JP7473442B2 - Fiber Reinforced Sandwich Composites - Google Patents

Fiber Reinforced Sandwich Composites Download PDF

Info

Publication number
JP7473442B2
JP7473442B2 JP2020171814A JP2020171814A JP7473442B2 JP 7473442 B2 JP7473442 B2 JP 7473442B2 JP 2020171814 A JP2020171814 A JP 2020171814A JP 2020171814 A JP2020171814 A JP 2020171814A JP 7473442 B2 JP7473442 B2 JP 7473442B2
Authority
JP
Japan
Prior art keywords
fiber
resin
core material
thermosetting resin
sandwich composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020171814A
Other languages
Japanese (ja)
Other versions
JP2022063509A (en
JP2022063509A5 (en
Inventor
達彦 安井
直弥 原田
好典 杉浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inoac Corp
Original Assignee
Inoac Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2020171814A priority Critical patent/JP7473442B2/en
Application filed by Inoac Corp filed Critical Inoac Corp
Priority to CN202180042674.6A priority patent/CN115835945A/en
Priority to US17/925,228 priority patent/US20230235140A1/en
Priority to PCT/JP2021/023675 priority patent/WO2022009671A1/en
Priority to EP21835931.3A priority patent/EP4177047A1/en
Priority to TW110123546A priority patent/TW202204137A/en
Publication of JP2022063509A publication Critical patent/JP2022063509A/en
Publication of JP2022063509A5 publication Critical patent/JP2022063509A5/ja
Application granted granted Critical
Publication of JP7473442B2 publication Critical patent/JP7473442B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、繊維基材とコア材が積層されて熱硬化性樹脂と共に加熱圧縮されることにより接着一体化した繊維強化サンドイッチ複合体に関する。 The present invention relates to a fiber-reinforced sandwich composite in which a fiber base material and a core material are laminated and bonded together by heating and compressing them together with a thermosetting resin.

近年、軽量化や機械強度の向上を目的として、炭素繊維やガラス繊維などの繊維基材と熱硬化性樹脂との複合材料から形成される繊維強化樹脂成形体が、様々な分野・用途に広く使用されている。
特に、自動車や鉄道、航空機などの輸送機器においては、低燃費化の要求が高く、車両や機体の軽量化による低燃費化の効果が高いため、軽量性に優れる繊維強化樹脂成形体が金属代替材料として期待されている。
2. Description of the Related Art In recent years, fiber-reinforced resin molded articles formed from composite materials of fiber base materials such as carbon fibers and glass fibers and thermosetting resins have been widely used in various fields and applications for the purpose of reducing weight and improving mechanical strength.
In particular, there is a high demand for lower fuel consumption in transportation equipment such as automobiles, trains, and aircraft, and since reducing the weight of vehicles and aircraft has a significant effect on improving fuel consumption, fiber-reinforced resin moldings, which have excellent light weight, are expected to serve as an alternative to metals.

繊維強化樹脂成形体の製造方法としては、繊維基材に熱硬化性樹脂を含浸させてプリプレグ化した後、プリプレグをオートクレーブや熱プレスなどを用いて成形する方法がある。
プリプレグを作製する際に繊維基材に含浸させる熱硬化性樹脂は、液状が一般的であるが、液状樹脂のポットライフの問題があり、さらに溶剤を使用する場合には、作業環境や大気汚染の問題がある。
これらの問題を解決する方法として、粉体樹脂を使用して作製したプリプレグが提案されている(特許文献1)。
As a method for producing a fiber-reinforced resin molded body, there is a method in which a fiber base material is impregnated with a thermosetting resin to form a prepreg, and then the prepreg is molded using an autoclave, a hot press, or the like.
When producing prepregs, the thermosetting resin with which the fiber substrate is impregnated is generally in liquid form. However, liquid resins have a limited pot life, and when a solvent is used, this can cause problems with the working environment and air pollution.
As a method for solving these problems, a prepreg made from a powdered resin has been proposed (Patent Document 1).

また、プリプレグとコア材を積層して加熱プレスして得られる軽量な繊維強化サンドイッチ複合体が提案されている(特許文献2)。 In addition, a lightweight fiber-reinforced sandwich composite has been proposed, which is obtained by laminating prepregs and a core material and hot pressing them (Patent Document 2).

特開2006-232915号公報JP 2006-232915 A 特開2020-44811号公報JP 2020-44811 A

しかし、プリプレグを用いる成形方法では、液状樹脂または粉状樹脂の何れを使用する場合であっても、プリプレグ化する工程に大掛かりな設備が必要になること、プリプレグ化の工程管理が煩雑であることなどから、繊維強化樹脂成形体やサンドイッチ構造体の製造コストが高くなる問題がある。
また、従来のプリプレグは、使用までの保存中に常温でも硬化反応が徐々に進行するため、保存安定性が良くなく、保存されたプリプレグを使用して得られる繊維強化樹脂成形体やサンドイッチ構造体の品質に影響を与えることがある。
However, in molding methods using prepregs, whether a liquid resin or a powdered resin is used, problems arise in that the prepreg process requires large-scale equipment and the prepreg process management is complicated, resulting in high production costs for fiber-reinforced resin molded bodies and sandwich structures.
Furthermore, conventional prepregs have poor storage stability because the curing reaction proceeds gradually even at room temperature during storage before use, which can affect the quality of fiber-reinforced resin moldings and sandwich structures obtained by using the stored prepregs.

本発明は前記の点に鑑みなされたものであり、プリプレグを用いることなく、プリプレグの保存安定性を気にすることなく、簡単及び安価に、かつ環境汚染の恐れなく安全に製造可能な、コア材と一体化した繊維強化サンドイッチ複合体の提供を目的とする。 The present invention has been made in consideration of the above points, and aims to provide a fiber-reinforced sandwich composite integrated with a core material that can be produced easily, inexpensively, and safely without using prepregs or worrying about the storage stability of prepregs, and without risking environmental pollution.

本発明は、繊維基材とコア材が積層されて熱硬化性樹脂と共に加熱圧縮されることにより接着一体化した繊維強化サンドイッチ複合体であって、前記コア材は、5%圧縮応力が0.15MPa以上であり、前記熱硬化性樹脂は、加熱前の状態が粉体状であり、硬化反応開始温度Tb℃の粘度が1,500Pa・s以下であり、硬化反応開始温度Tb℃~190℃の範囲における最高粘度が1,000Pa・s以上であることを特徴とする。 The present invention is a fiber-reinforced sandwich composite in which a fiber base material and a core material are laminated and heated and compressed together with a thermosetting resin to bond and integrate them, and is characterized in that the core material has a 5% compressive stress of 0.15 MPa or more, the thermosetting resin is in a powder state before heating, has a viscosity of 1,500 Pa·s or less at a curing reaction start temperature Tb°C, and has a maximum viscosity of 1,000 Pa·s or more in the range of curing reaction start temperatures Tb°C to 190°C.

