JP2012066397A - Method for manufacturing fiber-reinforced plastic - Google Patents

Method for manufacturing fiber-reinforced plastic Download PDF

Info

Publication number
JP2012066397A
JP2012066397A JP2010210660A JP2010210660A JP2012066397A JP 2012066397 A JP2012066397 A JP 2012066397A JP 2010210660 A JP2010210660 A JP 2010210660A JP 2010210660 A JP2010210660 A JP 2010210660A JP 2012066397 A JP2012066397 A JP 2012066397A
Authority
JP
Japan
Prior art keywords
preform
reinforced plastic
resin
fiber
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010210660A
Other languages
Japanese (ja)
Inventor
Koji Kotani
浩司 小谷
Tamotsu Suzuki
保 鈴木
Kensuke Kunigome
健介 國米
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2010210660A priority Critical patent/JP2012066397A/en
Publication of JP2012066397A publication Critical patent/JP2012066397A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing fiber-reinforced plastic of outstanding quality, while eliminating a level difference and resin reservoir produced at the molding end by difference in the length of profile shape of preform and molding, and excluding trim processing after molding, in a vacuum RTM molding method to manufacture the fiber-reinforced plastic of curved surface shape.SOLUTION: In the method for manufacturing fiber-reinforced plastic, thickness of the fiber-reinforced plastic after resin curing is changed from thickness of preform 2, by: arranging the preform 2 comprising the reinforcement fiber base material on the mold 101 having a curved surface or bending shape; covering the preform 2 with bag materials 3 and carrying out vacuum suction of the core; and filling the resin 10 to the preform 2 and curing the preform 2, the preform 2 is formed beforehand by laminating the reinforcement fiber base materials of different width and/or length, so that the end face of the fiber-reinforced plastic may become a desired shape.

Description

本発明は、真空RTM(Resin Transfer Molding)成形法を用いた繊維強化プラスチック(以下、FRPとも称す)の製造方法に関し、特に、曲面形状を有するFRPを製造する際に、樹脂硬化後にトリム加工をすることなく、品質に優れた、所望の形状のFRPを得ることが可能なFRPの製造方法に関する。   The present invention relates to a manufacturing method of fiber reinforced plastic (hereinafter also referred to as FRP) using a vacuum RTM (Resin Transfer Molding) molding method, and in particular, when manufacturing FRP having a curved surface shape, trim processing is performed after resin curing. It is related with the manufacturing method of FRP which can obtain FRP of the desired shape excellent in quality without doing.

FRPは軽量で高い機械特性を発揮できる材料であり、各種分野に使用されている。FRPの代表的な製造方法として、プリプレグ法、RTM(Resin Transfer Molding)法、真空RTM成形法などが知られている。   FRP is a lightweight material that can exhibit high mechanical properties, and is used in various fields. As typical FRP manufacturing methods, a prepreg method, an RTM (Resin Transfer Molding) method, a vacuum RTM molding method, and the like are known.

プレプレグ法は、プリプレグと称される予め強化繊維に半硬化の樹脂を含浸させたシートを、オートクレーブと呼ばれる圧力釜の中で加熱・加圧して樹脂を硬化する成形法である。RTM法は、両面金型のキャビティ内に強化繊維を配置し、当該キャビティ内に樹脂を加圧注入して強化繊維に樹脂を注入し硬化する成形法である。   The prepreg method is a molding method in which a sheet in which a reinforcing fiber called a prepreg is impregnated with a semi-cured resin is heated and pressed in a pressure cooker called an autoclave to cure the resin. The RTM method is a molding method in which reinforcing fibers are disposed in a cavity of a double-sided mold, a resin is injected into the cavity under pressure, and the resin is injected into the reinforcing fibers and cured.

一方、真空RTM成形法は、金型上に強化繊維を配置し、強化繊維全体をバッグ材で密閉してバッグ材内部を減圧し、樹脂を減圧されたバッグ材内部と外部圧力(大気圧)との差圧を利用して樹脂を強化繊維に注入し、樹脂を硬化させ、硬化後に脱型してFRPを得る方法である。真空RTM成形法は、加圧設備などが不要で、非常に簡易な設備で製造できる。   On the other hand, in the vacuum RTM molding method, reinforcing fibers are arranged on a mold, the entire reinforcing fibers are sealed with a bag material, the inside of the bag material is decompressed, and the inside of the bag material is decompressed and the external pressure (atmospheric pressure) The resin is injected into the reinforcing fiber using the pressure difference between the resin and the resin, the resin is cured, and after the curing, the mold is removed to obtain FRP. The vacuum RTM molding method does not require a pressurizing facility and can be manufactured with a very simple facility.

FRPの製造方法においては、特許文献1の通り、一般的には、成形(樹脂硬化)後に、FRPを正寸に調整すること、および、端部の樹脂溜まりを除去することを目的に、成形品の端部をトリム(切断)加工する工程を設けることが多い。   In the manufacturing method of FRP, as disclosed in Patent Document 1, generally, after molding (resin curing), molding is performed for the purpose of adjusting the FRP to the exact size and removing the resin pool at the end. In many cases, a process of trimming (cutting) the end of the product is provided.

特許文献2の図5に例示の通り、特に曲面のように内側の層と外側の層で周長差が生じうる形状に強化繊維を配置する場合には、成形品の端部で周長差の分だけ強化繊維層がずれて、段差が生じるため、成形品の端部の段差に樹脂溜まりが生じ、その部分が強度上の欠陥になる問題が生じる。そのため、成形品の端部をトリム(切断)加工して樹脂溜まりを除去する。   As illustrated in FIG. 5 of Patent Document 2, in particular, when reinforcing fibers are arranged in a shape that may cause a difference in circumference between the inner layer and the outer layer, such as a curved surface, the difference in circumference at the end of the molded product. As a result, the reinforcing fiber layer is displaced by this amount, resulting in a level difference. Therefore, there is a problem in that a resin pool is generated at the level difference at the end of the molded product, and that portion becomes a defect in strength. Therefore, the resin reservoir is removed by trimming (cutting) the end of the molded product.

