WO2006100943A1 - Dual fuel injection system internal combustion engine - Google Patents

Dual fuel injection system internal combustion engine Download PDF

Info

Publication number
WO2006100943A1
WO2006100943A1 PCT/JP2006/304775 JP2006304775W WO2006100943A1 WO 2006100943 A1 WO2006100943 A1 WO 2006100943A1 JP 2006304775 W JP2006304775 W JP 2006304775W WO 2006100943 A1 WO2006100943 A1 WO 2006100943A1
Authority
WO
WIPO (PCT)
Prior art keywords
ignition timing
internal combustion
combustion engine
fuel injection
injector
Prior art date
Application number
PCT/JP2006/304775
Other languages
French (fr)
Japanese (ja)
Inventor
Yukikazu Ito
Yutaka Iwami
Masato Nishigaki
Original Assignee
Toyota Jidosha Kabushiki Kaisha
Yamaha Hatsudoki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Jidosha Kabushiki Kaisha, Yamaha Hatsudoki Kabushiki Kaisha filed Critical Toyota Jidosha Kabushiki Kaisha
Priority to JP2007509198A priority Critical patent/JP4369514B2/en
Priority to CN2006800087668A priority patent/CN101142403B/en
Priority to AU2006225810A priority patent/AU2006225810B2/en
Priority to EP06715545.7A priority patent/EP1881192B1/en
Priority to BRPI0609367A priority patent/BRPI0609367B1/en
Priority to CA2602060A priority patent/CA2602060C/en
Publication of WO2006100943A1 publication Critical patent/WO2006100943A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/145Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
    • F02P5/15Digital data processing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/145Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
    • F02P5/15Digital data processing
    • F02P5/1502Digital data processing using one central computing unit
    • F02P5/1514Digital data processing using one central computing unit with means for optimising the use of registers or of memories, e.g. interpolation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3094Controlling fuel injection the fuel injection being effected by at least two different injectors, e.g. one in the intake manifold and one in the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/32Controlling fuel injection of the low pressure type
    • F02D41/34Controlling fuel injection of the low pressure type with means for controlling injection timing or duration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/10006Air intakes; Induction systems characterised by the position of elements of the air intake system in direction of the air intake flow, i.e. between ambient air inlet and supply to the combustion chamber
    • F02M35/10078Connections of intake systems to the engine
    • F02M35/10085Connections of intake systems to the engine having a connecting piece, e.g. a flange, between the engine and the air intake being foreseen with a throttle valve, fuel injector, mixture ducts or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/1015Air intakes; Induction systems characterised by the engine type
    • F02M35/10177Engines having multiple fuel injectors or carburettors per cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/10209Fluid connections to the air intake system; their arrangement of pipes, valves or the like
    • F02M35/10216Fuel injectors; Fuel pipes or rails; Fuel pumps or pressure regulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/104Intake manifolds
    • F02M35/116Intake manifolds for engines with cylinders in V-arrangement or arranged oppositely relative to the main shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/02Fuel-injection apparatus having several injectors fed by a common pumping element, or having several pumping elements feeding a common injector; Fuel-injection apparatus having provisions for cutting-out pumps, pumping elements, or injectors; Fuel-injection apparatus having provisions for variably interconnecting pumping elements and injectors alternatively
    • F02M63/0225Fuel-injection apparatus having a common rail feeding several injectors ; Means for varying pressure in common rails; Pumps feeding common rails
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/02Fuel-injection apparatus having several injectors fed by a common pumping element, or having several pumping elements feeding a common injector; Fuel-injection apparatus having provisions for cutting-out pumps, pumping elements, or injectors; Fuel-injection apparatus having provisions for variably interconnecting pumping elements and injectors alternatively
    • F02M63/0225Fuel-injection apparatus having a common rail feeding several injectors ; Means for varying pressure in common rails; Pumps feeding common rails
    • F02M63/0275Arrangement of common rails
    • F02M63/0285Arrangement of common rails having more than one common rail
    • F02M63/029Arrangement of common rails having more than one common rail per cylinder bank, e.g. storing different fuels or fuels at different pressure levels per cylinder bank
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/02Fuel-injection apparatus having several injectors fed by a common pumping element, or having several pumping elements feeding a common injector; Fuel-injection apparatus having provisions for cutting-out pumps, pumping elements, or injectors; Fuel-injection apparatus having provisions for variably interconnecting pumping elements and injectors alternatively
    • F02M63/0225Fuel-injection apparatus having a common rail feeding several injectors ; Means for varying pressure in common rails; Pumps feeding common rails
    • F02M63/0275Arrangement of common rails
    • F02M63/0285Arrangement of common rails having more than one common rail
    • F02M63/0295Arrangement of common rails having more than one common rail for V- or star- or boxer-engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M69/00Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel
    • F02M69/04Injectors peculiar thereto
    • F02M69/042Positioning of injectors with respect to engine, e.g. in the air intake conduit
    • F02M69/046Positioning of injectors with respect to engine, e.g. in the air intake conduit for injecting into both the combustion chamber and the intake conduit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/145Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
    • F02P5/15Digital data processing
    • F02P5/152Digital data processing dependent on pinking
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/12Other methods of operation
    • F02B2075/125Direct injection in the combustion chamber for spark ignition engines, i.e. not in pre-combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B2275/00Other engines, components or details, not provided for in other groups of this subclass
    • F02B2275/16Indirect injection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/08Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition
    • F02B23/10Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder
    • F02B23/104Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder the injector being placed on a side position of the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M69/00Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel
    • F02M69/04Injectors peculiar thereto
    • F02M69/042Positioning of injectors with respect to engine, e.g. in the air intake conduit
    • F02M69/044Positioning of injectors with respect to engine, e.g. in the air intake conduit for injecting into the intake conduit downstream of an air throttle valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M69/00Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel
    • F02M69/46Details, component parts or accessories not provided for in, or of interest apart from, the apparatus covered by groups F02M69/02 - F02M69/44
    • F02M69/462Arrangement of fuel conduits, e.g. with valves for maintaining pressure in the pipes after the engine being shut-down
    • F02M69/465Arrangement of fuel conduits, e.g. with valves for maintaining pressure in the pipes after the engine being shut-down of fuel rails
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to a dual fuel injection type internal combustion engine having two of an injector of an intake pipe injection system (Port Fuel Injection system) and an injector of a direct injection system (Direct Injection System).
