JP2009012441A - Method for manufacturing fiber-reinforced resin molded article capable of recycling - Google Patents

Method for manufacturing fiber-reinforced resin molded article capable of recycling Download PDF

Info

Publication number
JP2009012441A
JP2009012441A JP2007212740A JP2007212740A JP2009012441A JP 2009012441 A JP2009012441 A JP 2009012441A JP 2007212740 A JP2007212740 A JP 2007212740A JP 2007212740 A JP2007212740 A JP 2007212740A JP 2009012441 A JP2009012441 A JP 2009012441A
Authority
JP
Japan
Prior art keywords
fiber
reinforced
resin
crushed
resin molded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007212740A
Other languages
Japanese (ja)
Inventor
Katsuyuki Hasegawa
克之 長谷川
Original Assignee
Almighty:Kk
株式会社オールマイティー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2007150604 priority Critical
Application filed by Almighty:Kk, 株式会社オールマイティー filed Critical Almighty:Kk
Priority to JP2007212740A priority patent/JP2009012441A/en
Publication of JP2009012441A publication Critical patent/JP2009012441A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/021Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles characterised by the shape of the surface
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/02Agglomerated materials, e.g. artificial aggregates
    • C04B18/022Agglomerated materials, e.g. artificial aggregates agglomerated by an organic binder
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B40/00Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
    • C04B40/02Selection of the hardening environment
    • C04B40/0259Hardening promoted by a rise in pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/34Feeding the material to the mould or the compression means
    • B29C2043/3405Feeding the material to the mould or the compression means using carrying means
    • B29C2043/3427Feeding the material to the mould or the compression means using carrying means hopper, vessel, chute, tube, conveying screw, for material in discrete form, e.g. particles, powder, fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/04Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles using movable moulds
    • B29C43/06Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles using movable moulds continuously movable in one direction, e.g. mounted on chains, belts
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/54Substitutes for natural stone, artistic materials or the like
    • C04B2111/542Artificial natural stone
    • C04B2111/545Artificial marble

