JP6550573B2 - Method of manufacturing fiber reinforced composite without autoclave and fiber reinforced composite manufactured by this method - Google Patents

Method of manufacturing fiber reinforced composite without autoclave and fiber reinforced composite manufactured by this method Download PDF

Info

Publication number
JP6550573B2
JP6550573B2 JP2015033429A JP2015033429A JP6550573B2 JP 6550573 B2 JP6550573 B2 JP 6550573B2 JP 2015033429 A JP2015033429 A JP 2015033429A JP 2015033429 A JP2015033429 A JP 2015033429A JP 6550573 B2 JP6550573 B2 JP 6550573B2
Authority
JP
Japan
Prior art keywords
fiber
reinforced composite
fiber base
base material
prepreg
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015033429A
Other languages
Japanese (ja)
Other versions
JP2016155259A (en
Inventor
渡辺 直行
直行 渡辺
聡 諸岡
聡 諸岡
正 十二所
正 十二所
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NACT
Original Assignee
NACT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NACT filed Critical NACT
Priority to JP2015033429A priority Critical patent/JP6550573B2/en
Publication of JP2016155259A publication Critical patent/JP2016155259A/en
Application granted granted Critical
Publication of JP6550573B2 publication Critical patent/JP6550573B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、繊維材を樹脂材に混入して強度を向上させた繊維強化複合材の製造方法に関し、特に、大規模なオートクレーブを用いることなく、積層させたプリプレグを熱硬化させて成形する繊維強化複合材の製造方法及びこの方法により製造された繊維強化複合材に関する。   The present invention relates to a method for producing a fiber-reinforced composite material in which a fiber material is mixed into a resin material to improve strength, and in particular, a fiber obtained by heat curing and forming a laminated prepreg without using a large scale autoclave. The present invention relates to a method of producing a reinforced composite and a fiber reinforced composite produced by this method.

繊維強化複合材は、母材となる熱硬化性樹脂に炭素繊維などの強化繊維を混入させることで、熱硬化性樹脂の特性に加え、強化繊維の強度や耐熱性等が複合化され、軽量で優れた特性を有するため、航空機、船舶、車両などの構造材料として広く用いられている。このような繊維強化複合材の製造方法としては、例えば、炭素繊維に熱硬化性樹脂を含浸させたシート状のプリプレグを用い、このプリプレグを所望の厚さに積層させた後に熱硬化させて一体化することにより、繊維強化複合材を成形している。   A fiber reinforced composite material is lightweight by mixing reinforcing fiber such as carbon fiber with thermosetting resin as a base material, in addition to the characteristics of thermosetting resin, the strength and heat resistance etc. of the reinforcing fiber are compounded. It is widely used as a structural material for aircraft, ships, vehicles, etc. because of its excellent properties. As a method of manufacturing such a fiber reinforced composite material, for example, a sheet-like prepreg in which a carbon fiber is impregnated with a thermosetting resin is used, and the prepreg is laminated to a desired thickness and then thermally cured to be integrated. By forming the fiber reinforced composite material.

プリプレグを多層に積層させた場合には、プリプレグの層間に空気を取り込みやすくなり、この状態で熱硬化させると、成形された繊維強化複合材の内部にボイドとして痕跡が残り、この部位で強度の均一性が損なわれるなどの問題が生じる場合がある。また、熱硬化性樹脂に含まれる僅かな揮発性材料や空気中の水分などが加熱により気化することでもボイドの発生原因となってしまう。   When the prepreg is laminated in multiple layers, air is easily taken in between the layers of the prepreg, and when it is thermally cured in this state, a trace as a void is left inside the formed fiber reinforced composite material, and strength is increased at this portion. Problems such as loss of uniformity may occur. In addition, a slight volatile material contained in the thermosetting resin, moisture in the air, and the like may be vaporized due to heating, which may cause generation of voids.

そこで、プリプレグを多層に積層させる場合などには、熱硬化の際に、例えば特許文献1などに開示されたように、オートクレーブを用いた成形法が採用されることが多い。オートクレーブは円筒形の圧力容器であり、積層させたプリプレグを、この圧力容器内で加圧・加熱することで、層間に取り込まれた空気等が、積層させたプリプレグの外部に引き出され、あるいはオートクレーブにより圧力をかけることでプリプレグ内の気化成分が気化するのを押さえるので、ボイドの発生率を充分に抑えることができるため、成形品に高い強度特性が得られる利点を有している。 Thus, when prepregs are laminated in multiple layers, a molding method using an autoclave is often employed as disclosed in, for example, Patent Document 1 in thermosetting. An autoclave is a cylindrical pressure vessel. By pressing and heating the laminated prepreg in this pressure vessel, air taken in between the layers is drawn out of the laminated prepreg, or the autoclave Since the vaporization component in the prepreg is suppressed from being vaporized by applying pressure, the generation rate of the void can be sufficiently suppressed, and there is an advantage that high strength characteristics can be obtained for the molded article.

特開平7−214679号公報JP-A-7-214679

特許文献1記載のようなオートクレーブを用いた成形法では、例えば旅客機の主翼部分などの大型の成形品を成形するためには、この主翼全体を内部に収容し得るような巨大な圧力容器が必要となる。特にオートクレーブのような高加圧制御が必要な圧力容器では、容器自体に厳格な設置基準が課せられており、容器が大型化するほど基準達成にはより困難を要する。さらに、圧力容器内の巨大な内部空間の温度を均一に調節制御する加熱装置や加圧装置など、これらの設備を設置するために多額のコストが必要であった。一方で、厚みがより厚い繊維強化複合材を製作する場合には、プリプレグの積層枚数が増加し、この層間に空気がより取り込まれやすくなるため、ボイドの発生を抑えるには、このようなオートクレーブを用いた製法に頼らざるを得なかった。   In the molding method using an autoclave as described in Patent Document 1, for example, in order to form a large-sized molded product such as a wing portion of a passenger aircraft, a huge pressure vessel capable of accommodating the entire wing inside is required. It becomes. In particular, in a pressure vessel that requires high pressure control such as an autoclave, strict installation standards are imposed on the container itself, and the larger the container is, the more difficult it is to achieve the standards. Furthermore, a large amount of cost is required to install these facilities such as a heating device and a pressurizing device that uniformly adjust and control the temperature of the huge internal space in the pressure vessel. On the other hand, in the case of producing a fiber-reinforced composite material having a greater thickness, the number of laminated prepregs increases, and air is more easily taken in between the layers, and in order to suppress the generation of voids, such an autoclave is used. I had to rely on the manufacturing method using