  • knocking may occur when the automobile is suddenly accelerated from a low-speed running state.
  • Knocking is caused by incompatibility between the engine load and ignition timing, etc., and the unburned mixture in front of the propagating flame is compressed to a high temperature and self-ignited. It is a phenomenon that shakes. The occurrence of knocking may cause an abnormal rise in temperature and pressure in the combustion chamber, which may damage the combustion chamber. For this reason, various measures have been taken to prevent knocking (see, for example, Patent Document 1).
  • the ignition timing is set to the maximum torque generation timing (MB) in the low load range without the risk of knocking due to the control means for controlling the ignition timing of the internal combustion engine.
  • MB maximum torque generation timing
  • the ignition timing is set to the knocking limit torque generation time (TK) based on the detection of knocking.
  • TK knocking limit torque generation time
  • the knocking limit is when the ignition timing is gradually advanced and a knocking sound (trace knock) starts to be heard.
  • Patent Document 1 Japanese Patent Laid-Open No. 10-141194
  • Patent Document 1 the invention described in Patent Document 1 is applied to the case where the ignition timing is controlled in an internal combustion engine that uses only one fuel supply device per cylinder.
  • an intake pipe injection system (Port Fuel Injection system, hereinafter referred to as "PFI system") in which fuel is injected from an injector into an intake pipe for each cylinder, and each There is an in-cylinder injection system (Dirt Injection System, hereinafter referred to as “DI system”) in which fuel is directly injected into the cylinder for each cylinder.
  • PFI system Port Fuel Injection system
  • DI system in-cylinder injection system
  • the PFI system has the advantage that the engine performance can be fully exerted even at low revolutions, where it is easy to form a uniform mixture of fuel and air.
  • the DI method on the other hand, has the advantage of being able to demonstrate high performance at high speeds because it can draw more air into the cylinder.
  • a PFI type injector and a DI type injector coexist in one cylinder, and both injectors depend on the engine speed and load conditions. It is conceivable to change the fuel injection rate.
  • the present invention has been made in view of the above problems, and an object of the present invention is to perform simple arithmetic processing in a dual fuel injection internal combustion engine having two fuel injection systems, namely, a PFI system and a DI system.
  • the aim is to avoid knocking and enable optimal ignition timing control.
  • the invention of claim 1 is directed to an in-cylinder injector and an intake pipe injection indicator, an operating state detecting means for detecting an operating state of the internal combustion engine, and monitoring the operating state and the operating state.
  • the fuel injection amount control means for controlling the fuel injection amount of each of the in-cylinder injector and the intake pipe injector, and the fuel injection using only the in-cylinder injector.
  • the first ignition timing map assigned based on the operating state of the internal combustion engine so that the ignition timing of the internal combustion engine substantially coincides with the maximum torque generation timing, and the fuel injection using only the in-cylinder injector A second ignition timing map assigned based on the operating state of the internal combustion engine so that the ignition timing of the internal combustion engine substantially matches the knocking limit torque generation timing
  • the operating state of the internal combustion engine so that the ignition timing of the internal combustion engine in the case of fuel injection using only the intake pipe injection injector substantially coincides with the maximum torque generation timing
  • Storage means having a fourth point fire timing map assigned based on the operating state of the internal combustion engine, a ratio of the fuel injection amount injected by the in-cylinder injector and the intake pipe injector, and A dual fuel injection internal combustion engine comprising ignition timing control means for controlling the ignition timing of the cylinder using the four types of timing maps.
  • the invention according to claim 2 calculates a basic ignition timing with reference to a value assigned in the first to fourth ignition timing maps in the operating state detected by the operating state detecting means, Depending on the ratio of the fuel injection amount, a first interpolation value obtained by interpolating the basic ignition timing of the first ignition timing map and the basic ignition timing of the third ignition timing map is calculated, and the fuel injection A second interpolation value obtained by interpolating the basic ignition timing of the second ignition timing map and the basic ignition timing of the fourth ignition timing map is calculated depending on the ratio of the amount, and the first interpolation value and 2.
  • an ignition timing calculation unit that compares the second interpolation value with the one of the retarded angle and uses the interpolated value on the retard side as the ignition timing of the cylinder.
  • the invention according to claim 3 is characterized in that the operating state detecting means includes a water temperature detecting means for detecting a water temperature of the cooling water of the internal combustion engine, and the ignition timing calculating means adjusts the water temperature of the cooling water.
  • the operating state detecting means includes a water temperature detecting means for detecting a water temperature of the cooling water of the internal combustion engine, and the ignition timing calculating means adjusts the water temperature of the cooling water.
  • the invention according to claim 4 is characterized in that the operating state detection means comprises an internal combustion engine speed detection means and an internal combustion engine load detection means. It is a fuel injection internal combustion engine.
  • the invention according to claim 5 is characterized in that the internal combustion engine load detection means includes at least one of intake air amount detection means, accelerator opening detection means, and intake pipe negative pressure detection means.
  • the internal combustion engine load detection means includes at least one of intake air amount detection means, accelerator opening detection means, and intake pipe negative pressure detection means.
  • the ignition timing is determined using the first to fourth ignition timing maps.
  • the injector for in-cylinder injection according to the operating state of the internal combustion engine Even when adjusting the fuel injection amount between the intake pipe injector and the intake pipe injector, the ignition timing without any complicated calculation process is always used for internal combustion by using only the four ignition timing maps. It is possible to maintain the state suitable for the operating state of the engine, avoid the occurrence of knocking, and set the optimal ignition timing.
  • the temperature of the cooling water of the internal combustion engine is detected by the water temperature detecting means, and the correction amount of the ignition timing is calculated depending on the water temperature, thereby affecting the ignition timing.
  • the operating state of the internal combustion engine can be detected by the internal combustion engine rotational speed detection means and the internal combustion engine load detection means, and the rotational speed and load of the internal combustion engine are used as parameters. It is possible to realize ignition timing control, and to realize optimum ignition timing control with high accuracy.