本発明によれば、プリプレグを用いることなく、プリプレグの保存安定性を気にすることなく、簡単及び安価に、かつ環境汚染の恐れなく安全に製造可能な、コア材と一体化した繊維強化サンドイッチ複合体が得られる。 According to the present invention, a fiber-reinforced sandwich composite integrated with a core material can be obtained, which can be produced easily, inexpensively, and safely without using prepregs and without worrying about the storage stability of prepregs, and without risking environmental pollution.

本発明の一実施形態に係る繊維強化サンドイッチ複合体の断面図である。FIG. 1 is a cross-sectional view of a fiber-reinforced sandwich composite according to one embodiment of the present invention. 本発明の繊維強化サンドイッチ複合体の製造方法の一実施形態における積層及び加熱圧縮を示す断面図である。FIG. 2 is a cross-sectional view showing lamination and heat compression in one embodiment of the method for producing a fiber-reinforced sandwich composite of the present invention. 各実施例及び各比較例に使用したコア材の材質、厚み等を示す表である。1 is a table showing the material, thickness, etc. of the core material used in each example and each comparative example. 各実施例及び各比較例に使用した熱硬化性樹脂の溶融開始温度、硬化反応開始温度等を示す表である。1 is a table showing the melting initiation temperatures, curing reaction initiation temperatures, etc. of the thermosetting resins used in each of the examples and comparative examples. 各実施例と各比較例の構成と物性値等を示す表である。1 is a table showing the configurations and physical properties of each of the examples and comparative examples. 実施例1、6、7と比較例2、3で使用した熱硬化性樹脂の粘度測定結果を示すグラフである。1 is a graph showing the viscosity measurement results of thermosetting resins used in Examples 1, 6, and 7 and Comparative Examples 2 and 3.

本発明の実施形態について説明する。図1に示す一実施形態の繊維強化サンドイッチ複合体10は、繊維基材11とコア材15が、熱硬化性樹脂21と共に加熱圧縮されて、熱硬化性樹脂21の硬化により接着一体化したものである。 An embodiment of the present invention will be described. In one embodiment of the fiber-reinforced sandwich composite 10 shown in FIG. 1, a fiber base material 11 and a core material 15 are heated and compressed together with a thermosetting resin 21, and are bonded together by hardening the thermosetting resin 21.

繊維基材11は、単層でも複数層でもよく、繊維強化サンドイッチ複合体10の用途等に応じて層の数が決定される。図示の形態では、繊維基材11は4層からなる。繊維基材11としては、ガラス繊維、アラミド繊維、バサルト繊維、炭素繊維などによる織物や不織布などがあり、特に限定されるものではないが、炭素繊維織物が軽量及び高剛性に優れるために好ましいものである。炭素繊維織物としては、繊維が一方向のみではない織り方のものが好ましく、例えば、縦糸と横糸で構成される平織、綾織、朱子織及び3方向の糸で構成される三軸織などが好適である。また、前記炭素繊維織物は、熱硬化性樹脂21の含浸及び繊維強化サンドイッチ複合体10の剛性の点から、繊維重さが50~600g/mのものが好ましい。 The fiber substrate 11 may be a single layer or multiple layers, and the number of layers is determined depending on the application of the fiber-reinforced sandwich composite 10. In the illustrated embodiment, the fiber substrate 11 is made of four layers. The fiber substrate 11 may be a woven fabric or nonwoven fabric made of glass fiber, aramid fiber, basalt fiber, carbon fiber, or the like, and is not particularly limited. However, a carbon fiber woven fabric is preferable because it is lightweight and has high rigidity. As the carbon fiber woven fabric, a woven fabric in which the fibers are woven in more than one direction is preferable. For example, a plain weave, twill weave, or satin weave made of warp and weft threads, and a triaxial weave made of threads in three directions are suitable. In addition, the carbon fiber woven fabric is preferably one having a fiber weight of 50 to 600 g/m 2 in terms of impregnation of the thermosetting resin 21 and the rigidity of the fiber-reinforced sandwich composite 10.

コア材15は、繊維強化サンドイッチ複合体10の強度向上効果を有し、5%圧縮応力の値が0.15MPa以上のものが好ましい。より好ましい5%圧縮応力の範囲は、0.15~1MPaである。なお、5%圧縮応力は、50×50mmの大きさにカットしたコア材を、φ80mmの円盤状圧縮子にて、速度5mm/minで、厚みに対して5%圧縮した時の応力である。応力測定機器の例として、島津製作所Autograph AG-Xを挙げる。
コア材15の密度(JIS Z8807)は、20~120kg/mが好ましい。
The core material 15 has an effect of improving the strength of the fiber-reinforced sandwich composite 10, and preferably has a 5% compressive stress value of 0.15 MPa or more. A more preferable range of the 5% compressive stress is 0.15 to 1 MPa. The 5% compressive stress is the stress when a core material cut to a size of 50 x 50 mm is compressed by 5% of its thickness with a disk-shaped compressor of φ80 mm at a speed of 5 mm/min. An example of a stress measuring device is Shimadzu Corporation's Autograph AG-X.
The density (JIS Z8807) of the core material 15 is preferably 20 to 120 kg/ m3 .

コア材15としては、独立気泡構造の発泡体が好ましい。独立気泡構造の発泡体は、セル(気泡)同士が連通することなく互いに閉じて独立した構造となっている。コア材15を独立気泡構造の発泡体とすることにより、繊維強化サンドイッチ複合体10の製造時に溶融した熱硬化性樹脂が独立気泡構造のコア材15に浸透し難く、繊維強化サンドイッチ複合体10の表面外観が優れたものになる。なお、セルが開口してセル同士が連通している連通気泡構造の発泡体でコア材15を構成すると、繊維強化サンドイッチ複合体10の製造時、溶融した熱硬化性樹脂が連続気泡構造のコア材15に浸透し易いため、繊維強化サンドイッチ複合体10の表面で熱硬化性樹脂が少なくなって繊維強化サンドイッチ複合体の外観が損なわれるおそれがある。 The core material 15 is preferably a foam with a closed cell structure. In a foam with a closed cell structure, the cells (air bubbles) are closed and independent of each other. By using a foam with a closed cell structure as the core material 15, the molten thermosetting resin during the production of the fiber-reinforced sandwich composite 10 is less likely to penetrate the core material 15 with a closed cell structure, and the surface appearance of the fiber-reinforced sandwich composite 10 is excellent. If the core material 15 is made of a foam with an open cell structure in which the cells are open and connected to each other, the molten thermosetting resin during the production of the fiber-reinforced sandwich composite 10 is likely to penetrate the core material 15 with an open cell structure, and the amount of thermosetting resin on the surface of the fiber-reinforced sandwich composite 10 may be reduced, which may impair the appearance of the fiber-reinforced sandwich composite.

コア材15を構成する独立気泡構造の発泡体としては、ポリエチレンテレフタレートフォーム(PETフォーム)、ポリメタクリルイミドフォーム(PMIフォーム)、ポリ塩化ビニルフォーム(PVCフォーム)、硬質ポリウレタンフォーム(硬質PUフォーム)などを挙げることができる。 Examples of the closed-cell foam that constitutes the core material 15 include polyethylene terephthalate foam (PET foam), polymethacrylimide foam (PMI foam), polyvinyl chloride foam (PVC foam), and rigid polyurethane foam (rigid PU foam).