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a composite resin molded article where molding is facilitated, and further, a molded article can be manufactured at high precision. <P>SOLUTION: Fiber-reinforced stocks (130, 130', 130'') obtained by packing filler-shaped or powder-shaped reinforcing fiber raw materials of ≥60 wt.% into a matrix resin are used. The fiber-reinforced stocks are crushed, and the crushed pieces of the fiber-reinforced stocks are arranged on a flat face or on a face with a prescribed cubic shape, are heated, pressurized, and are made close together and integrated, so as to manufacture composite resin molded articles (131, 131'') with a prescribed shape. As the raw materials for the fiber-reinforced stocks, various non-flammable reinforcing fibers can be used. Further, as the matrix resin, various thermoplastic resins can be used. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は再生可能な繊維強化樹脂成形品の製造方法に関するものである。   The present invention relates to a method for producing a renewable fiber reinforced resin molded article.
例えば、繊維強化プラスチックFRPは一般に、不飽和ポリエステル等の熱硬化性樹脂を使用する。エポキシ樹脂、ポリアミド樹脂、フェノール樹脂を使用する場合もある。そして、その成型方法としては、型に繊維骨材を敷き、硬化剤を混合した樹脂を脱泡しながら多重積層してゆくハンドレイアップ法やスプレーアップ法のほか、あらかじめ骨材と樹脂を混合したシート状のものを金型で圧縮成型するSMCプレス法、繊維とマトリクス(接着剤)を予め馴染ませてある部材(プリプレグなど)を大型の窯(オートクレーブ)で「焼き固める」方法などがある。   For example, fiber reinforced plastic FRP generally uses a thermosetting resin such as unsaturated polyester. In some cases, an epoxy resin, a polyamide resin, or a phenol resin is used. In addition to the hand lay-up method and spray-up method in which fiber aggregates are laid on the mold and the resin mixed with the curing agent is defoamed and laminated, the aggregate and resin are mixed in advance. SMC press method that compresses and molds the sheet-like material with a mold, and a method that "fires and hardens" a material (prepreg, etc.) that has been pre-familiar with fiber and matrix (adhesive) in a large kiln (autoclave) .
安価・軽量で耐久性がよいことから、小型船舶の船体や、自動車・鉄道車両の内外装、ユニットバスや浄化槽などの住宅設備機器のほか、航空・宇宙などの先端技術で大きな地位を占めている。しかし、異種材料が混合した状態で成型されてしまっていること、熱硬化性樹脂をマトリックス樹脂としていることから、リサイクルがほとんど不可能な事が欠点である。   Because it is inexpensive, lightweight and durable, it occupies a large position in advanced technologies such as aerospace and space, as well as small ship hulls, interior and exterior of automobiles and railway vehicles, housing equipment such as unit baths and septic tanks, etc. Yes. However, it is disadvantageous that it is almost impossible to recycle because it is molded in a mixed state of different materials and the thermosetting resin is a matrix resin.
そこで、近年、ガラス繊維強化樹脂(GFRP)の代替として、リサイクル可能な、メチルメタアクリレートなどの熱可塑性樹脂を用いる発表もあるが、上述したように熱硬化性樹脂をマトリックスとしないと所定の強度が得られにくく、しかも熱可塑性樹脂を使用した場合特殊な製法となる。例えば、繊維強化熱可塑性樹脂シートを用いたスタンパブルシート成形があるが,ここでは「分繊飛動装置」を用いて従来の方法とは異なるシート製造法を開発したもので、連続した強化繊維(ロ−ビング)及び熱可塑性樹脂繊維(スライバー)を同時に供給し,装置内で繊維を切断,分繊,混合させ,両繊維が均一に混合した複合マットを連続に製造する方法である(独立行政法人 産業技術総合研究所)。しかしながら、汎用性に欠けるため、実用性がない。他方、リサイクル法としては、わずかに、FRP製の基体を用いた自動車用内装材を再生原料とし、熱可塑性樹脂の樹脂ペレットをマトリックス原料として、粉砕工程により再生原料及びマトリックス原料を10mm大以下に粉砕し、撹拌混合工程により前記粉砕された再生原料及びマトリックス原料を撹拌し、この撹拌された再生原料及びマトリックス原料を一体に擦り合わせて混合し、混合減容工程により前記撹拌混合された再生原料及びマトリックス原料を一体に擦り合わせて減容した後、前記混合減容された再生原料及びマトリックス原料を一体に押出機2に投入し、この再生原料及びマトリックス原料を溶融一体化したリサイクル製品Rを押出成形する自動車用内装材のリサイクル方法が提案されているに過ぎない(特許文献1)。   Therefore, in recent years, as an alternative to glass fiber reinforced resin (GFRP), there are also announcements using recyclable thermoplastics such as methyl methacrylate. However, as described above, if the thermosetting resin is not used as a matrix, it has a predetermined strength. Is difficult to obtain, and when a thermoplastic resin is used, it becomes a special production method. For example, there is stampable sheet molding using a fiber reinforced thermoplastic resin sheet, but here we have developed a sheet manufacturing method that is different from the conventional method by using a "split-splashing device". (Robbing) and thermoplastic resin fibers (sliver) are simultaneously supplied, and the fibers are cut, separated and mixed in the apparatus, and a composite mat in which both fibers are uniformly mixed is continuously produced (independently). National Institute of Advanced Industrial Science and Technology). However, since it lacks versatility, it is not practical. On the other hand, as a recycling method, automobile interior materials using FRP substrates are used as recycled materials, thermoplastic resin pellets are used as matrix materials, and recycled materials and matrix materials are reduced to 10 mm or less by the grinding process. The pulverized regenerated raw material and the matrix raw material are agitated by the stirring and mixing step, and the stirred regenerated raw material and the matrix raw material are mixed together by rubbing them together. And the matrix raw material are rubbed together to reduce the volume, and then the recycled raw material and the matrix raw material reduced in volume are put into the extruder 2 together, and the recycled product R obtained by melting and integrating the recycled raw material and the matrix raw material is obtained. Only a method for recycling an automotive interior material to be extruded has been proposed (Patent Document 1).
特開2006−264060号公報JP 2006-264060 A
本発明者は鋭意研究の結果、通常樹脂強化のための繊維充填量は成形技術等からの制限から熱硬化性樹脂に対し高々40重量%程度であるが、熱可塑性樹脂をマトリックスとしてもそこへの強化繊維の充填量を60重量%以上という通常考えられない充填量を実現すると、熱硬化性樹脂をマトリックスとするFRPに匹敵する物性が得られることを見出されたものの、マトリックスへの充填量を60重量%以上とすると、通常の押出成形では全く不可能であり、SMCプレス法 (Sheet Molding Compounds)を使用するにしても. 所定のSMCシート(基材・樹脂・充填材を混練しシート状にしたもの)を用意するのが困難である。
そこで、本発明者は繊維充填量60重量%以上の成形品を直接成形するのは不可能であっても、熱可塑性樹脂を使用する場合、一旦混練固化させた繊維強化複合材料を、粉砕または破砕し、これを成形材料として用いると、60重量%以上、好ましくは70重量%以上85重量%までの繊維分を配合することができ、しかもこれを成形すると、繊維の配向がランダムでしかも上下で重畳し、マトリックス樹脂として熱可塑性樹脂を使用しても極めて理想的な繊維強化樹脂製品が製造できることを見出した。
As a result of diligent research, the present inventor usually has a fiber filling amount for resin reinforcement of about 40% by weight at most with respect to the thermosetting resin due to limitations from molding technology, etc. Although it was found that when the filling amount of the reinforcing fiber of 60% by weight or more is realized, the physical properties comparable to FRP using a thermosetting resin as a matrix can be obtained. If the amount is 60% by weight or more, it is not possible at all by ordinary extrusion molding. Even if the SMC pressing method (Sheet Molding Compounds) is used, the prescribed SMC sheet (base material / resin / filler is kneaded) It is difficult to prepare a sheet).
Therefore, even when it is impossible for the inventor to directly form a molded product having a fiber filling amount of 60% by weight or more, when using a thermoplastic resin, the fiber-reinforced composite material once kneaded and solidified is crushed or When crushed and used as a molding material, a fiber content of 60% by weight or more, preferably 70% by weight or more and 85% by weight can be blended, and when this is molded, the fiber orientation is random and up and down. It was found that even if a thermoplastic resin is used as a matrix resin, a very ideal fiber reinforced resin product can be produced.
本発明は、60〜85重量%の不燃性繊維原料に対し40〜15重量%の熱可塑性樹脂を混練して固化した繊維強化素材の粉砕又は破砕片を用意し、該粉砕又は破砕片中の繊維方向をランダムに配向させて所定の成形型中に充填して加熱加圧し、粉砕又は破砕片を密集一体化し、複合樹脂成形品を製造することを特徴とする繊維強化樹脂成形品の製造方法にある。
本発明では、上記強化繊維はガラス繊維、カーボン繊維および繊維ボロン等の不燃性強化繊維から選ばれ、上記熱可塑性樹脂はFRPの用途に応じて各種熱可塑性樹脂が選択されてよく、強化繊維種類、寸法、充填量などとの関係で調整される。例えば、自動車車体、小型船舶船体材料などの構造材料にはPP(ポリプロピレン),PC(ポリカーボネイト)などが好ましい。また、強化繊維との混練性を改善する目的で、相溶する二以上の熱可塑性樹脂を配合して調整することができる。
The present invention provides a pulverized or crushed piece of a fiber reinforced material prepared by kneading 40 to 15% by weight of a thermoplastic resin with 60 to 85% by weight of an incombustible fiber raw material and solidifying the reinforced or crushed piece. A method for producing a fiber-reinforced resin molded product, characterized in that fiber directions are randomly oriented, filled in a predetermined mold, heated and pressed, and pulverized or crushed pieces are closely integrated to produce a composite resin molded product. It is in.
