JP2005022171A - Core for composite material sandwich panel, composite material sandwich panel and its manufacturing method - Google Patents

Core for composite material sandwich panel, composite material sandwich panel and its manufacturing method Download PDF

Info

Publication number
JP2005022171A
JP2005022171A JP2003188847A JP2003188847A JP2005022171A JP 2005022171 A JP2005022171 A JP 2005022171A JP 2003188847 A JP2003188847 A JP 2003188847A JP 2003188847 A JP2003188847 A JP 2003188847A JP 2005022171 A JP2005022171 A JP 2005022171A
Authority
JP
Japan
Prior art keywords
sandwich panel
core
resin
matrix resin
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003188847A
Other languages
Japanese (ja)
Inventor
Toshinobu Muraki
俊宣 村木
Kazuaki Kishimoto
和昭 岸本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2003188847A priority Critical patent/JP2005022171A/en
Publication of JP2005022171A publication Critical patent/JP2005022171A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide the core for a composite material sandwich panel manufactured using no expensive equipment, the composite material sandwich panel and its manufacturing method. <P>SOLUTION: A nonwoven fabric comprising fibers or yarns made of a synthetic resin, which has a melting point higher than the molding temperature of a matrix resin, is held between at least two core materials, wherein a low density imparting filler is included in the matrix resin, on a mold and a prepreg comprising a fiber reinforced plastic is arranged at least on the almost whole region of one side thereof. The whole is covered with a bag film to be made airtight and heated while evacuating the bag film to be molded integrally. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術の分野】
本発明は、軽量・高強度な繊維強化樹脂複合材板状構造体及びその低コストな製造法に関し、特に複合材サンドイッチパネル用コア、複合材サンドイッチパネル、及びその製造方法に関する。
【0002】
【従来の技術】
軽量で高強度な繊維強化樹脂複合材は各種の産業分野で用途を広げているが、中でも航空機・宇宙産業では厳しく軽量と高強度の両立が要求されるので、重要視されてきている。加えて、大型の部材が必要なところから、該繊維強化樹脂複合材の構造および製造法には従来の技術で種々の工夫がなされている。
【0003】
一般に、前記目的で大型の部材に成形された繊維強化樹脂複合材の構造は、軽量のコア材と高強度のスキン材との積層構造、特にコア材層の両面に繊維強化樹脂のスキン材層が配置一体化されたサンドイッチ構造となっている。また一般に、コア材には、アルミニウム合金製のハニカムコアや硬質プラスチック独立気泡発泡体が使用されるが、高い強度を要求される航空機部品には、マトリックス樹脂中に低密度付与充填材を内包するコア材(以下シンタクティック・フォーム)が使用される。このような高い強度を有する大きなサンドイッチ構造のパネルを一体で製造するには、大きなオートクレーブに材料を入れて、加圧・加温して行う必要があった。
【0004】
その製造工程を模式的に描いた略図、図3でその製造方法を説明すると、成形型7上で、複数枚の、シンタクティック・フォーム1を中心に挟んで、複数枚の、繊維強化プラスチックスのプリプレグ2を積層する。その上を離型フィルム5で覆い、バッグフィルム4とシール部材6により前記積層物を密封する。全体をオートクレーブ12中に入れて、バッグフィルム4内を図示してない真空装置8に繋ぎ内部を減圧し、全体を図示しない加圧源13により加圧しながら、やはり図示しない熱源により加温して、成形硬化させる。この時樹脂その他から揮発性物質、空気などガス成分が発生して積層物間に移行滞留してくるが、オートクレーブによる圧力で、成形体の外に押し出し除外される。
【0005】
温度、圧力などの成形条件は、使用する材料の質によるが、例えば航空機の構造材に用いられる炭素繊維とエポキシ樹脂からなる一般的な繊維強化プラスチックスの場合では、温度約120〜180℃の範囲で成形時に段階的に変化させ、圧力は0.3〜0.7Mpaの範囲で加圧する。
【0006】
