繊維強化成形体では、簡便な方法で樹脂シート(樹脂担持シート)を作製することができ、粉体の飛散を防止することができるとともに、製造過程で有機溶剤なども使用しないため、作業環境に優れ、大気汚染の問題も発生しないことが分かる。

・要件(a):硬化反応開始温度Tb℃の粘度(最低粘度)が2,000Pa・s以下である。
・要件(b):硬化反応開始温度Tb℃~190℃の範囲における最高粘度が1,000Pa・s以上である。
(2) Measurement results Table 3 shows the measurement results.
The fiber-reinforced moldings of Examples 1-10 satisfy the following requirements (a) and (b). On the other hand, the fiber-reinforced molded article of Comparative Example 1 does not satisfy the requirement (a). In Comparative Example 1, which did not satisfy the requirement (a), the impregnability of the resin was poor due to the high viscosity of the resin, and a uniform fiber-reinforced molded article could not be obtained. Moreover, the fiber-reinforced molded article of Comparative Example 2 does not satisfy the requirement (b). In the fiber-reinforced molded article of Comparative Example 2, which did not satisfy the requirement (b), the resin was not sufficiently hardened, and deformation occurred during demolding.
In the fiber-reinforced molded body of Example 1-10, which satisfies the requirements (a) and (b), by controlling the melting and curing characteristics of the solid thermosetting resin, the appearance can be improved by a simple method without using prepreg. A fiber-reinforced resin composite excellent in strength, strength, and weight reduction could be obtained. In addition, in the fiber-reinforced molded body of Example 1-10, a resin sheet (resin-carrying sheet) can be produced by a simple method, scattering of powder can be prevented, and an organic solvent, etc., can be used during the production process. It can be seen that the working environment is excellent and the problem of air pollution does not occur because no air pollution is used.

Requirement (a): The viscosity (minimum viscosity) at the curing reaction initiation temperature Tb°C is 2,000 Pa·s or less.
Requirement (b): The maximum viscosity in the range of the curing reaction starting temperature Tb°C to 190°C is 1,000 Pa·s or more.

また、実施例1-10の繊維強化成形体は、更に下記要件(c)も満たすことで、溶融した熱硬化性樹脂を繊維基材に十分に含浸させることができ、均一な物性を有する繊維強化成形体を得ることができた。

・要件(c):30≦(Tb-Ta)≦100 を満たす。
In addition, the fiber-reinforced molded article of Example 1-10 further satisfies the following requirement (c), so that the molten thermosetting resin can be sufficiently impregnated into the fiber base material, and the fiber has uniform physical properties. A reinforced molded body was obtained.

・Requirement (c): 30≦(Tb−Ta)≦100 is satisfied.

上記の実施例及び比較例から、以下の発明も把握できる。以下の発明の特定事項についての説明は、上記の各説明を適宜援用する。
・繊維基材及び前記繊維基材とは異なるシート基材が積層した積層体に熱硬化性樹脂が含侵した繊維強化成形体。
The following inventions can also be grasped from the above examples and comparative examples. The description of specific matters of the invention below appropriately incorporates each of the above descriptions.
- A fiber-reinforced molded article in which a laminate obtained by laminating a fiber base material and a sheet base material different from the fiber base material is impregnated with a thermosetting resin.

3.実施例の効果
以上の実施例によれば、外観、強度、及び軽量化に優れた繊維強化樹脂複合体を得ることができた。また、簡便な方法で樹脂シートを作製することができ、粉体の飛散を防止することができるとともに、製造過程で有機溶剤なども使用しないため、作業環境に優れ、大気汚染の問題も発生しないことが確認された。
3. Effects of Examples According to the above Examples, a fiber-reinforced resin composite excellent in appearance, strength, and weight reduction could be obtained. In addition, the resin sheet can be produced by a simple method, preventing the scattering of powder, and since no organic solvent is used in the manufacturing process, the work environment is excellent and air pollution does not occur. was confirmed.