これに対し、小型のオートクレーブを用いて、成形品をパーツ毎に分割して成形し、後に組み上げて成形品とするような製造手法を採用することも可能ではあるが、パーツの接合工程が別途必要となるばかりでなく、接合部位の信頼性を確保するための新たな工法や厳重な検査体制も必要となるなどの問題を生じてしまう。
要するに、従来の繊維強化複合材の製造方法では、特に大型の成形物を得ようとすると、ボイドの問題を解消するためには大型のオートクレーブを作成しなければならず、手間もコストも非常に大きくなるという問題があった。
On the other hand, although it is possible to adopt a manufacturing method in which a molded product is divided into parts and molded using a small-sized autoclave and then assembled later to form a molded product, the joining process of parts is separately Not only it becomes necessary, but it also causes problems such as the need for a new construction method and a strict inspection system for securing the reliability of the joint portion.
In short, in the conventional method for producing a fiber reinforced composite material, it is necessary to create a large autoclave in order to solve the problem of voids, especially when trying to obtain a large molded product, and the labor and cost are very high. There was a problem of getting bigger.

本発明はこのような課題を解決すべく成されたものであり、その目的は、大型の繊維強化複合材を製造する際にも、簡易且つ簡便な装置構成によってもボイドの発生を充分に抑制し、低コストに製造し得る繊維強化複合材の製造方法及びこの方法で製造された繊維強化複合材を提供することにある。   The present invention has been made to solve such problems, and the object of the present invention is to sufficiently suppress the generation of voids even when manufacturing a large-sized fiber-reinforced composite material by a simple and simple device configuration. It is an object of the present invention to provide a method for producing a fiber reinforced composite material which can be manufactured at low cost and a fiber reinforced composite material produced by this method.

本発明者らは、上記課題を解消すべく鋭意検討した結果、プリプレグと繊維とを積層した後、加圧ではなく積層体の存在する雰囲気を脱気して減圧することでもオートクレーブを用いた場合と同様にボイドの発生を防止し得ることを知見し、本発明を完成するに至った。   The inventors of the present invention conducted intensive studies to solve the above problems, and after laminating the prepreg and the fiber, using an autoclave also by degassing and reducing the pressure in the atmosphere where the laminate is present instead of pressurizing. In the same manner, the inventors have found that the generation of voids can be prevented, and the present invention has been completed.

すなわち、本発明は以下の各発明を提供するものである。
1.第1繊維基材にマトリックス樹脂を含浸させたプリプレグと、第2繊維基材とを交互に積層させ、前記プリプレグと前記第2繊維基材との積層体を形成する積層工程と、
封止シートによって前記積層体を覆って密閉収容体を形成し、この密閉収容体内の空気を脱気する脱気工程と、
前記密閉収容体内を加熱し、前記プリプレグと第2繊維基材とを一体化する加熱工程と、
を有する、オートクレーブを用いない繊維強化複合材の製造方法。
2.前記第2繊維基材は、長繊維を一方向に引き揃えた繊維集合体である請求項1記載の繊維強化複合材の製造方法。
3.前記第2繊維基材は、前記第1繊維基材と同種の繊維材からなる繊維集合体である請求項1又は2に記載の繊維強化複合材の製造方法。
4.1乃至3のいずれかの方法により製造されてなる繊維強化複合材。
That is, the present invention provides the following inventions.
1. A laminating step of alternately laminating a prepreg in which a first fiber base material is impregnated with a matrix resin, and a second fiber base material to form a laminate of the prepreg and the second fiber base material;
A degassing step of covering the laminate with a sealing sheet to form a hermetic container and degassing the air in the hermetic container;
A heating step of heating the sealed container and integrating the prepreg and the second fiber base;
A method of producing a fiber reinforced composite without using an autoclave, comprising:
2. The method for producing a fiber-reinforced composite material according to claim 1, wherein the second fiber base material is a fiber assembly in which long fibers are aligned in one direction.
3. The method for producing a fiber-reinforced composite material according to claim 1 or 2, wherein the second fiber base material is a fiber aggregate made of the same kind of fiber material as the first fiber base material.
A fiber-reinforced composite manufactured by any of the methods of 4.1 to 3.

本発明の繊維強化複合材の製造方法によれば、大型の繊維強化複合材を製造する際にも、簡易且つ簡便な装置構成によってもボイドの発生を充分に抑制し、低コストに製造することができる。すなわち、積層工程によって、プリプレグとプリプレグとの層間に第2繊維基材の層が介在しているため、脱気工程及び加熱工程において、マトリックス樹脂が第2繊維基材側に含浸される際に、層間の空気が第2繊維基材の層を介して積層体外部へ放出され、ボイドの発生を充分に抑制して繊維強化複合材を加熱成形することができる。このため、航空機の主翼のような大型の繊維強化複合材を成形する際にも、オートクレーブのような大掛かりで高価な設備を必要とすることなく、高い強度特性が得られる繊維強化複合材を、簡易且つ簡便な装置構成で低コストに製造することが可能となる。
そして、本発明の繊維強化複合材は、第2繊維基材により形成された層にボイドの発生がなく、強度の均一性が高く、成形体としての強度に優れたものである。
上述のように本発明の製造方法は、いわゆる脱オートクレーブ法と呼ばれる製造方法であり、今までに無い製造方法である。そして、従来の製造方法ではVF50%程度が限度であったところ、60%以上も実現できる。
According to the method for producing a fiber-reinforced composite material of the present invention, when producing a large-sized fiber-reinforced composite material, generation of voids can be sufficiently suppressed by a simple and simple apparatus configuration, and the production can be performed at low cost. Can. That is, since the layer of the second fiber base is interposed between the prepreg and the prepreg in the laminating step, when the matrix resin is impregnated on the second fiber base in the degassing step and the heating step. The air between the layers is released to the outside of the laminate through the layer of the second fiber base material, and generation of voids can be sufficiently suppressed to thermoform the fiber reinforced composite material. For this reason, even when forming a large-sized fiber reinforced composite such as an aircraft wing, a fiber reinforced composite that can obtain high strength characteristics without requiring a large and expensive facility such as an autoclave, It becomes possible to manufacture at a low cost with a simple and simple apparatus configuration.
And the fiber reinforced composite material of this invention does not generate | occur | produce a void in the layer formed with the 2nd fiber base material, has high intensity | strength uniformity, and was excellent in the intensity | strength as a molded object.
As described above, the production method of the present invention is a production method called a so-called de-autoclave method, which is a production method which has not been achieved so far. In the conventional manufacturing method, the limit is about VF 50%, but 60% or more can be realized.