このように、大型のオートクレーブを設置、運転して製造する方法は費用が嵩むので、圧力をかけないで、バッグ内を真空で引きつつ加熱だけで硬化成形する方法も行われるが、前記シンタクティック・フォームをサンドイッチした構造のパネルでは、シンタクティック・フォーム同士の積層面間が密に閉ざされるので、この部分(面)にガス成分が閉じ込められ硬化して、コア間にボイド(欠陥)が多数発生し、強度の低いパネルとなる。高い性能を保証しなければならない部材としては致命的である。
【0007】
その成形体(パネル)の断面を模式的に描いた略図を図4(b)に示す。図は、繊維強化プラスチックス22にサンドイッチされたシンタクティック・フォーム21の構造を有する成形体(パネル)であるが、シンタクティック・フォーム21層間にボイド23が発生している。
【0008】
特許文献にはこの種の繊維強化プラスチックス構造体に関する開示は多数あるが、いずれも、ボイド欠陥に着眼して、解決した技術は見出されない。(例えば特許文献1、2、3及び4参照。)
【0009】
【特許文献1】
特開平11−107107号公報
【特許文献2】
特開平11−107105号公報
【特許文献3】
特開平11−254566号公報
【特許文献4】
特開平2000−43173号公報
【0010】
【発明が解決しようとする課題】
本発明はかかる従来の問題点に鑑みてなされたもので、高価な設備を用いずに製造可能な複合材サンドイッチパネル用コア、複合材サンドイッチパネル、及びその製造方法及びその製造方法を提供することを目的とする。更に詳しくは、そのコア材の積層間に発生し易いボイド欠陥を排除した信頼性の高い、軽量高強度な、コストを抑制した複合繊維強化プラスチック構造体及びその製造方法の提供を目的とする。
【0011】
【課題を解決するための手段】
本発明は、複合材サンドイッチパネルに用いるコアであって、マトリックス樹脂中に低密度付与充填材を内包するコア材の少なくとも2層と、該層間にある前記マトリックス樹脂の成形温度より高い融点を有する合成樹脂の繊維若しくはヤーンの不織布とよりなり、該不織布を介して前記コア材が前記マトリックス樹脂で一体化されたことを特徴とする。
【0012】
前記マトリックス樹脂は特に限定はしないが、成形品の使用環境条件に応じて、必要な物理特性を有する材料を選択する。例えばエポキシ、不飽和ポリエステル、フェノール、ポリイミドなどの熱硬化性樹脂、ポリアミド、ABS、ポリカーボネートなどの熱可塑性樹脂を選ぶ事ができる。但し、組み合わせるスキン層の材料も含めて、成形条件など製造に係る要素も考慮する必要がある。
【0013】
また、低密度付与充填材は最終目的の成形品が極力軽量になり、しかもコアの強度がマトリックス樹脂の強度より低下しないように、(むしろ上昇することが好ましいが、)混合される充填材であって、主として無機の充填材が用いられる。例えば、ガラスビーズ、シリカ粉などが選ばれる。
【0014】
このような、低密度付与充填材を内包するコア材は一般にシタクティック・フォームと呼ばれている。このコア材は0.2〜3mmの板厚のものが、複数枚前記マトリックス樹脂の成形温度より高い融点を有する合成樹脂の繊維若しくはヤーンの不織布を介して積層されていることが好ましい。該合成樹脂の繊維若しくはヤーンの不織布は一般にスクリームクロスと言い、ポリアミドなどの繊維の不織布が選ばれるが、材質は他の有機若しくは無機繊維であってもかまわない。この不織布層は例えば0.15〜0.2mmの厚みを有する。
【0015】
更に本発明の複合材サンドイッチパネル用コアは、前記マトリックス樹脂がエポキシ樹脂であることを特徴とする。特に高性能成形材を目的とした場合、エポキシ樹脂が耐熱性、接着性、耐久性などの点で好ましいからである。
【0016】
更に本発明の複合材サンドイッチパネル用コアは、前記低密度付与充填材がガラスバルーン粒子であることを特徴とする。
【0017】
更に本発明の複合材サンドイッチパネル用コアは、前記不織布を構成する繊維若しくはヤーンの合成樹脂がアミド結合を有する線状重合体であることを特徴とする。
【0018】
そして、本発明の複合材サンドイッチパネルは、前記コアと該コアの少なくとも片面に配置一体化された繊維強化プラスチックスによってなることを特徴とする。いわゆるスキン層と呼ばれるこの層は、該構造物(サンドイッチパネル)の強度を担うものであるので、前記コア層とともに、使用目的に応じた材料を選ぶことが重要である。ここでは特に規定はしないが、炭素繊維強化エポキシ樹脂、炭化ケイ素繊維エポキシ樹脂、強化ガラス繊維強化ポリエステルなどを例として挙げることができる。そして前記繊維強化プラスチックスからなるスキン層の厚みは例えば0.5〜2.0mmの程度である。
【0019】
更に本発明の複合材サンドイッチパネルは、前記繊維強化プラスチックスの繊維が炭素繊維であることを特徴とする。炭素繊維は軽量で高強度且つ高い耐熱性を有するからである。
【0020】
更に本発明の他の側面である複合材サンドイッチパネルの製造方法は、成形型上にて、マトリックス樹脂中に低密度付与充填材を内包するコア材の少なくとも2層間に、前記マトリックス樹脂の成形温度より高い融点を有する合成樹脂の繊維若しくはヤーンの不職布を挟み、その少なくとも片面ほぼ全域に繊維強化プラスチックスのプリプレグを配置し、バッグフィルムで全体を覆って気密化し、バッグフィルム内部を真空にしつつ加熱して一体成形することを特徴とする。
【0021】
繊維強化プラスチックスのプリプレグは周知のように、繊維に未硬化若しくは半硬化の樹脂を含浸させ、加熱によって、成形体に硬化するように加工された中間材料であって、前記マトリックス樹脂中に低密度付与充填材を内包するコア材(シンタクティック・フォーム)とサンドイッチ状に積層して加熱し一体的に硬化成形ができる。本発明のように、前記マトリックス樹脂の成形温度より高い融点を有する合成樹脂の繊維若しくはヤーンの不職布(スクリーム・クロス)を挟み、加熱すれば、コア材間に浸出した前記揮発性成分、空気などのガス成分の拡散・移動が、該不職布層を介して容易に進み、最終的には一体的に硬化して、大きな圧力を必要とせずにコア層間にボイドのない成形体をうることができる。従って高価な加圧設備を必要としない。成形の温度は使用する材料によって変わるが、炭素繊維とエポキシ樹脂の真空成形用プリプレグを用いる場合の加熱温度は120〜180℃の範囲で、成形時に段階的に変化させる。
【0022】
