JP7419291B2 - Method for manufacturing fiber-reinforced molded body, resin sheet, and method for manufacturing resin sheet - Google Patents

Method for manufacturing fiber-reinforced molded body, resin sheet, and method for manufacturing resin sheet Download PDF

Info

Publication number
JP7419291B2
JP7419291B2 JP2021076007A JP2021076007A JP7419291B2 JP 7419291 B2 JP7419291 B2 JP 7419291B2 JP 2021076007 A JP2021076007 A JP 2021076007A JP 2021076007 A JP2021076007 A JP 2021076007A JP 7419291 B2 JP7419291 B2 JP 7419291B2
Authority
JP
Japan
Prior art keywords
fiber
resin
base material
thermosetting resin
reinforced molded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021076007A
Other languages
Japanese (ja)
Other versions
JP2022170112A (en
Inventor
尚幸 田辺
直弥 原田
達彦 安井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inoac Corp
Original Assignee
Inoac Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inoac Corp filed Critical Inoac Corp
Priority to JP2021076007A priority Critical patent/JP7419291B2/en
Priority to EP21835931.3A priority patent/EP4177047A1/en
Priority to US17/925,228 priority patent/US20230235140A1/en
Priority to PCT/JP2021/023675 priority patent/WO2022009671A1/en
Priority to CN202180042674.6A priority patent/CN115835945A/en
Priority to TW110123546A priority patent/TW202204137A/en
Publication of JP2022170112A publication Critical patent/JP2022170112A/en
Application granted granted Critical
Publication of JP7419291B2 publication Critical patent/JP7419291B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本開示は、繊維強化成形体、繊維強化成形体の製造方法、及び樹脂シートに関する。 The present disclosure relates to a fiber-reinforced molded article, a method for manufacturing a fiber-reinforced molded article, and a resin sheet.

近年、軽量化や機械強度の向上を目的として、炭素繊維やガラス繊維などの強化繊維基材と樹脂の複合材料(FRP)が、様々な分野・用途に広く利用されている。特に、自動車や鉄道、航空機などの輸送機器においては、低燃費化の要求が高く、機体の軽量化による効果が高いため、これらの用途にFRPが金属代替材料として期待されている。
FRPの成形方法としては、強化繊維基材に樹脂を含浸させ、プリプレグ化した後に、プリプレグをオートクレーブや熱プレスなどを用いて成形する方法がある。強化繊維に含浸する樹脂は、液状が一般的であるが、樹脂のポットライフの問題や、溶剤を使用する場合は、作業環境や大気汚染の問題がある。これらを解決するための方法として、粉体樹脂を含浸したプリプレグが提案されている(特許文献1参照)。
In recent years, composite materials (FRP) made of reinforcing fiber base materials such as carbon fibers and glass fibers and resins have been widely used in various fields and applications for the purpose of reducing weight and improving mechanical strength. In particular, in transportation equipment such as automobiles, trains, and airplanes, there is a high demand for lower fuel consumption and the weight reduction of the aircraft body is highly effective, so FRP is expected to be used as a metal substitute material for these applications.
As a method for molding FRP, there is a method in which a reinforcing fiber base material is impregnated with a resin to form a prepreg, and then the prepreg is molded using an autoclave, a hot press, or the like. The resin that is impregnated into the reinforcing fibers is generally in liquid form, but there are problems with the pot life of the resin, and when a solvent is used, there are problems with the working environment and air pollution. As a method for solving these problems, a prepreg impregnated with powder resin has been proposed (see Patent Document 1).

特開2006-232915号公報Japanese Patent Application Publication No. 2006-232915

上記の特許文献において、樹脂含浸体(プリプレグ)を作製した後、最終成形体を成形している。
プリプレグを用いる成形では、プリプレグ化する工程において、大掛かりな設備が必要となること、プリプレグ化の工程の管理が煩雑であることなどから、製造コストが高くなる問題がある。
本開示は、上記実情に鑑みてなされたものであり、安価に製造可能な繊維強化成形体を提供することを目的とする。
本開示は、以下の形態として実現することが可能である。
In the above-mentioned patent documents, after producing a resin-impregnated body (prepreg), a final molded body is molded.
Molding using prepreg has the problem of high manufacturing costs because the prepreg process requires large-scale equipment and the prepreg process is complicated to manage.
The present disclosure has been made in view of the above circumstances, and an object of the present disclosure is to provide a fiber-reinforced molded article that can be manufactured at low cost.
The present disclosure can be realized as the following forms.

繊維基材が、熱硬化性樹脂を含有する樹脂シートの前記熱硬化性樹脂によって一体化された、繊維強化成形体であって、
前記熱硬化性樹脂は、硬化反応開始温度Tb℃の粘度が2,000Pa・s以下であり、硬化反応開始温度Tb℃~190℃の範囲における最高粘度が1,000Pa・s以上である、繊維強化成形体。
A fiber-reinforced molded article in which a fiber base material is integrated with the thermosetting resin of a resin sheet containing a thermosetting resin,
The thermosetting resin is a fiber having a viscosity of 2,000 Pa·s or less at a curing reaction starting temperature Tb°C and a maximum viscosity of 1,000 Pa·s or more in a range of curing reaction starting temperature Tb°C to 190°C. Reinforced molded body.

本開示の繊維強化成形体は、安価に製造可能である。 The fiber-reinforced molded article of the present disclosure can be manufactured at low cost.

図1は、本開示の一実施形態に係る繊維強化成形体の断面図である。FIG. 1 is a cross-sectional view of a fiber-reinforced molded article according to an embodiment of the present disclosure. 図2は、本開示の繊維強化成形体の製造方法の一実施形態における積層及び加熱圧縮を示す断面図である。FIG. 2 is a cross-sectional view showing lamination and heat compression in an embodiment of the method for manufacturing a fiber-reinforced molded article of the present disclosure. 図3は、本開示の繊維強化成形体の製造方法の一実施形態における積層及び加熱圧縮を示す断面図である。FIG. 3 is a cross-sectional view showing lamination and heat compression in an embodiment of the method for manufacturing a fiber-reinforced molded article of the present disclosure. 図4は、本開示の繊維強化成形体の製造方法の一実施形態における積層及び加熱圧縮を示す断面図である。FIG. 4 is a cross-sectional view showing lamination and heat compression in an embodiment of the method for manufacturing a fiber-reinforced molded article of the present disclosure. 実施例1,6―10と比較例1,2で使用した混合樹脂の粘度測定結果を示すグラフである。1 is a graph showing the viscosity measurement results of mixed resins used in Examples 1 and 6-10 and Comparative Examples 1 and 2.

ここで、本開示の望ましい例を示す。
・前記樹脂シートは、シート基材を備える、繊維強化成形体。
・前記熱硬化性樹脂は、溶融開始温度をTa℃、硬化反応開始温度をTb℃とすると、
(Tb-Ta)の値が、
30≦(Tb-Ta)≦100
を満たす、繊維強化成形体。
・前記熱硬化性樹脂は、フェノール樹脂、フェノール樹脂とエポキシ樹脂の混合樹脂、フェノール樹脂とシアネート樹脂の混合樹脂、エポキシ樹脂とシアネート樹脂の混合樹脂、及び、フェノール樹脂とエポキシ樹脂とシアネート樹脂の混合樹脂からなる群より選ばれた樹脂である、繊維強化成形体。
・繊維強化成形体の製造方法であって、
前記繊維基材と前記樹脂シートとを重ねた状態で、金型によって加熱圧縮し、前記熱硬化性樹脂を前記繊維基材に含浸させて硬化させる、繊維強化成形体の製造方法。
・加熱圧縮時の温度Tc℃は、
[Tb+(Tb-Ta)/3]-15≦Tc≦[Tb+(Tb-Ta)/3]+20である、繊維強化成形体の製造方法。
繊維強化成形体の製造用の樹脂シートであって、
熱硬化性樹脂を含有する、樹脂シート。
・繊維基材が、熱硬化性樹脂を含有する樹脂シートの前記熱硬化性樹脂によって一体化された、繊維強化成形体であって、
前記樹脂シートは、シート基材を備える、繊維強化成形体。
Here, a desirable example of the present disclosure will be shown.
- The resin sheet is a fiber-reinforced molded body including a sheet base material.
- The thermosetting resin has a melting start temperature of Ta°C and a curing reaction start temperature of Tb°C.
The value of (Tb-Ta) is
30≦(Tb-Ta)≦100
A fiber-reinforced molded body that satisfies the following requirements.
- The thermosetting resin is a phenol resin, a mixed resin of a phenol resin and an epoxy resin, a mixed resin of a phenol resin and a cyanate resin, a mixed resin of an epoxy resin and a cyanate resin, and a mixed resin of a phenol resin, an epoxy resin, and a cyanate resin. A fiber-reinforced molded body made of a resin selected from the group consisting of resins.
- A method for producing a fiber-reinforced molded article, comprising:
A method for manufacturing a fiber-reinforced molded article, comprising heating and compressing the fiber base material and the resin sheet in a stacked state using a mold, impregnating the thermosetting resin into the fiber base material, and curing the resin sheet.
・Temperature Tc℃ during heating compression is
[Tb+(Tb-Ta)/3]-15≦Tc≦[Tb+(Tb-Ta)/3]+20, a method for producing a fiber-reinforced molded body.
A resin sheet for producing a fiber-reinforced molded article,
A resin sheet containing thermosetting resin.
- A fiber-reinforced molded body in which a fiber base material is integrated with the thermosetting resin of a resin sheet containing a thermosetting resin,
The resin sheet is a fiber-reinforced molded body including a sheet base material.

以下、本開示を詳しく説明する。なお、本明細書において、数値範囲について「~」を用いた記載では、特に断りがない限り、下限値及び上限値を含むものとする。例えば、「10~20」という記載では、下限値である「10」、上限値である「20」のいずれも含むものとする。すなわち、「10~20」は、「10以上20以下」と同じ意味である。 The present disclosure will be described in detail below. In this specification, descriptions using "~" for numerical ranges include the lower limit and upper limit unless otherwise specified. For example, the description "10 to 20" includes both the lower limit value of "10" and the upper limit value of "20". That is, "10 to 20" has the same meaning as "10 or more and 20 or less".

1.繊維強化成形体10
繊維強化成形体10は、繊維基材11が、熱硬化性樹脂を含有する樹脂シート15の熱硬化性樹脂によって一体化されている。熱硬化性樹脂は、硬化反応開始温度Tb℃の粘度が2,000Pa・s以下であり、硬化反応開始温度Tb℃~190℃の範囲における最高粘度が1,000Pa・s以上である。
1. Fiber reinforced molded body 10
In the fiber-reinforced molded body 10, a fiber base material 11 is integrated with a thermosetting resin of a resin sheet 15 containing a thermosetting resin. The thermosetting resin has a viscosity of 2,000 Pa·s or less at the curing reaction starting temperature Tb°C and a maximum viscosity of 1,000 Pa·s or more in the range of the curing reaction starting temperature Tb°C to 190°C.