また、RTM法のように、強化繊維に樹脂を注入する成形法においては、特許文献3の通り、樹脂を注入する前に、プリフォームと呼ばれる強化繊維の構造体を形成し、プリフォームの時に外形をトリムする場合がある。両面の金型を用いる場合には、プリフォームと成形品の厚みはほぼ等しく、厚みの変化が無いため、プリフォームの形状をFRPの最終形状とすることが出来る。   In addition, in the molding method in which a resin is injected into a reinforcing fiber as in the RTM method, as shown in Patent Document 3, before the resin is injected, a reinforcing fiber structure called a preform is formed, The outline may be trimmed. In the case of using a double-sided mold, the thickness of the preform and the molded product is substantially equal, and there is no change in thickness, so that the shape of the preform can be the final shape of the FRP.

一方、真空RTM成形法は、特許文献4に記載の通り、プリフォームに対し樹脂を注入・排出し、成形中にプリフォーム全体の体積が変化するため、プリフォームとFRPは、みかけの厚みが異なる特徴がある。したがって、曲面形状を有する成形品を製造する場合には、プリフォームとFRPでは、外側の周長(外形形状の長さ)が変化するため、成形後にFRPの端部に段差が生じ、トリム加工をしない場合には、樹脂溜まりが出来、そこが強度上の欠陥になる問題が生じる。また、樹脂溜まりを除去するためには、最終的にFRPをトリム加工する必要があり、材料の無駄・廃棄物の増加が生じる問題があった。   On the other hand, as described in Patent Document 4, the vacuum RTM molding method injects and discharges resin to and from the preform, and the volume of the entire preform changes during molding. Therefore, the preform and FRP have an apparent thickness. There are different characteristics. Therefore, when manufacturing a molded product having a curved surface shape, the outer circumference (length of the outer shape) changes between the preform and the FRP, so that a step is generated at the end of the FRP after molding, and trim processing is performed. If not, a resin pool is formed, which causes a problem of strength defects. Further, in order to remove the resin reservoir, it is necessary to trim the FRP finally, which causes a problem of waste of materials and increase of waste.

特開平10−180757号公報JP-A-10-180757 特開2002−059478号公報JP 2002-059478 A 特開2007−118577号公報JP 2007-118577 A 特開2004−130598号公報JP 2004-130598 A

そこで本発明の課題は、従来技術の問題を解決し、曲面形状のFRPを製造する真空RTM(Resin Transfer Molding)成形法において、成形時の厚みの変化を考慮して、成形後のFRPが製品の設計形状になるように、プリフォームの端部の形状をあらかじめ調整しておくことにより、成形後のFRPのトリム加工を省略し、かつ、樹脂溜まりの無い優れた品質のFRPを得ることが可能な繊維強化プラスチックの製造方法を提供することにある。   Therefore, the object of the present invention is to solve the problems of the prior art, and in the vacuum RTM (Resin Transfer Molding) molding method for producing curved FRP, the FRP after molding is a product considering the change in thickness during molding. By adjusting the shape of the end of the preform in advance so as to obtain the design shape, it is possible to eliminate the trim processing of the FRP after molding and obtain an excellent quality FRP with no resin pool It is an object of the present invention to provide a method for producing a possible fiber reinforced plastic.

上記課題を解決するために、本発明に係る繊維強化プラスチックの製造方法は、以下の手段をとる。   In order to solve the above problems, the method for producing a fiber-reinforced plastic according to the present invention takes the following means.

すなわち、曲面または屈曲形状を有する金型に強化繊維基材からなるプリフォームを配置し、プリフォームをバッグ材で覆って内部を真空吸引し、プリフォームに樹脂を注入して硬化させ、樹脂硬化後の繊維強化プラスチックの厚みをプリフォームの厚みより変化させる繊維強化プラスチックの製造方法において、前記繊維強化プラスチックの端面が所望の形状となるように、幅および/または長さの異なる強化繊維基材を積層してプリフォームをあらかじめ形成するものである。   That is, a preform made of a reinforcing fiber base is placed in a mold having a curved surface or a bent shape, the preform is covered with a bag material, the inside is vacuum-sucked, and a resin is injected into the preform to be cured. In a method for producing a fiber reinforced plastic in which the thickness of the fiber reinforced plastic later is changed from the thickness of the preform, the reinforced fiber bases having different widths and / or lengths so that the end face of the fiber reinforced plastic has a desired shape Are formed in advance.

また、前記繊維強化プラスチックの端面が所望の形状となるように、前記プリフォームの端面を樹脂注入前にトリムすることもできる。   In addition, the end face of the preform can be trimmed before resin injection so that the end face of the fiber reinforced plastic has a desired shape.

前記プリフォームは、あらかじめ該曲面形状に沿って賦形し、形状を固定することも可能である。また、前記プリフォームを、少なくとも熱可塑性樹脂を含む樹脂材料が付与された強化繊維基材で構成することもできる。   The preform can be shaped in advance along the curved surface shape and fixed in shape. Moreover, the said preform can also be comprised with the reinforced fiber base material to which the resin material containing at least a thermoplastic resin was provided.

また、前記プリフォームの厚みを所望の繊維強化プラスチックの厚みと同じ厚みになるまで前記プリフォームを圧縮した状態において、該プリフォームの端面をトリムすることもできる。   Further, the end face of the preform can be trimmed in a state where the preform is compressed until the thickness of the preform becomes the same as the thickness of the desired fiber-reinforced plastic.

本発明に係る繊維強化プラスチックの製造方法は、前記製造方法で得られる繊維強化プラスチックの端面が、金型表面に対して略直角である構造にも適用できる。   The manufacturing method of the fiber reinforced plastic according to the present invention can also be applied to a structure in which the end surface of the fiber reinforced plastic obtained by the manufacturing method is substantially perpendicular to the mold surface.

本発明に係る繊維強化プラスチックの製造方法によれば、FRPのトリム加工を省略することにより、樹脂の無駄・廃棄物の削減をすることが出来、かつ、強度上の欠点となる樹脂溜まりの無い優れた品質の繊維強化プラスチック(FRP)を得ることができる。   According to the method for producing a fiber reinforced plastic according to the present invention, it is possible to reduce waste of resin and waste by omitting the FRP trim processing, and there is no resin pool that becomes a defect in strength. An excellent quality fiber reinforced plastic (FRP) can be obtained.