コア材15の厚みは、繊維強化サンドイッチ複合体10の用途等に応じて決定されるが、例として3~20mm程度を挙げる。
また、コア材15は、単層に限られず、複層であってもよい。コア材15が単層で繊維基材11が複層の場合、コア材15は繊維基材11間に位置するのが好ましい。
The thickness of the core material 15 is determined depending on the application of the fiber-reinforced sandwich composite 10, and may be, for example, about 3 to 20 mm.
In addition, the core material 15 is not limited to a single layer, and may be a multi-layered material. When the core material 15 is a single layer and the fiber base material 11 is a multi-layered material, the core material 15 is preferably positioned between the fiber base materials 11.

コア材15の製造方法は、特に限定されない。例えば、以下の製造方法が挙げられる。
・樹脂発泡粒子を金型内に充填し、熱水や水蒸気などの熱媒体によって樹脂発泡粒子を加熱して発泡させ、樹脂発泡粒子の発泡圧によって発泡粒子どうしを融着一体化させて所望形状を有する発泡体を製造する方法(型内発泡成形方法)。
・樹脂を気泡調整剤などとともに押出機に供給して化学発泡剤や物理発泡剤などの発泡剤の存在下にて溶融混練し、溶融混練物を押出機から押出発泡させて発泡体を製造する方法(押出発泡法)。
・化学発泡剤を含む塊状の発泡性樹脂成形体を製造し、この発泡性樹脂成形体を型内で発泡させて発泡体を製造する方法。
There is no particular limitation on the method for producing the core material 15. For example, the following method may be used.
A method in which resin foam particles are filled into a mold, heated and expanded using a heat transfer medium such as hot water or steam, and the expansion pressure of the resin foam particles causes the foam particles to fuse and integrate with each other to produce a foam having the desired shape (in-mold foam molding method).
A method in which a resin is supplied to an extruder together with a foam control agent, etc., and melt-kneaded in the presence of a foaming agent such as a chemical foaming agent or a physical foaming agent, and the molten mixture is extruded from the extruder to foam (extrusion foaming method).
A method of producing a foam by producing a block of expandable resin molding containing a chemical foaming agent and foaming this expandable resin molding in a mold.

熱硬化性樹脂21は、繊維強化サンドイッチ複合体10の製造時に、固形の粉体状のものが用いられる。粉体の形状としては、球状、針状、フレーク状などがあり、特に限定されるものではない。熱硬化性樹脂21の粉体は、少なくとも繊維基材11及びコア材15と接するように配置されるのが好ましい。例えばコア材15が一層の場合には、少なくとも繊維基材11とコア材15の間に熱硬化性樹脂21の粉体が配置され、繊維基材11が複数層の場合には繊維基材11とコア材15間に加え、繊維基材11間にも熱硬化性樹脂21の粉体が配置されてもよい。また、コア材15が複数層接して積層される場合には、繊維基材11とコア材15との間及びコア材15同士の間に熱硬化性樹脂21の粉体が配置されるのが好ましい。
熱硬化性樹脂21の粉体は、繊維基材11及びコア材15と共に加熱圧縮された際に溶融して繊維基材11に含浸し、かつコア材15と接触した状態で硬化する。
The thermosetting resin 21 is used in the form of a solid powder when the fiber-reinforced sandwich composite 10 is manufactured. The shape of the powder may be spherical, needle-like, flake-like, or the like, and is not particularly limited. The powder of the thermosetting resin 21 is preferably arranged so as to be in contact with at least the fiber substrate 11 and the core material 15. For example, when the core material 15 is a single layer, the powder of the thermosetting resin 21 is arranged at least between the fiber substrate 11 and the core material 15, and when the fiber substrate 11 is a multiple layer, the powder of the thermosetting resin 21 may be arranged between the fiber substrate 11 in addition to between the fiber substrate 11 and the core material 15. In addition, when the core material 15 is laminated in multiple layers, it is preferable that the powder of the thermosetting resin 21 is arranged between the fiber substrate 11 and the core material 15 and between the core materials 15.
When the powder of thermosetting resin 21 is heated and compressed together with the fiber base material 11 and the core material 15 , it melts and impregnates the fiber base material 11 , and hardens in the state of contact with the core material 15 .

熱硬化性樹脂21は、硬化反応開始温度Tb℃の粘度が、1,500Pa・s以下であるのが好ましい。硬化反応開始温度Tb℃における粘度をこの範囲とすることにより、溶融した熱硬化性樹脂21を繊維基材11に十分に含浸させることができ、均一な物性を有する繊維強化サンドイッチ複合体10を得ることができる。 The thermosetting resin 21 preferably has a viscosity of 1,500 Pa·s or less at the curing reaction start temperature Tb°C. By setting the viscosity at the curing reaction start temperature Tb°C within this range, the molten thermosetting resin 21 can be sufficiently impregnated into the fiber base material 11, and a fiber-reinforced sandwich composite 10 with uniform physical properties can be obtained.

熱硬化性樹脂21は、硬化反応開始温度Tb℃~190℃の温度範囲において、最高粘度が、1,000Pa・s以上であるのが好ましい。最高粘度をこの範囲とすることにより、溶融した熱硬化性樹脂21を繊維基材11内に含浸させて十分に硬化させることができ、繊維強化サンドイッチ複合体10の賦形性がよく、短時間で十分な強度が得られる。 The thermosetting resin 21 preferably has a maximum viscosity of 1,000 Pa·s or more in the temperature range of the curing reaction start temperature Tb°C to 190°C. By setting the maximum viscosity in this range, the molten thermosetting resin 21 can be impregnated into the fiber base material 11 and cured sufficiently, and the fiber-reinforced sandwich composite 10 has good formability and can obtain sufficient strength in a short time.

熱硬化性樹脂21の溶融開始温度Ta℃と硬化反応開始温度Tb℃は、加熱圧縮時の温度Tc℃との関係において、[Tb+(Tb-Ta)/3]-10≦Tc≦[Tb+(Tb-Ta)/3]+20であるのが好ましい。熱硬化性樹脂21の溶融開始温度Ta℃と硬化反応開始温度Tb℃及び加熱圧縮時の温度Tc℃が、この関係にあることにより、加熱圧縮時に熱硬化性樹脂21の粉体の溶融が良好になり、熱硬化性樹脂21が繊維基材11に含浸し易くなって、均一な物性を有する繊維強化サンドイッチ複合体10を得ることができる。 The melting start temperature Ta°C of the thermosetting resin 21 and the curing reaction start temperature Tb°C are preferably in the relationship with the temperature Tc°C during heating and compression such that [Tb+(Tb-Ta)/3]-10≦Tc≦[Tb+(Tb-Ta)/3]+20. By having this relationship between the melting start temperature Ta°C of the thermosetting resin 21, the curing reaction start temperature Tb°C, and the temperature Tc°C during heating and compression, the powder of the thermosetting resin 21 melts well during heating and compression, and the thermosetting resin 21 is easily impregnated into the fiber base material 11, making it possible to obtain a fiber-reinforced sandwich composite 10 with uniform physical properties.