図1は、実施例にかかる繊維強化複合材の製造方法のうち、脱気工程を模式的に示す断面図である。FIG. 1 is a cross-sectional view schematically showing a degassing step in the method for producing a fiber-reinforced composite material according to the example. 図2は、積層工程の状況を模式的に示す平面図である。FIG. 2 is a plan view schematically showing the state of the laminating step. 図3は、本発明の繊維強化複合材の1実施形態を示す厚さ方向断面図である。FIG. 3 is a sectional view in the thickness direction showing one embodiment of the fiber-reinforced composite material of the present invention.

10:積層体、12:UDプリプレグ(プリプレグ)、14:開繊ドライ炭素繊維基材(第2繊維基材)、20:底面ブリーザー、22:上面ブリーザー、24:内側ブリーザー、30・32:離型フィルム、40・42:ピールプライ、60:仕切り部材、62:通気糸、70:バギングフィルム(封止シート)、100:治具プレート、110:シーラント、120:密閉収容体 10: laminate, 12: UD prepreg (prepreg), 14: spread dry carbon fiber substrate (second fiber substrate), 20: bottom breather, 22: top breather, 24: inside breather, 30/32: separation Mold film, 40 · 42: peel ply, 60: partition member, 62: breathable yarn, 70: bagging film (sealing sheet), 100: jig plate, 110: sealant, 120: hermetically sealed container

以下、本発明にかかる繊維強化複合材の製造方法について説明する。
本発明の繊維強化複合材の製造方法は、第1繊維基材にマトリックス樹脂を含浸させたプリプレグ(UDプリプレグ12)と、第2繊維基材(開繊ドライ炭素繊維基材14)とを交互に積層させ、プリプレグ(UDプリプレグ12)と第2繊維基材(開繊ドライ炭素繊維基材14)との積層体(10)を形成する積層工程を、積層体工程を経た積層体(10)を封止シート(バギングフィルム70)によって覆って密閉収容体(120)を形成し、この密閉収容体(120)内の空気を脱気する脱気工程を、密閉収容体(120)内を加熱し、プリプレグ(UDプリプレグ12)と第2繊維基材(開繊ドライ炭素繊維基材14)とを一体化する加熱工程を行うことにより実施できる。
Hereinafter, the method for producing a fiber-reinforced composite material according to the present invention will be described.
In the method for producing a fiber-reinforced composite material of the present invention, a first fiber base material is impregnated with a matrix resin impregnated prepreg (UD prepreg 12) and a second fiber base material (opened dry carbon fiber base material 14) alternately. Laminate (10), which has been subjected to a lamination step, to form a laminate (10) of the prepreg (UD prepreg 12) and the second fiber base (opened dry carbon fiber base 14). Is covered with a sealing sheet (bagging film 70) to form a sealed container (120), and the degassing step of degassing the air in the sealed container (120) is performed by heating the inside of the sealed container (120) It can carry out by performing the heating process which unifies a prepreg (UD prepreg 12) and the 2nd fiber base material (open fiber dry carbon fiber base material 14).

以下、まず、本発明において用いられる物(繊維強化複合材の形成部材)について説明する。
(プリプレグ)
本発明で用いるプリプレグは、シート状であって、下記強化繊維で構成された第1繊維基材に、マトリックス樹脂を含浸させたものである。ここで含浸とは、多数の強化繊維からなる繊維集合体における各繊維の間にマトリックス樹脂を充填することを意味する。
本発明においては、プリプレグのみを積層させて繊維強化複合材を加熱成形する場合に比べて、マトリックス樹脂の含有率を高く設定するのが、後述する脱気工程及び加熱工程において第2繊維基材にマトリックス樹脂を効果的に含浸させるために好ましい。好ましくは体積比で強化繊維100に対して、マトリックス樹脂40〜70、特に好ましくは50〜60である。
プリプレグの厚さは0.05〜1mmとするのが第2繊維基材への樹脂含浸効率の点で好ましく、0.1〜0.3mmとするのがさらに好ましい。
(第1繊維基材)
第1繊維基材は、強化繊維の集合体である。この強化繊維としては、繊維強化複合材に用いられる強化繊維であれば特に限定するものではなく、炭素繊維、ガラス繊維、アラミド繊維、ボロン繊維などの繊維材が用いられ、これのうちいずれかの繊維材を単独で、或いは複数種の繊維材を組み合わせて用いることもできる。
In the following, first, an article (a member for forming a fiber-reinforced composite material) used in the present invention will be described.
(Prepreg)
The prepreg used in the present invention is in the form of a sheet, in which a first fiber base made of the following reinforcing fibers is impregnated with a matrix resin. Here, impregnation means filling a matrix resin between each fiber in a fiber assembly composed of a large number of reinforcing fibers.
In the present invention, setting the content of the matrix resin to be higher than that in the case where only the prepreg is laminated and the fiber-reinforced composite material is heat-formed is the second fiber base material in the degassing step and heating step described later. In order to effectively impregnate the matrix resin. The matrix resin is preferably 40 to 70, particularly preferably 50 to 60 with respect to the reinforcing fiber 100 in a volume ratio.
The thickness of the prepreg is preferably 0.05 to 1 mm from the viewpoint of resin impregnation efficiency into the second fiber base material, and more preferably 0.1 to 0.3 mm.
(First fiber substrate)
The first fiber base is an aggregate of reinforcing fibers. The reinforcing fiber is not particularly limited as long as it is a reinforcing fiber used for a fiber reinforced composite material, and fiber materials such as carbon fiber, glass fiber, aramid fiber, boron fiber and the like are used, and any of them The fiber material can be used alone or in combination of a plurality of types of fiber materials.

