JP7099113B2 - Manufacturing method of carbon fiber prepreg - Google Patents

Manufacturing method of carbon fiber prepreg Download PDF

Info

Publication number
JP7099113B2
JP7099113B2 JP2018135537A JP2018135537A JP7099113B2 JP 7099113 B2 JP7099113 B2 JP 7099113B2 JP 2018135537 A JP2018135537 A JP 2018135537A JP 2018135537 A JP2018135537 A JP 2018135537A JP 7099113 B2 JP7099113 B2 JP 7099113B2
Authority
JP
Japan
Prior art keywords
resin
component
carbon fiber
resin composition
fiber prepreg
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018135537A
Other languages
Japanese (ja)
Other versions
JP2020012065A (en
Inventor
敏 岡本
敦 野原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2018135537A priority Critical patent/JP7099113B2/en
Publication of JP2020012065A publication Critical patent/JP2020012065A/en
Priority to JP2022043289A priority patent/JP7363946B2/en
Application granted granted Critical
Publication of JP7099113B2 publication Critical patent/JP7099113B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、特に耐熱用途に適した樹脂組成物、および該樹脂組成物を用いたプリプレグに関する。 The present invention relates to a resin composition particularly suitable for heat resistant applications and a prepreg using the resin composition.

熱硬化性樹脂としてエポキシ樹脂はその機械的特性から広く使用されている。特に炭素繊維やガラス繊維等の強化繊維を用いた繊維強化複合材料のマトリックス樹脂としてエポキシ樹脂は最もよく用いられる。 Epoxy resins are widely used as thermosetting resins due to their mechanical properties. In particular, epoxy resin is most often used as a matrix resin for fiber-reinforced composite materials using reinforced fibers such as carbon fiber and glass fiber.

しかしながら、エポキシ樹脂を使用すると耐熱性が不足する場合があり使用方法に制限がある。耐熱性の改善のためにシアネートエステル樹脂を使用することが知られている。シアネートエステル樹脂は非常に高い耐熱性を発現するものの、単体では200℃以上の高温から硬化反応が開始するため、反応開始温度を下げるために各種触媒を添加することが多い。繊維強化複合材料は、中間材であるプリプレグを積層して、型に貼りつけてから熱と圧力を加え成形するが、200℃以上の耐熱性を有する材料の型は非常に高価となるため、150℃以下の比較的低い温度で一次硬化を行い脱型したのち、200℃以上の高温をかけることで最大限の耐熱性を発現させるという方法がよく取られている。そのため、150℃以下で脱型可能な程度まで一次硬化可能であることが求められる。 However, if an epoxy resin is used, the heat resistance may be insufficient and the method of use is limited. It is known to use cyanate ester resin to improve heat resistance. Although the cyanate ester resin exhibits extremely high heat resistance, since the curing reaction starts from a high temperature of 200 ° C. or higher by itself, various catalysts are often added in order to lower the reaction starting temperature. The fiber-reinforced composite material is formed by laminating prepreg, which is an intermediate material, and attaching it to a mold, and then applying heat and pressure. However, the mold of a material having a heat resistance of 200 ° C or higher is very expensive. A method is often used in which the maximum heat resistance is exhibited by primary curing at a relatively low temperature of 150 ° C. or lower, demolding, and then applying a high temperature of 200 ° C. or higher. Therefore, it is required that the primary curing can be performed at 150 ° C. or lower to the extent that the mold can be removed.

また、プリプレグの作成時にはマトリックス樹脂の粘度を低下させ圧力を加えることで強化繊維シート内部まで含浸させる必要がある。粘度を低下させる方法としては各種溶剤にマトリックス樹脂を溶解させるラッカー法や、硬化反応が開始しない程度の温度(40℃から80℃程度)をかけるホットメルト法がある。ラッカー法では、マトリックス樹脂を含浸させたのち温度をかけて溶剤を乾燥除去するが、除去しきれない溶剤が成形物内部に残存し、ボイドの原因となることがある。そのため、溶剤を用いないホットメルト法が望ましいが、一次硬化可能な反応性と、ホットメルト化可能な熱安定性を両立させることが課題となる。 Further, when preparing the prepreg, it is necessary to impregnate the inside of the reinforcing fiber sheet by lowering the viscosity of the matrix resin and applying pressure. As a method for lowering the viscosity, there are a lacquer method in which a matrix resin is dissolved in various solvents and a hot melt method in which a temperature (about 40 ° C. to 80 ° C.) at which a curing reaction does not start is applied. In the lacquer method, after impregnating with a matrix resin, the solvent is dried and removed by applying a temperature, but the solvent that cannot be completely removed may remain inside the molded product and cause voids. Therefore, a hot melt method that does not use a solvent is desirable, but it is a problem to achieve both reactivity that can be primary cured and thermal stability that can be hot melted.

シアネートエステル樹脂の硬化反応触媒としては金属触媒やイミダゾール化合物が一般的である。特許文献1には、触媒としてイミダゾール化合物を使用したシアネートエステル系樹脂組成物が開示されている。しかし、150℃以下での低温硬化性や、熱安定性に関してはなんら考慮されていない。 As the curing reaction catalyst of the cyanate ester resin, a metal catalyst or an imidazole compound is generally used. Patent Document 1 discloses a cyanate ester-based resin composition using an imidazole compound as a catalyst. However, no consideration is given to low temperature curability at 150 ° C. or lower and thermal stability.

特開昭62-277466号公報Japanese Unexamined Patent Publication No. 62-277466

本発明は、150℃以下で一次硬化可能でありながら熱安定性も良好であり、さらに硬化後の耐熱性に優れた樹脂組成物、および成形後の耐熱性に優れた繊維強化複合材料用プリプレグを提供する。 INDUSTRIAL APPLICABILITY According to the present invention, a resin composition which is capable of primary curing at 150 ° C. or lower and has good thermal stability and is also excellent in heat resistance after curing, and a prepreg for a fiber-reinforced composite material which is excellent in heat resistance after molding. I will provide a.