(1)繊維基材11
繊維基材11は、単層でも複数層でもよく、繊維強化成形体10の用途等に応じて層の数が決定される。図1,2の形態では、繊維基材11は4層からなるものが例示されている。繊維基材11としては、ガラス繊維、アラミド繊維、バサルト繊維、炭素繊維などによる織物や不織布などがあり、特に限定されるものではないが、炭素繊維織物が軽量及び高剛性に優れるために好ましいものである。炭素繊維織物としては、繊維が一方向のみではない織り方のものが好ましく、例えば、縦糸と横糸で構成される平織、綾織、朱子織及び3方向の糸で構成される三軸織などが好適である。また、前記炭素繊維織物は、樹脂シート15に含有された熱硬化性樹脂の含浸及び繊維強化成形体10の剛性の点から、繊維重さが50~600g/mのものが好ましい。
(1) Fiber base material 11
The fiber base material 11 may have a single layer or multiple layers, and the number of layers is determined depending on the use of the fiber-reinforced molded product 10 and the like. In the embodiments of FIGS. 1 and 2, the fiber base material 11 is illustrated as having four layers. Examples of the fiber base material 11 include woven fabrics and nonwoven fabrics made of glass fibers, aramid fibers, basalt fibers, carbon fibers, etc., and are not particularly limited, but carbon fiber woven fabrics are preferred because they are lightweight and have high rigidity. It is. The carbon fiber fabric preferably has a weave in which the fibers are not woven in one direction only, such as plain weave, twill weave, satin weave, which is composed of warp and weft threads, and triaxial weave, which is composed of threads in three directions. It is. Further, the carbon fiber fabric preferably has a fiber weight of 50 to 600 g/m 2 from the viewpoint of impregnation with the thermosetting resin contained in the resin sheet 15 and the rigidity of the fiber-reinforced molded body 10.

(2)熱硬化性樹脂を含有する樹脂シート15
熱硬化性樹脂は、繊維強化成形体10の製造時に、常温(5℃~35℃)で固形であるものが用いられる。固形の形状は、特に限定されるものではない。固形の形状は、球状、針状、フレーク状等の粉体等が例示される。
(2) Resin sheet 15 containing thermosetting resin
The thermosetting resin used is one that is solid at room temperature (5° C. to 35° C.) when producing the fiber-reinforced molded body 10. The shape of the solid is not particularly limited. Examples of solid shapes include powders such as spherical, acicular, and flake shapes.

樹脂シート15は、シート基材を備えていることが好ましい。樹脂シート15がシート基材を備えることで、樹脂シート15の強度が強くなるから、樹脂シート15のハンドリング性が向上する。なお、樹脂シート15がシート基材を備えていない場合であっても、粉末の樹脂を用いる場合に比べて、ハンドリング性は良好である。
シート基材の構造は、特に限定されない。シート基材は、溶融樹脂が浸透可能な構造を有することが好ましい。溶融樹脂が浸透可能な構造は、特に限定されないが、連通孔を有する構造等が例示される。また、シート基材は熱硬化性樹脂の反応開始温度(Tb)で溶融しないことが好ましい。
シート基材は、発泡体、不織布、及び繊維シートからなる群より選択される1種以上であることが好ましい。シート基材がこれらの構造を有すると、シート基材内の空間に熱硬化性樹脂を十分に保持できる。
シート基材の材質は、特に限定されない。シート基材の材質は、ウレタン、レーヨン、ポリエステル、及び炭素からなる群より選択される1種以上であることが好ましい。
シート基材は、具体的には、ウレタン発泡体、レーヨンとポリエステル(PET)の不織布、PET不織布、及び炭素繊維シートからなる群より選択される1種以上であることが好ましい。
樹脂シート基材の厚みは、特に限定されない。樹脂シート基材の厚みは、接着に必要な熱硬化性樹脂を十分に保持する観点から、0.05mm以上1.0mm以下が好ましく、0.08mm以上0.7mm以下がより好ましい。
樹脂シート基材の目付は、特に限定されない。樹脂シート基材の目付は、20g/m以上50g/m以下が好ましく、30g/m以上45g/m以下がより好ましい。
It is preferable that the resin sheet 15 includes a sheet base material. Since the resin sheet 15 includes a sheet base material, the strength of the resin sheet 15 is increased, and the handling properties of the resin sheet 15 are improved. Note that even if the resin sheet 15 does not include a sheet base material, the handling properties are better than in the case where powdered resin is used.
The structure of the sheet base material is not particularly limited. It is preferable that the sheet base material has a structure that allows the molten resin to penetrate. The structure through which the molten resin can penetrate is not particularly limited, but examples include structures having communicating holes. Further, it is preferable that the sheet base material does not melt at the reaction start temperature (Tb) of the thermosetting resin.
The sheet base material is preferably one or more selected from the group consisting of foam, nonwoven fabric, and fiber sheet. When the sheet base material has these structures, the thermosetting resin can be sufficiently held in the space within the sheet base material.
The material of the sheet base material is not particularly limited. The material of the sheet base material is preferably one or more selected from the group consisting of urethane, rayon, polyester, and carbon.
Specifically, the sheet base material is preferably one or more selected from the group consisting of a urethane foam, a nonwoven fabric of rayon and polyester (PET), a PET nonwoven fabric, and a carbon fiber sheet.
The thickness of the resin sheet base material is not particularly limited. The thickness of the resin sheet base material is preferably 0.05 mm or more and 1.0 mm or less, and more preferably 0.08 mm or more and 0.7 mm or less, from the viewpoint of sufficiently retaining the thermosetting resin necessary for adhesion.
The basis weight of the resin sheet base material is not particularly limited. The basis weight of the resin sheet base material is preferably 20 g/m 2 or more and 50 g/m 2 or less, more preferably 30 g/m 2 or more and 45 g/m 2 or less.

樹脂シート15は、繊維基材11と接するように配置される。繊維基材11が樹脂シート15と共に加熱圧縮されると、樹脂シート15に含有された熱硬化性樹脂が溶融して繊維基材11に含浸して硬化する。樹脂シート15が繊維基材11と接して配置される態様としては、繊維基材11が単層の場合には、樹脂シート15が単層の繊維基材11の上面又は下面の少なくとも一方の面に配置される。また、繊維基材11が複数層の場合には、少なくとも一つの面、すなわち複数層における最上面、最下面、積層面(繊維基材間)のうちの少なくとも一つの面に樹脂シート15が配置される態様が挙げられる。 The resin sheet 15 is arranged so as to be in contact with the fiber base material 11. When the fiber base material 11 is heated and compressed together with the resin sheet 15, the thermosetting resin contained in the resin sheet 15 is melted, impregnated into the fiber base material 11, and hardened. In the case where the fiber base material 11 is a single layer, the resin sheet 15 is placed in contact with the fiber base material 11 on at least one of the upper surface and the lower surface of the single layer fiber base material 11. will be placed in In addition, when the fiber base material 11 has multiple layers, the resin sheet 15 is arranged on at least one surface, that is, at least one of the uppermost surface, the lowermost surface, and the laminated surface (between the fiber base materials) of the multiple layers. Examples include aspects in which this is done.

熱硬化性樹脂は、溶融開始温度Ta℃、硬化反応開始温度Tb℃とすると、30≦(Tb-Ta)≦100を満たすことが好ましい。(Tb-Ta)をこの範囲とすることにより、溶融した熱硬化性樹脂を繊維基材11に十分に含浸させることができ、均一な物性を有する繊維強化成形体10を得ることができる。 The thermosetting resin preferably satisfies 30≦(Tb−Ta)≦100, where melting start temperature Ta° C. and curing reaction start temperature Tb° C. are assumed. By setting (Tb-Ta) within this range, the fiber base material 11 can be sufficiently impregnated with the molten thermosetting resin, and a fiber-reinforced molded article 10 having uniform physical properties can be obtained.

熱硬化性樹脂は、溶融開始温度Ta℃以上の温度において、最低粘度が、2,000Pa・s以下である。この最低粘度は、1,500Pa・s以下であることが好ましい。最低粘度をこの範囲とすることにより、溶融した熱硬化性樹脂を繊維基材11に十分に含浸させることができ、均一な物性を有する繊維強化成形体10を得ることができる。最低粘度の下限値は特に限定されない。最低粘度の下限値は、0.005Pa・sが好ましい。
なお、溶融開始温度Ta℃以上の温度における最低粘度は、硬化反応開始温度Tb℃の粘度と同じである。
The thermosetting resin has a minimum viscosity of 2,000 Pa·s or less at a temperature higher than the melting start temperature Ta°C. This minimum viscosity is preferably 1,500 Pa·s or less. By setting the minimum viscosity within this range, the fiber base material 11 can be sufficiently impregnated with the molten thermosetting resin, and a fiber-reinforced molded article 10 having uniform physical properties can be obtained. The lower limit of the minimum viscosity is not particularly limited. The lower limit of the minimum viscosity is preferably 0.005 Pa·s.
Note that the lowest viscosity at a temperature equal to or higher than the melting start temperature Ta°C is the same as the viscosity at the curing reaction start temperature Tb°C.

また、熱硬化性樹脂は、硬化反応開始温度Tb℃~190℃の温度範囲において、最高粘度が、1,000Pa・s以上であることが好ましい。最高粘度をこの範囲とすることにより、溶融した熱硬化性樹脂を繊維基材11内に含浸させて留めることができ、繊維強化成形体10の賦形性がよく、短時間で十分な強度が得られる。最高粘度の上限値は、特に限定されないが、上限値は300,000Pa・sが好ましい。
熱硬化性樹脂は、溶融開始温度Ta℃が60~100℃にあることが好ましい。熱硬化性樹脂の溶融開始温度Ta℃をこの範囲とすることにより、繊維基材11間の少なくとも一つに樹脂シート15が配置された積層体を、加熱圧縮して熱硬化性樹脂を溶融硬化させる際に、温調を容易に行うことができる。
Further, the thermosetting resin preferably has a maximum viscosity of 1,000 Pa·s or more in the temperature range from the curing reaction start temperature Tb°C to 190°C. By setting the maximum viscosity within this range, the molten thermosetting resin can be impregnated and retained in the fiber base material 11, and the shapeability of the fiber-reinforced molded product 10 is good, and sufficient strength can be achieved in a short time. can get. The upper limit of the highest viscosity is not particularly limited, but the upper limit is preferably 300,000 Pa·s.
The thermosetting resin preferably has a melting start temperature Ta°C of 60 to 100°C. By setting the melting start temperature Ta° C. of the thermosetting resin within this range, the laminate in which the resin sheet 15 is disposed in at least one space between the fiber base materials 11 is heated and compressed to melt and harden the thermosetting resin. Temperature can be easily controlled during heating.