熱硬化性樹脂21は、硬化反応開始温度Tb℃-溶融開始温度Ta℃の値が、40≦(Tb-Ta)≦70であるのが好ましい。(Tb-Ta)をこの範囲とすることにより、溶融した熱硬化性樹脂21を繊維基材11に十分に含浸させることができ、均一な物性を有する繊維強化サンドイッチ複合体10を得ることができる。 Thermosetting resin 21 preferably has a value of 40≦(Tb-Ta)≦70 (curing reaction start temperature Tb°C-melting start temperature Ta°C). By setting (Tb-Ta) in this range, the molten thermosetting resin 21 can be sufficiently impregnated into the fiber base material 11, and a fiber-reinforced sandwich composite 10 with uniform physical properties can be obtained.

熱硬化性樹脂21は、溶融開始温度Ta℃が60~100℃にあるのが好ましい。熱硬化性樹脂21の溶融開始温度Ta℃をこの範囲とすることにより、加熱圧縮時の温調を容易に行うことができる。 It is preferable that the melting start temperature Ta°C of the thermosetting resin 21 is in the range of 60 to 100°C. By setting the melting start temperature Ta°C of the thermosetting resin 21 in this range, it is easy to control the temperature during heating and compression.

前記の溶融開始温度Ta℃、硬化反応開始温度Tb℃、(Tb-Ta)の範囲、最低粘度、最高粘度等を満たすことができる熱硬化性樹脂は、フェノール樹脂、フェノール樹脂とエポキシ樹脂との混合樹脂、フェノール樹脂とシアネート樹脂との混合樹脂、フェノール樹脂とシアネート樹脂とエポキシ樹脂との混合樹脂の群から選ばれるのが好ましい。フェノール樹脂は難燃性に優れるため、繊維強化サンドイッチ複合体10に優れた強度と難燃性を付与することができる。
なお、熱硬化性樹脂21には、熱硬化性樹脂の粘度、反応性に影響を与えない範囲において、顔料、抗菌剤、紫外線吸収剤などの各種粉体添加剤を添加してもよい。
The thermosetting resin that can satisfy the above melting initiation temperature Ta°C, curing reaction initiation temperature Tb°C, (Tb-Ta) range, minimum viscosity, maximum viscosity, etc. is preferably selected from the group consisting of phenolic resin, mixed resin of phenolic resin and epoxy resin, mixed resin of phenolic resin and cyanate resin, and mixed resin of phenolic resin, cyanate resin, and epoxy resin. Phenolic resin has excellent flame retardancy and can impart excellent strength and flame retardancy to the fiber-reinforced sandwich composite 10.
The thermosetting resin 21 may contain various powder additives such as pigments, antibacterial agents, and ultraviolet absorbing agents, as long as they do not affect the viscosity and reactivity of the thermosetting resin.

本発明の繊維強化サンドイッチ複合体の製造は、熱硬化性樹脂21の粉体を繊維基材11及びコア材15と接するように配置し、繊維基材11及びコア材15を熱硬化性樹脂21の粉体と共に金型で加熱・圧縮することにより、熱硬化性樹脂21の粉体を溶融して繊維基材11内に含浸させると共にコア材15と接触させた状態で硬化させることにより行うことができる。 The fiber-reinforced sandwich composite of the present invention can be manufactured by arranging powder of thermosetting resin 21 in contact with fiber substrate 11 and core material 15, and heating and compressing fiber substrate 11 and core material 15 together with powder of thermosetting resin 21 in a mold, thereby melting the powder of thermosetting resin 21 and impregnating it into fiber substrate 11 and curing it in contact with core material 15.

図1に示した繊維強化サンドイッチ複合体10の製造方法の一実施形態について、図2を用いて説明する。なお、以下の製造方法の説明では、複数位置の繊維基材11について、その上下位置関係を把握し易くするために「11A」のように数字とアルファベットを組み合わせた符号で示す。 One embodiment of a manufacturing method for the fiber-reinforced sandwich composite 10 shown in FIG. 1 will be described with reference to FIG. 2. In the following description of the manufacturing method, the fiber substrates 11 at multiple positions are indicated by a combination of numbers and letters, such as "11A," to make it easier to understand their vertical positional relationship.

図2に示す実施形態では、4枚の繊維基材11A~11Dのうち、2枚の繊維基材11A、11Bを積層し、その上に熱硬化性樹脂の粉体21Aを配置し、その上にコア材15を配置し、その上に熱硬化性樹脂の粉体21Bを配置し、その上に残りの2枚の繊維基材11C、11Dを積層して成形前積層体を作製する。 In the embodiment shown in FIG. 2, of the four fiber base materials 11A to 11D, two fiber base materials 11A and 11B are layered, thermosetting resin powder 21A is placed on top of that, core material 15 is placed on top of that, thermosetting resin powder 21B is placed on top of that, and the remaining two fiber base materials 11C and 11D are layered on top of that to create a pre-molded laminate.

熱硬化性樹脂の粉体21A、21Bの粒径は、溶融し易さの点から、10~500μmが好ましい。また、熱硬化性樹脂の粉体21A、21Bの量は、コア材の発泡体部分を除いた成形体のVF値(%)が40~70%となるように調整するのが好ましい。VF値(%)は、(繊維基材の全重量/繊維の密度)/(コア材の発泡体部分を除いた成形体の体積)×100で算出される値である。 The particle size of the thermosetting resin powders 21A and 21B is preferably 10 to 500 μm in terms of ease of melting. The amount of the thermosetting resin powders 21A and 21B is preferably adjusted so that the VF value (%) of the molded body excluding the foamed portion of the core material is 40 to 70%. The VF value (%) is calculated by (total weight of fiber base material/density of fiber)/(volume of molded body excluding the foamed portion of the core material) x 100.

作製した成形前積層体を、加熱した金型30の下型31と上型32に挟んで、加熱圧縮する。金型の型面には離型用のプラスチックフィルム等を配置してもよい。金型30は、電熱ヒーター等の加熱手段によって前記加熱圧縮時の温度Tc℃に加熱されている。 The pre-molded laminate thus produced is sandwiched between the lower die 31 and upper die 32 of a heated mold 30 and heat-compressed. A plastic film for release may be placed on the mold surface of the mold. The mold 30 is heated to a temperature Tc°C during the heat-compression process by a heating means such as an electric heater.

金型30による加熱圧縮時における成形前積層体の加圧(圧縮)は、熱硬化性樹脂の粉体21A、21Bが溶融した後、繊維基材11A~11Dに良好に含浸できるようにするため、2~20MPaが好ましい。 The pressure (compression) of the pre-molded laminate during heating and compression using the mold 30 is preferably 2 to 20 MPa so that the thermosetting resin powders 21A and 21B can be effectively impregnated into the fiber base materials 11A to 11D after melting.