本発明者等は上記課題を解決すべく鋭意検討した結果、シアネートエステル樹脂の硬化触媒として特定にイミダゾール化合物を使用し、更に特定の化合物を併用することにより上記課題を解決できることを見出し、本発明を完成するに至った。即ち本発明の要旨は、以下の[1]から[6]に存する。
[1] 下記構成要素(A)、構成要素(B)および構成要素(C)を含む樹脂組成物。
構成要素(A):1分子中に2個以上のシアナト基を含有するシアネートエステル樹脂
構成要素(B):トリアジン環を有する置換基を含むイミダゾール化合物
構成要素(C):エポキシ樹脂および/またはリン系硬化触媒
[2] 前記構成要素(A)が、1分子中に2個以上のシアナト基を含有するシアネート化合物のプレポリマーとモノマーの混合物である、上記[1]に記載の樹脂組成物。
[3] 前記構成要素(A)が、ビスフェノールA型シアネートエステル樹脂である、上記[1]または[2]に記載の樹脂組成物。
[4] 前記構成要素(A)が、ノボラック型シアネートエステル樹脂である、上記[1]または[2]に記載の樹脂組成物。
[5] 前記構成要素(C)がエポキシ樹脂である、上記[1]から[4]のいずれかに記載の樹脂組成物。
[6] 炭素繊維と、マトリクス樹脂として上記[1]から[5]のいずれかに記載のエポキシ樹脂組成物を含む炭素繊維プリプレグ。
As a result of diligent studies to solve the above problems, the present inventors have found that the above problems can be solved by specifically using an imidazole compound as a curing catalyst for a cyanate ester resin and further using a specific compound in combination. Has been completed. That is, the gist of the present invention lies in the following [1] to [6].
[1] A resin composition containing the following components (A), components (B) and components (C).
Component (A): Cyanate ester resin containing two or more cyanato groups in one molecule Component (B): Imidazole compound containing a substituent having a triazine ring Component (C): Epoxy resin and / or phosphorus System Curing Catalyst [2] The resin composition according to the above [1], wherein the component (A) is a mixture of a prepolymer and a monomer of a cyanate compound containing two or more cyanato groups in one molecule.
[3] The resin composition according to the above [1] or [2], wherein the component (A) is a bisphenol A type cyanate ester resin.
[4] The resin composition according to the above [1] or [2], wherein the component (A) is a novolak-type cyanate ester resin.
[5] The resin composition according to any one of the above [1] to [4], wherein the component (C) is an epoxy resin.
[6] A carbon fiber prepreg containing carbon fibers and the epoxy resin composition according to any one of the above [1] to [5] as a matrix resin.

本発明の樹脂組成物は、150℃以下で一次硬化可能でありながら、熱安定性にも優れ、硬化後の耐熱性に優れる。
本発明のプリプレグは、150℃以下で脱型可能な一次硬化性を有し、かつ熱安定性も優れ、しかも、成形後の繊維強化複合材料は耐熱性に優れる。
The resin composition of the present invention can be primarily cured at 150 ° C. or lower, has excellent thermal stability, and has excellent heat resistance after curing.
The prepreg of the present invention has a primary curability that can be removed from the mold at 150 ° C. or lower, has excellent thermal stability, and the fiber-reinforced composite material after molding has excellent heat resistance.

以下の用語の定義は、本明細書および特許請求の範囲にわたって適用される。
「シアネートエステル樹脂」とは、分子中にシアナト基を有する化合物を指す。
The definitions of the following terms apply throughout the specification and claims.
"Cyanate ester resin" refers to a compound having a cyanate group in the molecule.

<樹脂組成物>
本発明の樹脂組成物は、下記構成要素(A)、構成要素(B)および構成要素(C)を含むことを特徴とする。
構成要素(A):1分子中に2個以上のシアナト基を含有するシアネート化合物
構成要素(B):トリアジン環を有する置換基を含むイミダゾール化合物
構成要素(C):エポキシ樹脂および/またはリン系硬化触媒
<Resin composition>
The resin composition of the present invention is characterized by containing the following components (A), components (B) and components (C).
Component (A): Cyanate compound containing two or more cyanato groups in one molecule Component (B): Imidazole compound containing a substituent having a triazine ring Component (C): Epoxy resin and / or phosphorus-based Curing catalyst

<構成要素(A)>
構成要素(A)は、1分子中に2個以上のシアナト基を含有するシアネートエステル樹脂である。
シアネートエステル樹脂の具体例としては、例えば、ビスフェノールAジシアネート、4,4’-メチレンビス(2,6-ジメチルフェニルシアネート)、4,4’-エチリデンジフェニルジシアネート、ヘキサフルオロビスフェノールAジシアネート、ビス(4-シアネート-3,5-ジメチルフェニル)メタン、1,3-ビス(4-シアネートフェニル-1-(メチルエチリデン))ベンゼン、ビス(4-シアネートフェニル)チオエーテル、ビス(4-シアネートフェニル)エーテル等の2官能シアネート樹脂、フェノールノボラック、クレゾールノボラック、ジシクロペンタジエン構造含有フェノール樹脂等から誘導される多官能シアネート樹脂、これらシアネート樹脂が一部トリアジン化したプレポリマーなどが挙げられる。シアネートエステル樹脂は2種以上を組み合わせて使用してもよい。
<Component (A)>
The component (A) is a cyanate ester resin containing two or more cyanato groups in one molecule.
Specific examples of the cyanate ester resin include bisphenol A dicyanate, 4,4'-methylenebis (2,6-dimethylphenylcyanate), 4,4'-ethylidene diphenyl dicyanate, hexafluorobisphenol A dicyanate, and bis (4). -Cyanate-3,5-dimethylphenyl) methane, 1,3-bis (4-cyanatephenyl-1- (methylethylidene)) benzene, bis (4-cyanatephenyl) thioether, bis (4-cyanatephenyl) ether, etc. Examples thereof include bifunctional cyanate resins, phenol novolac, cresol novolak, polyfunctional cyanate resins derived from dicyclopentadiene structure-containing phenol resins, and prepolymers in which these cyanate resins are partially triazine. Two or more kinds of cyanate ester resins may be used in combination.

市販されているシアネートエステル樹脂としては、ビスフェノールA型シアネートエステル樹脂(三菱ガス化学(株)製、TA)、フェノールノボラック型多官能シアネートエステル樹脂(ロンザジャパン(株)製、PT30)、ビスフェノールAジシアネートのプレポリマー(三菱ガス化学(株)製、TA-500)、ジシクロペンタジエン構造含有シアネートエステル樹脂(ロンザジャパン(株)製、DT-7000)等が挙げられる。 Commercially available cyanate ester resins include bisphenol A type cyanate ester resin (manufactured by Mitsubishi Gas Chemicals Co., Ltd., TA), phenol novolac type polyfunctional cyanate ester resin (manufactured by Ronza Japan Co., Ltd., PT30), and bisphenol A disicianate. Prepolymer (manufactured by Mitsubishi Gas Chemicals Co., Ltd., TA-500), dicyclopentadiene structure-containing cyanate ester resin (manufactured by Ronza Japan Co., Ltd., DT-7000) and the like can be mentioned.

構成要素(A)としては、硬化物にした際に耐熱性に優れ、機械的特性にも優れるという観点からビスフェノールA型シアネートエステル樹脂またはフェノールノボラック型多官能シアネートエステル樹脂が好ましく、ビスフェノールA型シアネートエステル樹脂が特に好ましい。プリプレグとした際の取扱い性に優れる粘度を有することから、ビスフェノールA型シアネートエステル樹脂のプレポリマーが好ましい。また、ビスフェノールA型シアネートエステル樹脂のプレポリマーとビスフェノールA型シアネートエステル樹脂の混合物とすることは、所望の粘度に調整が可能であることから好ましい。 As the component (A), bisphenol A type cyanate ester resin or phenol novolac type polyfunctional cyanate ester resin is preferable, and bisphenol A type cyanate is preferable from the viewpoint of excellent heat resistance and mechanical properties when made into a cured product. Ester resins are particularly preferred. A prepolymer of bisphenol A type cyanate ester resin is preferable because it has a viscosity excellent in handleability when it is used as a prepreg. Further, it is preferable to use a mixture of the prepolymer of the bisphenol A type cyanate ester resin and the bisphenol A type cyanate ester resin because the desired viscosity can be adjusted.