本発明に係る真空RTM成形方法を説明するための成形装置の断面図である。It is sectional drawing of the shaping | molding apparatus for demonstrating the vacuum RTM shaping | molding method concerning this invention. 従来技術の問題点を説明するためのプリフォームの断面図である。It is sectional drawing of the preform for demonstrating the problem of a prior art. 本発明の製造方法に係る第1の実施の形態を説明するための断面図である。It is sectional drawing for demonstrating 1st Embodiment which concerns on the manufacturing method of this invention. 本発明の製造方法に係る第2の実施の形態を説明するための構成図である。It is a block diagram for demonstrating 2nd Embodiment which concerns on the manufacturing method of this invention. 本発明の製造方法に係る第3の実施の形態を説明するための構成図である。It is a block diagram for demonstrating 3rd Embodiment which concerns on the manufacturing method of this invention.

以下、本発明を実施するための形態を、図面を参照しながら説明する。なお、本発明は、図面に記載された具体的な態様に限定されるものではない。   Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. In addition, this invention is not limited to the specific aspect described in drawing.

図1は、本発明に係る真空RTM成形方法を説明するための成形装置の断面図である。図2は、従来技術の問題点を説明するためのプリフォームの断面図である。   FIG. 1 is a sectional view of a molding apparatus for explaining a vacuum RTM molding method according to the present invention. FIG. 2 is a cross-sectional view of a preform for explaining the problems of the prior art.

図1のとおり、曲面または屈曲形状を有する金型101上に強化繊維基材を複数層重ねたプリフォーム2を配置し、プリフォーム全体をバッグ材3で覆って、シーラント5により密閉し、通気材料11、吸引ライン8、真空トラップ7を介して真空ポンプ6と連通されたバッグ材の内部を減圧し、バッグ材の内部と樹脂にかかる大気圧の差圧により、注入ライン9を介して樹脂10をプリフォーム2に注入する。樹脂がプリフォーム全体に含浸した後、注入ラインを閉止し、プリフォーム内の余剰な樹脂を吸引ラインから真空トラップに排出させ、その後プリフォーム内の樹脂を硬化させて、金型より脱型してFRPを得る。表面方向への樹脂の拡散性を向上させるために、プリフォーム上に樹脂拡散媒体4を配置しても良い。   As shown in FIG. 1, a preform 2 in which a plurality of layers of reinforcing fiber bases are stacked is placed on a mold 101 having a curved surface or a bent shape, the entire preform is covered with a bag material 3, sealed with a sealant 5, and ventilated. The inside of the bag material communicated with the vacuum pump 6 via the material 11, the suction line 8 and the vacuum trap 7 is depressurized, and the resin is obtained via the injection line 9 by the pressure difference between the inside of the bag material and the atmospheric pressure applied to the resin. 10 is injected into the preform 2. After the entire resin has been impregnated into the preform, the injection line is closed, excess resin in the preform is discharged from the suction line to a vacuum trap, and then the resin in the preform is cured and removed from the mold. To obtain FRP. In order to improve the diffusibility of the resin in the surface direction, the resin diffusion medium 4 may be disposed on the preform.

真空RTM成形方法におけるキャビティは、金型とバッグ材で構成される空隙に相当する。バッグ材はフィルム等の可撓性を持った材料で構成されるため、キャビティ内の圧力状態等によって容積や寸法が変化しうる。プリフォームに対して樹脂を注入、排出することにより、プリフォームに体積変化が生じ、成形中にプリフォームの厚みが変化する特徴がある。すなわち、真空RTM成形方法においては、プリフォームの厚みと、樹脂硬化後のFRPの厚みが異なる特徴がある。   The cavity in the vacuum RTM molding method corresponds to a gap formed by a mold and a bag material. Since the bag material is made of a flexible material such as a film, the volume and dimensions can change depending on the pressure state in the cavity. By injecting and discharging the resin to and from the preform, a volume change occurs in the preform, and the thickness of the preform changes during molding. That is, the vacuum RTM molding method is characterized in that the thickness of the preform is different from the thickness of the FRP after the resin is cured.

したがって、図2(a)〜(c)に示すように、曲面または屈曲形状を有する金型1を用いた真空RTM成形法において、プリフォームの厚みT0と、樹脂硬化後の製品形状のFRPの厚みT1が異なる場合には、プリフォームとFRPでは、厚みの変化分だけ、バッグ材側に配置された強化繊維基材の必要長さ12(以下、周長とも称する)に差が生じる問題がある。   Therefore, as shown in FIGS. 2A to 2C, in the vacuum RTM molding method using the mold 1 having a curved surface or a bent shape, the thickness T0 of the preform and the FRP of the product shape after resin curing In the case where the thickness T1 is different, there is a problem that the preform and the FRP have a difference in the required length 12 (hereinafter also referred to as a circumferential length) of the reinforcing fiber base disposed on the bag material side by the change in thickness. is there.

すなわち、最終的な厚みがプリフォームよりも薄いFRPを成形した場合には、樹脂の硬化に伴ってFRPのコーナー部の強化繊維基材の必要長さがプリフォームよりも短くなるため、バッグ材側の強化繊維基材の周長12に余りが生ずる。これにより、FRP端部の断面を示す図2(c)のように、強化繊維基材の周長差に起因して、FRPの端部が金型表面に対して斜行した形状となる。   That is, when the final thickness of the FRP is thinner than the preform, the necessary length of the reinforcing fiber base at the corner portion of the FRP becomes shorter than the preform as the resin cures. A surplus occurs in the peripheral length 12 of the reinforcing fiber base on the side. As a result, as shown in FIG. 2C, which shows a cross section of the FRP end portion, the end portion of the FRP is inclined with respect to the mold surface due to the difference in the circumferential length of the reinforcing fiber base material.

そのため、FRPの端部に強化繊維が欠如した部分、すなわち樹脂溜まり13が形成される問題が生じる。FRPに樹脂溜まり13が生じた場合、強化繊維が存在しないために必要とされる強度等が発揮されない欠点となるため、トリム(切断加工)により樹脂溜まり13を除去する必要がある。トリムを実施する場合には、製品の正寸よりも長い成形品を製作した後に、正寸に切断加工する必要があり、強化繊維と樹脂の無駄が増加し、廃棄物の増加になる。また、トリム加工が出来ない形状の成形品の場合は、製品内に樹脂溜まりが残り、強度上の欠点となる品質上の問題が生じるおそれがある。   Therefore, there is a problem that a portion where the reinforcing fiber is lacked at the end of the FRP, that is, the resin reservoir 13 is formed. When the resin reservoir 13 is generated in the FRP, it becomes a defect that the required strength and the like are not exhibited because there is no reinforcing fiber. Therefore, it is necessary to remove the resin reservoir 13 by trimming (cutting). In the case of performing trimming, it is necessary to cut a product that is longer than the exact size of the product and then cut it to the exact size. This increases waste of reinforcing fibers and resin, resulting in an increase in waste. In the case of a molded product that cannot be trimmed, a resin pool remains in the product, which may cause a quality problem that is a defect in strength.