更に本発明の複合材サンドイッチパネルの製造方法は、成形型上にて、マトリックス樹脂中に低密度付与充填材を内包するコア材の少なくとも2層間に前記マトリックス樹脂の成形温度より高い融点を有する合成樹脂の繊維若しくはヤーンの不職布を挟み、その少なくとも片面ほぼ全域に繊維強化用ドライプリフォームを配置し、バッグフィルムで全体を覆って気密化し、バッグフィルム内部を真空にしつつ加熱して、繊維強化プラスチックス用の樹脂を注入して一体成形することを特徴とする。
【0023】
前記したようなプリプレグを用いないで行う、いわゆるVaRTM(真空アシスト・レジントランスファーモールド)法と一般に呼ばれる方法でも本発明の実施は可能である。前記プリプレグを用いる方法は中間品を保存するのに反応が進行しないよう、低温で行う必要があったが、スキン層の構成に繊維強化用ドライプリフォームを用いる本方法はその必要がない。ドライプリフォームは強化繊維(例えば炭素繊維)の織物、マット、ストランド、ロービングを用いる事ができる。繊維強化プラスチックス用の樹脂は繊維間に流動浸透し、加熱硬化するタイプの樹脂で、未硬化の液状熱硬化性樹脂、例えばエポキシ、不飽和ポリエステル、フェノール、ポリイミドなどの熱硬化性樹脂若しくは過熱して流動し繊維間に浸透し、温度を下げると硬化する熱可塑性樹脂、例えばポリアミド、ABS、ポリカーボネートなどから選択する事ができる。
【0024】
【発明の実施の形態】
以下に本発明の実施の形態について図面を参照して詳しく説明する。但し、この実施の形態に記載されている構成部品の寸法、材質、形状、その相対配置などは、特に特定的な記載がない限りはこの発明の範囲をそれのみに限定する趣旨ではなく、単なる説明例に過ぎない。
【0025】
(実施例1)
図1は、本発明の一実施形態である真空成形による複合材サンドイッチパネルの製法を模式的に説明した略図であり、本実施例1に相当する。本図の成形型7の上に炭素繊維とエポキシ樹脂からなるプリプレグ2を載置し、その上にガラスビーズ充填エポキシ樹脂からなるシンタクティック・フォーム1、ナイロン製スクリーム・クロス3を載せ、更に同種のシンタクティック・フォーム1を重ね、最上部には最初に載置したのと同種のプリプレグ2を載置し図示のような積層構造を組み立てる。更に離型フィルム5で覆い、バッグフィルム4とシール6により、密封する。全体をオーブン9内に設置して、図示しない真空装置8に繋げて、真空に引きつつ、加熱する。温度を120〜180℃の範囲で段階的に上昇させて、合計この範囲に3時間保って、成形硬化させ、複合材サンドイッチパネルを製造した。
【0026】
この成形品を冷却後切断して断面を見たものが、図4(a)である。21の成形硬化後のシンタクティック・フォーム、22の成形硬化後の繊維強化樹脂、3のスクリーム・クロスが積層体として観察され、ボイドなどの欠陥は見当たらなかった。
【0027】
(実施例2)
図2は、本発明の一実施形態である真空成形による複合材サンドイッチパネルの製法を模式的に説明した略図であり、本実施例2に相当する。本実施例2はプリプレグの代りに、ドライプリフォームと未硬化樹脂を用いたVaRTM法によるものである。本図の成形型7の上に炭素繊維のドライプリフォーム2’を載置し、その上にガラスビーズ充填エポキシ樹脂からなるシンタクティック・フォーム1、ナイロン製スクリーム・クロス3を載せ、更に同種のシンタクティック・フォーム1を重ね、最上部には最初に載置したのと同種のドライプリフォーム2’を載置し、図示のような積層構造を組み立てる。更に樹脂流通媒体(網)10で覆い、バッグフィルム4とシール6により、密封する。全体をオーブン内に設置して、図示しない真空装置8に繋げて、真空に引きつつ、一方より、樹脂液(エポキシ樹脂)を注入しつつ加熱する。温度を70〜180℃の範囲で段階的に上昇させた。上昇の初期1時間で樹脂液の所定全量を注入し終わり、次の2時間を加熱保持し、合計この範囲に3時間保って、成形硬化させ、複合材サンドイッチパネルを製造した。
【0028】
この成形品を冷却後切断して断面を見たものが、図4(a)である。実施例1と同様、21の成形硬化後のシンタクティック・フォーム、22の成形硬化後の繊維強化樹脂、3のスクリーム・クロスが積層体として観察され、ボイドなどの欠陥は見当たらなかった。
【0029】
(比較例1)
比較例として、実施例1と全く同様だが、スクリームクロスを入れないで複合材サンドイッチパネルを製造した。この成形品を冷却後切断して断面を見たものが、図4(b)である。21の成形硬化後のシンタクティック・フォーム、22の成形硬化後の繊維強化樹脂が積層体として観察されるが、成形硬化後のシンタクティック・フォーム間にボイド23が多数発見され、欠陥のある製品であった。
【0030】
【発明の効果】
以上、詳しく説明したように、本発明により、コア材の積層間に発生し易いボイド欠陥を排除した信頼性の高い、軽量高強度な、コストを抑制した複合繊維強化プラスチック構造体及びその製造方法の提供又その製造方法の提供を可能にした。
【図面の簡単な説明】
【図1】本発明の一実施形態である真空成形による複合材サンドイッチパネルの製法を模式的に説明した略図。
【図2】本発明の他の実施形態である真空成形による複合材サンドイッチパネルの製法を模式的に説明した略図。
【図3】従来の加圧成形による複合材サンドイッチパネルの製法を模式的に説明した略図。
【図4】(a)本発明の複合材サンドイッチパネルの断面図
(b)加圧成形によらずに従来の積層材構成で、複合材サンドイッチパネルを製造した時の製品の断面図
【符号の説明】
1 シンタクティック・フォーム
2 プリプレグ
2’ ドライフォーム
3 スクリーム・クロス
4 バッグフィルム
5 離型フィルム
6 シール
7 成形型
8 真空装置
9 オーブン
10 樹脂流通媒体
11 樹脂液
12 オートクレーブ
13 加圧源
21 成形硬化後のシンタクティック・フォーム
22 成形硬化後の繊維強化樹脂
23 ボイド(欠陥)
[0001]
[Field of the Invention]
The present invention relates to a lightweight and high-strength fiber reinforced resin composite plate-like structure and a low-cost manufacturing method thereof, and more particularly to a composite sandwich panel core, a composite sandwich panel, and a manufacturing method thereof.