<構成要素(B)>
構成要素(B)は、トリアジン環を有する置換基を含むイミダゾール化合物である。
トリアジン環を有する置換基を含むイミダゾール化合物は、イミダゾール環の1位窒素に1、3、5-トリアジン(単にトリアジンまたはs-トリアジンとも称する)環を有する置換基を有する。トリアジン環とイミダゾール環は直接結合していてもよいが、炭素数1~4のアルキレン基で結合されていることが好ましく、エチレン基で結合されていることが特に好ましい。トリアジン環を有する置換基は、トリアジン環に2、4位にアミノ基を有していることが好ましい。トリアジン環を有する置換基を含むイミダゾール化合物は、イソシアヌル酸との付加物としてもよい。トリアジン環を含むイミダゾール化合物を使用することにより、樹脂組成物の150℃以下での一次硬化性を高めることができる。
<Component (B)>
The component (B) is an imidazole compound containing a substituent having a triazine ring.
The imidazole compound containing a substituent having a triazine ring has a substituent having a 1,3,5-triazine (also simply referred to as triazine or s-triazine) ring at the 1-position nitrogen of the imidazole ring. The triazine ring and the imidazole ring may be directly bonded, but are preferably bonded by an alkylene group having 1 to 4 carbon atoms, and particularly preferably bonded by an ethylene group. The substituent having a triazine ring preferably has an amino group at the 2nd and 4th positions in the triazine ring. The imidazole compound containing a substituent having a triazine ring may be an adduct with isocyanuric acid. By using the imidazole compound containing a triazine ring, the primary curability of the resin composition at 150 ° C. or lower can be enhanced.

トリアジン環を有する置換基を含むイミダゾール化合物の例としては、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-S-トリアジン、2,4 - ジアミノ - 6 - [2' - ウンデシルイミダゾリル - (1')] - エチル - s - トリアジン、2,4-ジアミノ - 6 - [2' - エチル - 4' - メチルイミダゾリル - (1')] -エチル - s - トリアジン、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-S-トリアジンのイソシアヌル酸付加塩等を挙げることができる。これらは、2MZ-A、C11Z-A、2E4MZ-A、2MA-OK等の商品名(四国化成工業(株)製)で市販されている。低温硬化性と熱安定性のバランスに優れる点で2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-S-トリアジン、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-S-トリアジンのイソシアヌル酸付加塩が好ましい。 Examples of imidazole compounds containing a substituent having a triazine ring include 2,4-diamino-6- [2'-methylimidazolyl- (1')]-ethyl-S-triazine, 2,4-diamino-6-. [2'-Undecyl imidazolyl-(1')]-Ethyl-s-Triazine, 2,4-diamino--6-[2'-Ethyl-4'-Methylimidazolyl-(1')]-Ethyl-s- Examples thereof include triazine, 2,4-diamino-6- [2'-methylimidazolyl- (1')]-ethyl-S-triazine with isocyanuric acid addition salt and the like. These are commercially available under trade names (manufactured by Shikoku Chemicals Corporation) such as 2MZ-A, C11Z-A, 2E4MZ-A, and 2MA-OK. 2,4-Diamino-6- [2'-methylimidazolyl- (1')]-ethyl-S-triazine, 2,4-diamino-6- [2', which has an excellent balance between low-temperature curability and thermal stability. '-Methylimidazolyl- (1')]-ethyl-S-triazine isocyanuric acid addition salt is preferred.

構成要素(B)の「トリアジン環を有する置換基を含むイミダゾール化合物」は、微粒子状の固体として、樹脂組成物中に含まれることが好ましい。微粒子状の固体として、樹脂組成物中に含まれることにより、特定の温度未満では樹脂組成物中で固体として存在するため硬化反応の触媒としての作用が起こりづらく、特定の温度以上では樹脂組成物中で溶解し硬化反応を促進しやすくなるため、熱安定性の確保と低温硬化性を両立しやすくなる。 The "imidazole compound containing a substituent having a triazine ring" of the component (B) is preferably contained in the resin composition as a fine particle solid. Since it is contained in the resin composition as a fine-grained solid, it exists as a solid in the resin composition below a specific temperature, so that it is unlikely to act as a catalyst for a curing reaction. Since it dissolves in the inside and facilitates the curing reaction, it becomes easy to secure both thermal stability and low-temperature curing.

構成要素(B)のトリアジン環を有する置換基を含むイミダゾール化合物の粒径は1から15μmが好ましく、3から10μmがさらに好ましい。1μm以上とすることで、熱安定性を確保しやすくなる。15μm以下とすることで低温硬化性を発現しやすくなる。微粒子状の「トリアジン環を有する置換基を含むイミダゾール化合物」は、2MZA-PW(四国化成工業(株)製)や2MAOK-PW(四国化成工業(株)製)として入手することもできる。 The particle size of the imidazole compound containing the substituent having a triazine ring of the component (B) is preferably 1 to 15 μm, more preferably 3 to 10 μm. By setting it to 1 μm or more, it becomes easy to secure thermal stability. When the thickness is 15 μm or less, low temperature curability is likely to be exhibited. The fine particle "imidazole compound containing a substituent having a triazine ring" can also be obtained as 2MZA-PW (manufactured by Shikoku Chemicals Corporation) or 2MAOK-PW (manufactured by Shikoku Chemicals Corporation).

構成要素(B)の配合量は、構成要素(A)100質量部に対して0.1から5質量部が好ましく、0.5から2.0質量部がさらに好ましい。0.1質量部以上とすることで低温硬化性を発現させることができ、5質量部以下とすることで機械的物性の低下を防ぐことができる。 The blending amount of the component (B) is preferably 0.1 to 5 parts by mass, more preferably 0.5 to 2.0 parts by mass with respect to 100 parts by mass of the component (A). When the content is 0.1 part by mass or more, low temperature curability can be exhibited, and when the content is 5 parts by mass or less, deterioration of mechanical properties can be prevented.

<構成要素(C)>
構成要素(C)はエポキシ樹脂および/またはリン系硬化触媒である。
構成要素(B)の「トリアジン環を有する置換基を含むイミダゾール化合物」とともに構成要素(C)を用いることで、低温硬化性を発現させることができる。構成要素(C)はエポキシ樹脂とリン系硬化触媒のいずれかが含まれていればよく、エポキシ樹脂とリン系硬化触媒を併用してもよい。構成要素(B)が粉状であることから、液状であるエポキシ樹脂に混ぜることが取扱いの観点から好ましので、構成要件(C)としては、エポキシ樹脂が好ましい。
<Component (C)>
The component (C) is an epoxy resin and / or a phosphorus-based curing catalyst.
By using the component (C) together with the "imidazole compound containing a substituent having a triazine ring" of the component (B), low temperature curability can be exhibited. The component (C) may contain either an epoxy resin or a phosphorus-based curing catalyst, and the epoxy resin and the phosphorus-based curing catalyst may be used in combination. Since the component (B) is powdery, it is preferable to mix it with a liquid epoxy resin from the viewpoint of handling. Therefore, the epoxy resin is preferable as the component (C).