本発明に係る曲面または屈曲形状を有する金型とは、金型上に同一サイズの強化繊維基材を複数層積み重ねて配置した場合に、金型表面側とバッグ材側とで、その周長が異なるために、強化繊維基材層の端部が金型表面に対して垂直にならない(斜面)形状になることをいう。具体的には、曲面状の形状、あるいは、互いに交わる少なくとも2つの平面方向に屈曲した形状のことをいう。また、金型の材質については、特に限定しないが、金属製、プラスチック製、FRP製などがあげられる。   The mold having a curved surface or a bent shape according to the present invention is a circumferential length on the mold surface side and the bag material side when a plurality of reinforcing fiber bases of the same size are stacked on the mold. Therefore, it means that the end portion of the reinforcing fiber base layer has a shape (slope) that is not perpendicular to the mold surface. Specifically, it means a curved shape or a shape bent in at least two plane directions that intersect each other. The material of the mold is not particularly limited, and examples thereof include metal, plastic, and FRP.

図3は本発明の製造方法に係る第1の実施の形態を説明するための断面図である。   FIG. 3 is a cross-sectional view for explaining the first embodiment according to the manufacturing method of the present invention.

本実施の形態においては、図2(a)〜(c)に示すように、屈曲部を有した金型を用いて、厚みT0のプリフォームから、樹脂硬化後の厚みT1(T0>T1)のFRPを成形するものである。最終的なFRPの所望の製品形状は、FRP端部が、金型面に対して垂直な端面を有することが好ましい。   In the present embodiment, as shown in FIGS. 2A to 2C, using a mold having a bent portion, a thickness T1 (T0> T1) after resin curing from a preform having a thickness T0. The FRP is molded. The desired product shape of the final FRP is preferably such that the FRP end has an end surface perpendicular to the mold surface.

図3に示すとおり、プリフォーム2の端部において、金型と垂直方向の基準線に対する、バッグ材側の強化繊維基材層の長さが、金型表面側に配置された強化繊維基材層の長さよりも、(T0−T1)だけ短くなるように、比例的に長さを変化させた所定枚数の強化繊維基材を、金型表面上に順次積層して、厚みT0のプリフォーム2を形成する。ここで、本発明に用いられるプリフォームは、樹脂の含浸されていない強化繊維で構成された繊維構造体を指し、強化繊維としては、例えば、ガラス繊維、炭素繊維、アラミド繊維などがあり、繊維構造体の形態としては、例えば、織物の積層体などがある。   As shown in FIG. 3, the reinforcing fiber base material in which the length of the reinforcing fiber base material layer on the bag material side relative to the reference line in the direction perpendicular to the mold is arranged on the mold surface side at the end of the preform 2 A preform having a thickness T0 is formed by sequentially laminating a predetermined number of reinforcing fiber bases, the lengths of which are proportionally changed so as to be shorter than the layer length by (T0-T1), on the mold surface. 2 is formed. Here, the preform used in the present invention refers to a fiber structure composed of reinforcing fibers not impregnated with resin. Examples of reinforcing fibers include glass fibers, carbon fibers, and aramid fibers. Examples of the structure include a woven fabric laminate.

ここで、強化繊維基材の周長は、プリフォームを形成する強化繊維基材の配置方向によって、強化繊維基材の幅方向、長さ方向のいずれかを変化させるものである。また、3次元的な複雑形状のプリフォームを賦形する場合等には、幅方向と長さ方向の両方向を変化させることが重要である。   Here, the circumferential length of the reinforcing fiber base changes either the width direction or the length direction of the reinforcing fiber base depending on the arrangement direction of the reinforcing fiber base forming the preform. In addition, when shaping a three-dimensional complex shape preform, it is important to change both the width direction and the length direction.

図1に示すとおり、前記プリフォーム2全体をバッグ材で覆って、シーラントにより密閉し、吸引ライン、真空トラップを介して真空ポンプと連通されたバッグ材の内部を減圧し、バッグ材の内部と樹脂にかかる圧力の差圧により、注入ラインを介して樹脂をプリフォームに注入する。ここで、本発明に用いられるバッグ材は、可撓性を有したシートであれば、特には限定しないが、例えば、ナイロンなどの有機合成フィルムやシリコーンなどのゴム状弾性体が挙げられる。樹脂がプリフォーム全体に含浸した後、樹脂注入ラインを閉止して、樹脂の吸引ラインから余剰な樹脂を排出する。プリフォームから樹脂を排出するに伴って、プリフォームの厚みが減少し、初期の厚みT0よりも薄い厚みT1になったところで、樹脂を硬化させて脱型し、厚みT1のFRP21を得る。前記FRP21は、端部の形状が金型面に対して垂直であり、かつ、樹脂リッチが無い。また、FRPをトリムする必要が無いため、強化繊維や樹脂の無駄、廃棄物の削減が出来る。   As shown in FIG. 1, the entire preform 2 is covered with a bag material, sealed with a sealant, the inside of the bag material communicated with a vacuum pump via a suction line and a vacuum trap is decompressed, The resin is injected into the preform through the injection line due to the differential pressure of the pressure applied to the resin. Here, the bag material used in the present invention is not particularly limited as long as it is a flexible sheet, and examples thereof include organic synthetic films such as nylon and rubber-like elastic bodies such as silicone. After the entire resin is impregnated with the resin, the resin injection line is closed, and excess resin is discharged from the resin suction line. As the resin is discharged from the preform, the thickness of the preform decreases, and when the thickness T1 is smaller than the initial thickness T0, the resin is cured and demolded to obtain the FRP 21 having the thickness T1. The end portion of the FRP 21 is perpendicular to the mold surface and does not have resin richness. In addition, since it is not necessary to trim the FRP, waste of reinforcing fibers and resin, and waste can be reduced.

図4は本発明の製造方法に係る第2の実施の形態を説明するための構成図である。   FIG. 4 is a block diagram for explaining a second embodiment according to the manufacturing method of the present invention.