本開示は上記で詳述した実施例に限定されず、様々な変形又は変更が可能である。 The present disclosure is not limited to the embodiments detailed above, and various modifications or alterations are possible.

10…繊維強化成形体
11…繊維基材
15…樹脂シート
30…金型
31…下型
32…上型
DESCRIPTION OF SYMBOLS 10... Fiber reinforced molding 11... Fiber base material 15... Resin sheet 30... Mold 31... Lower mold 32... Upper mold

Claims (7)

繊維基材が、熱硬化性樹脂を含有する樹脂シートの前記熱硬化性樹脂によって一体化された、繊維強化成形体であって、
前記熱硬化性樹脂は、硬化反応開始温度Tb℃の粘度が2,000Pa・s以下であり、硬化反応開始温度Tb℃~190℃の範囲における最高粘度が1,000Pa・s以上である、繊維強化成形体。
A fiber-reinforced molded body in which a fiber base material is integrated by the thermosetting resin of a resin sheet containing a thermosetting resin,
The thermosetting resin has a viscosity of 2,000 Pa s or less at the curing reaction start temperature Tb ° C., and a maximum viscosity of 1,000 Pa s or more in the range of the curing reaction start temperature Tb ° C. to 190 ° C. Fiber. Reinforced molding.
前記樹脂シートは、シート基材を備える、請求項1に記載の繊維強化成形体。 The fiber-reinforced molded article according to claim 1, wherein the resin sheet comprises a sheet base material. 前記熱硬化性樹脂は、溶融開始温度をTa℃、硬化反応開始温度をTb℃とすると、
(Tb-Ta)の値が、
30≦(Tb-Ta)≦100
を満たす、請求項1又は請求項2に記載の繊維強化成形体。
Assuming that the thermosetting resin has a melting start temperature of Ta ° C. and a curing reaction start temperature of Tb ° C.,
The value of (Tb-Ta) is
30≦(Tb−Ta)≦100
The fiber-reinforced molded article according to claim 1 or 2, which satisfies
前記熱硬化性樹脂は、フェノール樹脂、フェノール樹脂とエポキシ樹脂の混合樹脂、フェノール樹脂とシアネート樹脂の混合樹脂、エポキシ樹脂とシアネート樹脂の混合樹脂、及び、フェノール樹脂とエポキシ樹脂とシアネート樹脂の混合樹脂からなる群より選ばれた樹脂である、請求項1から請求項3のいずれか一項に記載の繊維強化成形体。 The thermosetting resin includes a phenol resin, a mixed resin of a phenol resin and an epoxy resin, a mixed resin of a phenol resin and a cyanate resin, a mixed resin of an epoxy resin and a cyanate resin, and a mixed resin of a phenol resin, an epoxy resin and a cyanate resin. The fiber-reinforced molded article according to any one of claims 1 to 3, which is a resin selected from the group consisting of. 請求項1から請求項4のいずれか一項に記載の繊維強化成形体の製造方法であって、
前記繊維基材と前記樹脂シートとを重ねた状態で、金型によって加熱圧縮し、前記熱硬化性樹脂を前記繊維基材に含浸させて硬化させる、繊維強化成形体の製造方法。
A method for producing a fiber-reinforced molded article according to any one of claims 1 to 4,
A method for producing a fiber-reinforced molded body, wherein the fiber base material and the resin sheet are superimposed and heat-compressed with a mold, and the fiber base material is impregnated with the thermosetting resin and cured.
加熱圧縮時の温度Tc℃は、
[Tb+(Tb-Ta)/3]-15≦Tc≦[Tb+(Tb-Ta)/3]+20である、請求項5に記載の繊維強化成形体の製造方法。
The temperature Tc ° C at the time of heat compression is