金型30による積層体の加熱により、コア材15の両側(上下)に位置する熱硬化性樹脂の粉体21A、21Bが溶融し、また、溶融した熱硬化性樹脂が成形前積層体の圧縮により、下側の繊維基材11B、11A、及び上側の繊維基材11C、11Dに含浸する。そして、繊維基材11A~11Dに含浸してコア材15と接触している熱硬化性樹脂が硬化することにより、繊維基材11A~11Dと繊維基材11B、11C間のコア材15とが圧縮された状態で接着一体化し、下型31及び上型32の型面形状に賦形された図1の繊維強化サンドイッチ複合体10が得られる。 The thermosetting resin powder 21A, 21B located on both sides (top and bottom) of the core material 15 melts as the laminate is heated by the mold 30, and the molten thermosetting resin impregnates the lower fiber base materials 11B, 11A and the upper fiber base materials 11C, 11D as a result of compression of the pre-molded laminate. The thermosetting resin that has impregnated the fiber base materials 11A-11D and is in contact with the core material 15 hardens, and the fiber base materials 11A-11D and the core material 15 between the fiber base materials 11B, 11C are bonded together in a compressed state, and the fiber-reinforced sandwich composite 10 shown in FIG. 1 is obtained, which is shaped to the mold surface shape of the lower mold 31 and the upper mold 32.

図3に示すコア材と図4に示す熱硬化性樹脂の粉体を用いて、図5に示す実施例1~7及び比較例1~3の繊維強化サンドイッチ複合体を作製した。 The fiber-reinforced sandwich composites of Examples 1 to 7 and Comparative Examples 1 to 3 shown in Figure 5 were produced using the core material shown in Figure 3 and the thermosetting resin powder shown in Figure 4.

コア材の5%圧縮応力は、50×50mmの大きさにカットしたコア材を、φ80mmの円盤状圧縮子にて、速度5mm/minで、厚みに対して5%圧縮した時の応力を測定した。応力測定機器は、島津製作所Autograph AG-Xである。 The 5% compression stress of the core material was measured when the core material, cut to a size of 50 x 50 mm, was compressed by 5% of its thickness using a disk-shaped compression tool with a diameter of 80 mm at a speed of 5 mm/min. The stress measurement device used was a Shimadzu Autograph AG-X.

熱硬化性樹脂の粘度は、株式会社ユービーエム社製のレオメーター:Rheosol-G3000を用い、次の条件で測定した。
1)試料の0.4gをペレット(直径φ18mm、厚さ0.4mm程度)に成形し、成形したペレットを直径φ18mmのパラレルプレートに挟む。
2)昇温速度5℃/min、周波数1Hz、回転角(ひずみ)0.1deg、等速昇温下、40℃~200℃間に渡って、2℃間隔で動的粘度を測定した。
The viscosity of the thermosetting resin was measured using a rheometer Rheosol-G3000 manufactured by UBM Co., Ltd. under the following conditions.
1) 0.4 g of the sample is molded into a pellet (diameter φ18 mm, thickness approximately 0.4 mm), and the molded pellet is sandwiched between parallel plates with a diameter of φ18 mm.
2) The dynamic viscosity was measured at 2°C intervals over a temperature range of 40°C to 200°C under a constant temperature increase rate of 5°C/min, a frequency of 1 Hz, and a rotation angle (strain) of 0.1 deg.

実施例1~7及び比較例1~3の繊維強化サンドイッチ複合体について、製品外観を判断し、密度、厚み、曲げ強度、曲げ弾性率を測定した。
製品外観は、繊維強化サンドイッチ複合体の表面に変形や樹脂の含浸不均一等からなる不具合が存在するか否かを目視で確認し、不具合が無い場合「〇」、不具合がある場合「×」とした。
密度は、JIS Z8807に基づいて測定した。
曲げ強度及び曲げ弾性率は、JIS K7074 A法に基づいて測定した。
For the fiber-reinforced sandwich composites of Examples 1 to 7 and Comparative Examples 1 to 3, the product appearance was judged, and the density, thickness, bending strength, and bending modulus were measured.
The appearance of the product was visually inspected for defects such as deformation or uneven resin impregnation on the surface of the fiber-reinforced sandwich composite. If there was no defect, it was marked as "O" and if there was a defect, it was marked as "X".
The density was measured based on JIS Z8807.
The bending strength and bending modulus were measured based on JIS K7074 Method A.

・実施例1
繊維基材として、炭素繊維織物(帝人株式会社製、品名:W-3101、目付量:200g/m、厚み0.22mm)を、210×297mmに裁断したものを4枚用意した。裁断後の1枚当たりの繊維基材の重量は12.5gであった。裁断後の繊維基材を2枚積層し、その上に熱硬化性樹脂の粉体として、以下の樹脂Aの25gを概ね均一に配置し、その上にコア材として、独立気泡構造のポリエチレンテレフタレートフォーム(3A Composites Airex社製、AIREX(T10))を210×297mmに裁断したものを配置し、その上に樹脂Aの25gを概ね均一に配置し、その上に残りの2枚の繊維基材を積層して成形前積層体を作製した。
樹脂Aは、フェノール樹脂、住友ベークライト株式会社製、品名:PR-50252、平均粒径30μmである。
樹脂A(実施例1、6、7)の粘度測定結果を、図6のグラフに示す。
Example 1
As the fiber substrate, four sheets of carbon fiber fabric (manufactured by Teijin Limited, product name: W-3101, basis weight: 200 g/m 2 , thickness 0.22 mm) cut to 210 x 297 mm were prepared. The weight of each fiber substrate after cutting was 12.5 g. Two sheets of the cut fiber substrate were laminated, and 25 g of the following resin A was roughly evenly placed on top of them as a thermosetting resin powder, and a polyethylene terephthalate foam with a closed cell structure (manufactured by 3A Composites Airex, AIREX (T10)) cut to 210 x 297 mm was placed on top of that as a core material, and 25 g of resin A was roughly evenly placed on top of that, and the remaining two fiber substrates were laminated on top of that to prepare a pre-molded laminate.
Resin A is a phenolic resin manufactured by Sumitomo Bakelite Co., Ltd., product name: PR-50252, average particle size: 30 μm.
The viscosity measurement results of Resin A (Examples 1, 6, and 7) are shown in the graph of FIG.

成形前積層体を、150℃に加熱した金型の下型の成形面(型面)に配置し、金型の上型を成形前積層体に被せて金型を閉じ、10分間、圧力5MPaで加熱圧縮した。熱硬化性樹脂の粉体が、加熱により溶融し、成形前積層体が圧縮されることで各層の繊維基材に含浸し、コア材と接触した状態で硬化が完了することにより、繊維基材とコア材が熱硬化性樹脂の硬化により積層一体化した実施例1の繊維強化サンドイッチ複合体を作製した。 The pre-molded laminate was placed on the molding surface (mold surface) of the lower die of a mold heated to 150°C, the upper die of the mold was placed over the pre-molded laminate, the mold was closed, and the laminate was heated and compressed at a pressure of 5 MPa for 10 minutes. The thermosetting resin powder melted when heated, and impregnated the fiber base material of each layer as the pre-molded laminate was compressed, and curing was completed when the pre-molded laminate was in contact with the core material, producing the fiber-reinforced sandwich composite of Example 1 in which the fiber base material and core material were laminated together as the thermosetting resin cured.