本実施の形態においては、半径Rの1/4円弧断面を有した金型101の上に、複数枚の強化繊維基材を積層し、厚みT2のプリフォーム2を、予め概曲面形状に沿って賦形したものである。本発明に用いるプリフォームは、固定手段により、形状が固定されていることが好ましい。固定手段としては、強化繊維基材が固定される方法であれば特に限定はしないが、例えば、繊維材料で基材を縫合して固定する手段や、樹脂材料により基材同士を接着する手段がある。なかでも、少なくとも熱可塑性樹脂を含む樹脂材料を付与した強化繊維基材を用いて加熱・冷却し、形状を固定することが好ましい。また、最終的なFRP22の所望の製品形状は、厚みがT3であり、かつ、FRP22の端面が金型表面に対して垂直になったものである。   In the present embodiment, a plurality of reinforcing fiber base materials are laminated on a mold 101 having a ¼ arc cross section with a radius R, and a preform 2 having a thickness T2 is preliminarily aligned with a substantially curved surface shape. Is shaped. The preform used in the present invention is preferably fixed in shape by a fixing means. The fixing means is not particularly limited as long as the reinforcing fiber base material is fixed. For example, there are means for sewing and fixing the base material with a fiber material, and means for bonding the base materials with a resin material. is there. Among these, it is preferable to fix the shape by heating and cooling using a reinforcing fiber base material provided with a resin material containing at least a thermoplastic resin. The final desired product shape of the FRP 22 has a thickness of T3 and the end surface of the FRP 22 is perpendicular to the mold surface.

賦形後、プリフォームの端部において、金型と垂直方向の基準線に対する、バッグ材側の強化繊維外層の長さが、金型側の強化繊維内層の長さよりも(1/2)×π×(T3−T2)短くなるカット形状23に、プリフォームの端面部を金属製のカッター31などを用いて斜めに切断する。第1の実施の形態に対し、サイズの異なる強化繊維基材を準備する必要が無いため、簡易に所定のプリフォームを準備することが出来る。   After shaping, the length of the reinforcing fiber outer layer on the bag material side with respect to the reference line in the direction perpendicular to the mold at the end of the preform is (1/2) × the length of the reinforcing fiber inner layer on the mold side The end face of the preform is cut obliquely into the cut shape 23 that is shortened by π × (T3−T2) using a metal cutter 31 or the like. Since it is not necessary to prepare reinforcing fiber bases having different sizes with respect to the first embodiment, a predetermined preform can be easily prepared.

本実施の形態においても、第1の実施の形態と同じように、図1に示すとおり、プリフォームに樹脂を注入・硬化させて脱型し、厚みT3のFRP22を得る。   Also in the present embodiment, as in the first embodiment, as shown in FIG. 1, a resin is injected into the preform and cured, and the mold is removed to obtain FRP 22 having a thickness T3.

図5は本発明の製造方法に係る第3の実施の形態を説明するための構成図である。   FIG. 5 is a configuration diagram for explaining a third embodiment according to the manufacturing method of the present invention.

本実施の形態においては、第2の実施の形態と同じように、厚みT2のプリフォームを、予め概曲面形状に沿って賦形した後、最終的な製品形状の厚みがT3であり、かつ、端部の断面が、金型面に対して垂直なFRPを成形する。   In the present embodiment, as in the second embodiment, after the preform having the thickness T2 is shaped in advance along the substantially curved surface shape, the final product shape has a thickness T3, and , FRP whose end section is perpendicular to the mold surface is formed.

本実施の形態においては、賦形後、プリフォームの厚みが製品形状の厚みと同じになるように、プリフォームを圧縮した状態において、樹脂硬化後におけるFRP端面が所望の製品形状となるように、プリフォームの段階で端面を予めトリムするものである。すなわち、プリフォームの厚みがT3になるように、金型上でプリフォームを加圧圧縮した状態において、プリフォームの端面が金型表面と垂直となるように、金属製のカッター31などを用いて切断するものである。   In the present embodiment, after shaping, the FRP end surface after resin curing has a desired product shape in a state where the preform is compressed so that the thickness of the preform is the same as the thickness of the product shape. The end face is trimmed in advance at the preform stage. That is, a metal cutter 31 or the like is used so that the end face of the preform is perpendicular to the mold surface in a state where the preform is pressed and compressed on the mold so that the thickness of the preform is T3. Cutting.

加圧の手段については、製品の厚みまで圧縮できる方法であれば、特に限定はしない。例えば、金型と同形状の下型102の上にプリフォームを配置し、プリフォームのバッグ面側から、製品形状と同形状の上型103を用いて、厚みがT3になるまで、圧縮シリンダ32などを用いて圧縮した後、プリフォームの端部をトリムしても良い。両面から金型で圧縮することによって、プリフォームの形状を精度良く切断することが出来る。また、金型の端部を基準にして、プリフォームをトリムすることが、切断寸法を安定化する観点から、より好ましい。   The pressurizing means is not particularly limited as long as it can compress the product to the thickness. For example, the preform is placed on the lower mold 102 having the same shape as the mold, and the compression cylinder is used from the bag surface side of the preform using the upper mold 103 having the same shape as the product shape until the thickness reaches T3. After compression using 32 or the like, the end of the preform may be trimmed. The shape of the preform can be cut with high precision by compressing with a mold from both sides. Further, it is more preferable to trim the preform with reference to the end portion of the mold from the viewpoint of stabilizing the cutting dimension.

本実施の形態においても、第1の実施の形態と同じように、図1に示すとおり、プリフォームに樹脂を注入・硬化させて脱型し、厚みT3のFRP得る。   Also in the present embodiment, as in the first embodiment, as shown in FIG. 1, a resin is injected into the preform and cured to remove the mold, thereby obtaining an FRP having a thickness T3.

なお、上記の説明においては、樹脂硬化後におけるFRPの厚みがプリフォームの厚みより薄くなる態様を挙げて説明したが、本発明は上記に限定されことなく、樹脂硬化後におけるFRPの厚みがプリフォームの厚みより厚くなる場合にも適用できる。すなわち、プリフォームに樹脂を多量に含浸させ、強化繊維の含有率の低いFRPを成形する場合等にも、本発明を適用することができる。   In the above description, the FRP thickness after resin curing is described as being thinner than the preform thickness. However, the present invention is not limited to the above, and the thickness of the FRP after resin curing is increased. It can also be applied when the thickness is greater than the thickness of the reform. That is, the present invention can be applied to a case where a preform is impregnated with a large amount of resin to form an FRP having a low reinforcing fiber content.