In the present invention, the reinforcing fiber is selected from non-combustible reinforcing fibers such as glass fiber, carbon fiber and fiber boron, and the thermoplastic resin may be selected from various thermoplastic resins according to the use of FRP. , Dimensions, filling amount, etc. For example, PP (polypropylene), PC (polycarbonate) and the like are preferable for structural materials such as automobile bodies and small ship hull materials. Further, for the purpose of improving the kneadability with the reinforcing fiber, two or more thermoplastic resins that are compatible can be blended and adjusted.
本発明は、人工大理石の着色方法に基いて発明されたもので、一種又は二種以上の着色した60〜85重量%の不燃性繊維原料に対し40〜15重量%の透明又は透光性熱可塑性樹脂を混練して固化した繊維強化素材の粉砕又は破砕片を用意する場合は、繊維原料を着色するのが好ましく、ガラス繊維を着色して用いることができる。着色した不燃性繊維原料に対し同系統に着色した熱可塑性樹脂を混練して固化した繊維強化素材の粉砕又は破砕片を用意することも可能であり、上記粉砕又は破砕片が2種以上の異種の着色材料である場合もある。   The present invention was invented based on a method for coloring artificial marble, and 40 to 15% by weight of transparent or translucent heat with respect to one or more colored 60 to 85% by weight of incombustible fiber raw material. When preparing a pulverized or crushed piece of a fiber reinforced material kneaded and solidified with a plastic resin, the fiber raw material is preferably colored, and glass fiber can be colored and used. It is also possible to prepare a pulverized or crushed piece of a fiber reinforced material obtained by kneading and solidifying a thermoplastic resin colored in the same system with a colored incombustible fiber raw material. It may be a coloring material.
本発明によれば、強化繊維の高充填により製造中に粘度が増加して所望の形状への成形が困難なFRPの場合であっても、繊維強化素材を粉砕または破砕して加熱加圧により、所望の形状に容易に成形できる。例えば、不燃性又は難燃性を付与するための強化繊維と樹脂とを60:40の重量割合で混練すると、粘度が次第に増大し、例えば薄板などへの成形が非常に困難であるが、本発明では繊維強化素材の粉砕片又は破砕片を並べて加熱加圧して成形しているので、高充填繊維の繊維強化素材であっても容易に薄板に成形できる。しかも本発明では破砕片中の強化繊維は配向を一定にせず、ランダムに配置され、これを重ねて加熱加圧するので、繊維の配向がランダムでしかも上下で重畳し合う結果、予測を遥かに超える強度を確保することができる。さらに、マトリックス樹脂が熱可塑性樹脂であるため、繊維強化樹脂成形品を廃棄する場合、樹脂成形品を回収して破砕することによって新たに複合樹脂成形品の原料として用いることができるので、リサイクル性に優れている。   According to the present invention, even in the case of FRP in which the viscosity increases during production due to high filling of reinforcing fibers and it is difficult to form into a desired shape, the fiber-reinforced material is crushed or crushed and heated and pressed. Can be easily formed into a desired shape. For example, when a reinforcing fiber and a resin for imparting incombustibility or flame retardancy are kneaded at a weight ratio of 60:40, the viscosity gradually increases, and for example, it is very difficult to form into a thin plate. In the invention, the pulverized pieces or crushed pieces of the fiber reinforced material are arranged and heated and pressed to form, so even a fiber reinforced material of highly filled fibers can be easily formed into a thin plate. Moreover, in the present invention, the reinforcing fibers in the crushed pieces do not have a constant orientation and are randomly arranged, and these are repeatedly heated and pressed, so that the orientation of the fibers is random and superimposes vertically, which is far beyond prediction. Strength can be secured. Furthermore, since the matrix resin is a thermoplastic resin, when the fiber reinforced resin molded product is discarded, it can be used as a new raw material for the composite resin molded product by collecting and crushing the resin molded product. Is excellent.
繊維強化素材の原料、例えば強化繊維はマトリックス樹脂と混練するが、混練機で混練し、又は1軸又は2軸の押出機で攪拌しながら押し出し、あるいは混練機で混練した後、1軸又は2軸の押出機に移してさらに攪拌することにより、繊維原料とマトリックス樹脂とを混練することができる。   The raw material of the fiber reinforced material, for example, the reinforcing fiber is kneaded with the matrix resin, but kneaded with a kneader, extruded with stirring with a single or biaxial extruder, or kneaded with a kneader, then uniaxial or 2 The fiber raw material and the matrix resin can be kneaded by transferring to a shaft extruder and further stirring.
本発明の特徴は混練固化した繊維強化素材を粉砕又は破砕し、これを並べて加熱し加圧して薄いシート、やや厚いプレート状又は立体形状の複合樹脂成形品を製造するようにした点にある。強化繊維の含有水分は溶融したマトリックス樹脂との混練前に、他の熱源で加熱し含有水分を蒸発させるようにしてもよく、又溶融したマトリックス樹脂と複数の強化繊維とを混練する際に強化繊維をマトリックス樹脂の熱によって加熱して強化繊維の含有水分を蒸発させるようにしてもよい。このようにすると、強化繊維の乾燥工程を別途必要とせず、製造工程を簡素化できる。   The feature of the present invention resides in that a kneaded and solidified fiber reinforced material is pulverized or crushed, and these are arranged, heated and pressurized to produce a thin sheet, a slightly thick plate-shaped or three-dimensional composite resin molded product. The moisture content of the reinforcing fiber may be heated with another heat source to evaporate the moisture content before kneading with the molten matrix resin, or strengthened when the molten matrix resin and a plurality of reinforcing fibers are kneaded. The fibers may be heated by the heat of the matrix resin to evaporate the moisture content of the reinforcing fibers. If it does in this way, the drying process of a reinforcement fiber is not required separately, but a manufacturing process can be simplified.
使用済みの繊維強化素材をリサイクルする場合、回収した繊維強化素材を適当な大きさ、例えば強化繊維の立体的形状が残存する程度の大きさ、例えば一辺が5mm〜20mmの大きさに破砕し、適当な熱源によって加熱してマトリックス樹脂を軟化又は溶融させ、必要に応じてマトリックス樹脂を添加し、繊維強化素材の原料の全部又は一部として用いることもできる。   When recycling used fiber reinforced materials, the recovered fiber reinforced materials are crushed to an appropriate size, for example, a size such that the three-dimensional shape of the reinforced fibers remains, for example, 5 mm to 20 mm on a side, The matrix resin can be softened or melted by heating with an appropriate heat source, and the matrix resin can be added as necessary, and used as all or part of the raw material of the fiber reinforced material.
使用済みの繊維強化素材を新たな繊維強化素材にリサイクルする場合にも原料とマトリックス樹脂の適切な比率を維持する必要がある。   Even when used fiber reinforced materials are recycled into new fiber reinforced materials, it is necessary to maintain an appropriate ratio of raw material to matrix resin.
複合樹脂成形品に表面樹脂層を形成する場合、複合樹脂成形品の表面に軟化又は溶融した合成樹脂材料を重ねることにより形成してもよく、合成樹脂製のフィルム、シート又はプレートを積層することにより形成することもできる。複合樹脂成形品の表面樹脂層は複合樹脂成形品の外表面の全部に形成してもよく、外表面の一部、例えばプレート状複合樹脂成形品の上面又は下面だけに形成してもよい。   When a surface resin layer is formed on a composite resin molded product, it may be formed by stacking a softened or melted synthetic resin material on the surface of the composite resin molded product, or a synthetic resin film, sheet or plate is laminated. Can also be formed. The surface resin layer of the composite resin molded product may be formed on the entire outer surface of the composite resin molded product, or may be formed only on a part of the outer surface, for example, the upper surface or the lower surface of the plate-shaped composite resin molded product.
複合樹脂成形品は表面樹脂層を形成して所定の製品形状に加圧成形することができるが、複合樹脂成形品の表面に合成樹脂製のフィルム、シート又はプレートを積層し、あるいは軟化又は溶融した合成樹脂材料を重ねる際に、所定の製品形状に成形することもできる。この複合樹脂成形品の成形には金型やローラなどを用い、絞り成形、曲げ成形、真空成形、圧空成形、マッチモールド成形などを採用することができる。   Composite resin molded products can be molded into a predetermined product shape by forming a surface resin layer, but a synthetic resin film, sheet or plate is laminated on the surface of the composite resin molded product, or softened or melted. When the synthetic resin materials are stacked, they can be molded into a predetermined product shape. For molding this composite resin molded product, a die, a roller, or the like is used, and drawing molding, bending molding, vacuum molding, pressure molding, match molding, or the like can be employed.
合成樹脂製のフィルム、シート又はプレートと複合樹脂成形品とは接着剤によって接着するようにしてもよく、複合樹脂成形品のマトリックス樹脂と表面樹脂層の合成樹脂材料との親和性によって相互に結合するようにしてもよい。   The synthetic resin film, sheet or plate and the composite resin molded product may be bonded to each other by an adhesive, and bonded to each other depending on the affinity between the matrix resin of the composite resin molded product and the synthetic resin material of the surface resin layer. You may make it do.
以下、本発明を図面に示す具体例に基づいて詳細に説明する。図1は本発明に係る再生可能な繊維強化樹脂製品の製造方法の好ましい実施形態を示す。繊維強化樹脂製品を製造する場合、各種強化繊維材料を準備する。この強化繊維は長繊維、短繊維のほかに、平均外径10μm〜35μmの粉状のものを用いることもできる。   Hereinafter, the present invention will be described in detail based on specific examples shown in the drawings. FIG. 1 shows a preferred embodiment of a method for producing a renewable fiber-reinforced resin product according to the present invention. When manufacturing fiber reinforced resin products, various reinforcing fiber materials are prepared. In addition to long fibers and short fibers, the reinforcing fibers may be powdery having an average outer diameter of 10 μm to 35 μm.