  • At least one of intake air amount detection means, accelerator opening detection means, and intake pipe negative pressure detection means is provided as an internal combustion engine load detection means. Accurate detection of the amount of load applied to the engine can be realized, and ignition timing control can be performed with high accuracy.
  • FIG. 1 is a cross-sectional view showing an engine according to an embodiment of the present invention.
  • FIG. 2 is a plan view of a block in which a PFI injector according to the embodiment is provided.
  • FIG. 3 is a front view of FIG. 2 according to the same embodiment.
  • FIG. 3 is a front view of FIG. 2 according to the same embodiment.
  • FIG. 4 is a control block diagram in the engine according to the embodiment.
  • FIG. 5 is a schematic diagram of an ignition timing map in the engine according to the embodiment.
  • FIG. 6 is a schematic diagram of a correction amount map in the engine according to the embodiment.
  • FIG. 7 is a schematic diagram showing the principle of ignition timing control in the engine according to the embodiment.
  • FIG. 8 is a flowchart showing an ignition timing control procedure in the engine according to the embodiment.
  • 1 to 8 show an embodiment of the present invention.
  • Reference numeral 11 in FIG. 1 denotes a V-type 6-cylinder engine that is an “internal combustion engine”.
  • An intake port 13 and an exhaust port 14 are formed for each cylinder 12, and each cylinder 12
  • An in-cylinder injector (hereinafter referred to as “DI injector” t) 15 and an intake pipe injector (hereinafter referred to as “PFI injector”) 16 are provided for each.
  • Fuel is directly injected into the cylinder 12 (combustion chamber) from the DI injector 15 and mixed with air in the cylinder 12, and fuel is injected from the PFI injector 16 into the intake port 13.
  • the air is mixed with the flowing air and sucked into the cylinder 12, and the ignition plug 14a is ignited at a predetermined timing.
  • an intake valve 18 that opens and closes the intake port and an exhaust valve 19 that opens and closes the exhaust port are disposed.
  • the intake port 13 is connected to the intake port 13 from the surge tank 20. Clean air is drawn into the cylinder 12 (combustion chamber) through the cylinder.
  • Each DI indicator 15 provided for each cylinder 12 is connected by a DI delivery pipe 23, and each PFI indicator 16 is connected by a PFI delivery pipe 24.
  • the DI delivery pipe 23 is connected to a cylinder injection system pipe (Hereinafter referred to as “DI piping”) 26 is connected to the fuel tank 28 so as to circulate, and the PFI delivery pipe 24 is also connected to the fuel tank 28 via the intake pipe injection system piping (hereinafter referred to as “PFI piping”) 27. (See Figures 1 through 4).
  • fuel is sent to the DI delivery pipe 23 at a predetermined high pressure by a fuel pump 31 and a high-pressure pump 32, and the PFI delivery pipe 24 is fed with a fuel.
  • Fuel pump 31 will deliver fuel at a lower pressure than DI delivery pipe 23! Since the DI injector 15 directly injects fuel into the high-pressure cylinder 12, a high pressure is required.
  • Each of these injectors 15 and 16 has a desired amount of fuel sent by a pump 31 and 32 by a solenoid valve (not shown) opened for a predetermined time (injection time). Configured to inject fuel! RU
  • Each of these injectors 15 and 16 is connected to an engine control unit (hereinafter referred to as "ECU") 35 as “control means” so as to control the opening / closing timing and opening / closing time of the solenoid valve. .
  • ECU engine control unit
  • a fuel pressure sensor 36 and a fuel temperature sensor 37 disposed in the DI delivery pipe 23 are connected to the ECU 35, and an engine as an internal combustion engine speed detecting means is connected to the ECU 35.
  • An engine speed sensor 38 for detecting the engine speed, an engine load sensor 39 for detecting the engine load as an internal combustion engine load detecting means, and a water temperature sensor 41 for detecting the temperature of the engine cooling water as a water temperature detecting means are connected. Yes.
  • the engine operating state is detected by the engine speed sensor 38 and the engine load sensor 39, and the engine temperature state is detected by the water temperature sensor 41.
  • the operation state detection means for detecting the operation state of the internal combustion engine includes the internal combustion engine speed detection means, the internal combustion engine load detection means, the water temperature detection means, and the like.
  • an intake air amount detection sensor as an intake air amount detection means for detecting an intake air amount
  • an accelerator opening detection sensor as an accelerator opening detection means for detecting an accelerator opening
  • an intake pipe negative pressure detection sensor or the like as an intake pipe negative pressure detection means for detecting the intake pipe negative pressure.
  • Various actuators 40 are connected to the ECU 35, and the actuator 40 is configured to be controlled by a signal from the ECU 35.
  • the ECU 35 acquires information from the engine speed sensor 38, the engine load sensor 39, and the water temperature sensor 41 at predetermined sampling times, and the DI injector 15 and the PFI injector 16 inject fuel into the cylinder 12, respectively. The required injection amount required to do this is obtained.
  • the ECU 35 controls the ignition timing for igniting the air-fuel mixture in the combustion chamber. It is configured as follows.
  • the storage means (storage unit 35a) included in the ECU 35 stores an ignition timing map corresponding to the operating state of the internal combustion engine, and the central processing unit (central processing unit 35b) of the ECU 35 stores these maps.
  • the ignition timing is controlled according to the operating state of the internal combustion engine by performing calculations based on the installed software and other values.
  • the central processing means 35b of the ECU 35 cooperates with various programs stored in the storage unit 35a and controls the injection amount control means (injection amount) for controlling the fuel injection amount of the DI injector 15 and the PFI injector 16.
  • Functions such as the control unit 35c), ignition timing control means for controlling the ignition timing of the cylinder 12 (ignition timing control section 35d), and ignition timing calculation means for calculating the ignition timing of the cylinder 12 (ignition timing calculation section 35e). Realize.
  • the ECU 35 includes four ignition timing maps and a correction amount map as ignition timing maps.
  • FIG. 5 shows a schematic diagram of four ignition timing maps provided in the ECU 35.
  • the four ignition timing maps are: (1) The ignition timing of the internal combustion engine when fuel injection is performed using only the DI injector 15 (maximum spark advance for best torque, hereinafter referred to as “MBT”).