(実施例1)
図4に示すとおり、本実施例は、半径Rの1/4円弧断面を有した金型を用いて、厚み10.0mm(T2)のプリフォームから、樹脂硬化後の厚み8.6mm(T3)のFRPを成形するものとした。所望のFRPの製品形状は、FRPの端部が、金型面に対して垂直な端面を有するものとした。
Example 1
As shown in FIG. 4, this example uses a mold having a ¼ arc cross section with a radius R, from a preform with a thickness of 10.0 mm (T2) to a thickness of 8.6 mm (T3) after resin curing. ) FRP. The desired product shape of the FRP was such that the end of the FRP had an end surface perpendicular to the mold surface.

東レ株式会社製炭素繊維T800S(PAN系炭素繊維、24,000フィラメント)の一方向織物(目付190g/m)に熱可塑性樹脂を分散付与した一方向性炭素繊維織物(東レ株式会社製、品名CZ8433DP)を、48枚切断し、円弧断面を有したスチール製の金型101の上に48枚の炭素繊維織物を順次積層して、厚み10.0mmの強化繊維プリフォーム2を用意した。 Unidirectional carbon fiber fabric (manufactured by Toray Industries, Inc., product name) in which a thermoplastic resin is dispersed and applied to a unidirectional fabric (weight per unit area 190 g / m 2 ) of carbon fiber T800S (PAN-based carbon fiber, 24,000 filaments) manufactured by Toray Industries, Inc. CZ8433DP) was cut and 48 carbon fiber fabrics were sequentially laminated on a steel mold 101 having an arc cross section to prepare a reinforcing fiber preform 2 having a thickness of 10.0 mm.

プリフォーム2の端部において、金型と垂直方向の基準線に対する、バッグ材側の強化繊維外層の長さが、金型側の強化繊維内層の長さよりも2.2mm(算出式:(1/2)×π×(T2−T3))短くなるカット形状23に、プリフォームの端面部をステンレス製のカッター31を用いて斜めに切断した。   At the end of the preform 2, the length of the reinforcing fiber outer layer on the bag material side with respect to the reference line in the direction perpendicular to the mold is 2.2 mm longer than the length of the reinforcing fiber inner layer on the mold side (calculation formula: (1 / 2) × π × (T2-T3)) The cut end portion of the preform was cut obliquely into the cut shape 23 using a stainless steel cutter 31.

図1のとおり、円弧断面を有したスチール製の金型1の上に、強化繊維プリフォーム2を配置し、樹脂拡散媒体4として、ポリプロピレン製のメッシュ材(東京ポリマー製TSX−400P)を配置した。強化繊維プリフォーム2をバッグ材3(ナイロン製フィルム、0.05mm厚さ)で覆い、シーラント5(RICHMOND製、SM5126)で周囲を密閉し、真空吸引ライン8、真空トラップ7を介して連通された真空ポンプ6により、バッグ材3の内部を絶対圧で2kPa以下まで減圧した。   As shown in FIG. 1, a reinforcing fiber preform 2 is placed on a steel mold 1 having an arc cross section, and a polypropylene mesh material (TSX-400P made by Tokyo Polymer) is placed as a resin diffusion medium 4. did. The reinforcing fiber preform 2 is covered with a bag material 3 (nylon film, 0.05 mm thickness), the periphery is sealed with a sealant 5 (manufactured by RICHMOND, SM5126), and communicated via a vacuum suction line 8 and a vacuum trap 7. The vacuum pump 6 was used to reduce the pressure inside the bag material 3 to 2 kPa or less in absolute pressure.

つぎに、成形装置全体を60℃に設定したオーブン内に投入し、プリフォーム温度が60℃になるまで、加熱を行った。次に、樹脂注入ライン9を開放して、エポキシ樹脂10の注入を開始した。本実施例では、エポキシ樹脂として、東レ株式会社製TR−A37を使用した。樹脂注入から30分が経過した後に、樹脂注入ラインを閉止し、樹脂吸引ラインから余剰な樹脂を排出した。プリフォーム2から樹脂を排出するに伴って、プリフォーム2の厚みが減少し、厚み8.6mmになったところで、樹脂吸引ラインを閉止し、オーブンの設定温度を120℃まで上昇させ、4時間保持して樹脂を硬化した。最後に、室温まで冷却し、金型1からFRPを脱型した。   Next, the entire molding apparatus was put into an oven set at 60 ° C. and heated until the preform temperature reached 60 ° C. Next, the resin injection line 9 was opened, and injection of the epoxy resin 10 was started. In this example, TR-A37 manufactured by Toray Industries, Inc. was used as an epoxy resin. After 30 minutes had elapsed from the resin injection, the resin injection line was closed, and excess resin was discharged from the resin suction line. As the resin was discharged from the preform 2, the thickness of the preform 2 decreased, and when the thickness became 8.6 mm, the resin suction line was closed and the oven set temperature was raised to 120 ° C. for 4 hours. The resin was cured by holding. Finally, it was cooled to room temperature and the FRP was removed from the mold 1.

得られたFRPの外観を確認した結果、FRPの端部形状は金型面に対して垂直であった。また、端部には強化繊維の欠如による樹脂リッチは無く、所望の品質のFRPを得ることが出来た。   As a result of confirming the appearance of the obtained FRP, the end shape of the FRP was perpendicular to the mold surface. Further, there was no resin rich at the end due to the lack of reinforcing fibers, and an FRP having a desired quality could be obtained.

(実施例2)
本実施例は、実施例1と同様に、半径Rの1/4円弧断面を有した金型を用いて、厚み10.0mm(T2)のプリフォームから、樹脂硬化後の厚み8.6mm(T3)のFRPを成形するものとした。所望のFRPの製品形状は、FRPの端部が、金型面に対して垂直な端面を有するものとした。
(Example 2)
In this example, in the same manner as in Example 1, using a mold having a ¼ arc cross section with radius R, a thickness of 8.6 mm after resin curing from a preform with a thickness of 10.0 mm (T2) ( The FRP of T3) was to be molded. The desired product shape of the FRP was such that the end of the FRP had an end surface perpendicular to the mold surface.