前記の溶融開始温度Ta℃、硬化反応開始温度Tb℃、(Tb-Ta)の範囲、最低粘度、最高粘度を満たすことができる熱硬化性樹脂は、フェノール樹脂、フェノール樹脂とエポキシ樹脂の混合樹脂、フェノール樹脂とシアネート樹脂の混合樹脂、エポキシ樹脂とシアネート樹脂の混合樹脂、及び、フェノール樹脂とエポキシ樹脂とシアネート樹脂の混合樹脂からなる群より選ばれた樹脂であることが好ましい。フェノール樹脂は難燃性に優れるため、繊維強化成形体10に優れた強度と難燃性を付与することができる。
フェノール樹脂として、例えばノボラック型粉末フェノールレジンが好ましく用いられる。フェノール樹脂の物性は特に限定されない。例えば、以下の物性のフェノール樹脂が好適に採用される。
・融点:80℃以上100℃以下

エポキシ樹脂として、例えばビスフェノールA型固形樹脂が好ましく用いられる。エポキシ樹脂の物性は特に限定されない。例えば、以下の物性のエポキシ樹脂が好適に採用される。
・エポキシ当量:400g/eq以上1000g/eq以下
・軟化点:60℃以上100℃以下
・粘度:0.10Pa・s以上0.30Pa・s以下(25℃)

シアネート樹脂は、シアナト基をもつ熱硬化性樹脂であり、シアネートモノマーとも呼ばれている。硬化前のシアネート樹脂の物性は特に限定されない。例えば、以下の物性のシアネート樹脂が好適に採用される。
・融点:75℃以上85℃以下
・粘度:0.010Pa・s以上0.015Pa・s以下(80℃)

なお、熱硬化性樹脂には、熱硬化性樹脂の粘度、反応性に影響を与えない範囲において、顔料、抗菌剤、紫外線吸収剤などの各種粉体添加剤を添加してもよい。
Thermosetting resins that can satisfy the melting start temperature Ta°C, curing reaction start temperature Tb°C, (Tb-Ta) range, minimum viscosity, and maximum viscosity are phenolic resins and mixed resins of phenolic resins and epoxy resins. , a mixed resin of a phenol resin and a cyanate resin, a mixed resin of an epoxy resin and a cyanate resin, and a mixed resin of a phenol resin, an epoxy resin, and a cyanate resin. Since phenol resin has excellent flame retardancy, it can impart excellent strength and flame retardance to the fiber-reinforced molded article 10.
As the phenol resin, for example, a novolak type powdered phenol resin is preferably used. The physical properties of the phenol resin are not particularly limited. For example, a phenol resin having the following physical properties is suitably employed.
・Melting point: 80℃ or higher and 100℃ or lower

As the epoxy resin, for example, bisphenol A solid resin is preferably used. The physical properties of the epoxy resin are not particularly limited. For example, epoxy resins having the following physical properties are preferably employed.
・Epoxy equivalent: 400g/eq or more and 1000g/eq or less ・Softening point: 60℃ or more and 100℃ or less ・Viscosity: 0.10Pa・s or more and 0.30Pa・s or less (25℃)

Cyanate resin is a thermosetting resin having a cyanate group, and is also called cyanate monomer. The physical properties of the cyanate resin before curing are not particularly limited. For example, cyanate resins having the following physical properties are preferably employed.
・Melting point: 75℃ or more and 85℃ or less ・Viscosity: 0.010Pa・s or more and 0.015Pa・s or less (80℃)

Note that various powder additives such as pigments, antibacterial agents, and ultraviolet absorbers may be added to the thermosetting resin within a range that does not affect the viscosity and reactivity of the thermosetting resin.

樹脂シート15における熱硬化性樹脂の目付は、特に限定されない。熱硬化性樹脂の目付は、繊維強化成形体10の強度を確保する観点及び外観を損なわないようにする観点から、200g/m以上800g/m以下が好ましく、400g/m以上600g/m以下がより好ましい。 The basis weight of the thermosetting resin in the resin sheet 15 is not particularly limited. The basis weight of the thermosetting resin is preferably 200 g/m 2 or more and 800 g/m 2 or less, and 400 g/m 2 or more and 600 g/m 2 or less, from the viewpoint of ensuring the strength of the fiber- reinforced molded product 10 and not impairing the appearance. m 2 or less is more preferable.

(3)繊維強化成形体10の物性
繊維強化成形体10の曲げ弾性率(JIS K7074 A法)は、特に限定されない。繊維強化成形体10の曲げ弾性率は、高剛性の観点から、40GPa以上が好ましく、50GPa以上がより好ましい。
繊維強化成形体10の曲げ強度(JIS K7074 A法)は、特に限定されない。繊維強化成形体10の曲げ強度は、高強度の観点から、400MPa以上が好ましく、800MPa以上がより好ましい。
繊維強化成形体10の比重は、特に限定されない。繊維強化成形体10の比重は、軽量化及び外観を損なわないようにする観点から、1.10以上1.80以下が好ましく、1.30以上1.69以下がより好ましい。
(3) Physical properties of fiber-reinforced molded product 10 The flexural modulus (JIS K7074 A method) of fiber-reinforced molded product 10 is not particularly limited. From the viewpoint of high rigidity, the bending elastic modulus of the fiber-reinforced molded body 10 is preferably 40 GPa or more, and more preferably 50 GPa or more.
The bending strength (JIS K7074 A method) of the fiber-reinforced molded product 10 is not particularly limited. From the viewpoint of high strength, the bending strength of the fiber-reinforced molded body 10 is preferably 400 MPa or more, more preferably 800 MPa or more.
The specific gravity of the fiber-reinforced molded body 10 is not particularly limited. The specific gravity of the fiber-reinforced molded body 10 is preferably 1.10 or more and 1.80 or less, more preferably 1.30 or more and 1.69 or less, from the viewpoint of reducing weight and not impairing the appearance.

2.繊維強化成形体10の製造方法
本開示の繊維強化成形体10の製造方法は、繊維基材11と樹脂シート15とを重ねた状態で、金型によって加熱圧縮し、熱硬化性樹脂を繊維基材11に含浸させて硬化させることにより行う。繊維基材11、樹脂シート15、及び熱硬化性樹脂は、「1.繊維強化成形体10」における記載をそのまま引用する。
2. Method for manufacturing fiber-reinforced molded product 10 The method for manufacturing fiber-reinforced molded product 10 of the present disclosure involves heating and compressing the fiber base material 11 and resin sheet 15 in a stacked state using a mold to inject the thermosetting resin into the fiber base material. This is done by impregnating the material 11 and curing it. Regarding the fiber base material 11, the resin sheet 15, and the thermosetting resin, the description in "1. Fiber-reinforced molded product 10" is quoted as is.

樹脂シート15を配置する態様は、前記の通り、単層の場合は、繊維基材11の上面又は下面の少なくとも一方の面に配置し、また、繊維基材11が複数層の場合には、複数層における最上面、最下面、積層面(繊維基材11間)のうちの少なくとも一つの面に配置する。
なお、樹脂シート15を、複数層の繊維基材11における積層面(繊維基材11間)に配置する場合は、一つの積層面(一つの繊維基材11間)に限られず、全ての積層面(全ての繊維基材間)、あるいは所定数おきの積層面(所定数おきの繊維基材11間)に配置してもよく、配置する面の位置及び配置する面の数は繊維基材11の積層数等に応じて適宜決定される。
また、単層の繊維基材11の上面又は下面、あるいは複数層の繊維基材11の最上面又は最下面に接して樹脂シート15を配置する場合、作業の便宜のために、樹脂シート15と金型の型面との間に離型シートを配置してもよい。
As described above, the resin sheet 15 is arranged on at least one of the upper surface and the lower surface of the fiber base material 11 in the case of a single layer, and in the case of the fiber base material 11 in multiple layers. It is arranged on at least one surface of the uppermost surface, the lowermost surface, and the laminated surface (between the fiber base materials 11) in the plurality of layers.
Note that when the resin sheet 15 is arranged on a laminated surface (between fiber base materials 11) of multiple layers of fiber base materials 11, it is not limited to one lamination surface (between one fiber base material 11), but on all laminated surfaces. It may be arranged on a surface (between all fiber base materials) or on every predetermined number of laminated surfaces (between every predetermined number of fiber base materials 11), and the position of the surface to be placed and the number of surfaces to be placed will depend on the fiber base material. It is determined as appropriate depending on the number of laminated layers of 11, etc.
In addition, when placing the resin sheet 15 in contact with the top or bottom surface of a single-layer fiber base material 11 or the top or bottom surface of a multi-layer fiber base material 11, for convenience of work, the resin sheet 15 may be A release sheet may be placed between the mold surface and the mold surface.

図1に示した繊維基材11が4層からなる繊維強化成形体10の製造方法の一実施形態について、図2を用いて説明する。なお、以下の製造方法の説明では、複数の繊維基材11について、その上下位置関係を把握し易くするために「11A」等のように「11」と「アルファベット」を組み合わせた符号で複数の繊維基材11を示す。同様に、複数の樹脂シート15について、その上下位置関係を把握し易くするために「15A」等のように「15」と「アルファベット」を組み合わせた符号で複数の樹脂シート15を示す。 An embodiment of a method for manufacturing the fiber-reinforced molded body 10 in which the fiber base material 11 shown in FIG. 1 is composed of four layers will be described with reference to FIG. 2. In addition, in the following description of the manufacturing method, in order to make it easier to understand the vertical positional relationship of a plurality of fiber base materials 11, a plurality of fiber base materials 11 will be designated by a code that is a combination of "11" and "alphabet", such as "11A". A fiber base material 11 is shown. Similarly, in order to make it easier to understand the vertical positional relationship of the plurality of resin sheets 15, the plurality of resin sheets 15 are indicated by a code that is a combination of "15" and "alphabet", such as "15A".

図2に示す実施形態では、4枚の繊維基材11A~11Dを積層する際に、下側の2枚の繊維基材11A、11Bと、上側の2枚の繊維基材11C、11Dとの間の繊維基材11間(繊維基材11Bと繊維基材11Cの間)に、樹脂シート15A,15Bを配置する。
樹脂シート15A,15Bに含有される熱硬化性樹脂の量は、繊維強化成形体10のVF値(%)が40~70%となるように調整するのが好ましい。VF値(%)は、(繊維基材の全重量/繊維の密度)/(繊維強化成形体の体積)×100で算出される値である。
In the embodiment shown in FIG. 2, when four fiber base materials 11A to 11D are laminated, the lower two fiber base materials 11A and 11B and the upper two fiber base materials 11C and 11D are stacked together. Resin sheets 15A and 15B are arranged between the fiber base materials 11 (between the fiber base materials 11B and 11C).
The amount of thermosetting resin contained in the resin sheets 15A and 15B is preferably adjusted so that the VF value (%) of the fiber-reinforced molded body 10 is 40 to 70%. The VF value (%) is a value calculated by (total weight of fiber base material/density of fiber)/(volume of fiber reinforced molded body)×100.

樹脂シート15A,15Bを、繊維基材11Bと繊維基材11Cとの繊維基材11間に配置して積層した繊維基材11A~11Dの積層体を、加熱した金型30の下型31と上型32に挟んで、加熱圧縮する。金型30は、電熱ヒーター等の加熱手段によって熱硬化性樹脂が溶融、硬化可能な温度Tc℃に加熱されている。
加熱圧縮時の温度Tc℃(金型30の温度Tc℃)は、熱硬化性樹脂の溶融開始温度Ta℃、硬化反応開始温度Tb℃との関係において、
[Tb+(Tb-Ta)/3]-15≦Tc≦[Tb+(Tb-Ta)/3]+20
であることが好ましい。例えば、Ta℃=70℃、Tb℃=130℃の場合、Tc℃は135℃~170℃となる。
A laminate of fiber base materials 11A to 11D, in which the resin sheets 15A and 15B are arranged and laminated between the fiber base materials 11B and 11C, is placed in the lower mold 31 of the heated mold 30. It is sandwiched between the upper molds 32 and heated and compressed. The mold 30 is heated by heating means such as an electric heater to a temperature Tc° C. at which the thermosetting resin can be melted and hardened.
The temperature Tc°C during heating and compression (temperature Tc°C of the mold 30) is in relation to the melting start temperature Ta°C of the thermosetting resin and the curing reaction start temperature Tb°C.
[Tb+(Tb-Ta)/3]-15≦Tc≦[Tb+(Tb-Ta)/3]+20
It is preferable that For example, if Ta°C=70°C and Tb°C=130°C, Tc°C will be 135°C to 170°C.