  • Second ignition timing map ( ⁇ ) and (3) ⁇ FI injector 16 only assigned based on the operating state of the internal combustion engine so that it almost coincides with the occurrence timing (hereinafter referred to as “TK”)
  • Four sheets of the fourth ignition timing map (D) assigned based on the operating state of the internal combustion engine so that the timing substantially coincides with ⁇ are provided.
  • Each ignition timing map uses the engine speed (rpm) and engine load as parameters, and values of ignition timing are assigned at regular intervals for values up to WOT (Wide Open Throttle).
  • FIG. 6 shows a schematic diagram of the correction amount map.
  • the correction amount map uses the engine coolant temperature as a parameter, and the ignition timing for A ° C, B ° C, ⁇ 'N ° C (A, B, ⁇ ⁇ is a predetermined value).
  • the correction amount (correction angle value) to be corrected is assigned.
  • the ECU 35 functions as an ignition timing calculation means for calculating the ignition timing in the cylinder 12 using the values of the four ignition timing maps and the correction amount map, and the ignition plug 14a It has a function as ignition timing control means for issuing a command to ignite.
  • FIG. 7 is a schematic diagram showing the principle of ignition timing control of the ECU 35 in this embodiment.
  • the horizontal axis indicates the ignition timing Ig. T (the right direction is the advance side and the left direction is the retard side), and the vertical axis is the torque.
  • ignition timing-torque curve a mountain-shaped curve (hereinafter referred to as "ignition timing-torque curve") is drawn, and the peak of the ignition timing-torque curve is MBT is shown, and TK comes to one side of the vertex. Ignition timing
  • the shape of the torque curve, the apex of the curve, and the position of TK on the curve differ depending on whether the DI injector 15 is used or the PFI indicator 16 is used. Therefore, for example, the engine speed sensor 38 and the engine load sensor 39 obtain one value at one sampling time, and the values at this time are shown as points rl to r4 (all shown in FIGS. 5A to 5D). As shown in Fig.
  • the second interpolation value r6 is set as the ignition timing of the cylinder 12. And apply.
  • FIG. 8 is a flowchart showing an ignition timing control procedure of the engine according to this embodiment. Hereinafter, the operation of this embodiment will be described with reference to this flowchart.
  • the ECU 35 reads the values of the engine speed sensor 38, the engine load sensor 39, and the water temperature sensor 41 at every predetermined sampling time (step Sl).
  • the ECU 35 sets the fuel injection amount ratio (fuel injection ratio) of the DI injector 15 and the PFI injector 16 based on the engine speed value and the engine load value read in step S1 (step S2).
  • fuel injection only for DI injector 15 fuel injection only for PFI injector 16
  • fuel injection for both DI injector 15 and PFI injector 16 Will occur.
  • the ECU 35 reads the first to fourth ignition timing maps (A) to (D) (step S3).
  • the ECU 35 further reads a correction amount map based on the read value of the water temperature sensor 41 (step S4).
  • the ECU 35 performs the following calculations (1) to (4) to calculate the ignition timing (step S5).
  • each ignition timing The values on the map are the ignition timings (a) to (d).
  • each ignition timing The value is calculated based on the neighboring values on the map. For example, as shown in FIG.
  • the value obtained by interpolating the value of (a) calculated in (1) and the value of (c) is defined as the first interpolation value Ig. T (MB T).
  • the values of (a) and (c) are also calculated depending on the ratio of the fuel injection amounts of the DI injector 15 and the PFI injector 16 calculated in step S2. For example, if the ratio of the fuel injection amount is 60% for DI injector 15 and 40% for PFI injector 16, the value is calculated by the calculation such as (a) X O. 6+ (c) X O. 4.
  • step S4 Compare the first interpolation value Ig. T (MBT) with the second interpolation value Ig. T (TK), and read the value of V, deviation or retarded side in step S4.
  • the value obtained by adjusting the correction amount is calculated as the ignition timing Ig.T.
  • step S5 After the procedure of step S5, the ECU 35 ignites the fuel in the cylinder 12 at the ignition timing calculated in step S5 (step S6).
  • the ECU 35 controls the ignition timing of the cylinder 12 using the first and second ignition timing maps in the DI method and the third and fourth timing maps in the PFI method.
  • the ignition timing of the cylinder 12 correspond to MBT and TK, respectively, by simple control.
  • the ignition timings (a) to (d) are calculated by referring to the values assigned in the first to fourth ignition timing maps (A) to (D). In each ignition timing map (A) to (D), if there is no value assignment, each ignition timing map (A) It becomes possible to easily calculate the value based on (D).
  • the first and fourth ignition timing maps (A) to (D) are obtained when fuel is injected using only the DI injector 15 or only the PFI injector 16. By assigning only the ignition timing, there is no need to repeat the experiment while adjusting the fuel injection amount using both injectors 15 and 16 when creating the map, and the ignition timing map (A) ⁇ (D) can be created.
  • the ignition timing maps (A) and (C) of the maximum torque generation timing of the DI method and the PFI method are used to perform interpolation calculation depending on the ratio of the fuel injection amount.
  • the interpolation value is calculated according to the ratio of the fuel injection amount, and the second interpolation value is calculated.
  • the interpolated value of the first and second interpolated values is calculated as the ignition timing of the cylinder, so that two fuel injection methods, the PFI method and the DI method, are combined.
  • the engine speed sensor 38 and the engine load sensor 39 can detect the engine speed and the load, and the ignition is performed using the engine speed and the engine load as a parameter. Time control can be realized.
  • At least one of the intake air amount detection sensor, the accelerator opening detection sensor, and the intake pipe negative pressure detection sensor is provided as the internal combustion engine load detection means, so that it is applied to the engine.
  • the load amount can be detected accurately.
  • the coolant temperature of the engine is detected by the water temperature sensor 41, and the correction amount of the ignition timing is calculated depending on the water temperature, thereby affecting the ignition timing.
  • the ignition timing can be adjusted based on the warm-up condition.
  • the correction amount is calculated based on the coolant temperature of the engine! However, the value is steadily detected reflecting the operating state of the engine. Anything that can be used.
  • the number of power injectors 15 and 16 provided with DI injectors 15 and PFI injectors 16 for each cylinder 12 may not be one for each cylinder. Good.