図5に示すとおり、東レ株式会社製炭素繊維T800S(PAN系炭素繊維、24,000フィラメント)の一方向織物(目付190g/m)に熱可塑性樹脂を分散付与した炭素繊維織物(東レ株式会社製、品名CZ8433DP)を、48枚切断し、図1に示す成形金型101と同形状の円弧断面を有したスチール製の下型102の上に48枚の炭素繊維織物を順次積層して、厚み10.0mmの強化繊維プリフォーム2を用意した。 As shown in FIG. 5, a carbon fiber fabric (Toray Industries, Inc.) obtained by dispersing and imparting a thermoplastic resin to a unidirectional fabric (weight per unit of 190 g / m 2 ) of carbon fiber T800S (PAN-based carbon fiber, 24,000 filaments) manufactured by Toray Industries, Inc. Manufactured, product name CZ8433DP), and 48 carbon fiber fabrics are sequentially laminated on a steel lower mold 102 having an arc cross section of the same shape as the molding die 101 shown in FIG. A reinforcing fiber preform 2 having a thickness of 10.0 mm was prepared.

プリフォームの上に、製品形状と同形状の上型103を配置し、プリフォームの厚みT3が8.6mmになるまで、圧空式の圧縮シリンダ32を用いて、下型を加圧し、プリフォーム2を圧縮した(上型と圧縮シリンダは、剛直なフレームで固定した。図示は省略した。)。プリフォームを上型103の端部を基準にして、プリフォームの端面が下型表面と垂直となるように、スチール製の押し切りカッター31を用いてトリムした。加圧時には、下型を80℃に加熱した後、室温まで冷却し、前記熱可塑性樹脂により、炭素繊維織物同士を接着して、プリフォームの形状を固定した。   An upper mold 103 having the same shape as the product shape is placed on the preform, and the lower mold is pressurized using the compressed air compression cylinder 32 until the preform thickness T3 becomes 8.6 mm. 2 was compressed (the upper die and the compression cylinder were fixed with a rigid frame. The illustration was omitted). The preform was trimmed by using a steel push cutter 31 so that the end face of the preform was perpendicular to the lower mold surface with the end of the upper mold 103 as a reference. At the time of pressurization, the lower mold was heated to 80 ° C., cooled to room temperature, and the carbon fiber fabrics were bonded to each other with the thermoplastic resin to fix the shape of the preform.

図1のとおり、前記プリフォーム2を成形金型101の上に配置し、実施例1と同じ方法で樹脂を注入・硬化した。得られたFRPの外観を確認した結果、FRPの端部形状は金型面に対して垂直であった。また、端部には強化繊維の欠如による樹脂リッチは無く、所望の品質のFRPを得ることが出来た。   As shown in FIG. 1, the preform 2 was placed on a molding die 101, and the resin was injected and cured in the same manner as in Example 1. As a result of confirming the appearance of the obtained FRP, the end shape of the FRP was perpendicular to the mold surface. Further, there was no resin rich at the end due to the lack of reinforcing fibers, and an FRP having a desired quality could be obtained.

本発明は、あらゆる強化繊維プラスチックの製造方法に適用することができ、とくに、曲面または屈曲形状を有する複雑形状、または、厚みが厚い部材の製造に好適であり、例えば、車両、船舶、航空機、建築部材などの産業用途、あるいはスポーツ用途など、種々の分野に用いられる広範囲なFRPの製造方法に適用が可能である。   The present invention can be applied to any reinforcing fiber plastic manufacturing method, and is particularly suitable for manufacturing a complicated shape having a curved surface or a bent shape, or a member having a large thickness, for example, a vehicle, a ship, an aircraft, The present invention can be applied to a wide range of FRP manufacturing methods used in various fields such as industrial uses such as building members or sports uses.

1:金型
2:プリフォーム
3:バッグ材
4:樹脂拡散媒体
5:シーラント
6:真空ポンプ
7:真空トラップ
8:吸引ライン
9:注入ライン
10:樹脂
11:通気材料
12:バッグ材側に配置された強化繊維基材の必要長さ
13:樹脂溜まり
21:厚みT1のFRP
22:厚みT3のFRP
23:カット形状
31:カッター
32:圧縮シリンダ
101:金型
102:下型
103:上型
1: Mold 2: Preform 3: Bag material 4: Resin diffusion medium 5: Sealant 6: Vacuum pump 7: Vacuum trap 8: Suction line 9: Injection line 10: Resin 11: Ventilation material 12: Arranged on the bag material side Required length of the reinforced fiber base material 13: Resin reservoir 21: FRP with thickness T1
22: FRP with thickness T3
23: Cut shape 31: Cutter 32: Compression cylinder 101: Mold 102: Lower mold 103: Upper mold

Claims (6)