エポキシ樹脂としては特に制限なく使用することが可能であるが、硬化物の耐熱性を高める点で分子内に2個以上のエポキシ基をもつものが好ましい。 エポキシ樹脂としては、jER828(三菱ケミカル(株)製)等のビスフェノールA型液状エポキシ樹脂、jER1001(三菱ケミカル(株)製)等のビスフェノールA型固形エポキシ樹脂、jER630、jER604(いずれも三菱ケミカル(株)製)、MY05000、MY0600(いずれもハンツマン社製)等のグリシジルアミン型液状エポキシ樹脂、jER807(三菱ケミカル(株)製)等のビスフェノールF型液状エポキシ樹脂、jER4004P(三菱ケミカル(株)製)等のビスフェノールF型固形エポキシ樹脂、jER152(三菱ケミカル(株)製)等のフェノールノボラック型液状エポキシ樹脂、jER154(三菱ケミカル(株)製)、N-775(DIC(株)製)等のフェノールノボラック型固形エポキシ樹脂、その他ビフェニル型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ナフタレン型エポキシ樹脂、脂環式エポキシ樹脂等が挙げられる。 The epoxy resin can be used without particular limitation, but a resin having two or more epoxy groups in the molecule is preferable from the viewpoint of enhancing the heat resistance of the cured product. Examples of the epoxy resin include bisphenol A type liquid epoxy resin such as jER828 (manufactured by Mitsubishi Chemical Co., Ltd.), bisphenol A type solid epoxy resin such as jER1001 (manufactured by Mitsubishi Chemical Co., Ltd.), jER630, and jER604 (all of which are Mitsubishi Chemical (Mitsubishi Chemical Co., Ltd.). MY05000, MY0600 (all manufactured by Huntsman Co., Ltd.) and other glycidylamine type liquid epoxy resins, jER807 (manufactured by Mitsubishi Chemical Co., Ltd.) and other bisphenol F type liquid epoxy resins, jER4004P (manufactured by Mitsubishi Chemical Co., Ltd.) ) Etc., bisphenol F type solid epoxy resin, jER152 (manufactured by Mitsubishi Chemical Co., Ltd.), etc. Examples thereof include phenol novolac type solid epoxy resin, other biphenyl type epoxy resin, dicyclopentadiene type epoxy resin, bisphenol S type epoxy resin, phenol aralkyl type epoxy resin, naphthalene type epoxy resin, and alicyclic epoxy resin.

取扱い性に優れることから液状エポキシ樹脂を用いることが好ましい。エポキシ樹脂は単独でも2種以上を組み合わせて使用してもよい。
エポキシ樹脂は構成要素(A)100質量部に対して0.1から5質量部とすることが好ましく、0.5から3質量部とすることがより好ましい。0.1質量部以上とすることで、低温硬化性を発現させることができ、5質量部以下とすることで、硬化物の耐熱性低下を防ぐことができる。
It is preferable to use a liquid epoxy resin because it is easy to handle. The epoxy resin may be used alone or in combination of two or more.
The epoxy resin is preferably 0.1 to 5 parts by mass, more preferably 0.5 to 3 parts by mass with respect to 100 parts by mass of the component (A). When the content is 0.1 part by mass or more, low temperature curability can be exhibited, and when the content is 5 parts by mass or less, deterioration of heat resistance of the cured product can be prevented.

リン系硬化触媒としては、トリフェニルホスフィン、トリフェニルホスフィントリフェニルボラン、テトラフェニルホスホニウムテトラフェニルボレート、テトラフェニルホスホニウムテトラ‐p-トリルボレート等が挙げられる。これらは、TPP、TPP-S、TPP-K、TPP-MKの商品名(北興化学工業(株)製)で市販されている。硬化促進作用に優れることからテトラフェニルホスホニウムテトラ‐p-トリルボレートが好ましい。 Examples of the phosphorus-based curing catalyst include triphenylphosphine, triphenylphosphine triphenylborane, tetraphenylphosphonium tetraphenylborate, tetraphenylphosphonium tetra-p-tolylborate and the like. These are commercially available under the trade names of TPP, TPP-S, TPP-K, and TPP-MK (manufactured by Hokuko Chemical Industry Co., Ltd.). Tetraphenylphosphonium tetra-p-tolylborate is preferable because it has an excellent curing accelerating effect.

リン系硬化触媒は構成要素(A)100質量部に対して0.1から5質量部とすることが好ましく、0.5から3質量部とすることがより好ましい。0.1質量部以上とすることで、低温硬化性を発現させることができ、5質量部以下とすることで、熱安定性低下を防ぐことができる。 The phosphorus-based curing catalyst is preferably 0.1 to 5 parts by mass, more preferably 0.5 to 3 parts by mass with respect to 100 parts by mass of the component (A). When the content is 0.1 part by mass or more, low temperature curability can be exhibited, and when the content is 5 parts by mass or less, deterioration of thermal stability can be prevented.

<他の成分>
本発明の樹脂組成物には、本発明の効果を損なわない範囲で他の成分を添加することができる。他の成分としては、ビスマレイミド樹脂、熱可塑性樹脂等の樹脂や、充填剤、溶剤、顔料、酸化防止剤等の添加剤が挙げられる。
ビスマレイミド樹脂は耐熱性を向上させる目的で添加される。ビスマレイミド樹脂としては、4,4’-ジフェニルメタンビスマレイミド、ビスフェノールAジフェニルエーテルビスマレイミド、3,3’-ジメチル‐5,5’-ジエチル-4,4’-ジフェニルメタンビスマレイミド等が挙げられる。
<Other ingredients>
Other components can be added to the resin composition of the present invention as long as the effects of the present invention are not impaired. Examples of other components include resins such as bismaleimide resin and thermoplastic resin, and additives such as fillers, solvents, pigments and antioxidants.
Bismaleimide resin is added for the purpose of improving heat resistance. Examples of the bismaleimide resin include 4,4'-diphenylmethane bismaleimide, bisphenol A diphenyl ether bismaleimide, 3,3'-dimethyl-5,5'-diethyl-4,4'-diphenylmethane bismaleimide and the like.

熱可塑性樹脂は樹脂組成物の硬化物の靱性を向上させる目的で添加される。熱可塑性樹脂としては、フェノキシ樹脂、ポリビニルホルマール、ポリエーテルスルホン、ポリエーテルイミド等が挙げられる。熱可塑性樹脂は微粒子として添加してもよく、ポリアミド、ポリイミド、ポリウレタン、ポリエーテルスルホン等の微粒子が挙げられる。 The thermoplastic resin is added for the purpose of improving the toughness of the cured product of the resin composition. Examples of the thermoplastic resin include phenoxy resin, polyvinyl formal, polyether sulfone, and polyetherimide. The thermoplastic resin may be added as fine particles, and examples thereof include fine particles such as polyamide, polyimide, polyurethane, and polyether sulfone.

<混合方法>
本発明の樹脂組成物の各構成要素を混合する方法は特に制限なく行うことができるが、微粒子状の物質を混合する際は、微粒子状の物質と液状の物質を適当な割合で混合し、3本ロール等で十分混練したマスターバッチを作成しておき、後で他の構成成分に加えることが、微粒子の分散状態を均一にできる点で好ましい。
<Mixing method>
The method of mixing each component of the resin composition of the present invention can be carried out without particular limitation, but when mixing the fine particle substance, the fine particle substance and the liquid substance are mixed in an appropriate ratio. It is preferable to prepare a master batch sufficiently kneaded with three rolls or the like and add it to other constituents later, because the dispersed state of the fine particles can be made uniform.