金型30による加熱圧縮時における繊維基材11A~11Dの加圧(圧縮)は、繊維基材11間の樹脂シート15A,15Bに含まれる熱硬化性樹脂が溶融した後、繊維基材11A~11Dに良好に含浸できるようにするため、2MPa~20MPaが好ましい。
また、繊維基材11A~11Dの圧縮率(%)は、(下型31の型面と上型32の型面間の間隔)/(繊維基材の全層の厚みの合計)×100で算出される値であり、60~100%が好ましい。
The pressurization (compression) of the fiber base materials 11A to 11D during heat compression by the mold 30 is performed after the thermosetting resin contained in the resin sheets 15A and 15B between the fiber base materials 11 is melted. In order to be able to satisfactorily impregnate 11D, the pressure is preferably 2 MPa to 20 MPa.
In addition, the compression rate (%) of the fiber base materials 11A to 11D is calculated as follows: (distance between the mold surface of the lower mold 31 and the mold surface of the upper mold 32)/(total thickness of all layers of the fiber base material)×100. This is a calculated value, and is preferably 60 to 100%.

金型30による積層体の加熱により、繊維基材11間(繊維基材11Bと繊維基材11Cの間)の樹脂シート15A,15Bに含まれる熱硬化性樹脂が溶融し、また、溶融した熱硬化性樹脂が積層体の圧縮により、下側の繊維基材11B,11A、及び上側の繊維基材11C,11Dに含浸する。そして、繊維基材11A~11Dに含浸した熱硬化性樹脂が硬化することにより、繊維基材11A~11Dが圧縮された状態で一体化し、下型31及び上型32の型面形状に賦形された図1の繊維強化成形体10が得られる。 By heating the laminate with the mold 30, the thermosetting resin contained in the resin sheets 15A and 15B between the fiber base materials 11 (between the fiber base materials 11B and 11C) is melted, and the melted heat is The curable resin impregnates the lower fiber base materials 11B, 11A and the upper fiber base materials 11C, 11D by compressing the laminate. Then, by curing the thermosetting resin impregnated into the fiber base materials 11A to 11D, the fiber base materials 11A to 11D are integrated in a compressed state and shaped into the mold surface shape of the lower mold 31 and the upper mold 32. The fiber-reinforced molded article 10 shown in FIG. 1 is obtained.

図3には、4枚の繊維基材11A~11Dを積層し、繊維基材間の全てに樹脂シート15A~15Cを配置して金型30で加熱圧縮する実施形態を示す。
熱硬化性樹脂の量(全量)、金型30の加熱温度、積層体の加圧等は、図2の実施形態で説明した通りである。
FIG. 3 shows an embodiment in which four fiber base materials 11A to 11D are stacked, resin sheets 15A to 15C are placed between all the fiber base materials, and heated and compressed using a mold 30.
The amount (total amount) of the thermosetting resin, the heating temperature of the mold 30, the pressurization of the laminate, etc. are as described in the embodiment of FIG. 2.

図4に示す実施形態では、10枚の繊維基材11A~11Jを積層する際に、下側の5枚の繊維基材11A~11Eと、上側の5枚の繊維基材11F~11Jとの間の繊維基材11間(繊維基材11Eと繊維基材11Fの間)に、5枚の樹脂シート15A~15Eを配置する。 In the embodiment shown in FIG. 4, when stacking ten fiber base materials 11A to 11J, the lower five fiber base materials 11A to 11E and the upper five fiber base materials 11F to 11J are stacked. Five resin sheets 15A to 15E are arranged between the fiber base materials 11 (between the fiber base materials 11E and 11F).

3.樹脂シート15
繊維強化成形体10の製造用の樹脂シート15は、熱硬化性樹脂を含有する。すなわち、樹脂シート15は、熱硬化性樹脂を未硬化の状態で担持している。樹脂シート15、及び熱硬化性樹脂は、「1.繊維強化成形体10」における記載をそのまま引用する。
3. Resin sheet 15
The resin sheet 15 for manufacturing the fiber-reinforced molded body 10 contains a thermosetting resin. That is, the resin sheet 15 supports the thermosetting resin in an uncured state. Regarding the resin sheet 15 and the thermosetting resin, the description in "1. Fiber-reinforced molded product 10" is quoted as is.

表1,2に示す熱硬化性樹脂を用いて実施例1~10及び比較例1,2の繊維強化成形体を以下のようにして作製した。表4には、繊維強化成形体の作製に用いた各種のシート基材の特性をまとめて記載した。なお、熱硬化性樹脂の粘度は、株式会社ユービーエム社製のレオメーター:Rheosol-G3000を用い、次の条件で測定した。
1)試料の0.4gをペレット(直径φ18mm、厚さ0.4mm程度)に成形し、成形したペレットを直径φ18mmのパラレルプレートに挟む。
2)昇温速度5℃/min、周波数1Hz、回転角(ひずみ)0.1deg、等速昇温下、40℃~200℃間にわたって、2℃間隔で動的粘度を測定した。
Using the thermosetting resins shown in Tables 1 and 2, fiber-reinforced molded bodies of Examples 1 to 10 and Comparative Examples 1 and 2 were produced as follows. Table 4 summarizes the characteristics of various sheet base materials used for producing the fiber-reinforced molded product. The viscosity of the thermosetting resin was measured using a rheometer: Rheosol-G3000 manufactured by UBM Co., Ltd. under the following conditions.
1) Form 0.4 g of the sample into pellets (diameter φ18 mm, thickness approximately 0.4 mm), and sandwich the formed pellets between parallel plates having a diameter φ18 mm.
2) Dynamic viscosity was measured at 2°C intervals over a temperature range of 40°C to 200°C under constant temperature increase at a temperature increase rate of 5°C/min, frequency of 1Hz, rotation angle (strain) of 0.1deg.

Figure 0007419291000001
Figure 0007419291000001

Figure 0007419291000002
Figure 0007419291000002

Figure 0007419291000003
Figure 0007419291000003

Figure 0007419291000004
Figure 0007419291000004

1.繊維強化成形体の作製
(1)実施例1
固形熱硬化性樹脂として、シアネート樹脂(三菱ガス化学株式会社製、品名:CYTESTER TA、平均粒径:100μm)とエポキシ樹脂(DIC株式会社製、品名:AM-020-P、平均粒径:100μm)とフェノール樹脂(住友ベークライト株式会社製、品名;PR-50235D、平均粒径:90μm)を3:1:1の重量比にて均一に混合した混合樹脂を用いた。
実施例1の混合樹脂の特性は以下の通りであり、表1,2に記載されている。実施例1の混合樹脂の粘度測定結果を、図5グラフに示す。

・溶融開始温度Ta:69℃
・反応開始温度Tb:135℃
・(Tb-Ta):66℃
・最低粘度(溶融開始温度Ta℃以上の温度における最低粘度):59Pa・s
・最高粘度(硬化反応開始温度Tb℃~190℃の温度範囲における最高粘度)
:8,768Pa・s
・(Tb-Ta)/3の値:22℃
・Tb+(Tb-Ta)/3の値:157℃

樹脂シートのシート基材として、表4に示すPET不織布(日本バイリーン株式会社製、品名:JH-1004N1、目付量:45g/m、厚み0.08mm)を200mm×250mmに裁断したものを用いた。
シート基材1枚の上に、上記の固形熱硬化性樹脂20gを配置し、成形前シート基材を作製した。
次いで、100℃に加熱された金型の下型の成形面に、成形前シート基材を1枚配置し、その後に金型を閉じて1分間、圧力1MPaで加熱圧縮し、シート基材に固形熱硬化性樹脂を溶融して担持させた。その後、冷却することで、樹脂シートを作製した。
このようにして作製した樹脂シートを2枚用意した。なお、下型と上型間には厚み1mmのSUS製スペーサ、成形前シート基材の上下には厚み0.05mmのPETフィルムを介在させて樹脂シートの厚みを調整した。
強化用の繊維基材として、炭素繊維織物(帝人株式会社製、品名:W-3101、目付量:200g/m、厚み0.22mm)を200mm×250mmに裁断したものを4枚用意した。裁断後の炭素繊維織物の1枚当りの重量は12gであった。まず、炭素繊維織物2枚を配置し、その上に樹脂シート2枚、更に2枚の炭素繊維織物を順に配置し、成形前積層体を作製した。図2において、積層の状態を模式的に示す。実施例1では、図2に示すように、中央の繊維基材(炭素繊維織物)の間に樹脂シートを2枚配置して成形前積層体としている。
次いで、160℃に加熱された金型の下型の成形面に、成形前積層体を配置し、その後に金型を閉じて10分間、圧力10MPaで加熱圧縮して、固形熱硬化性樹脂を溶融硬化させた。固形熱硬化性樹脂が溶融し、圧力が加わることで、各層の繊維基材に樹脂が含浸し、その後に固形熱硬化性樹脂の熱硬化が完了することで、樹脂シートの熱硬化性樹脂によって繊維基材が一体化された繊維強化成形体が作製された。なお、プレス成形用の下型と上型間には厚み1mmのSUS製スペーサを介在させて、下型と上型間の間隔を調整することで、繊維強化成形体の厚みを調整した。
1. Production of fiber-reinforced molded body (1) Example 1
As solid thermosetting resins, cyanate resin (manufactured by Mitsubishi Gas Chemical Co., Ltd., product name: CYTESTER TA, average particle size: 100 μm) and epoxy resin (manufactured by DIC Corporation, product name: AM-020-P, average particle size: 100 μm) were used. ) and phenol resin (manufactured by Sumitomo Bakelite Co., Ltd., product name: PR-50235D, average particle size: 90 μm) at a weight ratio of 3:1:1 was used.
The properties of the mixed resin of Example 1 are as follows and are listed in Tables 1 and 2. The viscosity measurement results of the mixed resin of Example 1 are shown in the graph of FIG.

・Melting start temperature Ta: 69°C
・Reaction starting temperature Tb: 135°C
・(Tb-Ta): 66℃
・Minimum viscosity (minimum viscosity at a temperature equal to or higher than melting start temperature Ta°C): 59 Pa・s
- Maximum viscosity (highest viscosity in the temperature range from curing reaction start temperature Tb°C to 190°C)
:8,768Pa・s
・Value of (Tb-Ta)/3: 22℃
・Value of Tb+(Tb-Ta)/3: 157°C

As the sheet base material of the resin sheet, the PET nonwoven fabric shown in Table 4 (manufactured by Nippon Vilene Co., Ltd., product name: JH-1004N1, basis weight: 45 g/m 2 , thickness 0.08 mm) cut into 200 mm x 250 mm was used. there was.
20 g of the above solid thermosetting resin was placed on one sheet base material to produce a pre-molding sheet base material.
Next, one sheet base material before molding is placed on the molding surface of the lower die of the mold heated to 100°C, and then the mold is closed and heat-compressed at a pressure of 1 MPa for 1 minute to form the sheet base material. A solid thermosetting resin was melted and supported. Thereafter, a resin sheet was produced by cooling.
Two resin sheets produced in this manner were prepared. The thickness of the resin sheet was adjusted by interposing a 1 mm thick SUS spacer between the lower mold and the upper mold, and a 0.05 mm thick PET film above and below the sheet base material before molding.
As a reinforcing fiber base material, four pieces of carbon fiber fabric (manufactured by Teijin Ltd., product name: W-3101, basis weight: 200 g/m 2 , thickness 0.22 mm) cut into 200 mm x 250 mm were prepared. The weight of each carbon fiber fabric after cutting was 12 g. First, two carbon fiber fabrics were placed, and then two resin sheets and then two carbon fiber fabrics were placed in this order to produce a pre-molding laminate. FIG. 2 schematically shows the stacked state. In Example 1, as shown in FIG. 2, two resin sheets are arranged between a central fiber base material (carbon fiber fabric) to form a pre-molding laminate.
Next, the pre-molding laminate was placed on the molding surface of the lower mold of the mold heated to 160°C, and then the mold was closed and compressed under heat for 10 minutes at a pressure of 10 MPa to form a solid thermosetting resin. Melt hardened. When the solid thermosetting resin is melted and pressure is applied, the resin impregnates the fiber base material of each layer, and then the thermosetting resin of the solid thermosetting resin is completed, and the thermosetting resin of the resin sheet A fiber-reinforced molded body with an integrated fiber base material was produced. Note that a 1 mm thick SUS spacer was interposed between the lower mold and the upper mold for press molding to adjust the distance between the lower mold and the upper mold, thereby adjusting the thickness of the fiber-reinforced molded body.