曲面または屈曲形状を有する金型に強化繊維基材からなるプリフォームを配置し、プリフォームをバッグ材で覆って内部を真空吸引し、プリフォームに樹脂を注入して硬化させ、樹脂硬化後の繊維強化プラスチックの厚みをプリフォームの厚みより変化させる繊維強化プラスチックの製造方法において、前記繊維強化プラスチックの端面が所望の形状となるように、幅および/または長さの異なる強化繊維基材を積層してプリフォームをあらかじめ形成することを特徴とする繊維強化プラスチックの製造方法。 A preform made of a reinforcing fiber base is placed in a mold having a curved surface or a bent shape, the preform is covered with a bag material, the inside is vacuum-sucked, and a resin is injected into the preform to be cured. In a method for producing a fiber reinforced plastic in which the thickness of the fiber reinforced plastic is changed from the thickness of the preform, the reinforcing fiber bases having different widths and / or lengths are laminated so that the end surface of the fiber reinforced plastic has a desired shape. Then, a preform is formed in advance, and a method for producing a fiber reinforced plastic is provided. 曲面または屈曲形状を有する金型に強化繊維基材からなるプリフォームを配置し、プリフォームをバッグ材で覆って内部を真空吸引し、プリフォームに樹脂を注入して硬化させ、樹脂硬化後の繊維強化プラスチック厚みをプリフォームの厚みより変化させる繊維強化プラスチックの製造方法において、前記繊維強化プラスチックの端面が所望の形状となるように、前記プリフォームの端面を樹脂注入前にトリムすることを特徴とする繊維強化プラスチックの製造方法。 A preform made of a reinforcing fiber base is placed in a mold having a curved surface or a bent shape, the preform is covered with a bag material, the inside is vacuum-sucked, and a resin is injected into the preform to be cured. In the fiber reinforced plastic manufacturing method in which the thickness of the fiber reinforced plastic is changed from the thickness of the preform, the end surface of the preform is trimmed before the resin injection so that the end surface of the fiber reinforced plastic has a desired shape. A method for producing fiber-reinforced plastic. 前記プリフォームが、あらかじめ曲面形状に沿って賦形され、形状が固定されていることを特徴とする請求項2に記載の繊維強化プラスチックの製造方法。 The method for producing a fiber-reinforced plastic according to claim 2, wherein the preform is shaped in advance along a curved surface shape and the shape is fixed. 前記プリフォームが、少なくとも熱可塑性樹脂を含む樹脂材料が付与された強化繊維基材で構成されていることを特徴とする請求項3に記載の繊維強化プラスチックの製造方法。 The method for producing a fiber reinforced plastic according to claim 3, wherein the preform is composed of a reinforced fiber base material to which a resin material containing at least a thermoplastic resin is applied. 前記プリフォームの厚みを所望の繊維強化プラスチックの厚みと同じ厚みになるまで前記プリフォームを圧縮した状態において、該プリフォームの端面をトリムすることを特徴とする請求項2〜4のいずれかに記載の繊維強化プラスチックの製造方法。 The end face of the preform is trimmed in a state in which the preform is compressed until the thickness of the preform is equal to the thickness of a desired fiber-reinforced plastic. The manufacturing method of the fiber reinforced plastic of description. 請求項1〜5のいずれかに記載の製造方法で得られた繊維強化プラスチックの端面が、金型表面に対して略直角であることを特徴とする繊維強化プラスチックの製造方法。 A method for producing a fiber reinforced plastic, wherein an end face of the fiber reinforced plastic obtained by the production method according to claim 1 is substantially perpendicular to the mold surface.
JP2010210660A 2010-09-21 2010-09-21 Method for manufacturing fiber-reinforced plastic Pending JP2012066397A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010210660A JP2012066397A (en) 2010-09-21 2010-09-21 Method for manufacturing fiber-reinforced plastic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010210660A JP2012066397A (en) 2010-09-21 2010-09-21 Method for manufacturing fiber-reinforced plastic

Publications (1)

Publication Number Publication Date
JP2012066397A true JP2012066397A (en) 2012-04-05

Family

ID=46164263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010210660A Pending JP2012066397A (en) 2010-09-21 2010-09-21 Method for manufacturing fiber-reinforced plastic

Country Status (1)

Country Link
JP (1) JP2012066397A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014115668A1 (en) * 2013-01-24 2014-07-31 東レ株式会社 Method for molding hollow molding and method for manufacturing fiber reinforced plastic
WO2014192601A1 (en) * 2013-05-31 2014-12-04 東レ株式会社 Method and device for manufacturing fiber-reinforced plastic
KR20160024041A (en) * 2014-08-22 2016-03-04 호서대학교 산학협력단 Method of molding fiber-reinforced plastic product
JP2016190404A (en) * 2015-03-31 2016-11-10 東レフィルム加工株式会社 Film for bagging

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014115668A1 (en) * 2013-01-24 2014-07-31 東レ株式会社 Method for molding hollow molding and method for manufacturing fiber reinforced plastic
JPWO2014115668A1 (en) * 2013-01-24 2017-01-26 東レ株式会社 Method for molding hollow molded article and method for producing fiber reinforced plastic
WO2014192601A1 (en) * 2013-05-31 2014-12-04 東レ株式会社 Method and device for manufacturing fiber-reinforced plastic
CN105283293A (en) * 2013-05-31 2016-01-27 东丽株式会社 Method and device for manufacturing fiber-reinforced plastic
JPWO2014192601A1 (en) * 2013-05-31 2017-02-23 東レ株式会社 Manufacturing method and manufacturing apparatus for fiber reinforced plastic
US10486375B2 (en) 2013-05-31 2019-11-26 Toray Industries, Inc. Production method and production apparatus for fiber-reinforced plastic
KR20160024041A (en) * 2014-08-22 2016-03-04 호서대학교 산학협력단 Method of molding fiber-reinforced plastic product
KR101626664B1 (en) * 2014-08-22 2016-06-02 호서대학교 산학협력단 Method of molding fiber-reinforced plastic product
JP2016190404A (en) * 2015-03-31 2016-11-10 東レフィルム加工株式会社 Film for bagging

Similar Documents

Publication Publication Date Title
JP6557972B2 (en) Manufacturing method and manufacturing apparatus for fiber reinforced plastic
US7048985B2 (en) Three-dimensional spacer fabric resin infusion media and reinforcing composite lamina
JP5597134B2 (en) Molding method of molding material
JP5357154B2 (en) Method for manufacturing curved member made of composite material
US20130127092A1 (en) Moulded multilayer plastics component with continuously reinforced fibre plies and process for producing this component
JPH04270610A (en) Crossover formation device for consolidating composite material
WO2011043253A1 (en) Process and apparatus for producing fiber-reinforced plastic
JP2009542483A (en) Manufacturing method of composite parts
US20060280927A1 (en) Lightweight composite fairing bar an method for manufacturing the same
CA2795861C (en) Method and device for producing a composite moulded part from fibre-reinforced plastic
JP2012066397A (en) Method for manufacturing fiber-reinforced plastic
KR101447136B1 (en) Method for Forming Fiber Reinforced Plastic Composite
KR20170112396A (en) Three Dimensional Fiber-Reinforced Plastics and Manufacturing Method thereof
KR102218633B1 (en) Molding for manufacturing composite material moldings and manufacturing method of composite material moldings
JP6040547B2 (en) Manufacturing method of fiber reinforced plastic
JP2005022171A (en) Core for composite material sandwich panel, composite material sandwich panel and its manufacturing method
US6406660B1 (en) Method for producing polymer matrix composites having low volume percentage of reinforcement fiber and controlled thickness
JP2007176050A (en) Molding method for frp molded article with foam core
JP2003094448A (en) Manufacturing method for frp hollow structure
JP2954266B2 (en) Manufacturing method of hollow body made of fiber reinforced thermosetting resin
JP2002248620A (en) Base material for molding fiber-reinforced plastic and molding method of fiber-reinforced plastic
US8097198B2 (en) Manufacturing method with vacuum bag
KR101144768B1 (en) Manufacturing Method for Composite Sandwiches
JP2006218782A (en) Molding method of molded product made of frp having foam core
JP2004058608A (en) Method for manufacturing hollow molded article