また、樹脂、例えば適当な大きさのチップ状のポリプロピレンやポリエチレンなどの熱可塑性樹脂を準備する。これらの樹脂は1種でもよく、2種が混ざったものでもよい。   Also, a resin, for example, a thermoplastic resin such as an appropriately sized chip-shaped polypropylene or polyethylene is prepared. These resins may be one kind or a mixture of two kinds.
他方、混練機10の加熱ヒータを作動させ、混練機10内部を熱可塑性樹脂の溶融温度、例えば100°C〜300°Cの範囲内の温度まで上昇させておき、図1の(a)に示されるように、破砕した熱可塑性樹脂のチップを混練機10内に投入し、攪拌しながら溶融させる。バインダー樹脂のチップの投入は一度に行ってもよく、複数回に分けて行ってもよい。バインダー樹脂の溶融中に攪拌羽根の回転による溶融樹脂の攪拌によって熱が発生する場合には加熱ヒータによる加熱温度はバインダー樹脂の溶融温度よりも多少低温であってもよい。   On the other hand, the heater of the kneading machine 10 is operated, and the inside of the kneading machine 10 is raised to a melting temperature of the thermoplastic resin, for example, a temperature in the range of 100 ° C. to 300 ° C., and FIG. As shown, the crushed thermoplastic resin chips are put into the kneader 10 and melted with stirring. Binder resin chips may be charged at once, or may be divided into a plurality of times. When heat is generated by stirring the molten resin by rotation of the stirring blade during melting of the binder resin, the heating temperature by the heater may be slightly lower than the melting temperature of the binder resin.
熱可塑性樹脂が十分に軟化又は溶融すると、準備した繊維原料、例えばガラス繊維を一度に又は複数回に分けて混練機10内に投入するとともに、着色剤、例えば塗料を一度に又は複数回に分けて混練機10内に投入し、軟化・溶融した熱可塑性樹脂と充填剤及び着色剤を実質的に均一になるように混練する。充填剤は一度に大量に投入すると、軟化・溶融した樹脂の温度が低下してしまうことがあるので、混練機10への投入前に繊維強化素材の原料を予め加熱ヒータ等で適当な温度に加熱してもよい。   When the thermoplastic resin is sufficiently softened or melted, the prepared fiber raw material, for example, glass fiber, is fed into the kneader 10 in one time or a plurality of times, and the colorant, for example, the paint is divided in one time or a plurality of times. Then, the mixture is put into the kneader 10 and the softened and melted thermoplastic resin, the filler and the colorant are kneaded so as to be substantially uniform. If a large amount of filler is added at a time, the temperature of the softened and melted resin may decrease. Therefore, the raw material of the fiber reinforced material is preliminarily set to an appropriate temperature with a heater or the like before being added to the kneader 10. You may heat.
また、熱可塑性樹脂を溶融状態のままで長時間加熱すると、樹脂本来の物性が損なわれることもあるので、十分に溶融した後、短時間で混練を完了させるのが好ましい。本件発明者の実験によれば、溶融してから混練が完了するまでの時間は5分〜30分程度が好ましいことが判明したが、加熱温度や熱可塑性樹脂の物性によって異なるので、最適な時間は実験などによって求めるのがよい。   Further, if the thermoplastic resin is heated for a long time in a molten state, the original physical properties of the resin may be impaired. Therefore, it is preferable to complete the kneading in a short time after sufficiently melting. According to the experiments of the present inventors, it has been found that the time from melting to completion of kneading is preferably about 5 to 30 minutes. However, the optimum time varies depending on the heating temperature and the physical properties of the thermoplastic resin. Should be obtained by experimentation.
十分な混練が済むと、図1の(b)(c)に示されるように、混練物20を取り出し、破砕機11で適切な寸法、例えば一辺が3mm〜40mmの大きさの粒状、片状又は塊状に破砕する。この破砕粒、破砕片又は破砕塊21の寸法は後の工程における加圧によって流動させるので特に限定されない。   After sufficient kneading, as shown in FIGS. 1 (b) and 1 (c), the kneaded product 20 is taken out and is crushed by a crusher 11, for example, in a granular or flaky shape with a side of 3 to 40 mm. Or crush into a lump. The size of the crushed particles, crushed pieces or crushed lump 21 is not particularly limited because it is caused to flow by pressurization in a later step.
同様にして図1の(d)に示されるように、色彩の異なる、例えば白色、黒色、茶色、青色の破砕粒、破砕片又は破砕塊21を製造する。   Similarly, as shown in FIG. 1 (d), crushed grains, crushed pieces or crushed pieces 21 of different colors, for example, white, black, brown, blue, are produced.
こうして複数の色彩の破砕粒、破砕片又は破砕塊21が得られると、これらを成形面、例えば図1の(e)に示されるように、加熱した金型12の下型面上に並べ、上型で加熱する。すると、色彩の異なる熱可塑性樹脂が流動しながら相互に一体化するので、温度低下後、取り出し、表面を研磨すると、図1の(f)に示されるように、磨いた表面の模様と思えるような繊維強化樹脂製品が得られる。   When crushed grains, crushed pieces or crushed lumps 21 of a plurality of colors are obtained in this way, these are arranged on the molding surface, for example, the lower mold surface of the heated mold 12 as shown in FIG. Heat with the upper mold. Then, since the thermoplastic resins of different colors are integrated with each other while flowing, when the surface is taken out and the surface is polished after the temperature is lowered, it seems to be a polished surface pattern as shown in FIG. Fiber reinforced resin products can be obtained.
以下、第2実施例を具体例に基づいて詳細に説明する。
図2は本発明に係る繊維強化樹脂成形品の製造方法の好ましい実施形態を示し、これは繊維強化素材の原料に強化繊維を用いた例である。本例の複合樹脂成形品を製造する場合、例えば廃繊維強化樹脂を破砕機によって破砕し、強化繊維として準備することができる。また、例えば廃プラスチックに由来するマトリックス樹脂、例えばポリプロピレンやポリエチレンを破砕機によって適当な大きさのチップに破砕する。なお、これらは1種でもよく、2種が混ざったものでもよい。
Hereinafter, the second embodiment will be described in detail based on specific examples.
FIG. 2 shows a preferred embodiment of a method for producing a fiber-reinforced resin molded article according to the present invention, which is an example in which reinforcing fibers are used as a raw material for a fiber-reinforced material. When manufacturing the composite resin molded article of this example, waste fiber reinforced resin can be crushed with a crusher and prepared as a reinforced fiber, for example. Further, for example, a matrix resin derived from waste plastic, such as polypropylene or polyethylene, is crushed into chips of an appropriate size by a crusher. These may be one type or a mixture of two types.
他方、混練機110の加熱ヒータを作動させ、混練機110内部をマトリックス樹脂の溶融温度、例えば100°C〜300°Cの範囲内の温度まで上昇させておき、破砕したマトリックス樹脂のチップを混練機110内に投入し、攪拌しながら溶融させる。マトリックス樹脂のチップの投入は一度に行ってもよく、複数回に分けて行ってもよい。マトリックス樹脂の溶融中に攪拌羽根の回転による溶融樹脂の攪拌によって熱が発生する場合には加熱ヒータによる加熱温度はマトリックス樹脂の溶融温度よりも多少低温であってもよい。   On the other hand, the heater of the kneading machine 110 is operated, and the inside of the kneading machine 110 is raised to the melting temperature of the matrix resin, for example, a temperature in the range of 100 ° C. to 300 ° C., and the crushed matrix resin chips are kneaded. It is put into the machine 110 and melted while stirring. The matrix resin chip may be charged at once or may be divided into a plurality of times. When heat is generated by stirring the molten resin by rotation of the stirring blade during the melting of the matrix resin, the heating temperature by the heater may be slightly lower than the melting temperature of the matrix resin.
マトリックス樹脂が十分に溶融すると、準備した強化繊維を一度に又は複数回に分けて混練機110内に投入し、溶融したマトリックス樹脂が強化繊維の表面を確実にコーティングするように混練する。強化繊維は一度に大量に投入すると、溶融樹脂の温度が低下してしまうことがあるので、混練機110への投入前に、強化繊維を予め加熱ヒータ等で適当な温度に加熱してもよい。この場合には含有水分がある程度蒸発するので、混練機110での混練時間を短くできる。   When the matrix resin is sufficiently melted, the prepared reinforcing fibers are put into the kneading machine 110 at one time or divided into a plurality of times, and kneaded so that the molten matrix resin reliably coats the surface of the reinforcing fibers. If a large amount of reinforcing fibers are added at once, the temperature of the molten resin may decrease. Therefore, the reinforcing fibers may be preheated to an appropriate temperature with a heater or the like before being added to the kneader 110. . In this case, since the contained water evaporates to some extent, the kneading time in the kneader 110 can be shortened.
また、マトリックス樹脂を溶融状態のままで長時間加熱すると、樹脂本来の物性が損なわれることもあるので、十分に溶融した後、短時間で混練を完了させるのが好ましい。本件発明者の実験によれば、溶融してから混練が完了するまでの時間は5分〜30分程度が好ましいことが判明したが、マトリックス樹脂の温度や強化繊維の乾燥状態によって異なるので、最適な時間は実験などによって求めるのがよい。   In addition, if the matrix resin is heated in a molten state for a long time, the original physical properties of the resin may be impaired. Therefore, it is preferable to complete the kneading in a short time after sufficiently melting. According to the experiments of the present inventors, it has been found that the time from melting to completion of kneading is preferably about 5 to 30 minutes, but it varies depending on the temperature of the matrix resin and the drying state of the reinforcing fibers. It is better to find the appropriate time by experimentation.