[0002]
[Prior art]
Light-weight and high-strength fiber reinforced resin composites are expanding their applications in various industrial fields, but especially in the aircraft and space industries, they are strictly regarded as both lightweight and high-strength demands. In addition, since a large-sized member is required, various ideas have been made in the structure and manufacturing method of the fiber-reinforced resin composite material using conventional techniques.
[0003]
In general, the structure of a fiber reinforced resin composite material molded into a large member for the above purpose is a laminated structure of a lightweight core material and a high-strength skin material, particularly a fiber reinforced resin skin material layer on both sides of the core material layer. Is a sandwich structure with integrated arrangement. In general, a honeycomb core made of an aluminum alloy or a hard plastic closed cell foam is used as the core material. However, for aircraft parts that require high strength, a low density imparting filler is included in the matrix resin. A core material (hereinafter syntactic foam) is used. In order to integrally manufacture such a panel having a large sandwich structure having high strength, it was necessary to put the material in a large autoclave and pressurize and heat it.
[0004]
The manufacturing method will be described with reference to FIG. 3, which is a schematic diagram schematically showing the manufacturing process. A plurality of fiber reinforced plastics are sandwiched on the mold 7 around the syntactic foam 1. The prepreg 2 is laminated. The top is covered with a release film 5, and the laminate is sealed with the bag film 4 and the seal member 6. The whole is put in the autoclave 12, the inside of the bag film 4 is connected to a vacuum device 8 (not shown), the inside is depressurized, and the whole is pressurized by a pressure source 13 (not shown) and heated by a heat source (not shown). , Molding and curing. At this time, gas components such as volatile substances and air are generated from the resin and the like, and migrate and stay between the laminates. However, they are excluded by being pushed out of the molded body by the pressure of the autoclave.
[0005]
The molding conditions such as temperature and pressure depend on the quality of the material used. For example, in the case of general fiber reinforced plastics made of carbon fiber and epoxy resin used for aircraft structural materials, the temperature is about 120 to 180 ° C. The pressure is changed stepwise during molding in the range, and the pressure is increased in the range of 0.3 to 0.7 MPa.
[0006]
As described above, since the method of installing and operating a large-sized autoclave is expensive, there is also a method of curing and molding only by heating while drawing a vacuum inside the bag without applying pressure. -In a panel with a sandwich structure, the laminated surfaces of the syntactic foams are tightly closed, so the gas component is confined and hardened in this part (surface), and there are many voids (defects) between the cores. It occurs and becomes a panel with low strength. As a member that must guarantee high performance, it is fatal.
[0007]
A schematic drawing schematically depicting a cross section of the molded body (panel) is shown in FIG. The figure shows a molded body (panel) having a structure of a syntactic foam 21 sandwiched between fiber reinforced plastics 22, and voids 23 are generated between the syntactic foam 21 layers.
[0008]
There are many disclosures of this type of fiber-reinforced plastics structure in the patent literature, but none of them has found a solution that focuses on void defects. (For example, see Patent Documents 1, 2, 3, and 4.)
[0009]
[Patent Document 1]
JP-A-11-107107 [Patent Document 2]
JP-A-11-107105 [Patent Document 3]
Japanese Patent Laid-Open No. 11-254666 [Patent Document 4]
JP 2000-43173 A [0010]
[Problems to be solved by the invention]
The present invention has been made in view of such conventional problems, and provides a composite sandwich panel core that can be manufactured without using expensive equipment, a composite sandwich panel, a manufacturing method thereof, and a manufacturing method thereof. With the goal. More specifically, an object of the present invention is to provide a highly reliable, lightweight, high-strength composite fiber reinforced plastic structure that eliminates void defects that are likely to occur between the core materials, and a method for manufacturing the same.
[0011]
[Means for Solving the Problems]
The present invention is a core used for a composite material sandwich panel, and has at least two layers of a core material containing a low-density imparting filler in a matrix resin, and a melting point higher than the molding temperature of the matrix resin between the layers. It is made of a synthetic resin fiber or a yarn nonwoven fabric, and the core material is integrated with the matrix resin through the nonwoven fabric.
[0012]
The matrix resin is not particularly limited, but a material having necessary physical characteristics is selected according to the use environment condition of the molded product. For example, thermosetting resins such as epoxy, unsaturated polyester, phenol and polyimide, and thermoplastic resins such as polyamide, ABS and polycarbonate can be selected. However, it is also necessary to consider manufacturing factors such as molding conditions, including the skin layer material to be combined.
[0013]
The low-density imparting filler is a filler that is mixed (although preferably increased) so that the final molded product is as light as possible and the strength of the core does not decrease below that of the matrix resin. Thus, mainly inorganic fillers are used. For example, glass beads, silica powder, etc. are selected.