6. The method for producing a fiber-reinforced molded article according to claim 5, wherein [Tb+(Tb-Ta)/3]-15≤Tc≤[Tb+(Tb-Ta)/3]+20.
繊維強化成形体の製造用の樹脂シートであって、
熱硬化性樹脂を含有する、樹脂シート。
A resin sheet for manufacturing a fiber-reinforced molded body,
A resin sheet containing a thermosetting resin.
JP2021076007A 2020-07-06 2021-04-28 Method for manufacturing fiber-reinforced molded body, resin sheet, and method for manufacturing resin sheet Active JP7419291B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2021076007A JP7419291B2 (en) 2021-04-28 2021-04-28 Method for manufacturing fiber-reinforced molded body, resin sheet, and method for manufacturing resin sheet
EP21835931.3A EP4177047A1 (en) 2020-07-06 2021-06-22 Fiber-reinforced resin molded body and manufacturing method thereof, fiber-reinforced resin molding prepreg, fiber-reinforced molded body and fiber-reinforced molded body manufacturing method, and resin sheet, fiber-reinforced sandwich composite, and fiber-reinforced molded body manufacturing method
PCT/JP2021/023675 WO2022009671A1 (en) 2020-07-06 2021-06-22 Fiber-reinforced resin molded body and manufacturing method thereof, fiber-reinforced resin molding prepreg, fiber-reinforced molded body and fiber-reinforced molded body manufacturing method, and resin sheet, fiber-reinforced sandwich composite, and fiber-reinforced molded body manufacturing method
CN202180042674.6A CN115835945A (en) 2020-07-06 2021-06-22 Fiber-reinforced resin molded article and method for producing same, prepreg for fiber-reinforced resin molding, fiber-reinforced molded article, method for producing fiber-reinforced molded article, resin sheet, fiber-reinforced sandwich composite, and method for producing fiber-reinforced molded article
US17/925,228 US20230235140A1 (en) 2020-07-06 2021-06-22 Fiber-reinforced resin molded body and production method thereof, fiber-reinforced resin molding prepreg, fiber-reinforced molded body and production method of fiber-reinforced molded body and resin sheet, fiber-reinforced sandwich composite, and production method of fiberreinforced molded body
TW110123546A TW202204137A (en) 2020-07-06 2021-06-28 Fiber-reinforced resin molded body and manufacturing method thereof, fiber-reinforced resin molding prepreg, fiber-reinforced molded body and fiber-reinforced molded body manufacturing method, and resin sheet, fiber-reinforced sandwich composite, and fiber-reinforced molded body manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021076007A JP7419291B2 (en) 2021-04-28 2021-04-28 Method for manufacturing fiber-reinforced molded body, resin sheet, and method for manufacturing resin sheet