  • a DI indicator 15 is provided for each cylinder 12, and the upstream side of the intake pipe disposed in the intake port 13 of each cylinder 12 is set to 1 A configuration in which a single PFI indicator 16 is provided in the bundled intake pipe section is conceivable.

Abstract

A dual fuel injection system internal combustion engine having PFI and DI fuel injection systems in which generation of knocking is prevented easily. An ECU for controlling an engine sets a fuel injection amount ratio between a DI injector and a PFI injector (step S2), and derives the maximum torque generation timing (MBT) and the knocking limit torque generation timing (TK) at the time of 100% DI, and the maximum torque generation timing (MBT) and the knocking limit torque generation timing (TK) at the time of 100% PFI, respectively, with reference to first through fourth ignition timing maps (step S3). The ECU derives a correction amount from a correction amount map (step S4), and calculates as an ignition timing a value obtained by adding the correction amount to whichever interpolation value on the delay angle side, a first interpolation value operated by interpolating MBT at the time of 100% DI and MBT at the time of 100% PFI and a second interpolation value operated by interpolating TK at the time of 100% DI and TK at the time of 100% (step S5).

Description

明 細 書  Specification
2系統燃料噴射式内燃機関  Dual fuel injection internal combustion engine
技術分野  Technical field
[0001] 本発明は、吸気管噴射方式(Port Fuel Injection system)のインジヱクタと筒内噴射 方式(Direct Injection System)のインジヱクタとの 2つを備えた 2系統燃料噴射式内 燃機関に関する。  TECHNICAL FIELD [0001] The present invention relates to a dual fuel injection type internal combustion engine having two of an injector of an intake pipe injection system (Port Fuel Injection system) and an injector of a direct injection system (Direct Injection System).
背景技術  Background art
[0002] 自動車の内燃機関においては、自動車を低速走行状態から急加速した場合など にノッキングが発生することがある。  [0002] In an internal combustion engine of an automobile, knocking may occur when the automobile is suddenly accelerated from a low-speed running state.
[0003] ノッキングは、エンジン負荷と点火時期の不適合などにより、伝播火炎前方の未燃 混合気が圧縮され高温になって自己着火し、燃焼時に生じる燃焼室内の大きな圧力 波が燃焼室壁を加振する現象である。ノッキングの発生により、燃焼室内の温度や圧 力の異常上昇が生じ、燃焼室が破損する恐れがある。そのため、従来より、ノッキング 防止のためのさまざまな方策が講じられている (たとえば、特許文献 1参照)。  [0003] Knocking is caused by incompatibility between the engine load and ignition timing, etc., and the unburned mixture in front of the propagating flame is compressed to a high temperature and self-ignited. It is a phenomenon that shakes. The occurrence of knocking may cause an abnormal rise in temperature and pressure in the combustion chamber, which may damage the combustion chamber. For this reason, various measures have been taken to prevent knocking (see, for example, Patent Document 1).
[0004] 特許文献 1にお 、ては、内燃機関の点火時期を制御する制御手段にぉ 、て、ノッ キングの発生する恐れのな 、低負荷範囲では点火時期を最大トルク発生時期 (MB [0004] According to Patent Document 1, the ignition timing is set to the maximum torque generation timing (MB) in the low load range without the risk of knocking due to the control means for controlling the ignition timing of the internal combustion engine.
T: Minimum Spark Advance for Best Torque)に設定し、ノッキングの発生するおそれ のある高負荷範囲では点火時期をノッキング検出に基づいてノッキング限界トルク発 生時期 (TK)に設定している。なお、ノッキング限界とは、点火時期を次第に進めてノ ック音(トレースノック)の聞こえ始めるときをいう。 T: Minimum Spark Advance for Best Torque), and in the high load range where knocking may occur, the ignition timing is set to the knocking limit torque generation time (TK) based on the detection of knocking. The knocking limit is when the ignition timing is gradually advanced and a knocking sound (trace knock) starts to be heard.
特許文献 1:特開平 10— 141194号公報  Patent Document 1: Japanese Patent Laid-Open No. 10-141194
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0005] しかし、上記特許文献 1に記載された発明は、 1気筒にひとつの燃料供給装置のみ を用いる内燃機関において点火時期の制御を行う場合に適用するものである。 [0005] However, the invention described in Patent Document 1 is applied to the case where the ignition timing is controlled in an internal combustion engine that uses only one fuel supply device per cylinder.
[0006] 一方、燃料噴射方式としては、各気筒ごとの吸気管にインジェクタから燃料を噴射 する吸気管噴射方式(Port Fuel Injection system,以下「PFI方式」と称する。)と、各 気筒ごとのシリンダ内部に直接インジエタタカゝら燃料を噴射する筒内噴射方式 (Direc t Injection System,以下「DI方式」と称する。)とが存在する。 PFI方式は燃料と空気 が均一に混合した状態を形成し易ぐ低回転時でもエンジンの性能を十分に発揮さ せることができる利点を持つ。一方、 DI方式はシリンダ内部により多くの空気を吸入 できるため、高回転時に高い性能を発揮させられる利点を持つ。そして、両方式の利 点を活用して内燃機関の燃焼効率を高めるため、 1気筒に PFI方式のインジヱクタと DI方式のインジェクタを並存させ、エンジンの回転数や負荷状態に応じて双方のィ ンジェクタの燃料の噴出率を変化させる方式が考えられる。 [0006] On the other hand, as a fuel injection system, an intake pipe injection system (Port Fuel Injection system, hereinafter referred to as "PFI system") in which fuel is injected from an injector into an intake pipe for each cylinder, and each There is an in-cylinder injection system (Dirt Injection System, hereinafter referred to as “DI system”) in which fuel is directly injected into the cylinder for each cylinder. The PFI system has the advantage that the engine performance can be fully exerted even at low revolutions, where it is easy to form a uniform mixture of fuel and air. The DI method, on the other hand, has the advantage of being able to demonstrate high performance at high speeds because it can draw more air into the cylinder. In order to increase the combustion efficiency of the internal combustion engine using the advantages of both types, a PFI type injector and a DI type injector coexist in one cylinder, and both injectors depend on the engine speed and load conditions. It is conceivable to change the fuel injection rate.