[0014]
Such a core material containing the low-density imparting filler is generally called a syntactic foam. It is preferable that a plurality of core materials having a thickness of 0.2 to 3 mm are laminated via synthetic resin fibers or yarn nonwoven fabric having a melting point higher than the molding temperature of the matrix resin. The non-woven fabric of synthetic resin fibers or yarns is generally called scream cloth, and a non-woven fabric of fibers such as polyamide is selected, but the material may be other organic or inorganic fibers. This nonwoven fabric layer has a thickness of 0.15 to 0.2 mm, for example.
[0015]
Furthermore, the core for composite material sandwich panel of the present invention is characterized in that the matrix resin is an epoxy resin. This is because an epoxy resin is preferable in terms of heat resistance, adhesiveness, durability, etc., particularly for the purpose of a high-performance molding material.
[0016]
Furthermore, the core for a composite material sandwich panel of the present invention is characterized in that the low-density imparting filler is glass balloon particles.
[0017]
Further, the composite sandwich panel core of the present invention is characterized in that a synthetic resin of fibers or yarns constituting the nonwoven fabric is a linear polymer having an amide bond.
[0018]
The composite sandwich panel of the present invention is characterized by comprising the core and fiber reinforced plastics arranged and integrated on at least one side of the core. Since this layer called a so-called skin layer is responsible for the strength of the structure (sandwich panel), it is important to select a material according to the intended use together with the core layer. Here, carbon fiber reinforced epoxy resin, silicon carbide fiber epoxy resin, reinforced glass fiber reinforced polyester, and the like can be mentioned as examples, although not particularly specified. And the thickness of the skin layer which consists of said fiber reinforced plastics is about 0.5-2.0 mm, for example.
[0019]
Furthermore, the composite material sandwich panel of the present invention is characterized in that the fibers of the fiber-reinforced plastics are carbon fibers. This is because carbon fiber is lightweight, has high strength and high heat resistance.
[0020]
Furthermore, the method for producing a composite sandwich panel according to another aspect of the present invention includes a molding temperature of the matrix resin between at least two layers of the core material containing the low density imparting filler in the matrix resin on the mold. Place a non-work cloth of synthetic resin fiber or yarn having a higher melting point, place a prepreg of fiber reinforced plastics on almost the entire surface of at least one side, cover the whole with a bag film, and make the bag film inside vacuum. It is characterized by being integrally molded by heating.
[0021]
As is well known, a prepreg of fiber reinforced plastics is an intermediate material that is processed so that fibers are impregnated with an uncured or semi-cured resin and cured into a molded body by heating. The core material (syntactic foam) enclosing the density-imparting filler can be laminated in a sandwich and heated to be integrally cured. As in the present invention, if the synthetic resin fiber or yarn unspun cloth (scream cloth) having a melting point higher than the molding temperature of the matrix resin is sandwiched and heated, the volatile component leached between the core materials, The diffusion and movement of gas components such as air easily proceeds through the unwoven cloth layer, and finally hardens integrally, so that a molded body having no voids between the core layers without requiring a large pressure is obtained. Can be obtained. Therefore, expensive pressurizing equipment is not required. Although the molding temperature varies depending on the material used, the heating temperature in the case of using a prepreg for vacuum molding of carbon fiber and epoxy resin is in the range of 120 to 180 ° C. and is changed stepwise during molding.
[0022]
Furthermore, the method for producing a composite sandwich panel of the present invention comprises a synthesis having a melting point higher than the molding temperature of the matrix resin between at least two layers of the core material containing the low density imparting filler in the matrix resin on the mold. Place a non-working fabric of resin fiber or yarn, place a dry preform for fiber reinforcement on almost the entire area of at least one side, cover the whole with a bag film to make it airtight, heat the bag film while evacuating it, and strengthen the fiber It is characterized by being integrally molded by injecting a resin for plastics.
[0023]
The present invention can also be implemented by a so-called VaRTM (vacuum assist resin transfer mold) method that is performed without using the prepreg as described above. The method using the prepreg needs to be performed at a low temperature so that the reaction does not proceed while preserving the intermediate product, but the present method using the fiber preform dry preform is not necessary for the structure of the skin layer. As the dry preform, a woven fabric, mat, strand, or roving of reinforcing fibers (for example, carbon fibers) can be used. Resin for fiber reinforced plastics is a resin that flows and penetrates between fibers and heat cures. Uncured liquid thermosetting resin, for example, thermosetting resin such as epoxy, unsaturated polyester, phenol, polyimide, or overheating. Then, it can be selected from thermoplastic resins that flow and permeate between fibers and cure when the temperature is lowered, such as polyamide, ABS, and polycarbonate.
[0024]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the components described in this embodiment are not intended to limit the scope of the present invention only to those unless otherwise specified. This is just an example.
[0025]
(Example 1)
FIG. 1 is a schematic diagram schematically illustrating a method of manufacturing a composite sandwich panel by vacuum forming, which is an embodiment of the present invention, and corresponds to Example 1. A prepreg 2 made of carbon fiber and epoxy resin is placed on the mold 7 in this figure, and a syntactic foam 1 made of glass beads-filled epoxy resin and a nylon scream cloth 3 are placed on the prepreg 2. And the prepreg 2 of the same kind as that initially placed is placed on the top to assemble a laminated structure as shown. Further, it is covered with a release film 5 and sealed with a bag film 4 and a seal 6. The whole is installed in an oven 9 and connected to a vacuum device 8 (not shown), and heated while drawing a vacuum. The temperature was raised stepwise in the range of 120 to 180 ° C., and kept in this range for 3 hours in total for molding and curing to produce a composite sandwich panel.
[0026]
FIG. 4A shows a cross section of the molded product after cooling and cutting. No. 21, a syntactic foam after molding and curing, 22 a fiber-reinforced resin after molding and curing, and 3 scream cloth were observed as a laminate, and no defects such as voids were found.