(2)実施例2
固形熱硬化性樹脂として、シアネート樹脂(三菱ガス化学株式会社製、品名:CYTESTER TA、平均粒径:100μm)とエポキシ樹脂(DIC株式会社製、品名:AM-030-P、平均粒径:100μm)とフェノール樹脂(住友ベークライト株式会社製、品名;PR-50235D、平均粒径:90μm)を1:1:1の重量比にて均一に混合した混合樹脂を使用し、繊維強化成形体成形時の金型温度を150℃とした以外は、実施例1と同様に繊維強化成形体を作製した。
実施例2の混合樹脂の特性は以下の通りであり、表1,2に記載されている。

・溶融開始温度Ta:95℃
・反応開始温度Tb:135℃
・(Tb-Ta):40℃
・最低粘度(溶融開始温度Ta℃以上の温度における最低粘度):1,500Pa・s
・最高粘度(硬化反応開始温度Tb℃~190℃の温度範囲における最高粘度)
:209,004Pa・s
・(Tb-Ta)/3の値:13℃
・Tb+(Tb-Ta)/3の値:148℃
(2) Example 2
As solid thermosetting resins, cyanate resin (manufactured by Mitsubishi Gas Chemical Co., Ltd., product name: CYTESTER TA, average particle size: 100 μm) and epoxy resin (manufactured by DIC Corporation, product name: AM-030-P, average particle size: 100 μm) ) and phenol resin (manufactured by Sumitomo Bakelite Co., Ltd., product name: PR-50235D, average particle size: 90 μm) at a weight ratio of 1:1:1. A fiber-reinforced molded body was produced in the same manner as in Example 1, except that the mold temperature was 150°C.
The properties of the mixed resin of Example 2 are as follows and are listed in Tables 1 and 2.

・Melting start temperature Ta: 95°C
・Reaction starting temperature Tb: 135°C
・(Tb-Ta): 40℃
・Minimum viscosity (minimum viscosity at a temperature higher than the melting start temperature Ta°C): 1,500 Pa・s
- Maximum viscosity (highest viscosity in the temperature range from curing reaction start temperature Tb°C to 190°C)
:209,004Pa・s
・Value of (Tb-Ta)/3: 13°C
・Value of Tb+(Tb-Ta)/3: 148℃

(3)実施例3
固形熱硬化性樹脂として、フェノール樹脂(住友ベークライト株式会社製、品名:PR-50252、平均粒径:30μm)とエポキシ樹脂(三菱ケミカル株式会社製、品名:jER-1001、平均粒径:100μm)を1:1の重量比にて均一に混合した混合樹脂を使用し、繊維強化成形体成形時の金型温度を150℃とした以外は、実施例1と同様に繊維強化成形体を作製した。
実施例3の混合樹脂の特性は以下の通りであり、表1,2に記載されている。

・溶融開始温度Ta:73℃
・反応開始温度Tb:140℃
・(Tb-Ta):67℃
・最低粘度(溶融開始温度Ta℃以上の温度における最低粘度):22Pa・s
・最高粘度(硬化反応開始温度Tb℃~190℃の温度範囲における最高粘度)
:5,180Pa・s
・(Tb-Ta)/3の値:22℃
・Tb+(Tb-Ta)/3の値:163℃
(3) Example 3
As solid thermosetting resins, phenol resin (manufactured by Sumitomo Bakelite Co., Ltd., product name: PR-50252, average particle size: 30 μm) and epoxy resin (manufactured by Mitsubishi Chemical Corporation, product name: jER-1001, average particle size: 100 μm) A fiber-reinforced molded body was produced in the same manner as in Example 1, except that a mixed resin uniformly mixed at a weight ratio of 1:1 was used, and the mold temperature during molding of the fiber-reinforced molded body was 150°C. .
The properties of the mixed resin of Example 3 are as follows and are listed in Tables 1 and 2.

・Melting start temperature Ta: 73°C
・Reaction starting temperature Tb: 140°C
・(Tb-Ta): 67℃
・Minimum viscosity (minimum viscosity at a temperature higher than the melting start temperature Ta°C): 22 Pa・s
- Maximum viscosity (highest viscosity in the temperature range from curing reaction start temperature Tb°C to 190°C)
:5,180Pa・s
・Value of (Tb-Ta)/3: 22℃
・Value of Tb+(Tb-Ta)/3: 163℃

(4)実施例4
固形熱硬化性樹脂として、フェノール樹脂(住友ベークライト株式会社製、品名;PR-50235D、平均粒径:90μm)とシアネート樹脂(三菱ガス化学株式会社製、品名:CYTESTER TA、平均粒径:100μm)を1:1の重量比にて均一に混合した混合樹脂を使用し、繊維強化成形体成形時の金型温度を170℃とした以外は、実施例1と同様に繊維強化成形体を作製した。
実施例4の混合樹脂の特性は以下の通りであり、表1,2に記載されている。

・溶融開始温度Ta:76℃
・反応開始温度Tb:138℃
・(Tb-Ta):62℃
・最低粘度(溶融開始温度Ta℃以上の温度における最低粘度):475Pa・s
・最高粘度(硬化反応開始温度Tb℃~190℃の温度範囲における最高粘度)
:51,895Pa・s
・(Tb-Ta)/3の値:21℃
・Tb+(Tb-Ta)/3の値:159℃
(4) Example 4
As solid thermosetting resins, phenol resin (manufactured by Sumitomo Bakelite Co., Ltd., product name: PR-50235D, average particle size: 90 μm) and cyanate resin (manufactured by Mitsubishi Gas Chemical Co., Ltd., product name: CYTESTER TA, average particle size: 100 μm) A fiber-reinforced molded body was produced in the same manner as in Example 1, except that a mixed resin uniformly mixed at a weight ratio of 1:1 was used, and the mold temperature during molding of the fiber-reinforced molded body was 170°C. .
The properties of the mixed resin of Example 4 are as follows and are listed in Tables 1 and 2.

・Melting start temperature Ta: 76°C
・Reaction start temperature Tb: 138°C
・(Tb-Ta): 62℃
・Minimum viscosity (minimum viscosity at a temperature equal to or higher than the melting start temperature Ta°C): 475 Pa・s
- Maximum viscosity (highest viscosity in the temperature range from curing reaction start temperature Tb°C to 190°C)
:51,895Pa・s
・(Tb-Ta)/3 value: 21℃
・Value of Tb+(Tb-Ta)/3: 159°C

(5)実施例5
固形熱硬化性樹脂として、エポキシ樹脂(三菱ケミカル株式会社製、品名:jER-1001、平均粒径:100μm)とシアネート樹脂(三菱ガス化学株式会社製、品名:CYTESTER TA、平均粒径:100μm)とを1:1の重量比にて均一に混合した混合樹脂を使用し、繊維強化成形体成形時の金型温度を170℃とした以外は、実施例1と同様に繊維強化成形体を作製した。
実施例5の混合樹脂の特性は以下の通りであり、表1,2に記載されている。

・溶融開始温度Ta:75℃
・反応開始温度Tb:139℃
・(Tb-Ta):64℃
・最低粘度(溶融開始温度Ta℃以上の温度における最低粘度):575Pa・s
・最高粘度(硬化反応開始温度Tb℃~190℃の温度範囲における最高粘度)
:19,025Pa・s
・(Tb-Ta)/3の値:21℃
・Tb+(Tb-Ta)/3の値:160℃
(5) Example 5
As solid thermosetting resins, epoxy resin (manufactured by Mitsubishi Chemical Corporation, product name: jER-1001, average particle size: 100 μm) and cyanate resin (manufactured by Mitsubishi Gas Chemical Co., Ltd., product name: CYTESTER TA, average particle size: 100 μm) A fiber-reinforced molded body was produced in the same manner as in Example 1, except that a mixed resin uniformly mixed at a weight ratio of 1:1 was used, and the mold temperature during molding of the fiber-reinforced molded body was 170°C. did.
The properties of the mixed resin of Example 5 are as follows and are listed in Tables 1 and 2.

・Melting start temperature Ta: 75°C
・Reaction start temperature Tb: 139°C
・(Tb-Ta): 64℃
・Minimum viscosity (minimum viscosity at a temperature equal to or higher than the melting start temperature Ta°C): 575 Pa・s
- Maximum viscosity (highest viscosity in the temperature range from curing reaction start temperature Tb°C to 190°C)
:19,025Pa・s
・(Tb-Ta)/3 value: 21℃
・Value of Tb+(Tb-Ta)/3: 160℃

(6)実施例6
実施例1と同様の強化用の繊維基材を4枚、実施例1と同様の樹脂シート3枚を用意し、図3に示すように、各繊維基材層間にそれぞれ1枚の樹脂シートを配置した以外は実施例1と同様に繊維強化成形体を作製した。
(6) Example 6
Four reinforcing fiber base materials similar to those in Example 1 and three resin sheets similar to those in Example 1 were prepared, and as shown in FIG. 3, one resin sheet was placed between each fiber base material layer. A fiber-reinforced molded body was produced in the same manner as in Example 1 except for the arrangement.

(7)実施例7
実施例1と同様の強化用の繊維基材を10枚用意し、その繊維基材を5枚積層し、その上に、樹脂シート5枚を配置し、更にその上に残りの5枚の繊維基材を積層することで成形前基材を作製した以外は、実施例1と同様に繊維強化成形体を作製した。図4において、積層の状態を模式的に示す。
(7) Example 7
Ten reinforcing fiber base materials similar to those in Example 1 were prepared, five of the fiber base materials were laminated, five resin sheets were placed on top of that, and the remaining five fiber sheets were placed on top of that. A fiber-reinforced molded article was produced in the same manner as in Example 1, except that the pre-molding base material was produced by laminating the base materials. FIG. 4 schematically shows the stacked state.

(8)実施例8
シート基材として、厚み0.7mm、平面サイズ200mm×300mmに切り出したウレタン樹脂発泡体(株式会社イノアックコーポレーション製、品名:MF-50、目付量 35g/m)用いた以外は、実施例1と同様に繊維強化成形体を作製した。
(8) Example 8
Example 1 except that a urethane resin foam (manufactured by INOAC Corporation, product name: MF-50, basis weight 35 g/m 2 ) cut out into a sheet with a thickness of 0.7 mm and a planar size of 200 mm x 300 mm was used as the sheet base material. A fiber-reinforced molded body was produced in the same manner.

(9)実施例9
シート基材として、厚み0.22mm、平面サイズ200mm×300mmに切り出したレーヨン/ポリエステル不織布(クラレトレーディング株式会社製、品名:SF-30C、目付量 31g/m)用いた以外は、実施例1と同様に繊維強化成形体を作製した。
(9) Example 9
Example 1 except that a rayon/polyester nonwoven fabric (manufactured by Kuraray Trading Co., Ltd., product name: SF-30C, basis weight 31 g/m 2 ) cut out to a thickness of 0.22 mm and a planar size of 200 mm x 300 mm was used as the sheet base material. A fiber-reinforced molded body was produced in the same manner.