また、混練の際、溶融樹脂の例えば100°C〜300°Cの高熱によって強化繊維分が加熱され、強化繊維分に含まれていた含有水分が蒸発し、混練機110の開口から放散されるので、強化繊維及び木粉の含有水分が大幅に減少する。なお、混練機110が密閉形の場合には一定の時間間隔をあけて間欠的に開放し、水蒸気を放散させるようにする。   Further, at the time of kneading, the reinforcing fiber is heated by the high heat of the molten resin, for example, 100 ° C. to 300 ° C., and the moisture contained in the reinforcing fiber is evaporated and diffused from the opening of the kneader 110. Therefore, the moisture content of the reinforcing fiber and wood powder is greatly reduced. In the case where the kneader 110 is a hermetically sealed type, the steam is dissipated intermittently with a certain time interval.
強化繊維分と溶融したマトリックス樹脂とが十分に混練されると、混練物をローラ型プレス機111に供給し、混練物を所定の強加圧力で挟んで送り、強加圧状態を維持してマトリックス樹脂を硬化させる。ローラ型プレス機111は上側及び下側のローラ列にベルトを無端状にかけわたして構成されている。また、終端側のローラは水冷しておき、混練物を強加圧状態のままで冷却するようにするのがよい。なお、水冷に代え、エアーを吹き付けて冷却するようにしてもよい。   When the reinforcing fiber component and the molten matrix resin are sufficiently kneaded, the kneaded product is supplied to the roller press 111, and the kneaded product is sandwiched and fed with a predetermined strong pressure to maintain the strong pressure state and the matrix resin. Is cured. The roller type press 111 is constructed by belting the upper and lower roller rows endlessly. Further, it is preferable that the roller on the end side is cooled with water so that the kneaded material is cooled in a strong pressure state. In place of water cooling, air may be blown for cooling.
また、マトリックス樹脂が加熱軟化すると、増粘してローラなどに粘着してしまうが、上述のように強化繊維を添加し混練すると、粘着性が低下し、ローラによる加工が可能となる。   Further, when the matrix resin is softened by heating, it thickens and sticks to the roller or the like. However, when the reinforcing fiber is added and kneaded as described above, the adhesiveness is lowered, and processing by the roller becomes possible.
混練物の送り速度はローラ列を出たときに混練物が十分に固まっている速度とする。また、上下のローラ列による加圧力は19.6×105Pa(20kgf/cm2)の面圧を加えるようになっているが、面圧は19.6×105Pa(20kgf/cm2)以上で58.8×105Pa(60kgf/cm2)程度までの範囲から、複合木材の用途や材料等に応じて適宜設定すればよく、又必要に応じてそれよりも大きな面圧を加えることもできる。   The feed speed of the kneaded product is set to a speed at which the kneaded product is sufficiently hardened when it exits the roller train. Further, the pressure applied by the upper and lower roller rows is such that a surface pressure of 19.6 × 10 5 Pa (20 kgf / cm 2) is applied, but the surface pressure is 18.8 × 10 5 Pa (20 kgf / cm 2) or more and 58.8. From the range up to about × 10 5 Pa (60 kgf / cm 2), it may be set as appropriate according to the use or material of the composite wood, and a larger surface pressure can be applied if necessary.
こうして混練物が十分に硬化すると、複数の強化繊維とマトリックス樹脂とが相互に強く結合された繊維強化素材130が得られる。ローラ型プレス機111における加圧力を小さくし、あるいは送り速度を速くして、繊維強化素材130の半製品として得るようにしてもよい。   When the kneaded material is sufficiently cured in this way, a fiber reinforced material 130 in which a plurality of reinforcing fibers and a matrix resin are strongly bonded to each other is obtained. You may make it obtain as a semi-finished product of the fiber reinforced raw material 130 by making small the pressurizing force in the roller type press 111, or making feed speed high.
得られた繊維強化素材130を破砕機112で適切な寸法、例えば一辺が3mm〜20mmの大きさに破砕する。なお、破砕片の寸法は後の工程において繊維強化素材130を十分に軟化又は溶融させて高い寸法精度のプレートに加工することができれば特に限定されない。   The obtained fiber reinforced material 130 is crushed by a crusher 112 to an appropriate size, for example, a size of 3 mm to 20 mm on a side. The size of the crushed pieces is not particularly limited as long as the fiber reinforced material 130 can be sufficiently softened or melted and processed into a plate with high dimensional accuracy in a later step.
そして、繊維強化素材130の破砕片を加熱装置113に投入し、加熱軟化させる一方、ローラ型プレス機114を加熱し、軟化した繊維強化素材130の破砕片をローラ型プレス機114に押し出して並べ、ローラ型プレス機114で加圧してプレート状の複合樹脂成形品131を製造する。   Then, the crushed pieces of the fiber reinforced material 130 are put into the heating device 113 and softened by heating, while the roller press 114 is heated, and the crushed pieces of the fiber reinforced material 130 are pushed out to the roller press 114 and arranged. The plate-shaped composite resin molded product 131 is manufactured by pressing with a roller press 114.
このプレート状の複合樹脂成形品131は製品の厚みから表面樹脂層の厚みを差し引いた厚みにプレスされるが、強化繊維とマトリックス樹脂とが既に高い強度で結合されたものを原料としているので、高い寸法精度が得られる加圧力でもってプレスすることができる。   This plate-shaped composite resin molded article 131 is pressed to a thickness obtained by subtracting the thickness of the surface resin layer from the thickness of the product, but since the reinforcing fiber and the matrix resin are already combined with high strength, It is possible to press with a pressurizing force that provides high dimensional accuracy.
次に、得られた複合樹脂成形品131に樹脂製、例えばポリプロピレンやポリエチレン製のフィルム(シート又はプレートでもよい)132を積層させながらローラ型プレス機115に送り込み、加熱して複合樹脂成形品131の表面にフィルム132を結合させて表面樹脂層を形成する。同じ操作を繰り返して複合樹脂成形品131の上面、下面及び側面に表面樹脂層を形成してもよい。   Next, the obtained composite resin molded product 131 is fed into a roller press 115 while laminating a film 132 (may be a sheet or a plate) made of resin, for example, polypropylene or polyethylene, and heated to heat the composite resin molded product 131. A surface resin layer is formed by bonding the film 132 to the surface. The surface resin layer may be formed on the upper surface, the lower surface, and the side surface of the composite resin molded product 131 by repeating the same operation.
こうして製品の素材133が得られると、素材133を例えば金型116内にセットし、加熱加圧して所定の立体形状に加工すると、製品134が得られる。この製品134は図3に示されるように繊維強化素材134Aの表面を樹脂層134Bで被覆した構造をなし、表面から見ると、全体が樹脂だけで製造されているように見えることとなる。   When the product material 133 is obtained in this way, the product 134 is obtained by setting the material 133 in, for example, the mold 116 and heating and pressing it into a predetermined three-dimensional shape. As shown in FIG. 3, the product 134 has a structure in which the surface of the fiber reinforced material 134A is covered with the resin layer 134B, and when viewed from the surface, the entire product 134 appears to be manufactured only from the resin.
図4は第3の実施形態を示し、図において図2と同一符号は同一又は相当部分を示す。本例ではローラ型プレス機111に代え、1軸又は2軸の押出機111’を用い、あまり高くない加圧力で繊維強化素材130’を製造し、これを破砕工程112で破砕するようにしている。これは後の工程で破砕片を加熱し加圧して複合樹脂成形品131を製造するので、繊維強化素材130’の製造工程において強化繊維とマトリックス樹脂とは必ずしも強固に結合させる必要はなく、強化繊維の表面側の微小腔の一部にマトリックス樹脂を侵入させた半複合材であってもよいからである。   FIG. 4 shows a third embodiment, in which the same reference numerals as those in FIG. 2 denote the same or corresponding parts. In this example, instead of the roller press 111, a single- or twin-screw extruder 111 ′ is used to produce a fiber reinforced material 130 ′ with a not-high pressure, and this is crushed in the crushing step 112. Yes. This is because the composite resin molded article 131 is manufactured by heating and pressurizing the crushed pieces in the subsequent process, and therefore it is not always necessary to firmly bond the reinforcing fiber and the matrix resin in the manufacturing process of the fiber reinforced material 130 ′. This is because it may be a semi-composite material in which a matrix resin is invaded into a part of the microcavity on the surface side of the fiber.
なお、混練機110は必ずしも用いる必要はなく、図5に示されるように、強化繊維とマトリックス樹脂を押出機111’に投入して混練することもできる。   Note that the kneading machine 110 is not necessarily used, and as shown in FIG. 5, the reinforcing fibers and the matrix resin can be put into the extruder 111 'and kneaded.
また、本例では繊維強化素材130’の破砕片を押出し機113ではなく、フィーダ113’によって破砕片のままローラ型プレス機114に供給し、平面上に並べて加熱加圧し、プレート状の複合樹脂成形品131を製造するようにしている。   Further, in this example, the crushed pieces of the fiber reinforced material 130 ′ are supplied to the roller press 114 as the crushed pieces by the feeder 113 ′ instead of the extruder 113, arranged on a plane and heated and pressed to form a plate-shaped composite resin The molded product 131 is manufactured.
図6は第4の実施形態を示し、図において図4と同一符号は同一又は相当部分を示す。本例ではローラ型プレス機115によって製品の素材133を製造する際に、押出し機117によって軟化又は溶融した樹脂をプレート状の複合樹脂成形品131上に押し出し、表面樹脂層を形成するようにしている。   FIG. 6 shows a fourth embodiment, in which the same reference numerals as those in FIG. 4 denote the same or corresponding parts. In this example, when the product material 133 is manufactured by the roller press 115, the resin softened or melted by the extruder 117 is extruded onto the plate-shaped composite resin molded product 131 to form a surface resin layer. Yes.