第1繊維基材を構成する繊維材の形態としても特に限定するものではなく、例えば、長繊維を一方向に引き揃えた集合体としての開繊糸の形態、長繊維を製織した形態、短繊維を用いた不織布の形態、或いはマット状の形態など、これらの形態の繊維材を単独で或いは組み合わせて、マトリックス樹脂中に規則的に或いは不規則的に配置することもできる。
第1繊維基材に用いられる強化繊維の繊維径は任意であるが、0.001mm〜1mmとするのが好ましく、0.002mm〜0.01mmとするのがさらに好ましい。
The form of the fiber material constituting the first fiber base material is not particularly limited. For example, the form of the spread yarn as an aggregate in which the long fibers are aligned in one direction, the form in which the long fibers are woven, These forms of fiber materials such as non-woven fabrics using fibers or mats can be used alone or in combination, and can be regularly or irregularly arranged in the matrix resin.
The fiber diameter of the reinforcing fiber used for the first fiber base material is optional, but preferably 0.001 mm to 1 mm, and more preferably 0.002 mm to 0.01 mm.

(マトリックス樹脂)
本発明で用いるマトリックス樹脂としては、粘度のコントロールが可能な樹脂であれば熱可塑性樹脂や熱硬化性樹脂等を特に制限なく使用することができるが、具体的には、エポキシ樹脂、フェノール樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、シアネートエステル樹脂、ビスマレイミドトリアジン樹脂(BT樹脂)、などが用いられる。樹脂の粘度としては、脱気工程では、隣接する第2繊維基材の層が通気路として好適に機能し得る程度に高い粘度であることが望ましいが、機能上粘度の上限はなく積層終了時に固体となる樹脂であってもよい。しかしながら、使用の際における積層時には、繊維賦形、積層工程の施工が容易で、かつ積層した形態を保つ程度の粘度が好ましく、具体的には1000〜5000mPa・sであるのが好ましく、3000〜4000mPa・sであるのがさらに好ましい。
また、次工程の加熱樹脂溶融含浸工程では、加温などの条件で、第2繊維基材内に含浸するような粘度まで樹脂粘度がさがり、加熱溶融含侵時の樹脂の粘度は低いほど好ましく、溶融含侵時の粘度の低さに限度は無い。
(Matrix resin)
As the matrix resin used in the present invention, a thermoplastic resin, a thermosetting resin, or the like can be used without particular limitation as long as the viscosity can be controlled. Specifically, an epoxy resin, a phenol resin, Polyimide resin, polyamideimide resin, cyanate ester resin, bismaleimide triazine resin (BT resin), etc. are used. As for the viscosity of the resin, it is desirable that the viscosity of the resin is so high that the adjacent second fiber base layer can suitably function as an air passage in the degassing step, but there is no upper limit on the viscosity and there is no upper limit at the end of the lamination. It may be a resin which becomes solid. However, at the time of lamination in use, the application of the fiber shaping and lamination process is easy, and the viscosity to such an extent that the laminated form is maintained is preferable, specifically 1000 to 5000 mPa · s is preferable, and 3000 to 5000 More preferably, it is 4000 mPa · s.
Further, in the heating resin melt impregnation step of the next step, the resin viscosity is reduced to a viscosity that impregnates the second fiber base material under conditions such as heating, and the resin viscosity at the time of heat melt impregnation is preferably as low as possible. There is no limit to the viscosity at the time of melt impregnation.

(第2繊維基材)
本発明で用いる第2繊維基材は、第1繊維基材と同様に、強化繊維の集合体である。この際用いられる強化繊維についても第1繊維基材と同様に繊維強化複合材に用いられる強化繊維であれば特に限定するものではなく、炭素繊維(ドライ炭素繊維)、ガラス繊維、アラミド繊維、ボロン繊維などの繊維材が用いられ、これのうちいずれかの繊維材を単独で、或いは複数種の繊維材を組み合わせて用いることもできる。
第2繊維基材を構成する繊維材の形態としても特に限定するものではないが、長繊維を一方向に引き揃えた集合体としての開繊糸の形態、長繊維を製織した形態、短繊維を用いた不織布の形態、或いはマット状の形態など、これらの形態の繊維材を単独で或いは組み合わせて、マトリックス樹脂中に規則的に或いは不規則的に配置することもできる。
(2nd fiber base material)
The 2nd fiber base material used by this invention is an aggregate | assembly of a reinforced fiber similarly to a 1st fiber base material. The reinforcing fiber used at this time is not particularly limited as long as it is a reinforcing fiber used in the fiber-reinforced composite material as in the first fiber base material. Carbon fiber (dry carbon fiber), glass fiber, aramid fiber, boron A fiber material such as a fiber is used, and any of these fiber materials can be used alone or in combination of a plurality of types of fiber materials.
Although it does not specifically limit also as a form of the fiber material which comprises a 2nd fiber base material, The form of the opening yarn as an aggregate | assembly which arranged the long fiber in one direction, the form which woven the long fiber, and a short fiber These forms of fiber materials such as non-woven fabrics or mat-like forms can be arranged regularly or irregularly in the matrix resin alone or in combination.

本発明においては、第2繊維基材は、脱気工程及び加熱工程の際に、積層体内の空気等がこの第2繊維基材の層を介して積層体外部へ排出される状態となるため、この第2繊維基材の層はいわば脱気経路として機能する。従って、第2繊維基材は、強化繊維として長繊維を用い、該長繊維を一方向に引き揃えた集合体からなる開繊繊維材であるのが、通気性の点で好ましく、これにより空気等が長繊維に沿って積層体外部へ排気され易くなる利点を有する。
また、成形された繊維強化複合材は、その内部組成が均一であることが望ましく、この点において、第2繊維基材は、第1繊維基材と同種・同形態の繊維材を用いることが好ましい。
また、第2繊維基材に用いられる強化繊維の繊維径は任意であるが、0.001mm〜1mmとするのが好ましく、0.002mm〜0.01mmとするのがさらに好ましい。なお、強化繊維の長さは求められる長さに応じて適宜調整される。また、第2繊維基材の繊維集合体としての厚みは、プリプレグを構成する樹脂の含浸しやすさの観点から0.01mm〜0.3mmとするのが好ましい。
In the present invention, the second fiber base is in a state in which air or the like in the laminate is discharged to the outside of the laminate through the layer of the second fiber base during the degassing step and the heating step. The second fiber base layer functions as a degassing path. Therefore, the second fiber base material is preferably a spread fiber material composed of an assembly in which long fibers are used as reinforcing fibers and the long fibers are aligned in one direction, from the viewpoint of air permeability. Etc. have the advantage of being easily exhausted to the outside of the laminate along the long fibers.
In addition, it is desirable that the molded fiber-reinforced composite material has a uniform internal composition, and in this respect, the second fiber base material is a fiber material of the same type and form as the first fiber base material. preferable.
Moreover, although the fiber diameter of the reinforcement fiber used for a 2nd fiber base material is arbitrary, it is preferable to set it as 0.001 mm-1 mm, and it is more preferable to set it as 0.002 mm-0.01 mm. The length of the reinforcing fiber is appropriately adjusted according to the required length. Moreover, it is preferable that the thickness as a fiber assembly of a 2nd fiber base material sets it as 0.01 mm-0.3 mm from a viewpoint of the ease of the impregnation of resin which comprises a prepreg.