(10)実施例10
シート基材として、厚み0.34mm、平面サイズ200mm×300mmに切り出した炭素繊維シート(阿波製紙株式会社製、品名:CARMIX C-2、目付量 31g/m)用意した以外は、実施例1と同様に繊維強化成形体を作製した。
(10) Example 10
Example 1 except that a carbon fiber sheet (manufactured by Awa Paper Co., Ltd., product name: CARMIX C-2, basis weight 31 g/m 2 ) cut out to a thickness of 0.34 mm and a planar size of 200 mm x 300 mm was prepared as a sheet base material. A fiber-reinforced molded body was produced in the same manner.

(11)比較例1
固形熱硬化性樹脂として、フェノール樹脂(住友ベークライト株式会社製、品名:PR-50699、平均粒径:30μm)を使用し、樹脂シート作製時の金型温度を80℃、繊維強化成形体の成形時の金型温度を100℃とした以外は、実施例1と同様に繊維強化成形体を作製した。樹脂の粘度が高く(反応が速い)、樹脂の含浸性が悪く、均一な繊維強化成形体を得ることができなかった。
比較例1の樹脂の特性は以下の通りであり、表1,2に記載されている。比較例1の樹脂の粘度測定結果を、図5のグラフに示す。

・溶融開始温度Ta:72℃
・反応開始温度Tb:91℃
・(Tb-Ta):19℃
・最低粘度(溶融開始温度Ta℃以上の温度における最低粘度):118,908Pa・s
・最高粘度(硬化反応開始温度Tb℃~190℃の温度範囲における最高粘度)
:164,468Pa・s
・(Tb-Ta)/3の値:6℃
・Tb+(Tb-Ta)/3の値:100℃
(11) Comparative example 1
A phenol resin (manufactured by Sumitomo Bakelite Co., Ltd., product name: PR-50699, average particle size: 30 μm) was used as the solid thermosetting resin, and the mold temperature was 80°C during resin sheet production to form a fiber-reinforced molded product. A fiber-reinforced molded body was produced in the same manner as in Example 1, except that the mold temperature at the time was 100°C. The viscosity of the resin was high (the reaction was fast) and the impregnating properties of the resin were poor, making it impossible to obtain a uniform fiber-reinforced molded article.
The properties of the resin of Comparative Example 1 are as follows and are listed in Tables 1 and 2. The viscosity measurement results of the resin of Comparative Example 1 are shown in the graph of FIG.

・Melting start temperature Ta: 72°C
・Reaction start temperature Tb: 91°C
・(Tb-Ta): 19℃
・Minimum viscosity (minimum viscosity at a temperature higher than the melting start temperature Ta°C): 118,908 Pa・s
- Maximum viscosity (highest viscosity in the temperature range from curing reaction start temperature Tb°C to 190°C)
:164,468Pa・s
・Value of (Tb-Ta)/3: 6℃
・Value of Tb+(Tb-Ta)/3: 100℃

(12)比較例2
固形熱硬化性樹脂として、2種類のフェノール樹脂(住友ベークライト株式会社製、品名:PR-50252、平均粒径:30μmと住友ベークライト株式会社製、品名:PR-50235D、平均粒径:90μm)の1:2混合樹脂(重量比)、を使用し、繊維強化成形体の成形時の金型温度を160℃とした以外は、実施例1と同様に繊維強化成形体を作製した。樹脂の硬化が十分では無く、脱型時に変形が生じてしまった。
比較例2の樹脂の特性は以下の通りであり、表1,2に記載されている。比較例2の樹脂の粘度測定結果を、図5のグラフに示す。

・溶融開始温度Ta:80℃
・反応開始温度Tb:140℃
・(Tb-Ta):60℃
・最低粘度(溶融開始温度Ta℃以上の温度における最低粘度):21Pa・s
・最高粘度(硬化反応開始温度Tb℃~190℃の温度範囲における最高粘度):260Pa・s
・(Tb-Ta)/3の値:20℃
・Tb+(Tb-Ta)/3の値:160℃
(12) Comparative example 2
As the solid thermosetting resin, two types of phenolic resins (manufactured by Sumitomo Bakelite Co., Ltd., product name: PR-50252, average particle size: 30 μm and Sumitomo Bakelite Co., Ltd., product name: PR-50235D, average particle size: 90 μm) were used. A fiber-reinforced molded body was produced in the same manner as in Example 1, except that a 1:2 mixed resin (weight ratio) was used and the mold temperature during molding of the fiber-reinforced molded body was 160°C. The resin was not sufficiently cured, resulting in deformation during demolding.
The properties of the resin of Comparative Example 2 are as follows and are listed in Tables 1 and 2. The viscosity measurement results of the resin of Comparative Example 2 are shown in the graph of FIG.

・Melting start temperature Ta: 80°C
・Reaction starting temperature Tb: 140°C
・(Tb-Ta): 60℃
・Minimum viscosity (minimum viscosity at a temperature higher than the melting start temperature Ta°C): 21 Pa・s
・Maximum viscosity (highest viscosity in the temperature range of curing reaction start temperature Tb°C to 190°C): 260 Pa・s
・Value of (Tb-Ta)/3: 20℃
・Value of Tb+(Tb-Ta)/3: 160℃

2.繊維強化成形体の物性等
(1)測定方法
実施例1~10及び比較例1、2の繊維強化成形体について、厚み(mm)、曲げ強度(MPa)、曲げ弾性率(GPa)の測定及び外観を判断した。その結果を表3に示す。
曲げ強度、曲げ弾性率は繊維強化成形体から試験片を切り出し、JIS K7074 A法に基づいて測定した。
外観は目視により確認した。外観の判断は、繊維強化成形体の表面に変形や樹脂の含浸不均一等からなる不具合が存在するか否かを目視で確認し、不具合が無い場合「〇」、不具合がある場合「×」とした。
繊維強化成形体の各部分の厚みは、繊維強化成形体の断面をデジタルマイクロスコープVHX-5000(株式会社キーエンス社製)にて観察し測定した。表3における厚みは、繊維強化成形体の中央部付近の厚みである。
比重は、繊維強化成形体の重量と繊維強化成形体の体積から算出した。繊維強化成形体の体積は、繊維強化成形体の厚みと面積から算出した。
2. Physical properties, etc. of fiber-reinforced molded products (1) Measurement method Regarding the fiber-reinforced molded products of Examples 1 to 10 and Comparative Examples 1 and 2, the thickness (mm), bending strength (MPa), bending modulus (GPa) were measured and Judging the appearance. The results are shown in Table 3.
Bending strength and bending elastic modulus were measured by cutting out a test piece from the fiber-reinforced molded article based on JIS K7074 A method.
The appearance was visually confirmed. Appearance is judged by visually checking whether there are any defects such as deformation or non-uniform resin impregnation on the surface of the fiber-reinforced molded product, and if there are no defects, mark it as "〇", and if there are defects, mark it as "x". And so.
The thickness of each part of the fiber-reinforced molded product was measured by observing the cross section of the fiber-reinforced molded product using a digital microscope VHX-5000 (manufactured by Keyence Corporation). The thickness in Table 3 is the thickness near the center of the fiber-reinforced molded body.
The specific gravity was calculated from the weight of the fiber-reinforced molded product and the volume of the fiber-reinforced molded product. The volume of the fiber-reinforced molded product was calculated from the thickness and area of the fiber-reinforced molded product.

(2)測定結果
測定結果を表3に示す。
実施例1-10の繊維強化成形体は、下記要件(a)(b)を満たしている。これに対して比較例1の繊維強化成形体は、要件(a)を満たしていない。要件(a)を満たしていない比較例1では、樹脂の粘度が高いため、樹脂の含浸性が悪く、均一な繊維強化成形体を得ることができなかった。また、比較例2の繊維強化成形体は、要件(b)を満たしていない。要件(b)を満たしていない比較例2の維強化成形体では、樹脂の硬化が十分では無く、脱型時に変形が生じてしまった。
要件(a)(b)を満たす実施例1-10の繊維強化成形体では、固形熱硬化性樹脂の溶融特性及び硬化特性をコントロールすることで、プリプレグを用いることなく、簡便な方法で、外観、強度、及び軽量化に優れた繊維強化樹脂複合体を得ることができた。また、実施例1-10の繊維強化成形体では、簡便な方法で樹脂シート(樹脂担持シート)を作製することができ、粉体の飛散を防止することができるとともに、製造過程で有機溶剤なども使用しないため、作業環境に優れ、大気汚染の問題も発生しないことが分かる。

・要件(a):硬化反応開始温度Tb℃の粘度(最低粘度)が2,000Pa・s以下である。
・要件(b):硬化反応開始温度Tb℃~190℃の範囲における最高粘度が1,000Pa・s以上である。
(2) Measurement results The measurement results are shown in Table 3.
The fiber-reinforced molded article of Example 1-10 satisfies the following requirements (a) and (b). On the other hand, the fiber-reinforced molded article of Comparative Example 1 does not meet requirement (a). In Comparative Example 1, which did not satisfy requirement (a), the viscosity of the resin was high, so the impregnating property of the resin was poor, and a uniform fiber-reinforced molded product could not be obtained. Moreover, the fiber-reinforced molded article of Comparative Example 2 does not satisfy requirement (b). In the fiber-reinforced molded article of Comparative Example 2, which did not meet requirement (b), the resin was not sufficiently cured, and deformation occurred during demolding.
In the fiber-reinforced molded article of Example 1-10 that satisfies requirements (a) and (b), by controlling the melting characteristics and curing characteristics of the solid thermosetting resin, the appearance can be improved by a simple method without using prepreg. A fiber-reinforced resin composite with excellent strength and weight reduction could be obtained. In addition, in the fiber-reinforced molded product of Example 1-10, a resin sheet (resin support sheet) can be produced by a simple method, and scattering of powder can be prevented, and organic solvents etc. can be used in the manufacturing process. Since no air pollution is used, the work environment is excellent and there are no air pollution problems.

- Requirement (a): The viscosity (minimum viscosity) at the curing reaction start temperature Tb° C. is 2,000 Pa·s or less.
- Requirement (b): The highest viscosity in the range of curing reaction start temperature Tb°C to 190°C is 1,000 Pa·s or more.

また、実施例1-10の繊維強化成形体は、更に下記要件(c)も満たすことで、溶融した熱硬化性樹脂を繊維基材に十分に含浸させることができ、均一な物性を有する繊維強化成形体を得ることができた。

・要件(c):30≦(Tb-Ta)≦100 を満たす。
In addition, the fiber-reinforced molded article of Example 1-10 further satisfies the following requirement (c), so that the fiber base material can be sufficiently impregnated with the molten thermosetting resin, and the fibers have uniform physical properties. A reinforced molded body could be obtained.

- Requirement (c): 30≦(Tb-Ta)≦100 is satisfied.

上記の実施例及び比較例から、以下の発明も把握できる。以下の発明の特定事項についての説明は、上記の各説明を適宜援用する。
・繊維基材及び前記繊維基材とは異なるシート基材が積層した積層体に熱硬化性樹脂が含侵した繊維強化成形体。
The following inventions can also be understood from the above examples and comparative examples. The following descriptions of specific matters of the invention refer to the above descriptions as appropriate.
- A fiber-reinforced molded product in which a thermosetting resin is impregnated into a laminate in which a fiber base material and a sheet base material different from the fiber base material are laminated.

3.実施例の効果
以上の実施例によれば、外観、強度、及び軽量化に優れた繊維強化樹脂複合体を得ることができた。また、簡便な方法で樹脂シートを作製することができ、粉体の飛散を防止することができるとともに、製造過程で有機溶剤なども使用しないため、作業環境に優れ、大気汚染の問題も発生しないことが確認された。
3. Effects of Examples According to the above examples, it was possible to obtain a fiber-reinforced resin composite that was excellent in appearance, strength, and weight reduction. In addition, the resin sheet can be produced using a simple method, preventing powder from scattering, and since no organic solvents are used in the manufacturing process, the work environment is excellent and there is no problem of air pollution. This was confirmed.