Publications (2)

Publication Number Publication Date
JP2022170112A true JP2022170112A (en) 2022-11-10
JP7419291B2 JP7419291B2 (en) 2024-01-22

Family

ID=83944816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021076007A Active JP7419291B2 (en) 2020-07-06 2021-04-28 Method for manufacturing fiber-reinforced molded body, resin sheet, and method for manufacturing resin sheet

Country Status (1)

Country Link
JP (1) JP7419291B2 (en)

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5030966A (en) * 1973-07-18 1975-03-27
JPS5375285A (en) * 1976-12-15 1978-07-04 Matsushita Electric Works Ltd Manufacture of synthetic resin laminate
JPS5375284A (en) * 1976-12-15 1978-07-04 Matsushita Electric Works Ltd Manufacture of synthetic resin laminate
JPS5478772A (en) * 1977-12-05 1979-06-23 Matsushita Electric Works Ltd Production of laminate
JP2006071959A (en) * 2004-09-02 2006-03-16 Inoac Corp Acoustic material and method for manufacturing same
JP2009280669A (en) * 2008-05-21 2009-12-03 Toray Ind Inc Rtm fiber-reinforced composite material and process for producing it
JP2010023240A (en) * 2008-07-15 2010-02-04 Institute Of National Colleges Of Technology Japan Manufacturing method of heat-defensive composite material
JP2010540293A (en) * 2007-10-03 2010-12-24 エイセル グループ リミテッド Composite product
JP2011093175A (en) * 2009-10-29 2011-05-12 Inoac Corp Fiber-reinforced molding and method of manufacturing the same
WO2012073775A1 (en) * 2010-12-02 2012-06-07 東レ株式会社 Method for producing metal composite, and chassis for electronic equipment
JP2013230579A (en) * 2012-04-27 2013-11-14 Mitsubishi Plastics Inc Method of manufacturing carbon fiber reinforced resin molded article, carbon fiber reinforced resin molded article, and deep-drawn product using the same
JP2015217662A (en) * 2014-05-21 2015-12-07 株式会社イノアックコーポレーション Carbon fiber composite material
JP2017160559A (en) * 2016-03-09 2017-09-14 住友ベークライト株式会社 Manufacturing method of sheet making body and manufacturing method of molded body
JP2018024215A (en) * 2016-08-12 2018-02-15 日産自動車株式会社 Molding method of molded article
JP2018140528A (en) * 2017-02-27 2018-09-13 トヨタ自動車株式会社 Method for manufacturing resin molding
WO2019044801A1 (en) * 2017-08-30 2019-03-07 本田技研工業株式会社 Laminate, in-vehicle battery containing body, and method for producing in-vehicle battery containing body
WO2019069639A1 (en) * 2017-10-06 2019-04-11 八千代工業株式会社 Fiber-reinforced resin member manufacturing process, fuel tank, and fiber-reinforced resin member

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005281487A (en) 2004-03-30 2005-10-13 Sumitomo Bakelite Co Ltd Manufacturing process of prepreg and laminate
JP5738567B2 (en) 2010-10-05 2015-06-24 新日鉄住金マテリアルズ株式会社 Abrasion resistant fiber reinforced composite and method for producing the same
CN104130548A (en) 2014-07-29 2014-11-05 深圳市惠程电气股份有限公司 Polyimide fiber prepreg and preparation method and application thereof
US20210129488A1 (en) 2016-12-28 2021-05-06 Nippon Steel Chemical & Material Co., Ltd. Metal/fiber-reinforced resin material composite body, method for producing same and bonding sheet
TW201903013A (en) 2017-03-31 2019-01-16 日商新日鐵住金化學股份有限公司 Metal-fiber reinforced resin material composite and method of producing the same
JP7295376B2 (en) 2017-12-28 2023-06-21 日本製鉄株式会社 METAL-FIBER REINFORCED RESIN MATERIAL COMPOSITE AND PRODUCTION METHOD THEREOF
JP7215163B2 (en) 2017-12-28 2023-01-31 日本製鉄株式会社 Metal-fiber reinforced resin material composite
JP7099113B2 (en) 2018-07-19 2022-07-12 三菱ケミカル株式会社 Manufacturing method of carbon fiber prepreg
CN109897375B (en) 2019-03-29 2020-07-14 中南大学 High-strength flexible epoxy resin modified cyanate ester resin/carbon fiber composite shape memory material and preparation method thereof