実施例1の繊維強化サンドイッチ複合体は、製品外観「〇」、密度0.24g/cm、曲げ強度23MPa、曲げ弾性率6.2GPaであり、外観が良好で、強度及び剛性が高く、軽量である。 The fiber-reinforced sandwich composite of Example 1 had a product appearance of "good," a density of 0.24 g/cm 3 , a flexural strength of 23 MPa, and a flexural modulus of 6.2 GPa, and was therefore excellent in appearance, had high strength and rigidity, and was lightweight.

・実施例2
熱硬化性樹脂の粉体として、以下の樹脂Bを使用した以外、実施例1と同様にして実施例2の繊維強化サンドイッチ複合体を作製した。
樹脂Bは、フェノール樹脂、住友ベークライト株式会社製、品名:PR-310、平均粒径30μmである。
Example 2
A fiber-reinforced sandwich composite of Example 2 was produced in the same manner as in Example 1, except that Resin B below was used as the thermosetting resin powder.
Resin B is a phenolic resin manufactured by Sumitomo Bakelite Co., Ltd., product name: PR-310, average particle size: 30 μm.

実施例2の繊維強化サンドイッチ複合体は、製品外観「〇」、密度0.26g/cm、曲げ強度19MPa、曲げ弾性率4.3GPaであり、外観が良好で、強度及び剛性が高く、軽量である。 The fiber-reinforced sandwich composite of Example 2 had a product appearance of "good", a density of 0.26 g/cm 3 , a flexural strength of 19 MPa, and a flexural modulus of 4.3 GPa, and was therefore excellent in appearance, had high strength and rigidity, and was lightweight.

・実施例3
熱硬化性樹脂の粉体として、樹脂Aの12.5gと以下の樹脂Cの12.5gを均一に混合した樹脂(25g)を使用し、金型温度を170℃とした以外、実施例1と同様にして実施例3の繊維強化サンドイッチ複合体を作製した。
樹脂Cは、エポキシ樹脂、三菱ケミカル株式会社製、品名:jER-1001を乳鉢で粉砕して使用した。平均粒径は100μmである。
Example 3
A fiber-reinforced sandwich composite of Example 3 was produced in the same manner as in Example 1, except that a resin (25 g) obtained by uniformly mixing 12.5 g of Resin A and 12.5 g of Resin C described below was used as the thermosetting resin powder, and the mold temperature was set to 170°C.
Resin C was an epoxy resin (product name: jER-1001, manufactured by Mitsubishi Chemical Corporation) that was crushed in a mortar and used. The average particle size was 100 μm.

実施例3の繊維強化サンドイッチ複合体は、製品外観「〇」、密度0.23g/cm、曲げ強度24MPa、曲げ弾性率6.8GPaであり、外観が良好で、強度及び剛性が高く、軽量である。 The fiber-reinforced sandwich composite of Example 3 had a product appearance of "good," a density of 0.23 g/cm 3 , a flexural strength of 24 MPa, and a flexural modulus of 6.8 GPa, and was therefore excellent in appearance, had high strength and rigidity, and was lightweight.

・実施例4
熱硬化性樹脂の粉体として、以下の樹脂Dの12.5gと以下の樹脂Eの12.5gを均一に混合した樹脂(25g)を使用し、金型温度を160℃とした以外、実施例1と同様にして実施例4の繊維強化サンドイッチ複合体を作製した。
樹脂Dはフェノール樹脂、住友ベークライト株式会社製、品名:PR-50235Dを乳鉢で粉砕して使用した。平均粒径は90μmである。
樹脂Eはシアネート樹脂、三菱ガス化学株式会社製、品名:CYTESTER TAを乳鉢で粉砕して使用した。平均粒径は100μmである。
Example 4
A fiber-reinforced sandwich composite of Example 4 was produced in the same manner as in Example 1, except that a resin (25 g) obtained by uniformly mixing 12.5 g of Resin D and 12.5 g of Resin E was used as the thermosetting resin powder and the mold temperature was set to 160°C.
Resin D was a phenolic resin manufactured by Sumitomo Bakelite Co., Ltd., product name: PR-50235D, which was ground in a mortar and used. The average particle size was 90 μm.
Resin E was a cyanate resin (manufactured by Mitsubishi Gas Chemical Company, Inc., product name: CYTESTER TA) that was ground in a mortar and used. The average particle size was 100 μm.

実施例4の繊維強化サンドイッチ複合体は、製品外観「〇」、密度0.26g/cm、曲げ強度30MPa、曲げ弾性率7.5GPaであり、外観が良好で、強度及び剛性が高く、軽量である。 The fiber-reinforced sandwich composite of Example 4 had a product appearance of "good", a density of 0.26 g/cm 3 , a flexural strength of 30 MPa, and a flexural modulus of 7.5 GPa, and was therefore excellent in appearance, had high strength and rigidity, and was lightweight.

・実施例5の作製
熱硬化性樹脂の粉体として、樹脂Dの8.3gと樹脂Eの8.3gと樹脂Cの8.3gを均一に混合した樹脂(24.9g)を使用し、金型温度を170℃とした以外、実施例1と同様にして実施例5の繊維強化サンドイッチ複合体を作製した。
Preparation of Example 5 A fiber-reinforced sandwich composite of Example 5 was prepared in the same manner as in Example 1, except that a resin (24.9 g) obtained by uniformly mixing 8.3 g of Resin D, 8.3 g of Resin E, and 8.3 g of Resin C was used as the thermosetting resin powder, and the mold temperature was set to 170°C.

実施例5の繊維強化サンドイッチ複合体は、製品外観「〇」、密度0.28g/cm、曲げ強度28MPa、曲げ弾性率7.2GPaであり、外観が良好で、強度及び剛性が高く、軽量である。 The fiber-reinforced sandwich composite of Example 5 had a product appearance of "good," a density of 0.28 g/cm 3 , a flexural strength of 28 MPa, and a flexural modulus of 7.2 GPa, and was therefore excellent in appearance, had high strength and rigidity, and was lightweight.

・実施例6
コア材として、独立気泡構造のポリメタクリルイミドフォーム(Evonik Industries社製、品名:Rohacell(IG-31)を使用した以外は、実施例1と同様にして実施例6の繊維強化サンドイッチ複合体を作製した。
Example 6
A fiber-reinforced sandwich composite of Example 6 was produced in the same manner as in Example 1, except that a polymethacrylimide foam having a closed-cell structure (manufactured by Evonik Industries, product name: Rohacell (IG-31)) was used as the core material.