図7は第5の実施形態を示し、図において図2ないし図5と同一符号は同一又は相当部分を示す。本例では製品の素材133をプレスするローラ型プレス機115に代え、金型116を用い、下型116Aと上型116Bの間に複合樹脂成形品131と樹脂製フィルム132とを積層した状態でセットし、これを加熱加圧することによって複合樹脂成形品131と樹脂製フィルム132を結合して複合樹脂成形品31の表面に樹脂層を形成するとともに、同時に所定の製品形状に成型するようにしている。   FIG. 7 shows a fifth embodiment, in which the same reference numerals as those in FIGS. 2 to 5 denote the same or corresponding parts. In this example, instead of the roller type press 115 for pressing the material 133 of the product, the mold 116 is used, and the composite resin molded product 131 and the resin film 132 are laminated between the lower die 116A and the upper die 116B. The composite resin molded product 131 and the resin film 132 are joined by heating and pressurizing to form a resin layer on the surface of the composite resin molded product 31, and simultaneously molding into a predetermined product shape. Yes.
なお、第5の実施形態では下型116Aの上に基材131と樹脂製フィルム132を積層してセットするようにしたが、繊維強化素材130又は130’の破砕片を下型116Aの成形面(製品形状の面)上に並べ、上型116Bで加圧して製品形状の複合樹脂成形品を製造した後、樹脂製フィルム132を重ねて上型116Bで加圧して表面樹脂層を形成するようにしてもよい。また、繊維強化素材130又は130’の破砕片を下型116Aの成形面(製品形状の面)上に並べ、その上に樹脂製フィルム132を重ねて加熱するとともに上型116Bで加圧して製品形状の複合樹脂成形品と表面樹脂層とを形成することもできる。   In the fifth embodiment, the base 131 and the resin film 132 are laminated and set on the lower mold 116A. However, the crushed pieces of the fiber reinforced material 130 or 130 ′ are formed on the molding surface of the lower mold 116A. A product-shaped composite resin molded product is manufactured by placing the product on the (product-shaped surface) and pressurizing with the upper mold 116B, and then forming a surface resin layer by stacking the resin film 132 and pressing with the upper mold 116B. It may be. Further, the crushed pieces of the fiber reinforced material 130 or 130 ′ are arranged on the molding surface (product shape surface) of the lower mold 116A, and the resin film 132 is stacked thereon and heated, and the upper mold 116B pressurizes the product. A composite resin molded product having a shape and a surface resin layer can also be formed.
また、繊維強化素材130又は130’を製造するローラ型プレス機111に代え、金型を用いて強加圧してもよく、又多段ローラを通過させて強加圧と冷却とを繰り返してマトリックス樹脂を硬化させて繊維強化素材130又は130’を製造するようにしてもよい。   Further, instead of the roller type press machine 111 for producing the fiber reinforced material 130 or 130 ', strong pressing may be performed using a mold, and the matrix resin is cured by repeating strong pressing and cooling through a multistage roller. Thus, the fiber reinforced material 130 or 130 ′ may be manufactured.
また、上記の例では繊維強化素材130又は130’を製造し、これを破砕して複合樹脂成形品を製造するようにしたが、廃棄された複合木材や複合樹脂成形品を回収して複合木材を取り出し、これを原料として複合樹脂成形品を製造することもできる。   In the above example, the fiber reinforced material 130 or 130 ′ is manufactured and crushed to produce a composite resin molded product. However, the discarded composite wood or composite resin molded product is recovered to obtain the composite wood. And a composite resin molded product can also be produced using this as a raw material.
図8は第6の実施形態を示し、これは繊維強化素材の原料にカーボン繊維を用いた例である。本例の複合樹脂成形品を製造する場合、平均長さ5〜15mmのものを用いる。他方、マトリックス樹脂としてポリカーボネイトの適当なサイズものを準備する。   FIG. 8 shows a sixth embodiment, which is an example in which carbon fiber is used as a raw material of the fiber reinforced material. When producing the composite resin molded product of this example, one having an average length of 5 to 15 mm is used. On the other hand, an appropriate size of polycarbonate is prepared as a matrix resin.
他方、混練機110の加熱ヒータを作動させ、混練機110内部をマトリックス樹脂の軟化温度まで上昇させておき、マトリックス樹脂を混練機110内に投入し、攪拌しながら軟化させる。マトリックス樹脂の投入は一度に行ってもよく、複数回に分けて行ってもよい。   On the other hand, the heater of the kneading machine 110 is operated to raise the inside of the kneading machine 110 to the softening temperature of the matrix resin, and the matrix resin is put into the kneading machine 110 and softened while stirring. The matrix resin may be charged at a time or may be divided into a plurality of times.
マトリックス樹脂が十分に軟化すると、樹脂30重両部に対し70重両部の準備したカーボン繊維分を一度に又は複数回に分けて混練機110内に投入し、軟化したマトリックス樹脂と十分に混練する。マトリックス樹脂を長時間加熱すると、樹脂本来の物性が損なわれることもあるので、十分に溶融した後、短時間で混練を完了させるのが好ましい。   When the matrix resin is sufficiently softened, the prepared carbon fiber content of 70 parts for both 30 parts of the resin is put into the kneader 110 at one time or divided into a plurality of times to sufficiently knead with the softened matrix resin. To do. When the matrix resin is heated for a long time, the original physical properties of the resin may be impaired. Therefore, it is preferable to complete the kneading in a short time after sufficiently melting.
強化繊維分とマトリックス樹脂とが十分に混練されると、混練機110から混練物を取り出すと、繊維強化素材130''が得られる。この繊維強化素材130''を破砕機112で適切な寸法、例えば一辺が3mm〜20mmの大きさに破砕する。なお、破砕片の寸法は後の工程において繊維強化素材130''を十分に軟化又は溶融させて高い寸法精度のプレートに加工することができれば特に限定されない。   When the reinforcing fiber component and the matrix resin are sufficiently kneaded, when the kneaded product is taken out from the kneader 110, a fiber reinforced material 130 ″ is obtained. The fiber reinforced material 130 ″ is crushed by a crusher 112 to an appropriate size, for example, a side of 3 mm to 20 mm. The size of the crushed pieces is not particularly limited as long as the fiber reinforced material 130 '' can be sufficiently softened or melted and processed into a plate with high dimensional accuracy in a later step.
そして、繊維強化素材130''の破砕片をフィーダ113に投入し、繊維強化素材130''の破砕片をローラ型プレス機114上に並べ、ローラ型プレス機114で適切な温度、例えば160°C程度に加熱して破砕片のマトリックス樹脂を軟化させるとともに加圧してプレート状の複合樹脂成形品131''を製造する。   Then, the crushed pieces of the fiber reinforced material 130 ″ are put into the feeder 113, and the crushed pieces of the fiber reinforced material 130 ″ are arranged on the roller-type press 114, and the roller-type press 114 has an appropriate temperature, for example, 160 °. Heat to about C to soften the matrix resin of the crushed pieces and pressurize to produce a plate-shaped composite resin molded product 131 ″.
この得られた複合樹脂成形品131''は高充填のカーボン繊維によって十分な構造強度が付与されており、自動車用や船舶用構造材に用いることができる。   The obtained composite resin molded product 131 '' is provided with sufficient structural strength by highly filled carbon fibers, and can be used for structural materials for automobiles and ships.
また、ポリカーボネイト(PC)に代え、ポリプロピレン(PP)/エチレン・酢酸ビニル共重合体(EVA)樹脂を用い、強化繊維としてガラス繊維を用い、ガラス繊維80重量%及びPP15重量%、EVA5重量%からなる表面が極めて平滑な複合樹脂プレートが得られ、しかも厚みは1.5mm以上任意に設定することができた。   Also, instead of polycarbonate (PC), polypropylene (PP) / ethylene / vinyl acetate copolymer (EVA) resin is used, glass fiber is used as the reinforcing fiber, glass fiber 80% by weight, PP 15% by weight, EVA 5% by weight A composite resin plate having an extremely smooth surface was obtained, and the thickness could be arbitrarily set to 1.5 mm or more.
本発明に係る繊維強化樹脂成形品の製造方法の第1実施形態を模式的に示す図である。It is a figure which shows typically 1st Embodiment of the manufacturing method of the fiber reinforced resin molded product which concerns on this invention. 本発明に係る繊維強化樹脂成形品の製造方法の第2実施形態を模式的に示す図である。It is a figure which shows typically 2nd Embodiment of the manufacturing method of the fiber reinforced resin molded product which concerns on this invention. 上記実施形態において得られた繊維強化樹脂成形品の断面図である。It is sectional drawing of the fiber reinforced resin molded product obtained in the said embodiment. 第3の実施形態を模式的に示す図である。It is a figure which shows 3rd Embodiment typically. 第4の実施形態の変形例を示す図である。It is a figure which shows the modification of 4th Embodiment. 第5の実施形態を模式的に示す図である。It is a figure which shows 5th Embodiment typically. 第6の実施形態における金型成形の工程を示す図である。It is a figure which shows the process of the metal mold | die shaping | molding in 6th Embodiment. 第6の実施形態を模式的に示す図である。It is a figure which shows 6th Embodiment typically.
符号の説明Explanation of symbols
10 混練機
11 破砕機
12 金型
20、20’、20'' 混合物
21、21’,21''、22’ 破砕粒、破砕片、破砕塊
110 混練機
111 ローラ型プレス機
111' 押し出し機
112 破砕機
113 押し出し機
113’ フィーダ
114 ローラ型プレス機
115 ローラ型プレス機
16 金型
130、130’、130'' 繊維強化素材
131、131'' 複合樹脂成形品
132 合成樹脂フィルム
133 製品の素材
134 自動車車体製品
DESCRIPTION OF SYMBOLS 10 Kneading machine 11 Crushing machine 12 Mold 20,20 ', 20''Mixture21,21', 21 '', 22 'Crushing grain, crushing piece, crushing lump 110 Kneading machine 111 Roller type press machine 111' Extruder 112 Crusher 113 Extruder 113 'Feeder 114 Roller press 115 Roller press 16 Mold 130, 130', 130 '' Fiber reinforced material 131, 131 '' Composite resin molded product 132 Synthetic resin film 133 Product material 134 Auto body products