[0027]
(Example 2)
FIG. 2 is a schematic view schematically illustrating a method of manufacturing a composite material sandwich panel by vacuum forming, which is an embodiment of the present invention, and corresponds to Example 2. This Example 2 is based on the VaRTM method using a dry preform and an uncured resin instead of the prepreg. A carbon fiber dry preform 2 'is placed on the mold 7 in the figure, and a syntactic foam 1 made of glass beads-filled epoxy resin and a nylon scream cloth 3 are placed thereon, and the same kind of syntax is also placed. The tick form 1 is stacked, and the dry preform 2 'of the same type as that initially placed is placed on the top, and a laminated structure as shown in the figure is assembled. Further, it is covered with a resin distribution medium (net) 10 and sealed with a bag film 4 and a seal 6. The whole is installed in an oven, connected to a vacuum device 8 (not shown), and heated while injecting a resin liquid (epoxy resin) from one side while drawing a vacuum. The temperature was raised stepwise in the range of 70-180 ° C. The predetermined amount of the resin solution was completely injected in the first hour of the rise, and the next 2 hours were heated and held, and kept in this range for 3 hours to form and cure to produce a composite sandwich panel.
[0028]
FIG. 4A shows a cross section of the molded product after cooling and cutting. As in Example 1, a syntactic foam 21 after molding and curing, a fiber reinforced resin 22 after molding and curing, and 3 scream cloth were observed as a laminate, and no defects such as voids were found.
[0029]
(Comparative Example 1)
As a comparative example, a composite sandwich panel was produced which was exactly the same as Example 1, but without scream cloth. FIG. 4B shows a cross-sectional view of the molded product after cooling and cutting. 21. Synthetic foam after molding and curing, and fiber reinforced resin after molding and curing of 22 are observed as a laminate, but many voids 23 are found between the syntactic foams after molding and curing, resulting in defective products. Met.
[0030]
【The invention's effect】
As described above in detail, according to the present invention, a highly reliable, lightweight, high-strength composite fiber reinforced plastic structure that eliminates void defects that are likely to occur during the lamination of core materials, and a method for manufacturing the same. And the manufacturing method thereof can be provided.
[Brief description of the drawings]
FIG. 1 is a schematic view schematically illustrating a method for producing a composite sandwich panel by vacuum forming according to an embodiment of the present invention.
FIG. 2 is a schematic diagram schematically illustrating a method for producing a composite sandwich panel by vacuum forming according to another embodiment of the present invention.
FIG. 3 is a schematic diagram schematically illustrating a conventional method for producing a composite sandwich panel by pressure molding.
4A is a cross-sectional view of a composite material sandwich panel of the present invention. FIG. 4B is a cross-sectional view of a product when a composite material sandwich panel is manufactured with a conventional laminated material structure without using pressure forming. Explanation】
DESCRIPTION OF SYMBOLS 1 Syntactic foam 2 Prepreg 2 'Dry foam 3 Scream cross 4 Bag film 5 Release film 6 Seal 7 Mold 8 Vacuum apparatus 9 Oven 10 Resin distribution medium 11 Resin liquid 12 Autoclave 13 Pressure source 21 After molding hardening Syntactic foam 22 Fiber-reinforced resin after molding and curing 23 Void (defect)

Claims (8)

複合材サンドイッチパネルに用いるコアであって、マトリックス樹脂中に低密度付与充填材を内包するコア材の少なくとも2層と、該層間にある前記マトリックス樹脂の成形温度より高い融点を有する合成樹脂の繊維若しくはヤーンの不織布とよりなり、該不織布を介して前記コア材が前記マトリックス樹脂で一体化されたことを特徴とする複合材サンドイッチパネル用コア。Synthetic fiber fibers having a melting point higher than the molding temperature of the matrix resin between the at least two layers of the core material used in the composite material sandwich panel, the core material containing the low density imparting filler in the matrix resin Alternatively, a core for a composite material sandwich panel comprising a nonwoven fabric of yarn, wherein the core material is integrated with the matrix resin through the nonwoven fabric. 前記マトリックス樹脂がエポキシ樹脂であることを特徴とする請求項1記載の複合材サンドイッチパネル用コア。2. The composite sandwich panel core according to claim 1, wherein the matrix resin is an epoxy resin. 前記低密度付与充填材がガラスバルーン粒子であることを特徴とする請求項1記載の複合材サンドイッチパネル用コア。2. The core for a composite material sandwich panel according to claim 1, wherein the low density imparting filler is glass balloon particles. 前記不織布を構成する繊維若しくはヤーンの合成樹脂がアミド結合を有する線状重合体であることを特徴とする請求項1記載の複合材サンドイッチパネル用コア。The composite sandwich panel core according to claim 1, wherein the synthetic resin of fibers or yarns constituting the nonwoven fabric is a linear polymer having an amide bond. 前記コアと該コアの少なくとも片面に配置一体化された繊維強化プラスチックスによってなることを特徴とする複合材サンドイッチパネル。A composite sandwich panel comprising the core and fiber reinforced plastics arranged and integrated on at least one side of the core. 前記繊維強化プラスチックスの繊維が炭素繊維であることを特徴とする請求項5記載の複合材サンドイッチパネル。6. The composite sandwich panel according to claim 5, wherein the fibers of the fiber reinforced plastics are carbon fibers. 