実施例6の繊維強化サンドイッチ複合体は、製品外観「〇」、密度0.38g/cm、曲げ強度41MPa、曲げ弾性率14.3GPaであり、外観が良好で、強度及び剛性が高く、軽量である。 The fiber-reinforced sandwich composite of Example 6 had a product appearance of "good", a density of 0.38 g/cm 3 , a flexural strength of 41 MPa, and a flexural modulus of 14.3 GPa, and was therefore excellent in appearance, had high strength and rigidity, and was lightweight.

・実施例7
コア材として、独立気泡構造のポリ塩化ビニルフォーム(GURIT社製、品名CoreCell(HT-80))を使用した以外は、実施例1と同様にして実施例7の繊維強化サンドイッチ複合体を作製した。
Example 7
A fiber-reinforced sandwich composite of Example 7 was produced in the same manner as in Example 1, except that a polyvinyl chloride foam with a closed-cell structure (manufactured by GURIT, product name CoreCell (HT-80)) was used as the core material.

実施例7の繊維強化サンドイッチ複合体は、製品外観「〇」、密度0.25g/cm、曲げ強度26MPa、曲げ弾性率5.7GPaであり、外観が良好で、強度及び剛性が高く、軽量である。 The fiber-reinforced sandwich composite of Example 7 had a product appearance of "good," a density of 0.25 g/cm 3 , a flexural strength of 26 MPa, and a flexural modulus of 5.7 GPa, and was therefore excellent in appearance, had high strength and rigidity, and was lightweight.

・比較例1
コア材として、硬質ポリウレタンフォーム(イノアックコーポレーション社製、品名:サーマックス(SII-25)を使用した以外は、実施例1と同様にして比較例1の繊維強化サンドイッチ複合体を作製した。
Comparative Example 1
A fiber-reinforced sandwich composite of Comparative Example 1 was produced in the same manner as in Example 1, except that a rigid polyurethane foam (manufactured by Inoac Corporation, product name: THERMAX (SII-25)) was used as the core material.

比較例1の繊維強化サンドイッチ複合体は、製品外観「〇」、密度0.21g/cm、曲げ強度5MPa、曲げ弾性率0.6GPaであり、使用したコア材の5%圧縮強度が低いため、繊維強化サンドイッチ複合体の強度が不足したものになった。 The fiber-reinforced sandwich composite of Comparative Example 1 had a product appearance of “good”, a density of 0.21 g/cm 3 , a bending strength of 5 MPa, and a bending modulus of elasticity of 0.6 GPa. The strength of the fiber-reinforced sandwich composite was insufficient due to the low 5% compressive strength of the core material used.

・比較例2
熱硬化性樹脂の粉体として、以下の樹脂Fを使用し、金型温度を100℃とした以外、実施例1と同様にして比較例2の繊維強化サンドイッチ複合体を作製した。
樹脂Fは、フェノール樹脂、住友ベークライト株式会社製、品名:PR-50699、平均粒径30μmである。
樹脂F(比較例2)の粘度測定結果を、図6のグラフに示す。
Comparative Example 2
A fiber-reinforced sandwich composite of Comparative Example 2 was produced in the same manner as in Example 1, except that the following resin F was used as the thermosetting resin powder and the mold temperature was set to 100°C.
Resin F is a phenolic resin manufactured by Sumitomo Bakelite Co., Ltd., product name: PR-50699, average particle size: 30 μm.
The results of viscosity measurement of Resin F (Comparative Example 2) are shown in the graph of FIG.

比較例2は、熱硬化性樹脂の粘度が高く(反応が速く)、繊維基材に対する含浸性が悪いため、均一な繊維強化サンドイッチ複合体が得られず、密度、厚み、曲げ強度及び曲げ弾性率を測定できなかった。 In Comparative Example 2, the thermosetting resin had a high viscosity (fast reaction) and poor impregnation into the fiber substrate, so a uniform fiber-reinforced sandwich composite was not obtained, and the density, thickness, bending strength, and bending modulus could not be measured.

・比較例3
熱硬化性樹脂の粉体として、樹脂Aの8.3gと樹脂Dの16.6gを均一に混合した樹脂(24.9g)を使用し、金型温度を160℃とした以外、実施例1と同様にして比較例3の繊維強化サンドイッチ複合体を作製した。
樹脂A/樹脂D=1/2(比較例3)の粘度測定結果を、図6のグラフに示す。
Comparative Example 3
A fiber-reinforced sandwich composite of Comparative Example 3 was produced in the same manner as in Example 1, except that a resin (24.9 g) obtained by uniformly mixing 8.3 g of Resin A and 16.6 g of Resin D was used as the thermosetting resin powder and the mold temperature was set to 160°C.
The results of viscosity measurement for resin A/resin D=1/2 (Comparative Example 3) are shown in the graph of FIG.

比較例3は、熱硬化性樹脂の硬化が不十分で、脱型時に繊維強化サンドイッチ複合体に変形を生じ、密度、厚み、曲げ強度及び曲げ弾性率を測定できなかった。 In Comparative Example 3, the thermosetting resin was not cured sufficiently, and the fiber-reinforced sandwich composite was deformed when demolded, making it impossible to measure the density, thickness, bending strength, and bending modulus.

このように、本発明によれば、プリプレグを用いることなく、液状熱硬化性樹脂のための溶剤が不要で環境汚染の恐れがなく、熱硬化性樹脂のポットライフもないことから、簡単及び安価に、かつ環境汚染の恐れなく安全に製造可能な繊維強化サンドイッチ複合体を得ることができる。
本発明は、実施例に限定されず、発明の趣旨から逸脱しない範囲で変更可能である。
As described above, according to the present invention, a fiber-reinforced sandwich composite can be obtained that can be produced easily, inexpensively, and safely without the risk of environmental pollution, since no prepreg is used, no solvent is required for the liquid thermosetting resin, and there is no risk of environmental pollution, and the thermosetting resin has no pot life.
The present invention is not limited to the embodiments, and can be modified without departing from the spirit of the invention.