Claims (7)

  1. 60〜85重量%の不燃性繊維原料に対し40〜15重量%の熱可塑性樹脂を混練して固化した繊維強化素材の粉砕又は破砕片を用意し、該粉砕又は破砕片中の繊維方向をランダムに配向させて所定の成形型中に充填して加熱加圧し、粉砕又は破砕片を密集一体化し、強化繊維高充填樹脂成形品を製造することを特徴とする再生可能な繊維強化樹脂成形品の製造方法。   Prepare pulverized or crushed pieces of fiber reinforced material obtained by kneading 40 to 15% by weight of thermoplastic resin with 60 to 85% by weight of non-combustible fiber raw material, and randomly laying the fibers in the crushed or crushed pieces A regenerated fiber reinforced resin molded product characterized by producing a reinforced fiber high-filled resin molded product by packing into a predetermined mold, heating and pressurizing, and compacting and integrating crushed or crushed pieces. Production method.
  2. 上記繊維原料がガラス繊維、カーボン繊維および繊維ボロン等の強化繊維から選ばれる請求項1記載の繊維強化樹脂成形品の製造方法。   The method for producing a fiber-reinforced resin molded article according to claim 1, wherein the fiber raw material is selected from reinforcing fibers such as glass fiber, carbon fiber, and fiber boron.
  3. 上記熱可塑性樹脂が相溶する二以上の熱可塑性樹脂からなる請求項1記載の繊維強化樹脂成形品の製造方法。   The method for producing a fiber-reinforced resin molded article according to claim 1, comprising two or more thermoplastic resins in which the thermoplastic resin is compatible.
  4. 一種又は二種以上の着色した60〜85重量%の不燃性繊維原料に対し40〜15重量%の透明又は透光性熱可塑性樹脂を混練して固化した繊維強化素材の粉砕又は破砕片を用意し、該粉砕又は破砕片中の繊維方向をランダムに配向させて所定の成形型中に充填して加熱加圧し、粉砕又は破砕片を密集一体化し、強化繊維高充填樹脂成形品を製造することを特徴とする再生可能な繊維強化樹脂成形品の製造方法。   Prepare pulverized or crushed pieces of fiber reinforced material that is solidified by kneading 40 to 15% by weight of transparent or translucent thermoplastic resin to one or two or more colored 60 to 85% by weight of non-combustible fiber material Then, the fiber direction in the crushed or crushed pieces is randomly oriented, filled in a predetermined mold, heated and pressed, and the pulverized or crushed pieces are closely integrated to produce a reinforced fiber highly filled resin molded product. A method for producing a renewable fiber-reinforced resin molded product characterized by the above.
  5. 上記繊維原料が着色したガラス繊維である請求項4記載の繊維強化樹脂成形品の製造方法。   The method for producing a fiber-reinforced resin molded product according to claim 4, wherein the fiber raw material is a colored glass fiber.
  6. 60〜85重量%の着色した不燃性繊維原料に対し40〜15重量%の同系統に着色した熱可塑性樹脂を混練して固化した繊維強化素材の粉砕又は破砕片を用意し、該粉砕又は破砕片中の繊維方向をランダムに配向させて所定の成形型中に充填して加熱加圧し、粉砕又は破砕片を密集一体化し、強化繊維高充填樹脂成形品を製造することを特徴とする再生可能な繊維強化樹脂成形品の製造方法。   Prepare a pulverized or crushed piece of a fiber reinforced material obtained by kneading and solidifying 40 to 15% by weight of a colored thermoplastic resin in 60 to 85% by weight of a colored incombustible fiber raw material. Recyclable, characterized in that the fiber direction in the pieces is randomly oriented, filled into a predetermined mold, heated and pressed, and crushed or crushed pieces are closely integrated to produce a highly reinforced fiber molded resin product Method for manufacturing a fiber-reinforced resin molded article.
  7. 上記粉砕又は破砕片が2種以上の異種の着色材料である請求項6記載の繊維強化樹脂成形品の製造方法。   The method for producing a fiber-reinforced resin molded article according to claim 6, wherein the pulverized or crushed pieces are two or more kinds of different colored materials.
JP2007212740A 2007-06-06 2007-08-17 Method for manufacturing fiber-reinforced resin molded article capable of recycling Pending JP2009012441A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007150604 2007-06-06
JP2007212740A JP2009012441A (en) 2007-06-06 2007-08-17 Method for manufacturing fiber-reinforced resin molded article capable of recycling