以下本発明の製造方法について、添付図面を参照して説明する。
図1は、実施例で示す脱気工程の状態を模式的に示しているが、この図1を参照しつつ、繊維強化複合材の製造方法を工程順に説明する。
The manufacturing method of the present invention will be described below with reference to the attached drawings.
FIG. 1 schematically shows the state of the degassing step shown in the example, but with reference to FIG. 1, a method of manufacturing a fiber reinforced composite material will be described in order of steps.

まず、密閉収容体120について説明する。密閉収容体120は、バギングフィルム70と治具プレート100とで形成され、脱気工程においてバギングフィルムが収縮して内部の脱気された状態が維持されるようになされている。詳細には、平板状の治具プレート100上には、治具プレート100の外縁部が露出するように、脱気マットとして機能するポリエステル製の底面ブリーザー20を配し、その内側にFEPフィルムによる離型フィルム30、ピールプライ40を順に積層する。なおピールプライ40は離型剤を塗布したポリエステル繊維織物で形成されている。治具プレートはステンレス等の金属製であるのが好ましく、具体的にはSUS304又は303製であり、バギングフィルムは市販の可撓性のあるバキュームバギングフィルムを特に制限なく用いることができるが、伸び率がよく高温での耐熱性に優れるものが好ましく用いられる。以下、密閉収容体120については、各工程を説明しつつ説明する。   First, the sealed container 120 will be described. The hermetic container 120 is formed of the bagging film 70 and the jig plate 100, and the bagging film is contracted in the deaeration process so that the deaerated state inside is maintained. Specifically, on the flat jig plate 100, a polyester bottom breather 20 functioning as a degassing mat is disposed so that the outer edge portion of the jig plate 100 is exposed. The release film 30 and the peel ply 40 are laminated in order. The peel ply 40 is formed of a polyester fiber fabric coated with a release agent. The jig plate is preferably made of metal such as stainless steel, and specifically made of SUS304 or 303. The bagging film can be a commercially available flexible vacuum bagging film without particular limitation, but it is elongated. It is preferable to use one having a high rate of heat resistance at high temperatures. Hereinafter, the sealed container 120 will be described while describing each process.

(積層工程)
ピールプライ40上に、プリプレグとしてのUD(Uni Direction)プリプレグ12、第2繊維基材としてのシート状の開繊ドライ炭素繊維基材14を、交互に順に積層させ、最上層にUDプリプレグ12を積層させて積層体10を形成する(積層工程)。UDプリプレグ12は、強化用の繊維材(第1繊維基材)として、糸状の炭素繊維を薄く一方向に引き揃えた開繊繊維材を用いており、これにマトリックス樹脂を含浸させて半固化状態としてシート状に形成したものである。
UDプリプレグに用いられる樹脂や第1繊維基材などは上述のものを適宜選択して用いることができ、回線ドライ炭素繊維基材の繊維径なども上述のものを適宜選択できる。また、プリプレグの厚さと第2繊維基材の厚さも上述の範囲から適宜選択される。
開繊ドライ炭素繊維基材14は、炭素繊維束を薄く一方向に引き揃えて開繊し、シート状に形成したものであり、UDプリプレグ12の強化用に用いられる炭素繊維による開繊繊維材と同種の繊維材である。
(Lamination process)
On the peel ply 40, a UD (Uni Direction) prepreg 12 as a prepreg and a sheet-like open fiber dry carbon fiber substrate 14 as a second fiber substrate are alternately laminated in turn, and the UD prepreg 12 is laminated on the uppermost layer. To form a laminate 10 (lamination process). The UD prepreg 12 uses, as a reinforcing fiber material (first fiber base material), an open fiber material in which threadlike carbon fibers are thinly aligned in one direction, and is impregnated with a matrix resin to semisolidify it. It is formed into a sheet as a state.
The resin and first fiber base material used for the UD prepreg can be appropriately selected from the above-mentioned ones, and the fiber diameter of the line dry carbon fiber base material can also be selected as appropriate. Further, the thickness of the prepreg and the thickness of the second fiber base material are also appropriately selected from the above range.
The open-fiber dry carbon fiber base 14 is a thin carbon fiber bundle drawn in one direction, opened, and formed into a sheet, and an open-fiber material of carbon fibers used for reinforcing the UD prepreg 12. It is the same kind of fiber material.

このようなUDプリプレグ12と開繊ドライ炭素繊維基材14とを交互に積層して積層体10を形成するが、各層を積層する際には、特に第2繊維基材の層が複数ある場合に、開繊繊維材の繊維配向方向を各層で異なる方向として、例えば45°ずつずらして、0°、90°、45°などが組み合わされるように各層を積層させることで、繊維強化複合材の成形品としての強度や剛性を高めることができる。   Such a UD prepreg 12 and the spread dry carbon fiber base material 14 are alternately laminated to form the laminated body 10, and when laminating each layer, particularly when there are a plurality of layers of the second fiber base material The fiber reinforced composite material is formed by laminating the layers such that 0 °, 90 °, 45 °, etc. are combined by shifting the fiber orientation direction of the open fiber material to different directions in each layer, for example, by 45 °. It is possible to enhance the strength and rigidity as a molded article.