[0007] しかし、 DI方式と PFI方式とでは、最大トルク発生時期やノッキング限界トルク発生 時期などのタイミングが異なる。そのため、両方式のインジェクタを並存させた場合に 上記特許文献 1に記載された発明を用いても最適な点火時期に合わせられな ヽと ヽ う問題がある。 [0007] However, the DI method and the PFI method have different timings such as the maximum torque generation timing and knocking limit torque generation timing. Therefore, there is a problem that when both types of injectors coexist, even if the invention described in Patent Document 1 is used, the optimum ignition timing cannot be achieved.
[0008] 本発明は上記問題に鑑みてなされたものであり、その目的は、 PFI方式および DI 方式という 2系統の燃料噴射方式を有する 2系統燃料噴射式内燃機関において、簡 易な演算処理によりノッキングの発生を回避し、最適な点火時期制御を可能とするこ とにある。  [0008] The present invention has been made in view of the above problems, and an object of the present invention is to perform simple arithmetic processing in a dual fuel injection internal combustion engine having two fuel injection systems, namely, a PFI system and a DI system. The aim is to avoid knocking and enable optimal ignition timing control.
課題を解決するための手段  Means for solving the problem
[0009] 請求項 1に記載の発明は、筒内噴射用インジヱクタおよび吸気管噴射用インジヱク タと、内燃機関の運転状態を検知する運転状態検知手段と、前記運転状態を監視 するとともに前記運転状態に依存して前記筒内噴射用インジ クタおよび前記吸気 管噴射用インジヱクタのそれぞれの燃料噴射量を制御する噴射量制御手段と、前記 筒内噴射用インジェクタのみを用いて燃料噴射をした場合の前記内燃機関の点火 時期を最大トルク発生時期に略一致するよう前記内燃機関の運転状態に基づいて 割り付けた第 1点火時期マップ、および前記筒内噴射用インジェクタのみを用いて燃 料噴射をした場合の前記内燃機関の点火時期をノッキング限界トルク発生時期に略 一致するよう前記内燃機関の運転状態に基づいて割り付けた第 2点火時期マップ、 および前記吸気管噴射用インジェクタのみを用いて燃料噴射をした場合の前記内燃 機関の点火時期を最大トルク発生時期に略一致するよう前記内燃機関の運転状態 に基づ!/、て割り付けた第 3点火時期マップ、および前記吸気管噴射用インジェクタの みを用いて燃料噴射をした場合の前記内燃機関の点火時期をノッキング限界トルク 発生時期に略一致するよう前記内燃機関の運転状態に基づいて割り付けた第 4点 火時期マップを備えた記憶手段と、前記筒内噴射用インジ クタおよび前記吸気管 噴射用インジェクタがそれぞれ噴射する前記燃料噴射量の比率、および前記 4種類 の時期マップを用いて前記気筒の点火時期を制御する点火時期制御手段とを備え たことを特徴とする 2系統燃料噴射式内燃機関である。 [0009] The invention of claim 1 is directed to an in-cylinder injector and an intake pipe injection indicator, an operating state detecting means for detecting an operating state of the internal combustion engine, and monitoring the operating state and the operating state. Depending on the fuel injection amount control means for controlling the fuel injection amount of each of the in-cylinder injector and the intake pipe injector, and the fuel injection using only the in-cylinder injector. The first ignition timing map assigned based on the operating state of the internal combustion engine so that the ignition timing of the internal combustion engine substantially coincides with the maximum torque generation timing, and the fuel injection using only the in-cylinder injector A second ignition timing map assigned based on the operating state of the internal combustion engine so that the ignition timing of the internal combustion engine substantially matches the knocking limit torque generation timing And the operating state of the internal combustion engine so that the ignition timing of the internal combustion engine in the case of fuel injection using only the intake pipe injection injector substantially coincides with the maximum torque generation timing The ignition timing of the internal combustion engine when fuel injection is performed using only the intake pipe injection injector and the third ignition timing map assigned based on! /, So that it substantially matches the knocking limit torque generation timing. Storage means having a fourth point fire timing map assigned based on the operating state of the internal combustion engine, a ratio of the fuel injection amount injected by the in-cylinder injector and the intake pipe injector, and A dual fuel injection internal combustion engine comprising ignition timing control means for controlling the ignition timing of the cylinder using the four types of timing maps.
[0010] 請求項 2に記載の発明は、前記運転状態検知手段が検知した運転状態において、 前記第 1ないし第 4点火時期マップ中に割り付けられた値を参照して基本点火時期 を算出し、前記燃料噴射量の比率に依存して前記第 1点火時期マップの前記基本 点火時期および前記第 3点火時期マップの前記基本点火時期を補間演算した第 1 の補間値を算出するとともに、前記燃料噴射量の比率に依存して前記第 2点火時期 マップの前記基本点火時期および前記第 4点火時期マップの前記基本点火時期を 補間演算した第 2の補間値を算出し、前記第 1の補間値と前記第 2の補間値とを比較 していずれか遅角側の前記補間値を前記気筒の点火時期とする点火時期算出手段 を備えたことを特徴とする、請求項 1に記載の 2系統燃料噴射式内燃機関である。  [0010] The invention according to claim 2 calculates a basic ignition timing with reference to a value assigned in the first to fourth ignition timing maps in the operating state detected by the operating state detecting means, Depending on the ratio of the fuel injection amount, a first interpolation value obtained by interpolating the basic ignition timing of the first ignition timing map and the basic ignition timing of the third ignition timing map is calculated, and the fuel injection A second interpolation value obtained by interpolating the basic ignition timing of the second ignition timing map and the basic ignition timing of the fourth ignition timing map is calculated depending on the ratio of the amount, and the first interpolation value and 2. The dual fuel system according to claim 1, further comprising: an ignition timing calculation unit that compares the second interpolation value with the one of the retarded angle and uses the interpolated value on the retard side as the ignition timing of the cylinder. This is an injection type internal combustion engine.