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007212740A JP2009012441A (en) 2007-06-06 2007-08-17 Method for manufacturing fiber-reinforced resin molded article capable of recycling

Publications (1)

Publication Number Publication Date
JP2009012441A true JP2009012441A (en) 2009-01-22

Family

ID=40093668

Family Applications (4)

Application Number Title Priority Date Filing Date
JP2007212740A Pending JP2009012441A (en) 2007-06-06 2007-08-17 Method for manufacturing fiber-reinforced resin molded article capable of recycling
JP2007318485A Pending JP2009012450A (en) 2007-06-06 2007-12-10 Two-step molding method for composite material
JP2008000069A Pending JP2009012451A (en) 2007-06-06 2008-01-04 Method for molding hormesis composite material
JP2008064389A Pending JP2009012453A (en) 2007-06-06 2008-03-13 Process for producing artificial marble

Family Applications After (3)

Application Number Title Priority Date Filing Date
JP2007318485A Pending JP2009012450A (en) 2007-06-06 2007-12-10 Two-step molding method for composite material
JP2008000069A Pending JP2009012451A (en) 2007-06-06 2008-01-04 Method for molding hormesis composite material
JP2008064389A Pending JP2009012453A (en) 2007-06-06 2008-03-13 Process for producing artificial marble

Country Status (3)

Country Link
JP (4) JP2009012441A (en)
CN (1) CN101318382B (en)
WO (1) WO2008149852A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013189406A (en) * 2012-03-14 2013-09-26 Hot House:Kk Thorium-containing molding having hormesis effect, production method therefor and pellet for attachment
JP6384808B2 (en) * 2014-03-31 2018-09-05 久慈琥珀株式会社 Manufacturing method of reclaimed rice cake
IT201600069601A1 (en) * 2016-07-05 2018-01-05 Tiziano Baldi POLYMATERIC GRANULATE FOR REPRODUCING THERMOPLASTIC PRODUCTIONS NATURAL MATERIALS

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54150469A (en) * 1978-05-19 1979-11-26 Mitsubishi Electric Corp Manufacture of mottle patterned plastic plate
JPS6321200A (en) * 1986-07-14 1988-01-28 Tsutsunaka Plastic Kogyo Manufacture of patterned synthetic resin material
JPH01286944A (en) * 1988-05-11 1989-11-17 Tsutsunaka Plast Ind Co Ltd Granite-tone thermoplastic resin molded article
JP2004331475A (en) * 2003-05-12 2004-11-25 Yamaha Livingtec Corp Artificial marble

Also Published As

Publication number Publication date
CN101318382B (en) 2013-01-23
JP2009012451A (en) 2009-01-22
CN101318382A (en) 2008-12-10
WO2008149852A1 (en) 2008-12-11
JP2009012450A (en) 2009-01-22
JP2009012453A (en) 2009-01-22

Similar Documents

Publication Publication Date Title
Kariz et al. Use of wood powder and adhesive as a mixture for 3D printing
US20040188883A1 (en) Near net shape prepreg
CN100509363C (en) Recovery and molding process for phenol-formaldehyde resin composite waste
CN105246681B (en) The manufacturing method of resin composite body and resin composite body
CN107501609B (en) A kind of thermoplastic fibre composite material sheet and its preparation method and application product
CN106626662A (en) Sandwich-structure composite material and preparation method thereof
JP2009012441A (en) Method for manufacturing fiber-reinforced resin molded article capable of recycling
EP3319772B1 (en) Method for preparing a fiber-reinforced article having a 3d printed surface layer
JP2009029066A (en) Manufacturing method of combustible fiber-reinforced resin molded article
JP2010162784A (en) Method of manufacturing composite lumber
CN110757722B (en) Forming method of thermoplastic continuous fiber reinforced composite material part
WO2014020532A1 (en) Process for recycling thermosetting composite materials, and thermosetting composite materials obtained thereby
CN107244127B (en) Preparation method of fiber-reinforced polymer film
US20070132133A1 (en) Method for manufacturing resin composite formed product
CN108215241B (en) Rapid molding method of resin-based composite material
JP2008100491A (en) Manufacturing method of resin composite formed product
KR20010095118A (en) Material for molded resin articles and molded resin article using the same
EP1795319A2 (en) Method for manufacturing resin composite formed product
CN108357053A (en) A kind of fibre reinforced plastics interior trim injection molding technique
KR102291931B1 (en) Manufacturing method for molded article using fiber reinforcerd plastic waste comprising thermosetting plastics and molded article using the same
US20180050504A1 (en) Processing arrangement and a method for producing a fibre-reinforced plastic component
JP2011016278A (en) Method for manufacturing fiber-reinforced composite material molded product
KR101852921B1 (en) Menufacturing method for molded article using fiber reinforcerd plastic waste
JP2004338226A (en) Method for molding fiber-reinforced resin crushed material
JP2018507128A5 (en)