(脱気工程)
このようにして積層体10を形成した後、最上層のUDプリプレグ12の上にピールプライ42、過剰な樹脂を吸収するグラスクロスブリーダー50、離型フィルム32を順に積層させた後、積層体10の外周四辺を囲むように内側ブリーザー24を設け、さらにその外周部にゴム製の仕切り部材60を枠状に配設する。この仕切り部材60は、プリプレグと第2繊維基材との積層体の側面全面を覆い、その高さにおいて該積層体の高さと少なくとも同じ高さを有しているのが、プリプレグの樹脂の損失を防ぎ、得られる成形体の形を所定の形状に保持する点で好ましい。この仕切り部材60を設けることにより、後の加熱工程において、樹脂が密閉収容部内全体に浸み出して成形体の体をなさなくなるのを防止する。
(Degassing process)
After the laminate 10 is formed in this manner, the peel ply 42, the glass cross bleeder 50 that absorbs an excess resin, and the release film 32 are sequentially laminated on the uppermost UD prepreg 12, and then the laminate 10 is obtained. An inner breather 24 is provided so as to surround the four outer sides, and a rubber partition member 60 is disposed in a frame shape on the outer peripheral portion. The partition member 60 covers the entire side surface of the laminate of the prepreg and the second fiber base, and the height of the partition member at least as high as that of the laminate is a loss of resin of the prepreg. Is preferable in that the shape of the obtained molded body is kept in a predetermined shape. By providing the partition member 60, it is possible to prevent the resin from leaking out to the entire inside of the sealed housing portion and losing the shape of the molded body in the subsequent heating step.

なお、内側ブリーザー24及び仕切り部材60を配設する際には、図2に示すように、通気糸62を複数箇所に配設する。通気糸62は、その一端が内側ブリーザー24に接続しており、仕切り部材60の下端と底面ブリーザー20との間を経由して、その他端が仕切り部材60の外側に伸びている。これにより仕切り部材60を設けても十分に通気性を確保して第2繊維基材中の空気などを排出することかできる。   In addition, when arrange | positioning the inner breather 24 and the partition member 60, as shown in FIG. 2, the ventilation yarn 62 is arrange | positioned in multiple places. One end of the aeration yarn 62 is connected to the inner breather 24, and the other end extends to the outside of the partition member 60 via the lower end of the partition member 60 and the bottom surface breather 20. Thereby, even if the partition member 60 is provided, sufficient air permeability can be secured and the air and the like in the second fiber base material can be discharged.

続いて、仕切り部材60の上端面を覆うように、上面ブリーザー22を配設する。これにより仕切り部材60と上面ブリーザー22によって囲まれた空間内に、積層体10が配設された状態となっている。そして、バギングフィルム70によってこれら全体を覆い、バギングフィルム70の外縁部を、シーラント110によって治具プレート100の外縁部に密着させる。これにより、治具プレート100上の積層体10及びこれらを囲む全ての部材が、バギングフィルム70と治具プレート100とで形成される密閉収容部120内に封止された状態となる。   Subsequently, the upper surface breather 22 is disposed to cover the upper end surface of the partition member 60. As a result, the laminate 10 is disposed in the space surrounded by the partition member 60 and the upper surface breather 22. Then, they are entirely covered by the bagging film 70, and the outer edge of the bagging film 70 is brought into close contact with the outer edge of the jig plate 100 by the sealant 110. Thereby, the laminated body 10 on the jig plate 100 and all the members surrounding them are sealed in a hermetic housing portion 120 formed by the bagging film 70 and the jig plate 100.

バギングフィルム70は、複数の箇所に排気ポート72を備えると共に、この排気ポート72には、図示を省略した排気経路や真空ポンプなどからなる脱気回路が接続されており、密閉収容部120内の空気が排気ポート72を介して密閉収容部120の外部に排気される機構となっている。   The bagging film 70 is provided with exhaust ports 72 at a plurality of locations, and a deaeration circuit including an exhaust path, a vacuum pump, etc. (not shown) is connected to the exhaust ports 72. The air is exhausted to the outside of the sealed housing portion 120 through the exhaust port 72.

続いて、このような脱気回路によって、密閉収容部120内の空気を外部に脱気し、密閉収容部120内と大気圧との差圧が0.87atm程度となるまで減圧する(脱気工程)。なお、この圧力は一例でありこれに特に制限されず、前記差圧を0.1atm〜1atmの範囲とすることができる。この脱気工程によって、大気圧を受けたバギングフィルム70が治具プレート100側に撓み、密閉収容部120の空間を収縮させて、上面ブリーザー22が下方に押圧され、上面ブリーザー22より下方の積層体20や仕切り部材60などが大気圧によって加圧される。この際、枠型の仕切り部材60の内側の空気は、通気性を有する上面ブリーザー22や底面ブリーザー20を介して、仕切り部材60の枠外に排気されると共に、通気糸62を介しても仕切り部材60の枠外に排気され、さらに排気ポート72を介してバギングフィルム70の外部、すなわち密閉収容体120の外部に排気される。   Subsequently, the air in the sealed housing 120 is deaerated to the outside by such a degassing circuit, and the pressure is reduced until the pressure difference between the inside of the sealed housing 120 and the atmospheric pressure becomes about 0.87 atm (degassing). Process). In addition, this pressure is an example and it is not restrict | limited in particular to this, The said differential pressure can be made into the range of 0.1 atm-1 atm. By this deaeration process, the bagging film 70 that has been subjected to atmospheric pressure is bent toward the jig plate 100, contracts the space of the hermetic housing portion 120, the upper surface breather 22 is pressed downward, and the lower layer from the upper surface breather 22 is laminated. The body 20, the partition member 60, etc. are pressurized by atmospheric pressure. At this time, the air inside the frame-shaped partition member 60 is exhausted outside the frame of the partition member 60 through the breathable upper surface breather 22 and the bottom surface breather 20, and also through the breathable thread 62. The air is exhausted to the outside of the frame 60 and further to the outside of the bagging film 70 through the exhaust port 72, that is, to the outside of the closed container 120.