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5030966A (en) * 1973-07-18 1975-03-27
JPS5375285A (en) * 1976-12-15 1978-07-04 Matsushita Electric Works Ltd Manufacture of synthetic resin laminate
JPS5375284A (en) * 1976-12-15 1978-07-04 Matsushita Electric Works Ltd Manufacture of synthetic resin laminate
JPS5478772A (en) * 1977-12-05 1979-06-23 Matsushita Electric Works Ltd Production of laminate
JP2006071959A (en) * 2004-09-02 2006-03-16 Inoac Corp Acoustic material and method for manufacturing same
JP2010540293A (en) * 2007-10-03 2010-12-24 エイセル グループ リミテッド Composite product
JP2009280669A (en) * 2008-05-21 2009-12-03 Toray Ind Inc Rtm fiber-reinforced composite material and process for producing it
JP2010023240A (en) * 2008-07-15 2010-02-04 Institute Of National Colleges Of Technology Japan Manufacturing method of heat-defensive composite material
JP2011093175A (en) * 2009-10-29 2011-05-12 Inoac Corp Fiber-reinforced molding and method of manufacturing the same
WO2012073775A1 (en) * 2010-12-02 2012-06-07 東レ株式会社 Method for producing metal composite, and chassis for electronic equipment
JP2013230579A (en) * 2012-04-27 2013-11-14 Mitsubishi Plastics Inc Method of manufacturing carbon fiber reinforced resin molded article, carbon fiber reinforced resin molded article, and deep-drawn product using the same
JP2015217662A (en) * 2014-05-21 2015-12-07 株式会社イノアックコーポレーション Carbon fiber composite material
JP2017160559A (en) * 2016-03-09 2017-09-14 住友ベークライト株式会社 Manufacturing method of sheet making body and manufacturing method of molded body
JP2018024215A (en) * 2016-08-12 2018-02-15 日産自動車株式会社 Molding method of molded article
JP2018140528A (en) * 2017-02-27 2018-09-13 トヨタ自動車株式会社 Method for manufacturing resin molding
WO2019044801A1 (en) * 2017-08-30 2019-03-07 本田技研工業株式会社 Laminate, in-vehicle battery containing body, and method for producing in-vehicle battery containing body
WO2019069639A1 (en) * 2017-10-06 2019-04-11 八千代工業株式会社 Fiber-reinforced resin member manufacturing process, fuel tank, and fiber-reinforced resin member

Also Published As

Publication number Publication date
JP7419291B2 (en) 2024-01-22

Similar Documents

Publication Publication Date Title
JP6440222B2 (en) In-situ polymerization type thermoplastic prepreg, thermoplastic composite and production method thereof
US9963586B2 (en) Prepreg, fiber reinforced composite material, and manufacturing method for fiber reinforced composite material
JP5090701B2 (en) Partially impregnated prepreg and method for producing fiber reinforced composite material using the same
TWI657909B (en) Resin supply material, preform, and manufacturing method of fiber-reinforced resin
SG190948A1 (en) Method for producing metal composite, and chassis for electronic equipment
JP6562153B2 (en) FIBER-REINFORCED COMPOSITE MOLDED ARTICLE AND METHOD FOR PRODUCING THE SAME
US20220340725A1 (en) Surface veil and surface film integrated prepreg layer and processes for making the same
JP5966969B2 (en) Manufacturing method of prepreg
JPWO2004060981A1 (en) Process for producing fiber reinforced thermoplastic and fiber reinforced thermoplastic
WO2022009671A1 (en) Fiber-reinforced resin molded body and manufacturing method thereof, fiber-reinforced resin molding prepreg, fiber-reinforced molded body and fiber-reinforced molded body manufacturing method, and resin sheet, fiber-reinforced sandwich composite, and fiber-reinforced molded body manufacturing method
CN109385042B (en) Low-density prepreg and interlayer composite molded article comprising same
JP2022170112A (en) Fiber-reinforced molding, method for manufacturing fiber-reinforced molding, and resin sheet
JP7326228B2 (en) Fiber-reinforced resin molding and its manufacturing method
JP7321135B2 (en) Fiber-reinforced resin molding prepreg and fiber-reinforced resin molding
JP7493439B2 (en) Method for producing fiber-reinforced molding and fiber-reinforced molding
JP6012653B2 (en) Manufacturing method of fiber reinforced plastic molding
JP7473442B2 (en) Fiber Reinforced Sandwich Composites
JP2023008133A (en) Thermosetting resin composition, cured product, prepreg, and fiber-reinforced molding
KR20200055689A (en) Heat-curable resin composition for fiber-reinforced composite material, preform, fiber-reinforced composite material and method for manufacturing fiber-reinforced composite material
JP2020029011A (en) Reinforced fiber tape material, and fiber reinforced resin molded body by immersing and curing matrix resin in the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220526

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230608

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231003

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240110

R150 Certificate of patent or registration of utility model

Ref document number: 7419291

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150