[0011] 請求項 3に記載の発明は、前記運転状態検知手段は、前記内燃機関の冷却水の 水温を検知する水温検知手段を備え、前記点火時期算出手段は、前記冷却水の水 温に依存して前記気筒の点火時期の補正量を算出することを特徴とする、請求項 2 に記載の 2系統燃料噴射式内燃機関である。  [0011] The invention according to claim 3 is characterized in that the operating state detecting means includes a water temperature detecting means for detecting a water temperature of the cooling water of the internal combustion engine, and the ignition timing calculating means adjusts the water temperature of the cooling water. 3. The dual fuel injection internal combustion engine according to claim 2, wherein a correction amount of the ignition timing of the cylinder is calculated depending on the dependency.
[0012] 請求項 4に記載の発明は、前記運転状態検知手段は、内燃機関回転数検知手段 と、内燃機関負荷検知手段とを備えたことを特徴とする、請求項 1に記載の 2系統燃 料噴射式内燃機関である。  [0012] The invention according to claim 4 is characterized in that the operating state detection means comprises an internal combustion engine speed detection means and an internal combustion engine load detection means. It is a fuel injection internal combustion engine.
[0013] 請求項 5に記載の発明は、前記内燃機関負荷検知手段は、吸入空気量検知手段 と、アクセル開度検知手段と、吸気管負圧検知手段とのうち少なくともいずれかを備 えたことを特徴とする、請求項 4に記載の 2系統燃料噴射式内燃機関である。  [0013] The invention according to claim 5 is characterized in that the internal combustion engine load detection means includes at least one of intake air amount detection means, accelerator opening detection means, and intake pipe negative pressure detection means. 5. A dual fuel injection internal combustion engine according to claim 4, characterized in that:
発明の効果  The invention's effect
[0014] 請求項 1に記載の発明によれば、第 1〜第 4の点火時期マップを用いて点火時期を 制御することにより、簡易な演算処理によって、点火時期を最大トルク発生時期ゃノッ キング限界トルク発生時期が異なる DI方式と PFI方式にそれぞれ対応させることが可 能になり、 PFI方式および DI方式という 2系統の燃料噴射方式を有する 2系統燃料噴 射式内燃機関において簡易な演算処理によりノッキングの発生を回避し、最適な点 火時期を設定することが可能となる。 [0014] According to the invention of claim 1, the ignition timing is determined using the first to fourth ignition timing maps. By controlling, it becomes possible to correspond to the DI method and the PFI method with different ignition timing and knocking limit torque generation timing by simple calculation processing. In a two-line fuel injection internal combustion engine with a fuel injection system, knocking can be avoided and the optimal ignition timing can be set by a simple calculation process.
[0015] 請求項 2に記載の発明によれば、 PFI方式および DI方式という 2系統の燃料噴射 方式を有する 2系統燃料噴射式内燃機関において、内燃機関の運転状態に応じて 筒内噴射用インジェクタと吸気管噴射用インジェクタとの燃料噴射量を調整しながら 駆動させる場合であっても、前記 4枚の点火時期マップを使用するのみで、複雑な演 算処理を行うことなぐ点火時期を常時内燃機関の運転状態に適した状態に維持し 、ノッキングの発生を回避し、最適な点火時期に設定することが可能となる。  [0015] According to the invention of claim 2, in the dual fuel injection internal combustion engine having the dual fuel injection methods of the PFI method and the DI method, the injector for in-cylinder injection according to the operating state of the internal combustion engine Even when adjusting the fuel injection amount between the intake pipe injector and the intake pipe injector, the ignition timing without any complicated calculation process is always used for internal combustion by using only the four ignition timing maps. It is possible to maintain the state suitable for the operating state of the engine, avoid the occurrence of knocking, and set the optimal ignition timing.
[0016] 請求項 3に記載の発明によれば、水温検知手段によって内燃機関の冷却水の水温 を検知し、水温に依存して点火時期の補正量を算出することにより、点火時期に影 響を及ぼしやすい内燃機関の暖気状態に基づいた点火時期の調整が可能になり、 点火時期制御の精度をより高められる。  [0016] According to the invention of claim 3, the temperature of the cooling water of the internal combustion engine is detected by the water temperature detecting means, and the correction amount of the ignition timing is calculated depending on the water temperature, thereby affecting the ignition timing. This makes it possible to adjust the ignition timing based on the warm-up state of the internal combustion engine, which is likely to affect the engine, and to improve the accuracy of ignition timing control.
[0017] 請求項 4に記載の発明によれば、内燃機関の運転状態は、内燃機関回転数検知 手段と内燃機関負荷検知手段によって検知でき、内燃機関の回転数と負荷をパラメ ータとした点火時期の制御を実現することができ、精度の高 、最適な点火時期制御 を実現できる。  [0017] According to the invention of claim 4, the operating state of the internal combustion engine can be detected by the internal combustion engine rotational speed detection means and the internal combustion engine load detection means, and the rotational speed and load of the internal combustion engine are used as parameters. It is possible to realize ignition timing control, and to realize optimum ignition timing control with high accuracy.
[0018] 請求項 5に記載の発明によれば、吸入空気量検知手段、アクセル開度検知手段、 吸気管負圧検知手段のうち少なくともいずれかを内燃機関負荷検知手段として備え ることにより、内燃機関にかかった負荷量の正確な検知を実現し、点火時期制御を高 い精度で行うことができる。  [0018] According to the invention of claim 5, at least one of intake air amount detection means, accelerator opening detection means, and intake pipe negative pressure detection means is provided as an internal combustion engine load detection means. Accurate detection of the amount of load applied to the engine can be realized, and ignition timing control can be performed with high accuracy.
図面の簡単な説明  Brief Description of Drawings
[0019] [図 1]この発明の実施の形態に係るエンジンを示す断面図である。  FIG. 1 is a cross-sectional view showing an engine according to an embodiment of the present invention.
[図 2]同実施の形態に係る PFIインジェクタが配設されたブロックの平面図である。  FIG. 2 is a plan view of a block in which a PFI injector according to the embodiment is provided.
[図 3]同実施の形態に係る図 2の正面図である。  3 is a front view of FIG. 2 according to the same embodiment. FIG.
[図 4]同実施の形態に係るエンジンにおける、制御ブロック図である。 [図 5]同実施の形態に係るエンジンにおける、点火時期マップの模式図である。 FIG. 4 is a control block diagram in the engine according to the embodiment. FIG. 5 is a schematic diagram of an ignition timing map in the engine according to the embodiment.