(加熱工程)
このような脱気工程を行いつつ、治具プレート100を含めた全体を加熱装置(図示せず)内に挿入する。積層体10の層間内部の温度を熱電対によって計測し、UDプリプレグ12のマトリックス樹脂が流動可能な温度領域まで昇温する。例えば、昇温速度は0.5℃/min〜3℃/minの範囲が好ましい。マトリックス樹脂の軟化温度に到達した後、積層体10の温度を0.5〜2時間の間、一定に保つ。この後、加熱装置を制御して、積層体10の温度を樹脂の硬化温度まで昇温し、樹脂の硬化に必要な時間恒温する。この後、加熱装置を制御して、積層体10の温度を制御して降温速度0.5℃/min〜1℃/minで降温する。この間、積層体10が室温に冷却されるまで、脱気工程を継続して実施する。
加熱は、面状や線状、棒状、熱源パイプ等の発熱源を仕込んだ熱伝導体で製作した
治具で加温したり、治具と積層体をブランケット状発熱体でくるんだり、治具と積層体をオーブンの中に入れたり、オーブン状の加温パネルで囲ったりする等、安定した加温ができるなら、大掛かりな装置はいらない。
(Heating process)
While performing such a deaeration process, the whole including the jig plate 100 is inserted into a heating device (not shown). The temperature inside the interlayer of the laminate 10 is measured by a thermocouple, and the temperature is raised to a temperature region where the matrix resin of the UD prepreg 12 can flow. For example, the temperature rising rate is preferably in the range of 0.5 ° C./min to 3 ° C./min. After reaching the softening temperature of the matrix resin, the temperature of the laminate 10 is kept constant for 0.5-2 hours. Thereafter, the heating device is controlled to raise the temperature of the laminate 10 to the curing temperature of the resin, and the temperature is maintained for a time required for the curing of the resin. Then, the temperature of the laminated body 10 is controlled by controlling the heating device, and the temperature is decreased at a temperature decrease rate of 0.5 ° C./min to 1 ° C./min. During this time, the deaeration process is continued until the laminate 10 is cooled to room temperature.
Heating may be performed with a jig manufactured from a heat conductor containing a heat source such as surface, linear, rod, or heat source pipe, or the jig and the laminate may be wrapped with a blanket-like heating element, or jig And if the stable heating can be done, such as putting the laminate in an oven or enclosing it with an oven-like heating panel, a large-scale device is not necessary.

本実施例における加熱工程の際に、UDプリプレグ12を構成するマトリックス樹脂の粘度が低下し、隣接する開繊ドライ炭素繊維基材14側に徐々に含浸していき、最終的には開繊ドライ炭素繊維基材14も空隙なく熱硬化性樹で満たされる状態となる。この過程で、開繊ドライ炭素繊維基材14の層内に取り込まれた空気等が、開繊ドライ炭素繊維基材14の層を介して積層体10の外部へ引き出されるため、ボイドの発生を充分に抑制することができる。   During the heating step in the present embodiment, the viscosity of the matrix resin constituting the UD prepreg 12 is lowered, and it is gradually impregnated on the adjacent open dry carbon fiber base 14 side, and finally the open dry The carbon fiber substrate 14 is also in a state of being filled with the thermosetting tree without voids. In this process, since air or the like taken into the layer of the opened dry carbon fiber base material 14 is drawn out to the outside of the laminate 10 through the layer of the opened dry carbon fiber base material 14, generation of voids is prevented. It can be sufficiently suppressed.

また、本実施例では、通気性を有する上面ブリーザー22によって積層体10の上部を覆うことで、仕切り部材60で形成される枠内部の脱気を行う場合を例示したが、上面ブリーザー22及び離型フィルム32に替えて、下面側に離型剤と塗布したステンレス製の加圧板を用いることもできる。この場合には、加圧板と仕切り部材60の上端面とが密接状態となって閉塞されるが、内側ブリーザー24及び通気糸62を介して、仕切り部材60で形成される枠内部の脱気を充分に行うことができる。   Moreover, although the case where the inside of the frame formed of the partition member 60 is deaerated is illustrated by covering the upper part of the laminated body 10 by the upper surface breather 22 which has air permeability in this example, the upper surface breather 22 and separation are illustrated. Instead of the mold film 32, it is also possible to use a stainless steel pressure plate coated with a mold release agent on the lower surface side. In this case, although the pressure plate and the upper end surface of the partition member 60 are in close contact and closed, degassing of the inside of the frame formed by the partition member 60 is performed via the inner breather 24 and the air thread 62. It can be done sufficiently.

(繊維強化複合材)
本発明の製造方法により得られる本発明の繊維強化複合材200は、図3に示すように、プリプレグにより形成された層210と第2繊維基材により形成された層220とが積層されてなる。両者はそれぞれプレプレグを構成するマトリックス樹脂を熱硬化させてなる樹脂により形成されており、ボイドの発生が抑制された状態で第2繊維基材の層を樹脂で硬化させてなるものである。また、各層の構成樹脂が同じであるため複合材全体での一体性が高く、強度にも優れるものである。
また、別に従来のオートクレーブ法にて30cm角の繊維強化複合材を作製したところ本発明の製法にて製造したものとほぼ同等のボイド発生率にて複合材を得た。
しかし、オートクレーブの形状が決まっているため規格内の形状の複合材しか成形することはできなかった。
このことから、本発明の製法によれば、従来のオートクレーブ法で作成したのと同等の性能を有する複合材を所望の形状にて得ることができることが判る。
(Fiber reinforced composites)
As shown in FIG. 3, the fiber-reinforced composite material 200 of the present invention obtained by the production method of the present invention is formed by laminating a layer 210 formed of prepreg and a layer 220 formed of a second fiber base material. . Both are formed of a resin obtained by thermosetting the matrix resin constituting the prepreg, and the layer of the second fiber base material is cured with the resin in a state in which the generation of voids is suppressed. Further, since the constituent resins of the respective layers are the same, the integrity of the entire composite material is high and the strength is also excellent.
In addition, when a fiber reinforced composite material of 30 cm square was separately prepared by a conventional autoclave method, a composite material was obtained with a void generation rate substantially equal to that manufactured by the manufacturing method of the present invention.
However, since the shape of the autoclave is determined, only a composite material having a shape within the standard could be formed.
From this, it can be seen that according to the production method of the present invention, a composite material having performance equivalent to that produced by the conventional autoclave method can be obtained in a desired shape.

なお、本発明は上述の実施形態になんら制限されるものではなく、本発明の趣旨を逸脱しない範囲で種々変更可能である。
たとえば、上述の実施形態においては、内側ブリーザー24、離型フィルム30,32、ピールプライ40,42、グラスクロスブリーダー50を用いたが、これらを必要に応じて選択的に用いても良い。
また、第2繊維基材側にも、予めマトリックス樹脂を多少含浸させていてもよい。
The present invention is not limited to the embodiment described above, and various modifications can be made without departing from the spirit of the present invention.
For example, in the above-mentioned embodiment, although the inner breather 24, the mold release films 30, 32, the peel plies 40, 42, and the glass cross bleeder 50 were used, you may use these selectively as needed.
Moreover, the matrix resin may be impregnated to some extent on the second fiber substrate side in advance.