本発明の樹脂組成物の用途は、特に制限されるものでなく、例えば、繊維強化複合材料用のマトリックス樹脂や、構造材料用の接着剤等として適用することができ、繊維強化複合材料用のマトリックス樹脂として特に好適に用いることができる。 The use of the resin composition of the present invention is not particularly limited, and can be applied as, for example, a matrix resin for a fiber-reinforced composite material, an adhesive for a structural material, or the like, and is used for a fiber-reinforced composite material. It can be particularly preferably used as a matrix resin.

<強化繊維>
繊維強化複合材料を成形するときの強化繊維材料としては、特に制限されるものではなく、例えば、炭素繊維、ガラス繊維、アラミド繊維、アルミナ繊維、窒化ケイ素繊維等の一般の繊維強化複合材料の強化繊維材料として用いられるものの全てが使用可能である。特に比強度、比弾性率に優れることから、炭素繊維を用いることが好ましい。また、強化繊維材料の形態としても特に制限はなく、例えば、一方向材、クロス、マット、或いは数千本以上のフィラメントよりなるトウ等を使用し得る。
<Reinforcing fiber>
The reinforcing fiber material for molding the fiber-reinforced composite material is not particularly limited, and for example, reinforcement of a general fiber-reinforced composite material such as carbon fiber, glass fiber, aramid fiber, alumina fiber, and silicon nitride fiber. Anything used as a fiber material can be used. In particular, it is preferable to use carbon fiber because it is excellent in specific strength and specific elastic modulus. Further, the form of the reinforcing fiber material is not particularly limited, and for example, a unidirectional material, a cloth, a mat, or a tow made of several thousand or more filaments can be used.

<プリプレグ>
本発明の樹脂組成物を強化繊維基材に含浸させて組み合わせることにより、プリプレグとすることができる。本発明の繊維強化複合材料用プリプレグは、本発明の樹脂組成物と強化繊維とを用いて、公知の方法で製造することができる。本発明の樹脂組成物を用いたプリプレグを作成する方法としては、ホットメルト方式が好ましい。ホットメルト方式によるプリプレグの作成の際に樹脂組成物を含浸させるときは、作成するプリプレグの貯蔵安定性を確保するために、80℃ 以下で行うことが好ましく、70 ℃ 以下で行うことがより好ましい。
<Prepreg>
A prepreg can be obtained by impregnating a reinforcing fiber base material with the resin composition of the present invention and combining them. The prepreg for a fiber-reinforced composite material of the present invention can be produced by a known method using the resin composition of the present invention and the reinforcing fiber. As a method for producing a prepreg using the resin composition of the present invention, a hot melt method is preferable. When the resin composition is impregnated during the preparation of the prepreg by the hot melt method, it is preferably carried out at 80 ° C. or lower, more preferably 70 ° C. or lower in order to ensure the storage stability of the prepared prepreg. ..

プリプレグ中の樹脂組成物の含有率は、15~50質量%が好ましく、20~45質量%がより好ましい。15質量%以上とすることで繊維強化複合材料とした際の機械的強度を発現させることができ、50質量%以下とすることで繊維強化複合材料とした際の機械的強度を高めることができる。 The content of the resin composition in the prepreg is preferably 15 to 50% by mass, more preferably 20 to 45% by mass. When it is 15% by mass or more, the mechanical strength when it is made into a fiber-reinforced composite material can be exhibited, and when it is 50% by mass or less, the mechanical strength when it is made into a fiber-reinforced composite material can be increased. ..

(プリプレグの繊維目付)
プリプレグの繊維目付(1mあたりの強化繊維の含有量:FAW)は、プリプレグの用途に応じて適宜設定すればよく、通常、50~300g/mである。
(Prepreg fiber basis weight)
The fiber weight of the prepreg (content of reinforcing fiber per 1 m 2 : FAW) may be appropriately set according to the use of the prepreg, and is usually 50 to 300 g / m 2 .

(プリプレグの厚さ)
プリプレグの厚さは、プリプレグの用途に応じて適宜設定すればよく、通常、0.05~0.3mmである。
なお、プリプレグの厚さはシックネスゲージで測定できる。
(Thickness of prepreg)
The thickness of the prepreg may be appropriately set according to the intended use of the prepreg, and is usually 0.05 to 0.3 mm.
The thickness of the prepreg can be measured with a thickness gauge.

実施例で用いた樹脂原料を以下に示す。
(構成要素(A))
TA:ビスフェノールAジシアネート(三菱ガス化学(株)製、商品名「TA」)
TA-500:ビスフェノールAジシアネートのプレポリマー(三菱ガス化学(株)製、商品名「TA-500」)
XU-371:フェノールノボラック型シアネートエステル樹脂(ハンツマン社製、商品名「Arocy XU-371」)
The resin raw materials used in the examples are shown below.
(Component (A))
TA: Bisphenol A dicyanate (manufactured by Mitsubishi Gas Chemical Company, Inc., trade name "TA")
TA-500: Prepolymer of bisphenol A dicyanate (manufactured by Mitsubishi Gas Chemical Company, Inc., trade name "TA-500")
XU-371: Phenolic novolak type cyanate ester resin (manufactured by Huntsman, trade name "Arocy XU-371")

(構成要素(B))
2MZA-PW:2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン(四国化成工業(株)製、商品名「2MZA-PW」)
2MAOK-PW:2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-S-トリアジンのイソシアヌル酸付加塩(四国化成工業(株)製、商品名「キュアゾール2MAOK-PW」)
(Component (B))
2MZA-PW: 2,4-diamino-6- [2'-methylimidazolyl- (1')]-ethyl-s-triazine (manufactured by Shikoku Chemicals Corporation, trade name "2MZA-PW")
2MAOK-PW: 2,4-diamino-6- [2'-methylimidazolyl- (1')]-ethyl-S-triazine isocyanuric acid addition salt (manufactured by Shikoku Chemicals Corporation, trade name "Curesol 2MAOK-" PW ")

(構成要素(C))
jER828:ビスフェノールA型エポキシ樹脂(三菱ケミカル(株)製、商品名「jER828」)
TPP-MK:テトラフェニルホスホニウムテトラ‐p-トリルボレート(北興化学工業(株)製、商品名「TPP-MK」)
(Component (C))
jER828: Bisphenol A type epoxy resin (manufactured by Mitsubishi Chemical Corporation, trade name "jER828")
TPP-MK: Tetraphenylphosphonium tetra-p-tolylborate (manufactured by Hokuko Chemical Industry Co., Ltd., trade name "TPP-MK")