成形型上にて、マトリックス樹脂中に低密度付与充填材を内包するコア材の少なくとも2層間に、前記マトリックス樹脂の成形温度より高い融点を有する合成樹脂の繊維若しくはヤーンの不職布を挟み、その少なくとも片面ほぼ全域に繊維強化プラスチックスのプリプレグを配置し、バッグフィルムで全体を覆って気密化し、バッグフィルム内部を真空にしつつ加熱して一体成形することを特徴とする複合材サンドイッチパネルの製造方法。A synthetic resin fiber or yarn unclothed cloth having a melting point higher than the molding temperature of the matrix resin is sandwiched between at least two layers of the core material containing the low-density imparting filler in the matrix resin on the mold, Production of a composite sandwich panel characterized by placing a prepreg of fiber reinforced plastics over almost the entire area of at least one side, covering the whole with a bag film to make it airtight, and heating the bag film inside while vacuuming it. Method. 成形型上にて、マトリックス樹脂中に低密度付与充填材を内包するコア材の少なくとも2層間に前記マトリックス樹脂の成形温度より高い融点を有する合成樹脂の繊維若しくはヤーンの不職布を挟み、その少なくとも片面ほぼ全域に繊維強化用ドライプリフォームを配置し、バッグフィルムで全体を覆って気密化し、バッグフィルム内部を真空にしつつ加熱して、繊維強化プラスチックス用の樹脂を注入して一体成形することを特徴とする複合材サンドイッチパネルの製造方法。A synthetic resin fiber or yarn unwoven cloth having a melting point higher than the molding temperature of the matrix resin is sandwiched between at least two layers of the core material containing the low-density imparting filler in the matrix resin on the mold, Place a fiber-reinforced dry preform on almost the entire area of at least one side, cover the whole with a bag film to make it airtight, heat the bag film while evacuating it, and inject a resin for fiber-reinforced plastics into one piece. A method of manufacturing a composite sandwich panel characterized by the above.
JP2003188847A 2003-06-30 2003-06-30 Core for composite material sandwich panel, composite material sandwich panel and its manufacturing method Withdrawn JP2005022171A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003188847A JP2005022171A (en) 2003-06-30 2003-06-30 Core for composite material sandwich panel, composite material sandwich panel and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003188847A JP2005022171A (en) 2003-06-30 2003-06-30 Core for composite material sandwich panel, composite material sandwich panel and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2005022171A true JP2005022171A (en) 2005-01-27

Family

ID=34187254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003188847A Withdrawn JP2005022171A (en) 2003-06-30 2003-06-30 Core for composite material sandwich panel, composite material sandwich panel and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2005022171A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009526697A (en) * 2006-02-17 2009-07-23 エアバス ドイッチュラント ゲゼルシャフト ミット ベシュレンクテル ハフツング Non-autoclave bonding method for aircraft components
CN105884217A (en) * 2014-12-22 2016-08-24 黄家军 Metal vacuum heating bag
WO2016136791A1 (en) * 2015-02-27 2016-09-01 東レ株式会社 Resin supply material, preform, and method for producing fiber-reinforced resin
WO2016136793A1 (en) * 2015-02-27 2016-09-01 東レ株式会社 Resin supply material, preform, and method for producing fiber-reinforced resin
KR101839743B1 (en) * 2017-08-31 2018-03-19 무한카본주식회사 Roof of automobile using carbon fiber prepreg and foam core and manufacturing method thereof
JP2018518402A (en) * 2015-06-10 2018-07-12 ファーガソンズ アドバンスド コンポジット テクノロジー リミテッドFergusson’S Advanced Composite Technology Limited Method for manufacturing composite structure
WO2019087440A1 (en) 2017-11-01 2019-05-09 三菱重工業株式会社 Method for manufacturing structure, method for preparing skin material, and method for setting heating condition for skin material
CN110395171A (en) * 2018-04-24 2019-11-01 鲁国庆 Vacuum cold freezes Keep the quality and freshness electric transporting vehicle
WO2020003609A1 (en) * 2018-06-28 2020-01-02 三菱重工業株式会社 Method for molding composite material structure
CN114103181A (en) * 2021-11-26 2022-03-01 中航复合材料有限责任公司 Vacuum forming method for composite material with high air permeability and low glue absorption
CN114311745A (en) * 2021-12-23 2022-04-12 大连理工大学 Forming system and preparation method of composite sandwich structure
CN117264372A (en) * 2023-11-17 2023-12-22 四川大学 Light high-strength sandwich-structure epoxy resin foam material, reinforcing layer and preparation method thereof
JP7473442B2 (en) 2020-10-12 2024-04-23 株式会社イノアックコーポレーション Fiber Reinforced Sandwich Composites

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009526697A (en) * 2006-02-17 2009-07-23 エアバス ドイッチュラント ゲゼルシャフト ミット ベシュレンクテル ハフツング Non-autoclave bonding method for aircraft components
CN105884217A (en) * 2014-12-22 2016-08-24 黄家军 Metal vacuum heating bag
US10800894B2 (en) 2015-02-27 2020-10-13 Toray Industries, Inc. Resin supply material, preform, and method of producing fiber-reinforced resin
WO2016136791A1 (en) * 2015-02-27 2016-09-01 東レ株式会社 Resin supply material, preform, and method for producing fiber-reinforced resin
WO2016136793A1 (en) * 2015-02-27 2016-09-01 東レ株式会社 Resin supply material, preform, and method for producing fiber-reinforced resin
JPWO2016136793A1 (en) * 2015-02-27 2017-11-30 東レ株式会社 Resin supply material, preform, and method for producing fiber reinforced resin
JPWO2016136791A1 (en) * 2015-02-27 2017-12-07 東レ株式会社 Resin supply material, preform, and method for producing fiber reinforced resin