Claims (4)

第1繊維基材にマトリックス樹脂を含浸させたプリプレグと、第2繊維基材とを交互に積層させ、前記プリプレグと前記第2繊維基材との積層体を形成する積層工程と、
封止シートによって前記積層体を覆って密閉収容体を形成し、この密閉収容体内の空気を脱気する脱気工程と、
前記密閉収容体内を加熱し、前記プリプレグと第2繊維基材とを一体化する加熱工程と、
を有し、
前記積層工程において、前記第2繊維基材は複数層積層されており、各第2繊維基材はそれぞれ繊維配向方向が各層で異なる方向となるように積層する、オートクレーブを用いない繊維強化複合材の製造方法。
A laminating step of alternately laminating a prepreg in which a first fiber base material is impregnated with a matrix resin, and a second fiber base material to form a laminate of the prepreg and the second fiber base material;
A degassing step of covering the laminate with a sealing sheet to form a hermetic container and degassing the air in the hermetic container;
A heating step of heating the sealed container and integrating the prepreg and the second fiber base;
I have a,
In the laminating step, the second fiber base material is laminated in a plurality of layers, and each second fiber base material is laminated so that the fiber orientation direction is different in each layer. A fiber-reinforced composite material that does not use an autoclave. Manufacturing method.
前記第2繊維基材は、長繊維を一方向に引き揃えた繊維集合体である請求項1記載の繊維強化複合材の製造方法。   The method for producing a fiber-reinforced composite material according to claim 1, wherein the second fiber base is a fiber assembly in which long fibers are aligned in one direction. 前記第2繊維基材は、前記第1繊維基材と同種の繊維材からなる繊維集合体である請求項1又は2に記載の繊維強化複合材の製造方法。   The method for producing a fiber-reinforced composite material according to claim 1 or 2, wherein the second fiber base material is a fiber aggregate made of the same kind of fiber material as the first fiber base material. 前記第2繊維基材は、各層の繊維の配向方向が45°ずつ異なるように積層する請求項1〜3のいずれかに記載の繊維強化複合材の製造方法

The method for producing a fiber-reinforced composite material according to any one of claims 1 to 3, wherein the second fiber base materials are laminated such that orientation directions of fibers in each layer are different by 45 ° .

JP2015033429A 2015-02-23 2015-02-23 Method of manufacturing fiber reinforced composite without autoclave and fiber reinforced composite manufactured by this method Active JP6550573B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015033429A JP6550573B2 (en) 2015-02-23 2015-02-23 Method of manufacturing fiber reinforced composite without autoclave and fiber reinforced composite manufactured by this method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015033429A JP6550573B2 (en) 2015-02-23 2015-02-23 Method of manufacturing fiber reinforced composite without autoclave and fiber reinforced composite manufactured by this method

Publications (2)

Publication Number Publication Date
JP2016155259A JP2016155259A (en) 2016-09-01
JP6550573B2 true JP6550573B2 (en) 2019-07-31

Family

ID=56824728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015033429A Active JP6550573B2 (en) 2015-02-23 2015-02-23 Method of manufacturing fiber reinforced composite without autoclave and fiber reinforced composite manufactured by this method

Country Status (1)

Country Link
JP (1) JP6550573B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019230106A1 (en) * 2018-06-01 2019-12-05 株式会社Ihi Method for manufacturing fiber-reinforced plastic from prepreg

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4856327B2 (en) * 2001-07-03 2012-01-18 富士重工業株式会社 Method for manufacturing composite panel
JP2004058608A (en) * 2002-07-31 2004-02-26 Toho Tenax Co Ltd Method for manufacturing hollow molded article
JP4338550B2 (en) * 2004-03-04 2009-10-07 東レ株式会社 Method for manufacturing FRP structure
GB201008884D0 (en) * 2010-05-27 2010-07-14 Hexcel Composites Ltd Improvements in composite materials
JP5090701B2 (en) * 2006-09-30 2012-12-05 東邦テナックス株式会社 Partially impregnated prepreg and method for producing fiber reinforced composite material using the same
JP2008246981A (en) * 2007-03-30 2008-10-16 Honda Motor Co Ltd Manufacturing method of fiber-reinforced composite material
JP5550537B2 (en) * 2010-12-08 2014-07-16 三菱重工業株式会社 Composite manufacturing method
CN104023979B (en) * 2011-12-23 2015-08-05 东丽株式会社 The preparation method of prepreg, fibre reinforced composites and fibre reinforced composites

Also Published As

Publication number Publication date
JP2016155259A (en) 2016-09-01

Similar Documents

Publication Publication Date Title
JP5670381B2 (en) Controlled atmospheric pressure resin injection process
US8420002B2 (en) Method of RTM molding
US20090252921A1 (en) Method for the production of a sandwich component having a honeycomb core and the sandwich component obtained in this way
CA2374185C (en) Method and device for producing fibre-reinforced components using an injection method
JP4342620B2 (en) Method for forming honeycomb sandwich structure composite panel
JP5877156B2 (en) Rotor blade manufacturing method and manufacturing apparatus thereof
US10183450B2 (en) Method for impregnation of a fibrous preform and device for implementation of the said method
CN108883585B (en) Fabrication of complex shaped composite structures
US20050126699A1 (en) Process for the manufacture of composite structures
US20080210372A1 (en) Composite article debulking process
JP5294609B2 (en) Gas-barrier carbon fiber reinforced prepreg, carbon fiber reinforced plastic, and production method thereof
CN107073848B (en) Apparatus and method for manufacturing and repairing fiber-reinforced composite materials
CA2795861C (en) Method and device for producing a composite moulded part from fibre-reinforced plastic
US20140080376A1 (en) Engineered high fiber volume polymer matrix composites
JP6550573B2 (en) Method of manufacturing fiber reinforced composite without autoclave and fiber reinforced composite manufactured by this method
JP2005022171A (en) Core for composite material sandwich panel, composite material sandwich panel and its manufacturing method
JP2010173165A (en) Method for molding fiber-reinforced plastic
JP6652523B2 (en) Reinforcing fiber substrate and preform.
JP4824462B2 (en) Manufacturing method of fiber reinforced composite material
EP1775109B1 (en) Composite moulding method and apparatus with a vacuum bag
JP2004130599A (en) Manufacturing process for fiber reinforced resin molded object
JP2020116771A (en) Molding method
CN112743921A (en) Composite system and method with melt-infiltrated film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190423

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190520

R150 Certificate of patent or registration of utility model

Ref document number: 6550573

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350