10 繊維強化サンドイッチ複合体
11、11A~11D 繊維基材
15 コア材
21 熱硬化性樹脂
21A、21B 熱硬化性樹脂の粉体
30 金型
31 下型
32 上型
REFERENCE SIGNS LIST 10 Fiber-reinforced sandwich composite 11, 11A to 11D Fiber base material 15 Core material 21 Thermosetting resin 21A, 21B Thermosetting resin powder 30 Mold 31 Lower mold 32 Upper mold

Claims (3)

繊維基材とコア材が積層されて熱硬化性樹脂と共に加熱圧縮されることにより接着一体化した繊維強化サンドイッチ複合体であって、
前記コア材は、5%圧縮応力が0.15MPa以上であり、
前記熱硬化性樹脂は、加熱前の状態が粉体状であり、硬化反応開始温度Tb℃の粘度が1,500Pa・s以下であり、硬化反応開始温度Tb℃~190℃の範囲における最高粘度が1,000Pa・s以上であることを特徴とする繊維強化サンドイッチ複合体。
A fiber-reinforced sandwich composite in which a fiber base material and a core material are laminated and heated and compressed together with a thermosetting resin to bond and integrate the fiber base material and the core material,
The core material has a 5% compressive stress of 0.15 MPa or more,
The thermosetting resin is in a powder state before heating, has a viscosity of 1,500 Pa·s or less at a curing reaction initiation temperature Tb°C, and has a maximum viscosity of 1,000 Pa·s or more in the curing reaction initiation temperature range of Tb°C to 190°C. A fiber-reinforced sandwich composite.
前記コア材が独立気泡構造の発泡体であることを特徴とする、請求項1に記載の繊維強化サンドイッチ複合体。2. The fiber-reinforced sandwich composite of claim 1, wherein the core material is a closed-cell foam. 前記コア材は、5%圧縮応力が0.15MPa以上1MPa以下であることを特徴とする、請求項1又は請求項2に記載の繊維強化サンドイッチ複合体。3. The fiber-reinforced sandwich composite according to claim 1, wherein the core material has a 5% compressive stress of 0.15 MPa or more and 1 MPa or less.
JP2020171814A 2020-07-06 2020-10-12 Fiber Reinforced Sandwich Composites Active JP7473442B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2020171814A JP7473442B2 (en) 2020-10-12 2020-10-12 Fiber Reinforced Sandwich Composites
US17/925,228 US20230235140A1 (en) 2020-07-06 2021-06-22 Fiber-reinforced resin molded body and production method thereof, fiber-reinforced resin molding prepreg, fiber-reinforced molded body and production method of fiber-reinforced molded body and resin sheet, fiber-reinforced sandwich composite, and production method of fiberreinforced molded body
PCT/JP2021/023675 WO2022009671A1 (en) 2020-07-06 2021-06-22 Fiber-reinforced resin molded body and manufacturing method thereof, fiber-reinforced resin molding prepreg, fiber-reinforced molded body and fiber-reinforced molded body manufacturing method, and resin sheet, fiber-reinforced sandwich composite, and fiber-reinforced molded body manufacturing method
EP21835931.3A EP4177047A1 (en) 2020-07-06 2021-06-22 Fiber-reinforced resin molded body and manufacturing method thereof, fiber-reinforced resin molding prepreg, fiber-reinforced molded body and fiber-reinforced molded body manufacturing method, and resin sheet, fiber-reinforced sandwich composite, and fiber-reinforced molded body manufacturing method
CN202180042674.6A CN115835945A (en) 2020-07-06 2021-06-22 Fiber-reinforced resin molded article and method for producing same, prepreg for fiber-reinforced resin molding, fiber-reinforced molded article, method for producing fiber-reinforced molded article, resin sheet, fiber-reinforced sandwich composite, and method for producing fiber-reinforced molded article
TW110123546A TW202204137A (en) 2020-07-06 2021-06-28 Fiber-reinforced resin molded body and manufacturing method thereof, fiber-reinforced resin molding prepreg, fiber-reinforced molded body and fiber-reinforced molded body manufacturing method, and resin sheet, fiber-reinforced sandwich composite, and fiber-reinforced molded body manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020171814A JP7473442B2 (en) 2020-10-12 2020-10-12 Fiber Reinforced Sandwich Composites

Publications (3)

Publication Number Publication Date
JP2022063509A JP2022063509A (en) 2022-04-22
JP2022063509A5 JP2022063509A5 (en) 2022-05-30
JP7473442B2 true JP7473442B2 (en) 2024-04-23

Family

ID=81213379

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020171814A Active JP7473442B2 (en) 2020-07-06 2020-10-12 Fiber Reinforced Sandwich Composites

Country Status (1)

Country Link
JP (1) JP7473442B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005022171A (en) 2003-06-30 2005-01-27 Mitsubishi Heavy Ind Ltd Core for composite material sandwich panel, composite material sandwich panel and its manufacturing method
JP2020044811A (en) 2018-09-21 2020-03-26 東レ株式会社 Sandwiching structure

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005022171A (en) 2003-06-30 2005-01-27 Mitsubishi Heavy Ind Ltd Core for composite material sandwich panel, composite material sandwich panel and its manufacturing method
JP2020044811A (en) 2018-09-21 2020-03-26 東レ株式会社 Sandwiching structure

Also Published As

Publication number Publication date
JP2022063509A (en) 2022-04-22

Similar Documents

Publication Publication Date Title
EP2495099B1 (en) Fiber-reinforced molded product and method for producing same
WO2014010106A1 (en) Carbon fiber-reinforced composite material and method for producing same
JP6826982B2 (en) Reinforced with fibers of foam manufactured from segments joined together
WO2013096968A2 (en) Prepreg, fiber reinforced composite material, and manufacturing method for fiber reinforced composite material
JP2543743B2 (en) Method of making a molded article using a sandwich structure
JP2009120627A (en) Carbon fiber-reinforced prepreg having gas barrier property and carbon fiber-reinforced plastic, and method for producing them
CN111844946A (en) Novel composite board and preparation method thereof
WO2016067711A1 (en) Fiber-reinforced composite material and method for manufacturing same
JP2009012441A (en) Method for manufacturing fiber-reinforced resin molded article capable of recycling
JP5236840B1 (en) Carbon fiber reinforced composite material and method for producing the same
JP7473442B2 (en) Fiber Reinforced Sandwich Composites
WO2022009671A1 (en) Fiber-reinforced resin molded body and manufacturing method thereof, fiber-reinforced resin molding prepreg, fiber-reinforced molded body and fiber-reinforced molded body manufacturing method, and resin sheet, fiber-reinforced sandwich composite, and fiber-reinforced molded body manufacturing method
Boransan et al. EXPERIMENTAL MANUFACTURING METHODS OF GLASS FIBER COMPOSITES CONSIDERING FLEXURAL BEHAVIOUR.
JP5966969B2 (en) Manufacturing method of prepreg
CN111844947A (en) Novel equipment cabin plate and preparation method thereof
JP2023503032A (en) FIBER REINFORCED THERMOPLASTIC COMPOSITE SHEET AND METHOD OF MAKING SAME
CN109385042B (en) Low-density prepreg and interlayer composite molded article comprising same
CN114851638B (en) Transparent honeycomb core material, preparation method thereof and transparent honeycomb sandwich plate
JP7419291B2 (en) Method for manufacturing fiber-reinforced molded body, resin sheet, and method for manufacturing resin sheet
CN212979447U (en) Novel composite board
JP7321135B2 (en) Fiber-reinforced resin molding prepreg and fiber-reinforced resin molding
JP2019085517A (en) Composite particle, composite particle cured product, and composite particle in-molded body and method for producing composite particle
JP7326228B2 (en) Fiber-reinforced resin molding and its manufacturing method
CN112549693A (en) Impact-resistant composite material, composite board and preparation method thereof
JP2022093881A (en) Manufacturing method for fiber-reinforced molding and fiber-reinforced molding

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220519

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220519

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20221216

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20230116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240411