US11034809B2 (en) 2015-02-27 2021-06-15 Toray Industries, Inc. Resin supply material, preform, and method of producing fiber-reinforced resin
TWI657909B (en) * 2015-02-27 2019-05-01 日商東麗股份有限公司 Resin supply material, preform, and manufacturing method of fiber-reinforced resin
TWI716881B (en) * 2015-02-27 2021-01-21 日商東麗股份有限公司 Resin supply material, preform, and manufacturing method of fiber reinforced resin
TWI673153B (en) * 2015-02-27 2019-10-01 日商東麗股份有限公司 Resin supply material, preform, and method for producing fiber reinforced resin
JP2018518402A (en) * 2015-06-10 2018-07-12 ファーガソンズ アドバンスド コンポジット テクノロジー リミテッドFergusson’S Advanced Composite Technology Limited Method for manufacturing composite structure
KR101839743B1 (en) * 2017-08-31 2018-03-19 무한카본주식회사 Roof of automobile using carbon fiber prepreg and foam core and manufacturing method thereof
US11673351B2 (en) * 2017-11-01 2023-06-13 Mitsubishi Heavy Industries, Ltd. Method for manufacturing structure, method for preparing skin material, and method for setting heating condition for skin material
WO2019087440A1 (en) 2017-11-01 2019-05-09 三菱重工業株式会社 Method for manufacturing structure, method for preparing skin material, and method for setting heating condition for skin material
US20210187877A1 (en) * 2017-11-01 2021-06-24 Mitsubishi Heavy Industries, Ltd. Method for manufacturing structure, method for preparing skin material, and method for setting heating condition for skin material
CN110395171A (en) * 2018-04-24 2019-11-01 鲁国庆 Vacuum cold freezes Keep the quality and freshness electric transporting vehicle
WO2020003609A1 (en) * 2018-06-28 2020-01-02 三菱重工業株式会社 Method for molding composite material structure
CN111989214A (en) * 2018-06-28 2020-11-24 三菱重工业株式会社 Method for forming composite material structure
JP7114367B2 (en) 2018-06-28 2022-08-08 三菱重工業株式会社 Forming method for composite structure
JP2020001268A (en) * 2018-06-28 2020-01-09 三菱重工業株式会社 Method for molding composite material structure
US11498290B2 (en) 2018-06-28 2022-11-15 Mitsubishi Heavy Industries, Ltd. Method for molding composite material structure
JP7473442B2 (en) 2020-10-12 2024-04-23 株式会社イノアックコーポレーション Fiber Reinforced Sandwich Composites
CN114103181A (en) * 2021-11-26 2022-03-01 中航复合材料有限责任公司 Vacuum forming method for composite material with high air permeability and low glue absorption
CN114103181B (en) * 2021-11-26 2023-10-20 中航复合材料有限责任公司 Vacuum forming method of high air guide rate low adhesive absorption composite material
CN114311745B (en) * 2021-12-23 2023-06-02 大连理工大学 Forming system and preparation method of composite material sandwich structure
CN114311745A (en) * 2021-12-23 2022-04-12 大连理工大学 Forming system and preparation method of composite sandwich structure
CN117264372A (en) * 2023-11-17 2023-12-22 四川大学 Light high-strength sandwich-structure epoxy resin foam material, reinforcing layer and preparation method thereof
CN117264372B (en) * 2023-11-17 2024-01-26 四川大学 Light high-strength sandwich-structure epoxy resin foam material, reinforcing layer and preparation method thereof

Similar Documents

Publication Publication Date Title
JP6966848B2 (en) Composite structure with reinforcing material and its manufacturing method
US11046050B2 (en) Fabrication of composite laminates using temporarily stitched preforms
US9120253B2 (en) Methods of RTM molding
KR102176663B1 (en) Curable prepregs with surface openings
JP4803028B2 (en) Preform, FRP, and production method thereof
US20090252921A1 (en) Method for the production of a sandwich component having a honeycomb core and the sandwich component obtained in this way
US20080210372A1 (en) Composite article debulking process
US20050025929A1 (en) Sandwich panel with interior barrier
US20090202826A1 (en) Process for producing fiber reinforced resin
EP2735415A1 (en) Composite material of fiber-reinforced resin and weight-saving core, and method and apparatus for producing same
JP2019501047A (en) Hybrid layup mold
EP2599615B1 (en) Reducing porosity in composite structures
JP2005022171A (en) Core for composite material sandwich panel, composite material sandwich panel and its manufacturing method
JP2015104895A (en) Method for manufacturing fiber-reinforced plastic molding
JP4805375B2 (en) Method for manufacturing FRP structure
US20060246796A1 (en) Composite curing
CA2795861A1 (en) Method and device for producing a composite moulded part from fibre-reinforced plastic
KR101447136B1 (en) Method for Forming Fiber Reinforced Plastic Composite
JP2009073070A (en) Method for manufacturing fiber-reinforced plastic structure
JP4338550B2 (en) Method for manufacturing FRP structure
CN110997268A (en) Method for producing composite material and composite material
JP2012066397A (en) Method for manufacturing fiber-reinforced plastic
JP2006198866A (en) Core material for sandwich structural material and manufacturing method of sandwich structural material
JP2018192717A (en) Reinforcing fiber base material and preform
JP6550573B2 (en) Method of manufacturing fiber reinforced composite without autoclave and fiber reinforced composite manufactured by this method

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20060405

Free format text: JAPANESE INTERMEDIATE CODE: A621

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20070803