(その他の成分)
2PHZ-PW:2-フェニル‐4,5-ジヒドロキシメチルイミダゾール(四国化成工業(株)製、商品名「キュアゾール2PHZ‐PW」)
2P4MHZ-PW:2-フェニル‐4‐メチル‐5‐ヒドロキシメチルイミダゾール(四国化成工業(株)製、商品名「キュアゾール2P4MHZ‐PW」)
オクチル酸亜鉛:2-エチルヘキサン酸亜鉛(日本化学産業(株)製、商品名「ニッカオクチックス亜鉛18%」)
(Other ingredients)
2PHZ-PW: 2-Phenyl-4,5-dihydroxymethylimidazole (manufactured by Shikoku Chemicals Corporation, trade name "Curesol 2PHZ-PW")
2P4MHZ-PW: 2-Phenyl-4-methyl-5-hydroxymethylimidazole (manufactured by Shikoku Chemicals Corporation, trade name "Curesol 2P4MHZ-PW")
Zinc octylate: Zinc 2-ethylhexanoate (manufactured by Nihon Kagaku Sangyo Co., Ltd., trade name "Nikka Octix Zinc 18%")

(熱安定性の評価)
各実施例及び比較例で調製した樹脂組成物につき、以下の通り等温粘度測定を行った。測定開始時点での粘度に対する6時間経過後の粘度の倍率を求めた。
装置:AR-G2(ティー・エー・インスツルメント社製)
使用プレート:直径25mmのパラレルプレート
プレートギャップ:0.5mm
測定周波数:10rad/sec
測定温度:60℃
測定間隔:1分
ストレス:300Pa
(Evaluation of thermal stability)
The resin compositions prepared in each Example and Comparative Example were measured for isothermal viscosity as follows. The ratio of the viscosity after 6 hours to the viscosity at the start of measurement was determined.
Equipment: AR-G2 (manufactured by TA Instruments)
Plate used: Parallel plate with a diameter of 25 mm Plate gap: 0.5 mm
Measurement frequency: 10 rad / sec
Measurement temperature: 60 ° C
Measurement interval: 1 minute Stress: 300 Pa

(樹脂板の作製)
各実施例及び比較例で調製した樹脂組成物を、離型処理された2枚の4mm厚のガラス板の間に2mm厚のポリテトラフルオロエチレン(PTFE)製スペーサを挟んだ隙間に注入し、135℃で120分間加熱して一次硬化樹脂板を得た。一次硬化樹脂板をガラス板から取り外し、フリースタンドの状態で250℃2時間加熱し、二次硬化樹脂板を得た。
(Making a resin plate)
The resin composition prepared in each Example and Comparative Example was injected into a gap sandwiched between two 4 mm-thick glass plates having a mold release treatment and a 2 mm-thick polytetrafluoroethylene (PTFE) spacer, and the temperature was 135 ° C. The mixture was heated for 120 minutes to obtain a primary cured resin plate. The primary cured resin plate was removed from the glass plate and heated at 250 ° C. for 2 hours in a free stand state to obtain a secondary cured resin plate.

(硬化物のガラス転移点測定)
一次硬化樹脂板、二次硬化樹脂板それぞれについて樹脂板から長さ:55mm、幅:12.7mm、厚さ:2mmの試験片を切り出した。動的粘弾性測定装置(ティー・エイ・インスツルメント社製、DMA Q-800)を用いて、周波数:1Hz、歪み:0.02%、昇温速度:5℃/分の条件で曲げモードでの貯蔵弾性率E’を測定した。logE’を温度に対してプロットし、logE’の転移する前の平坦領域の近似直線とlogE’が転移する領域の近似直線との交点から求められる温度をガラス転移点とした。
(Measurement of glass transition point of cured product)
A test piece having a length of 55 mm, a width of 12.7 mm, and a thickness of 2 mm was cut out from the resin plate for each of the primary cured resin plate and the secondary cured resin plate. Bending mode using a dynamic viscoelasticity measuring device (DMA Q-800, manufactured by TA Instruments) under the conditions of frequency: 1 Hz, strain: 0.02%, and heating rate: 5 ° C / min. The storage elastic modulus E'was measured at. LogE'was plotted against temperature, and the temperature obtained from the intersection of the approximate straight line of the flat region before the transition of logE'and the approximate straight line of the region where logE' transitioned was defined as the glass transition point.

<樹脂組成物の調製>
(実施例1)
jER828と2MZA-PWを質量比1:1で混合し、3本ロールを用いて均一に分散させてペースト状のマスターバッチを得た。表1に示した割合となるようにTAとTA-500をフラスコに秤量し、100℃にて均一に溶解、混合した。得られた溶解物を60℃程度まで降温させ、上述のマスターバッチを加え、均一になるまで撹拌し、樹脂組成物1を得た。
得られた樹脂組成物1を評価した。評価結果を表1に示した。
<Preparation of resin composition>
(Example 1)
jER828 and 2MZA-PW were mixed at a mass ratio of 1: 1 and uniformly dispersed using three rolls to obtain a paste-like masterbatch. TA and TA-500 were weighed in a flask so as to have the ratio shown in Table 1, and uniformly dissolved and mixed at 100 ° C. The temperature of the obtained solution was lowered to about 60 ° C., the above-mentioned masterbatch was added, and the mixture was stirred until uniform to obtain a resin composition 1.
The obtained resin composition 1 was evaluated. The evaluation results are shown in Table 1.

Figure 0007099113000001
Figure 0007099113000001

(実施例2)
表1に示した割合となるようにTAとTA-500をフラスコに秤量し、100℃にて均一に溶解、混合した。得られた溶解物を60℃程度まで降温させ、2MZA-PW、TPP-MKを加え、均一になるまで撹拌し、樹脂組成物2を得た。得られた樹脂組成物2の評価結果を表1に示した。
(Example 2)
TA and TA-500 were weighed in a flask so as to have the ratio shown in Table 1, and uniformly dissolved and mixed at 100 ° C. The temperature of the obtained solution was lowered to about 60 ° C., 2MZA-PW and TPP-MK were added, and the mixture was stirred until uniform to obtain a resin composition 2. The evaluation results of the obtained resin composition 2 are shown in Table 1.

(実施例3)
jER828と2MZA-PWを質量比1:1で混合し、3本ロールを用いて均一に分散させてペースト状のマスターバッチを得た。jER828とTPP-MKを質量比3:2で混合し、3本ロールを用いて均一に分散させてペースト状のマスターバッチを得た。表1に示した割合となるようにTAとTA-500をフラスコに秤量し、100℃にて均一に溶解、混合した。得られた溶解物を60℃程度まで降温させ、上述のマスターバッチを加え、均一になるまで撹拌し、樹脂組成物3を得た。得られた樹脂組成物3の評価結果を表1に示した。
(Example 3)
jER828 and 2MZA-PW were mixed at a mass ratio of 1: 1 and uniformly dispersed using three rolls to obtain a paste-like masterbatch. jER828 and TPP-MK were mixed at a mass ratio of 3: 2 and uniformly dispersed using three rolls to obtain a paste-like masterbatch. TA and TA-500 were weighed in a flask so as to have the ratio shown in Table 1, and uniformly dissolved and mixed at 100 ° C. The temperature of the obtained solution was lowered to about 60 ° C., the above-mentioned masterbatch was added, and the mixture was stirred until uniform to obtain a resin composition 3. The evaluation results of the obtained resin composition 3 are shown in Table 1.