本開示は上記で詳述した実施例に限定されず、様々な変形又は変更が可能である。 The present disclosure is not limited to the embodiments detailed above, and various modifications or changes are possible.

10…繊維強化成形体
11…繊維基材
15…樹脂シート
30…金型
31…下型
32…上型
10...Fiber-reinforced molded body 11...Fiber base material 15...Resin sheet 30...Mold 31...Lower mold 32...Upper mold

Claims (7)

繊維基材が、熱硬化性樹脂を含有する樹脂シートの前記熱硬化性樹脂によって一体化された、繊維強化成形体の製造方法であって、
前記繊維基材と前記樹脂シートとを重ねた状態で、金型によって加熱圧縮し、前記熱硬化性樹脂を前記繊維基材に含浸させて硬化させる、繊維強化成形体の製造方法であり、
前記熱硬化性樹脂は、硬化反応開始温度Tb℃の粘度が59Pa・s~2,000Pa・sであり、硬化反応開始温度Tb℃~190℃の範囲における最高粘度が8,768Pa・s以上であり、
以下の(1)~(4)のいずれか一つを満足する繊維強化成形体の製造方法。
(1)曲げ弾性率(JIS K7074 A法)が66.1GPa以上である
(2)前記熱硬化性樹脂は、シアネート樹脂を含む
(3)前記繊維基材は、アラミド繊維又はバサルト繊維を含む
(4)前記熱硬化性樹脂は、溶融開始温度をTa℃、硬化反応開始温度をTb℃とすると、
(Tb-Ta)の値が、30≦(Tb-Ta)≦100 を満たす
A method for producing a fiber-reinforced molded article, in which a fiber base material is integrated with the thermosetting resin of a resin sheet containing a thermosetting resin, the method comprising:
A method for producing a fiber-reinforced molded article, in which the fiber base material and the resin sheet are stacked and heated and compressed using a mold, and the thermosetting resin is impregnated into the fiber base material and cured.
The thermosetting resin has a viscosity of 59 Pa·s to 2,000 Pa·s at a curing reaction starting temperature Tb°C and a maximum viscosity of 8,768 Pa·s or more in the range of curing reaction starting temperature Tb°C to 190°C. can be,
A method for producing a fiber-reinforced molded article that satisfies any one of the following (1) to (4).
(1) The flexural modulus (JIS K7074 A method) is 66.1 GPa or more (2) The thermosetting resin contains cyanate resin (3) The fiber base material contains aramid fiber or basalt fiber ( 4) The thermosetting resin has a melting start temperature of Ta°C and a curing reaction start temperature of Tb°C.
The value of (Tb-Ta) satisfies 30≦(Tb-Ta)≦100
繊維基材が、熱硬化性樹脂を含有する樹脂シートの前記熱硬化性樹脂によって一体化された、繊維強化成形体の製造方法であって、
前記繊維基材と前記樹脂シートとを重ねた状態で、金型によって加熱圧縮し、前記熱硬化性樹脂を前記繊維基材に含浸させて硬化させる、繊維強化成形体の製造方法であり、
前記熱硬化性樹脂は、硬化反応開始温度Tb℃の粘度が2,000Pa・s以下であり、硬化反応開始温度Tb℃~190℃の範囲における最高粘度が1,000Pa・s以上であり、
以下の(1)を満足する繊維強化成形体の製造方法。
(1)曲げ弾性率(JIS K7074 A法)が66.1GPa以上である
A method for producing a fiber-reinforced molded article, in which a fiber base material is integrated with the thermosetting resin of a resin sheet containing a thermosetting resin, the method comprising:
A method for producing a fiber-reinforced molded article, in which the fiber base material and the resin sheet are stacked and heated and compressed using a mold, and the thermosetting resin is impregnated into the fiber base material and cured.
The thermosetting resin has a viscosity of 2,000 Pa·s or less at a curing reaction starting temperature Tb°C and a maximum viscosity of 1,000 Pa·s or more in a range of curing reaction starting temperature Tb°C to 190°C,
A method for producing a fiber-reinforced molded article that satisfies the following (1).
(1) Flexural modulus (JIS K7074 A method) is 66.1 GPa or more
ガラス繊維、アラミド繊維、バサルト繊維、又は炭素繊維より選択され、熱硬化性樹脂が含浸されていない繊維基材が、前記熱硬化性樹脂を含有する樹脂シートの前記熱硬化性樹脂によって一体化された、繊維強化成形体の製造方法であって、
前記樹脂シートはシート基材を備え、
前記熱硬化性樹脂は、硬化反応開始温度Tb℃の粘度が2,000Pa・s以下であり、硬化反応開始温度Tb℃~190℃の範囲における最高粘度が1,000Pa・s以上であり、
以下の(1)~(2)のいずれか一つを満足し、
(1)前記シート基材の材質はレーヨン又はポリエステルである
(2)前記シート基材は不織布である
前記繊維基材と前記樹脂シートとを重ねた状態で、金型によって加熱圧縮し、前記熱硬化性樹脂を前記繊維基材に含浸させて硬化させる、繊維強化成形体の製造方法。
A fiber base material selected from glass fiber, aramid fiber, basalt fiber, or carbon fiber and not impregnated with a thermosetting resin is integrated with the thermosetting resin of the resin sheet containing the thermosetting resin. Further, a method for manufacturing a fiber-reinforced molded article,
The resin sheet includes a sheet base material,
The thermosetting resin has a viscosity of 2,000 Pa·s or less at a curing reaction starting temperature Tb°C and a maximum viscosity of 1,000 Pa·s or more in a range of curing reaction starting temperature Tb°C to 190°C,
Satisfies any one of the following (1) to (2),
(1) The material of the sheet base material is rayon or polyester. (2) The sheet base material is a nonwoven fabric. The fiber base material and the resin sheet are overlapped and heated and compressed using a mold, and the A method for producing a fiber-reinforced molded article, which comprises impregnating the fiber base material with a curable resin and curing it.
ガラス繊維、アラミド繊維、バサルト繊維、又は炭素繊維より選択され、熱硬化性樹脂が含浸されていない繊維基材が、前記熱硬化性樹脂を含有する樹脂シートの前記熱硬化性樹脂によって一体化された、繊維強化成形体の製造方法であって、
前記樹脂シートはシート基材を備え、
前記熱硬化性樹脂は、硬化反応開始温度Tb℃の粘度が59Pa・s~2,000Pa・sであり、硬化反応開始温度Tb℃~190℃の範囲における最高粘度が8,768Pa・s以上であり、
以下の(1)~(2)のいずれか一つを満足し、
(1)前記シート基材の材質はレーヨン、ポリエステル又は炭素繊維である
(2)前記シート基材は不織布又は繊維シートである
前記繊維基材と前記樹脂シートとを重ねた状態で、金型によって加熱圧縮し、前記熱硬化性樹脂を前記繊維基材に含浸させて硬化させる、繊維強化成形体の製造方法。
A fiber base material selected from glass fiber, aramid fiber, basalt fiber, or carbon fiber and not impregnated with a thermosetting resin is integrated with the thermosetting resin of the resin sheet containing the thermosetting resin. Further, a method for manufacturing a fiber-reinforced molded article,
The resin sheet includes a sheet base material,
The thermosetting resin has a viscosity of 59 Pa·s to 2,000 Pa·s at a curing reaction starting temperature Tb°C and a maximum viscosity of 8,768 Pa·s or more in the range of curing reaction starting temperature Tb°C to 190°C. can be,
Satisfies any one of the following (1) to (2),
(1) The material of the sheet base material is rayon, polyester, or carbon fiber. (2) The sheet base material is a nonwoven fabric or a fiber sheet. With the fiber base material and the resin sheet overlapped, a mold is used. A method for producing a fiber-reinforced molded article, which comprises heating and compressing the thermosetting resin to impregnate the fiber base material and curing the fiber base material.
繊維強化成形体の製造用の樹脂シートであって、
熱硬化性樹脂を含有し、
以下の(1)を満足する樹脂シート。
)前記熱硬化性樹脂は、硬化反応開始温度Tb℃の粘度が59Pa・s~2,000Pa・sであり、硬化反応開始温度Tb℃~190℃の範囲における最高粘度が8,768Pa・s以上であり、
前記熱硬化性樹脂は、溶融開始温度をTa℃、硬化反応開始温度をTb℃とすると、
(Tb-Ta)の値が、30≦(Tb-Ta)≦100 を満たす
A resin sheet for producing a fiber-reinforced molded article,
Contains thermosetting resin,
A resin sheet that satisfies the following (1).
( 1 ) The thermosetting resin has a viscosity of 59 Pa·s to 2,000 Pa·s at the curing reaction starting temperature Tb°C, and a maximum viscosity of 8,768 Pa·s in the range of the curing reaction starting temperature Tb°C to 190°C. s or more,
The thermosetting resin has a melting start temperature of Ta°C and a curing reaction start temperature of Tb°C.
The value of (Tb-Ta) satisfies 30≦(Tb-Ta)≦100
繊維強化成形体の製造用の、熱硬化性樹脂を含有する樹脂シートの製造方法であって、
材質がレーヨン、又はポリエステルであるシート基材に、粉体の前記熱硬化性樹脂を溶融して担持させる工程、を含む製造方法。
A method for producing a resin sheet containing a thermosetting resin for producing a fiber-reinforced molded article, the method comprising:
A manufacturing method comprising the step of melting and supporting the thermosetting resin in powder form on a sheet base material made of rayon or polyester.
繊維強化成形体の製造用の、熱硬化性樹脂を含有する樹脂シートの製造方法であって、
材質がレーヨン、ポリエステル又は炭素繊維であるシート基材に、粉体の前記熱硬化性樹脂を溶融して担持させる工程、を含み、
前記熱硬化性樹脂は、フェノール樹脂とエポキシ樹脂の混合樹脂、フェノール樹脂とシアネート樹脂の混合樹脂、エポキシ樹脂とシアネート樹脂の混合樹脂、及び、フェノール樹脂とエポキシ樹脂とシアネート樹脂の混合樹脂からなる群より選ばれた樹脂である製造方法。
A method for producing a resin sheet containing a thermosetting resin for producing a fiber-reinforced molded article, the method comprising:
A step of melting and supporting the thermosetting resin in powder form on a sheet base material made of rayon, polyester, or carbon fiber ,
The thermosetting resin is a group consisting of a mixed resin of phenol resin and epoxy resin, a mixed resin of phenol resin and cyanate resin, a mixed resin of epoxy resin and cyanate resin, and a mixed resin of phenol resin, epoxy resin, and cyanate resin. Manufacturing method that is more selected resin .
JP2021076007A 2020-07-06 2021-04-28 Method for manufacturing fiber-reinforced molded body, resin sheet, and method for manufacturing resin sheet Active JP7419291B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2021076007A JP7419291B2 (en) 2021-04-28 2021-04-28 Method for manufacturing fiber-reinforced molded body, resin sheet, and method for manufacturing resin sheet
EP21835931.3A EP4177047A1 (en) 2020-07-06 2021-06-22 Fiber-reinforced resin molded body and manufacturing method thereof, fiber-reinforced resin molding prepreg, fiber-reinforced molded body and fiber-reinforced molded body manufacturing method, and resin sheet, fiber-reinforced sandwich composite, and fiber-reinforced molded body manufacturing method
US17/925,228 US20230235140A1 (en) 2020-07-06 2021-06-22 Fiber-reinforced resin molded body and production method thereof, fiber-reinforced resin molding prepreg, fiber-reinforced molded body and production method of fiber-reinforced molded body and resin sheet, fiber-reinforced sandwich composite, and production method of fiberreinforced molded body
PCT/JP2021/023675 WO2022009671A1 (en) 2020-07-06 2021-06-22 Fiber-reinforced resin molded body and manufacturing method thereof, fiber-reinforced resin molding prepreg, fiber-reinforced molded body and fiber-reinforced molded body manufacturing method, and resin sheet, fiber-reinforced sandwich composite, and fiber-reinforced molded body manufacturing method
CN202180042674.6A CN115835945A (en) 2020-07-06 2021-06-22 Fiber-reinforced resin molded article and method for producing same, prepreg for fiber-reinforced resin molding, fiber-reinforced molded article, method for producing fiber-reinforced molded article, resin sheet, fiber-reinforced sandwich composite, and method for producing fiber-reinforced molded article
TW110123546A TW202204137A (en) 2020-07-06 2021-06-28 Fiber-reinforced resin molded body and manufacturing method thereof, fiber-reinforced resin molding prepreg, fiber-reinforced molded body and fiber-reinforced molded body manufacturing method, and resin sheet, fiber-reinforced sandwich composite, and fiber-reinforced molded body manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021076007A JP7419291B2 (en) 2021-04-28 2021-04-28 Method for manufacturing fiber-reinforced molded body, resin sheet, and method for manufacturing resin sheet