(実施例4)
割合を表1の通りに変更した以外は実施例3と同様に樹脂組成物を調製し、評価を行った。
(Example 4)
A resin composition was prepared and evaluated in the same manner as in Example 3 except that the ratio was changed as shown in Table 1.

(実施例5~7)
割合を表1の通りに変更した以外は実施例2と同様に樹脂組成物を調製し、評価を行った。
(Examples 5 to 7)
A resin composition was prepared and evaluated in the same manner as in Example 2 except that the ratio was changed as shown in Table 1.

(比較例1,2)
割合を表1の通りに変更した以外は実施例3と同様に樹脂組成物を調製し、評価を行った。
(Comparative Examples 1 and 2)
A resin composition was prepared and evaluated in the same manner as in Example 3 except that the ratio was changed as shown in Table 1.

(比較例3~5)
割合を表1の通りに変更した以外は実施例2と同様に樹脂組成物を調製し、評価を行った。
(Comparative Examples 3 to 5)
A resin composition was prepared and evaluated in the same manner as in Example 2 except that the ratio was changed as shown in Table 1.

(実施例8)
コンマコーターを用いて、実施例1で調製した樹脂組成物1を離型紙上に樹脂目付35.2g/mとなるように均一に塗布して樹脂フィルムを形成した。ついでドラムワインド装置にて、この樹脂フィルム上(離型紙の、樹脂フィルム形成側表面)に、繊維目付が125g/mのシートになるように、炭素繊維(三菱ケミカル株式会社製、製品名:MR70)を巻きつけた。更に、もう1枚の樹脂フィルムをドラムワインド装置上で炭素繊維シート上に貼り合わせた。2枚の離型紙及び樹脂フィルムに挟まれた炭素繊維シートを、ローラーで100℃、線圧0.2MPaで加熱及び加圧して、エポキシ樹脂組成物を炭素繊維シートに含浸させ、繊維目付が125g/m、樹脂含有率が36質量%のプリプレグを作製した。ついで、前記プリプレグを縦300mm×300mmに切断し、繊維の配向方向を揃えて16枚積層したものを、バッグ内に入れ、オートクレーブ内で135℃にて2時間加熱し、1次硬化させて成形板(繊維強化複合材料)を作製した。バッグから取り出した繊維強化複合材料をオーブン内で250℃にて2時間加熱することで2次硬化を行った。 1次硬化したもの、2次硬化したものそれぞれについて(硬化物のガラス転移点測定)に記載した方法に従ってガラス転移点を測定した。評価結果を表2に示した。
(Example 8)
Using a comma coater, the resin composition 1 prepared in Example 1 was uniformly applied onto a release paper so as to have a resin basis weight of 35.2 g / m 2 to form a resin film. Then, in a drum wind device, carbon fiber (manufactured by Mitsubishi Chemical Corporation, product name:) so that a sheet having a fiber grain of 125 g / m 2 is formed on this resin film (the surface of the release paper on the resin film forming side). MR70) was wrapped around. Further, another resin film was bonded onto the carbon fiber sheet on the drum wind device. The carbon fiber sheet sandwiched between the two release papers and the resin film is heated and pressurized with a roller at 100 ° C. and a linear pressure of 0.2 MPa to impregnate the carbon fiber sheet with the epoxy resin composition, and the fiber texture is 125 g. A prepreg having a resin content of / m 2 and a resin content of 36% by mass was prepared. Then, the prepreg was cut into a length of 300 mm × 300 mm, and 16 fibers were laminated in the same direction of the fiber orientation, placed in a bag, heated in an autoclave at 135 ° C. for 2 hours, and first cured to form the prepreg. A plate (fiber reinforced composite material) was produced. The fiber-reinforced composite material taken out of the bag was heated in an oven at 250 ° C. for 2 hours for secondary curing. The glass transition point was measured according to the method described in (Measurement of glass transition point of cured product) for each of the primary cured product and the secondary cured product. The evaluation results are shown in Table 2.

Figure 0007099113000002
Figure 0007099113000002

実施例1から7は135℃2時間での1次硬化の評価において低温硬化性を有しかつ熱安定性も良好であり、2次硬化後の耐熱性も良好であった。トリアジン環構造を有する置換基を含まないイミダゾールを用いた比較例1から2は低温硬化性を有さなかった。構成要素(C)を含まない比較例3から4も低温硬化性を有さなかった。金属触媒を用いた比較例5は低温硬化性を有するものの、熱安定性が不足した。実施例8に示した通り、本発明の樹脂組成物をプリプレグとしたものも低温硬化性を有しかつ硬化物の耐熱性も良好であった。 Examples 1 to 7 had low temperature curability and good thermal stability in the evaluation of primary curing at 135 ° C. for 2 hours, and also had good heat resistance after secondary curing. Comparative Examples 1 and 2 using imidazole having a triazine ring structure and containing no substituent did not have low temperature curability. Comparative Examples 3 to 4 containing no component (C) also did not have low temperature curability. Comparative Example 5 using a metal catalyst had low-temperature curability, but lacked thermal stability. As shown in Example 8, the prepreg of the resin composition of the present invention also had low temperature curability and good heat resistance of the cured product.

本発明の樹脂組成物は150 ℃ 以下の低温での一次硬化性に優れ、しかも熱安定性に優れており、又低温で一次硬化させた硬化物を高温で二次硬化させることによって優れた耐熱性を具備する硬化物になる。また、本発明のプリプレグは、150 ℃ 以下の低温での一次硬化性に優れ、又低温で一次硬化させた硬化物を高温で二次硬化させることによって優れた耐熱性、機械的強度を具備する繊維強化複合材料になる。本発明の樹脂組成物、プリプレグは航空機部材、自動車部材、自転車部材、鉄道車両部材、船舶部材等の耐熱性が要求される分野に好適に用いられる。 The resin composition of the present invention has excellent primary curability at a low temperature of 150 ° C. or lower, and also has excellent thermal stability, and also has excellent heat resistance by secondarily curing a cured product primary cured at a low temperature at a high temperature. It becomes a cured product having properties. Further, the prepreg of the present invention has excellent primary curability at a low temperature of 150 ° C. or lower, and also has excellent heat resistance and mechanical strength by secondarily curing a cured product primary cured at a low temperature at a high temperature. It becomes a fiber reinforced composite material. The resin composition and prepreg of the present invention are suitably used in fields where heat resistance is required, such as aircraft members, automobile members, bicycle members, railway vehicle members, and ship members.

Claims (5)

炭素繊維と、マトリクス樹脂として下記構成要素(A)、構成要素(B)および構成要
素(C)を含む樹脂組成物とからなる、炭素繊維プリプレグの製造方法において、ホット
メルト方式によって前記樹脂組成物を炭素繊維基材に含浸させる、炭素繊維プリプレグの
製造方法。
構成要素(A):1分子中に2個以上のシアナト基を含有するシアネートエステル樹脂
構成要素(B):トリアジン環を有する置換基を含むイミダゾール化合物
構成要素(C):エポキシ樹脂および/またはリン系硬化触媒
In a method for producing a carbon fiber prepreg, which comprises a carbon fiber and a resin composition containing the following components (A), components (B) and components (C) as a matrix resin, it is hot.
A carbon fiber prepreg in which the carbon fiber base material is impregnated with the resin composition by a melt method.
Production method.
Component (A): Cyanate ester resin containing two or more cyanato groups in one molecule Component (B): Imidazole compound containing a substituent having a triazine ring Component (C): Epoxy resin and / or phosphorus System curing catalyst
前記構成要素(A)が、1分子中に2個以上のシアナト基を含有するシアネート化合物
のプレポリマーとモノマーの混合物である、請求項1に記載の炭素繊維プリプレグの製造
方法
The production of the carbon fiber prepreg according to claim 1, wherein the component (A) is a mixture of a prepolymer and a monomer of a cyanate compound containing two or more cyanate groups in one molecule.
Method .
前記構成要素(A)が、ビスフェノールA型シアネートエステル樹脂である、請求項1
または2に記載の炭素繊維プリプレグの製造方法
Claim 1 that the component (A) is a bisphenol A type cyanate ester resin.
Alternatively , the method for producing a carbon fiber prepreg according to 2.
前記構成要素(A)が、ノボラック型シアネートエステル樹脂である、請求項1または
2に記載の炭素繊維プリプレグの製造方法
The method for producing a carbon fiber prepreg according to claim 1 or 2, wherein the component (A) is a novolak type cyanate ester resin.
前記構成要素(C)がエポキシ樹脂である、請求項1から4のいずれか1項に記載の炭
素繊維プリプレグの製造方法
The method for producing a carbon fiber prepreg according to any one of claims 1 to 4, wherein the component (C) is an epoxy resin.
JP2018135537A 2018-07-19 2018-07-19 Manufacturing method of carbon fiber prepreg Active JP7099113B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018135537A JP7099113B2 (en) 2018-07-19 2018-07-19 Manufacturing method of carbon fiber prepreg
JP2022043289A JP7363946B2 (en) 2018-07-19 2022-03-18 Carbon fiber prepreg and resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018135537A JP7099113B2 (en) 2018-07-19 2018-07-19 Manufacturing method of carbon fiber prepreg

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2022043289A Division JP7363946B2 (en) 2018-07-19 2022-03-18 Carbon fiber prepreg and resin composition

Publications (2)

Publication Number Publication Date
JP2020012065A JP2020012065A (en) 2020-01-23
JP7099113B2 true JP7099113B2 (en) 2022-07-12

Family

ID=69169685

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2018135537A Active JP7099113B2 (en) 2018-07-19 2018-07-19 Manufacturing method of carbon fiber prepreg
JP2022043289A Active JP7363946B2 (en) 2018-07-19 2022-03-18 Carbon fiber prepreg and resin composition

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2022043289A Active JP7363946B2 (en) 2018-07-19 2022-03-18 Carbon fiber prepreg and resin composition

Country Status (1)

Country Link
JP (2) JP7099113B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006100943A1 (en) * 2005-03-18 2006-09-28 Toyota Jidosha Kabushiki Kaisha Dual fuel injection system internal combustion engine

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7419291B2 (en) * 2021-04-28 2024-01-22 株式会社イノアックコーポレーション Method for manufacturing fiber-reinforced molded body, resin sheet, and method for manufacturing resin sheet
JP7197047B1 (en) 2022-05-27 2022-12-27 三菱瓦斯化学株式会社 Resin compositions, cured products, sealing materials, adhesives, insulating materials, paints, prepregs, multilayer bodies, and fiber-reinforced composite materials

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011157509A (en) 2010-02-02 2011-08-18 Hitachi Chem Co Ltd Thermosetting insulating resin composition, and prepreg, laminated board, and multilayer printed wiring board using the same
JP2011195644A (en) 2010-03-17 2011-10-06 Sumitomo Bakelite Co Ltd Cyanate resin composition for laminated board, prepreg, metal-clad laminate, printed wiring board, and semiconductor device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5016998B2 (en) 2007-07-03 2012-09-05 三菱レイヨン株式会社 Matrix resin and prepreg for fiber reinforced composite materials

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011157509A (en) 2010-02-02 2011-08-18 Hitachi Chem Co Ltd Thermosetting insulating resin composition, and prepreg, laminated board, and multilayer printed wiring board using the same
JP2011195644A (en) 2010-03-17 2011-10-06 Sumitomo Bakelite Co Ltd Cyanate resin composition for laminated board, prepreg, metal-clad laminate, printed wiring board, and semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006100943A1 (en) * 2005-03-18 2006-09-28 Toyota Jidosha Kabushiki Kaisha Dual fuel injection system internal combustion engine

Also Published As

Publication number Publication date
JP2020012065A (en) 2020-01-23
JP7363946B2 (en) 2023-10-18
JP2022084774A (en) 2022-06-07

Similar Documents

Publication Publication Date Title
US10920027B2 (en) Epoxy resin composition, molding material, and fiber-reinforced composite material
JP5682838B2 (en) Epoxy resin composition, prepreg, fiber reinforced composite material and method for producing the same
JP7363946B2 (en) Carbon fiber prepreg and resin composition
US20030135011A1 (en) Epoxy resin composition and prepreg made with the epoxy resin composition
US20110111663A1 (en) Epoxy resin composition and prepreg using the same
KR102050341B1 (en) Binder resin composition for preform, binder particle, preform, and fiber-reinforced composite material
KR20160094935A (en) Reinforcing fiber fabric substrate, preform, and fiber-reinforced composite material
WO2018043490A1 (en) Thermosetting resin composition, prepreg, fiber-reinforced plastic molded body and method for producing same
CN110637041B (en) Epoxy resin composition for fiber-reinforced composite material and fiber-reinforced composite material
KR20200125579A (en) Thermosetting resin composition, prepreg and fiber reinforced composite material
JP2014114369A (en) Thermosetting bismaleimide-based resin composition, prepreg using the resin composition, and method for producing the same
CN109312057B (en) Epoxy resin composition for fiber-reinforced composite material and prepreg using the same
JP7086218B2 (en) Thermosetting resin compositions, film adhesives, prepregs and methods for producing these
JP6737410B1 (en) Sheet molding compound and fiber reinforced composite material
WO2021187453A1 (en) Resin composition, pre-preg, molded article, and pre-preg manufacturing method
TW202116848A (en) Epoxy resin composition for fiber-reinforced composite material, preform, and fiber-reinforced composite material
JP2020097694A (en) Epoxy resin composition for fiber-reinforced composite material and preform for fiber-reinforced composite material and fiber-reinforced composite material
KR20160136513A (en) Thermally Curable Composite Resin Composition for Non Autoclave Process and Method of Manufacturing Resin Film using the Same
WO2024071090A1 (en) Prepreg, and method for producing fiber-reinforced composite material using said prepreg
TW202130499A (en) Composite prepreg, preformed body using the same, fiber reinforced composite material joined body and manufacturing method thereof can easily bond thermosetting fiber-reinforced composite materials and other components at excellent strength
WO2020071360A1 (en) Sheet molding compound, fiber-reinforced composite material and method for producing fiber-reinforced composite material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210914

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211112

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20211221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220318

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20220318

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20220328

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20220329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220531

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220613

R151 Written notification of patent or utility model registration

Ref document number: 7099113

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151