Publications (2)

Publication Number Publication Date
JP2022170112A JP2022170112A (en) 2022-11-10
JP7419291B2 true JP7419291B2 (en) 2024-01-22

Family

ID=83944816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021076007A Active JP7419291B2 (en) 2020-07-06 2021-04-28 Method for manufacturing fiber-reinforced molded body, resin sheet, and method for manufacturing resin sheet

Country Status (1)

Country Link
JP (1) JP7419291B2 (en)

Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005281487A (en) 2004-03-30 2005-10-13 Sumitomo Bakelite Co Ltd Manufacturing process of prepreg and laminate
JP2006071959A (en) 2004-09-02 2006-03-16 Inoac Corp Acoustic material and method for manufacturing same
JP2009280669A (en) 2008-05-21 2009-12-03 Toray Ind Inc Rtm fiber-reinforced composite material and process for producing it
JP2010023240A (en) 2008-07-15 2010-02-04 Institute Of National Colleges Of Technology Japan Manufacturing method of heat-defensive composite material
JP2010540293A (en) 2007-10-03 2010-12-24 エイセル グループ リミテッド Composite product
JP2011093175A (en) 2009-10-29 2011-05-12 Inoac Corp Fiber-reinforced molding and method of manufacturing the same
JP2012077365A (en) 2010-10-05 2012-04-19 Nippon Steel Materials Co Ltd Wear-resistant fiber-reinforced composite material and method for production thereof
WO2012073775A1 (en) 2010-12-02 2012-06-07 東レ株式会社 Method for producing metal composite, and chassis for electronic equipment
JP2013230579A (en) 2012-04-27 2013-11-14 Mitsubishi Plastics Inc Method of manufacturing carbon fiber reinforced resin molded article, carbon fiber reinforced resin molded article, and deep-drawn product using the same
CN104130548A (en) 2014-07-29 2014-11-05 深圳市惠程电气股份有限公司 Polyimide fiber prepreg and preparation method and application thereof
JP2015217662A (en) 2014-05-21 2015-12-07 株式会社イノアックコーポレーション Carbon fiber composite material
JP2017160559A (en) 2016-03-09 2017-09-14 住友ベークライト株式会社 Manufacturing method of sheet making body and manufacturing method of molded body
JP2018024215A (en) 2016-08-12 2018-02-15 日産自動車株式会社 Molding method of molded article
WO2018124215A1 (en) 2016-12-28 2018-07-05 新日鉄住金化学株式会社 Metal/fiber-reinforced resin material composite body, method for producing same and bonding sheet
JP2018140528A (en) 2017-02-27 2018-09-13 トヨタ自動車株式会社 Method for manufacturing resin molding
WO2018182038A1 (en) 2017-03-31 2018-10-04 新日鉄住金化学株式会社 Metal/fiber-reinforced resin material composite body and method for producing same
WO2019044801A1 (en) 2017-08-30 2019-03-07 本田技研工業株式会社 Laminate, in-vehicle battery containing body, and method for producing in-vehicle battery containing body
WO2019069639A1 (en) 2017-10-06 2019-04-11 八千代工業株式会社 Fiber-reinforced resin member manufacturing process, fuel tank, and fiber-reinforced resin member
CN109897375A (en) 2019-03-29 2019-06-18 中南大学 A kind of high-strength flexible cyanate ester modified with epoxy resin/carbon fiber composite shape-memory material and preparation method thereof
JP2019119212A (en) 2017-12-28 2019-07-22 日本製鉄株式会社 Metal-fiber reinforced resin material composite
JP2019119213A (en) 2017-12-28 2019-07-22 日本製鉄株式会社 Metal-fiber reinforced resin material composite and manufacturing method therefor
JP2020012065A (en) 2018-07-19 2020-01-23 三菱ケミカル株式会社 Thermosetting resin composition and prepreg using the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5130910B2 (en) * 1973-07-18 1976-09-03
JPS5375284A (en) * 1976-12-15 1978-07-04 Matsushita Electric Works Ltd Manufacture of synthetic resin laminate
JPS5375285A (en) * 1976-12-15 1978-07-04 Matsushita Electric Works Ltd Manufacture of synthetic resin laminate
JPS5478772A (en) * 1977-12-05 1979-06-23 Matsushita Electric Works Ltd Production of laminate

Patent Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005281487A (en) 2004-03-30 2005-10-13 Sumitomo Bakelite Co Ltd Manufacturing process of prepreg and laminate
JP2006071959A (en) 2004-09-02 2006-03-16 Inoac Corp Acoustic material and method for manufacturing same
JP2010540293A (en) 2007-10-03 2010-12-24 エイセル グループ リミテッド Composite product
JP2009280669A (en) 2008-05-21 2009-12-03 Toray Ind Inc Rtm fiber-reinforced composite material and process for producing it
JP2010023240A (en) 2008-07-15 2010-02-04 Institute Of National Colleges Of Technology Japan Manufacturing method of heat-defensive composite material
JP2011093175A (en) 2009-10-29 2011-05-12 Inoac Corp Fiber-reinforced molding and method of manufacturing the same
JP2012077365A (en) 2010-10-05 2012-04-19 Nippon Steel Materials Co Ltd Wear-resistant fiber-reinforced composite material and method for production thereof
WO2012073775A1 (en) 2010-12-02 2012-06-07 東レ株式会社 Method for producing metal composite, and chassis for electronic equipment
JP2013230579A (en) 2012-04-27 2013-11-14 Mitsubishi Plastics Inc Method of manufacturing carbon fiber reinforced resin molded article, carbon fiber reinforced resin molded article, and deep-drawn product using the same
JP2015217662A (en) 2014-05-21 2015-12-07 株式会社イノアックコーポレーション Carbon fiber composite material
CN104130548A (en) 2014-07-29 2014-11-05 深圳市惠程电气股份有限公司 Polyimide fiber prepreg and preparation method and application thereof
JP2017160559A (en) 2016-03-09 2017-09-14 住友ベークライト株式会社 Manufacturing method of sheet making body and manufacturing method of molded body
JP2018024215A (en) 2016-08-12 2018-02-15 日産自動車株式会社 Molding method of molded article
WO2018124215A1 (en) 2016-12-28 2018-07-05 新日鉄住金化学株式会社 Metal/fiber-reinforced resin material composite body, method for producing same and bonding sheet
JP2018140528A (en) 2017-02-27 2018-09-13 トヨタ自動車株式会社 Method for manufacturing resin molding
WO2018182038A1 (en) 2017-03-31 2018-10-04 新日鉄住金化学株式会社 Metal/fiber-reinforced resin material composite body and method for producing same
WO2019044801A1 (en) 2017-08-30 2019-03-07 本田技研工業株式会社 Laminate, in-vehicle battery containing body, and method for producing in-vehicle battery containing body
WO2019069639A1 (en) 2017-10-06 2019-04-11 八千代工業株式会社 Fiber-reinforced resin member manufacturing process, fuel tank, and fiber-reinforced resin member
JP2019119212A (en) 2017-12-28 2019-07-22 日本製鉄株式会社 Metal-fiber reinforced resin material composite
JP2019119213A (en) 2017-12-28 2019-07-22 日本製鉄株式会社 Metal-fiber reinforced resin material composite and manufacturing method therefor
JP2020012065A (en) 2018-07-19 2020-01-23 三菱ケミカル株式会社 Thermosetting resin composition and prepreg using the same
CN109897375A (en) 2019-03-29 2019-06-18 中南大学 A kind of high-strength flexible cyanate ester modified with epoxy resin/carbon fiber composite shape-memory material and preparation method thereof

Also Published As

Publication number Publication date
JP2022170112A (en) 2022-11-10

Similar Documents

Publication Publication Date Title
EP2495099B1 (en) Fiber-reinforced molded product and method for producing same
US9963586B2 (en) Prepreg, fiber reinforced composite material, and manufacturing method for fiber reinforced composite material
JP5090701B2 (en) Partially impregnated prepreg and method for producing fiber reinforced composite material using the same
TWI697398B (en) Manufacturing method of structure
EP3147108B1 (en) Carbon fiber composite material
JP7404486B2 (en) Carbon fiber reinforced molded body
JP2017128705A (en) Carbon fiber sheet material, prepreg, laminate, molded body and method for manufacturing them
EP3698935A1 (en) Manufacturing method for fiber-reinforced plastic composite
US20220340725A1 (en) Surface veil and surface film integrated prepreg layer and processes for making the same
JP5966969B2 (en) Manufacturing method of prepreg
JP7419291B2 (en) Method for manufacturing fiber-reinforced molded body, resin sheet, and method for manufacturing resin sheet
EP3585607B1 (en) Fiber composite with reduced surface roughness and method for its manufacture
JP7326228B2 (en) Fiber-reinforced resin molding and its manufacturing method
JP7321135B2 (en) Fiber-reinforced resin molding prepreg and fiber-reinforced resin molding
WO2022009671A1 (en) Fiber-reinforced resin molded body and manufacturing method thereof, fiber-reinforced resin molding prepreg, fiber-reinforced molded body and fiber-reinforced molded body manufacturing method, and resin sheet, fiber-reinforced sandwich composite, and fiber-reinforced molded body manufacturing method
JP7473442B2 (en) Fiber Reinforced Sandwich Composites
JP2022093881A (en) Manufacturing method for fiber-reinforced molding and fiber-reinforced molding
JP2022063509A (en) Fiber-reinforced sandwich composite body
JP5144010B2 (en) Manufacturing method of fiber reinforced plastic panel
JP2023008133A (en) Thermosetting resin composition, cured product, prepreg, and fiber-reinforced molding
JP7220004B2 (en) Fiber-reinforced resin composite molding and method for producing the same
KR101746026B1 (en) Multilayer hybrid prepreg and its manufacturing method
JP7139296B2 (en) Fiber-reinforced resin composite molding and method for producing the same
JPH043769B2 (en)
CN111094409B (en) Thermosetting resin composition for fiber-reinforced composite material, preform, fiber-reinforced composite material, and method for producing fiber-reinforced composite material

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220526

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230608

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231003

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240110

R150 Certificate of patent or registration of utility model

Ref document number: 7419291

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150