[図 6]同実施の形態に係るエンジンにおける、補正量マップの模式図である。  FIG. 6 is a schematic diagram of a correction amount map in the engine according to the embodiment.
[図 7]同実施の形態に係るエンジンにおける、点火時期制御の原理を示す模式図で ある。  FIG. 7 is a schematic diagram showing the principle of ignition timing control in the engine according to the embodiment.
[図 8]同実施の形態に係るエンジンにおける、点火時期制御手順を示すフローチヤ ートである。  FIG. 8 is a flowchart showing an ignition timing control procedure in the engine according to the embodiment.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0020] 以下、この発明の実施の形態について説明する。 Hereinafter, embodiments of the present invention will be described.
[0021] 図 1乃至図 8には、この発明の実施の形態を示す。 1 to 8 show an embodiment of the present invention.
[0022] まず構成を説明すると、図 1中符号 11は「内燃機関」である V型 6気筒エンジンで、 各気筒 12毎に、吸気ポート 13及び排気ポート 14が形成されると共に、各気筒 12毎 に筒内噴射インジヱクタ(以下「DIインジヱクタ」 t 、う) 15と吸気管噴射インジェクタ( 以下「PFIインジヱクタ」という) 16とが配設されている。この DIインジヱクタ 15から気 筒 12内 (燃焼室内)に直接燃料が噴射されて気筒 12内で空気と混合されると共に、 PFIインジェクタ 16から吸気ポート 13内に燃料が噴射され、吸気ポート 13内を流れ る空気と混合されて気筒 12内に吸い込まれ、所定の時期で点火プラグ 14aが点火さ れること〖こより、燃焼されるように構成されている。  First, the configuration will be described. Reference numeral 11 in FIG. 1 denotes a V-type 6-cylinder engine that is an “internal combustion engine”. An intake port 13 and an exhaust port 14 are formed for each cylinder 12, and each cylinder 12 An in-cylinder injector (hereinafter referred to as “DI injector” t) 15 and an intake pipe injector (hereinafter referred to as “PFI injector”) 16 are provided for each. Fuel is directly injected into the cylinder 12 (combustion chamber) from the DI injector 15 and mixed with air in the cylinder 12, and fuel is injected from the PFI injector 16 into the intake port 13. The air is mixed with the flowing air and sucked into the cylinder 12, and the ignition plug 14a is ignited at a predetermined timing.
[0023] また、各気筒 12毎に、吸気ポートを開閉する吸気バルブ 18及び排気ポートを開閉 する排気バルブ 19が配設され、吸気バルブ 18が開かれることにより、サージタンク 2 0から吸気ポート 13を介して気筒 12内 (燃焼室内)に清浄な空気が吸入されるように なっている。  [0023] In addition, for each cylinder 12, an intake valve 18 that opens and closes the intake port and an exhaust valve 19 that opens and closes the exhaust port are disposed. By opening the intake valve 18, the intake port 13 is connected to the intake port 13 from the surge tank 20. Clean air is drawn into the cylinder 12 (combustion chamber) through the cylinder.
[0024] そして、各気筒 12毎に設けられた各 DIインジヱクタ 15は DIデリバリパイプ 23で、各 PFIインジヱクタ 16は PFIデリバリパイプ 24で連結され、その DIデリバリパイプ 23は、 筒内噴射系配管(以下「DI配管」という) 26により燃料タンク 28に環流するように接続 され、 PFIデリバリパイプ 24も吸気管噴射系配管(以下「PFI配管」という) 27により燃 料タンク 28に接続されて 、る(図 1乃至図 4参照)。  [0024] Each DI indicator 15 provided for each cylinder 12 is connected by a DI delivery pipe 23, and each PFI indicator 16 is connected by a PFI delivery pipe 24. The DI delivery pipe 23 is connected to a cylinder injection system pipe ( (Hereinafter referred to as “DI piping”) 26 is connected to the fuel tank 28 so as to circulate, and the PFI delivery pipe 24 is also connected to the fuel tank 28 via the intake pipe injection system piping (hereinafter referred to as “PFI piping”) 27. (See Figures 1 through 4).
[0025] その DIデリバリパイプ 23には、図 4に示すように、フューエルポンプ 31及び高圧ポ ンプ 32にて燃料が所定の高い圧力で送られ、 PFIデリバリパイプ 24には、フューェ ルポンプ 31にて燃料が DIデリバリパイプ 23側より低 、圧力で送られるようになって!/ヽ る。 DIインジヱクタ 15は、高圧の気筒 12内に直接燃料を噴射するため、高い圧力が 必要となる。 [0025] As shown in FIG. 4, fuel is sent to the DI delivery pipe 23 at a predetermined high pressure by a fuel pump 31 and a high-pressure pump 32, and the PFI delivery pipe 24 is fed with a fuel. Fuel pump 31 will deliver fuel at a lower pressure than DI delivery pipe 23! Since the DI injector 15 directly injects fuel into the high-pressure cylinder 12, a high pressure is required.
[0026] これら各インジェクタ 15, 16は、各ポンプ 31, 32により、所望の燃料圧力で送られ てきた燃料を図示省略のソレノイドバルブが所定時間(噴射時間)開くことにより、所 望の量の燃料を噴射できるように構成されて!、る。  Each of these injectors 15 and 16 has a desired amount of fuel sent by a pump 31 and 32 by a solenoid valve (not shown) opened for a predetermined time (injection time). Configured to inject fuel! RU
[0027] これら各インジェクタ 15, 16は、「制御手段」としてのエンジンコントロールユニット( 以下「ECU」という) 35に接続され、ソレノイドバルブの開閉時期及び開閉時間が制 御されるようになっている。  [0027] Each of these injectors 15 and 16 is connected to an engine control unit (hereinafter referred to as "ECU") 35 as "control means" so as to control the opening / closing timing and opening / closing time of the solenoid valve. .
[0028] また、この ECU35には、その DIデリバリパイプ 23に配設された燃料圧力センサ 36 及び燃料温度センサ 37が接続されると共に、この ECU35には、内燃機関回転数検 知手段としてのエンジン回転数を検出するエンジン回転数センサ 38及び、内燃機関 負荷検知手段としてのエンジン負荷を検出するエンジン負荷センサ 39、水温検知手 段としてのエンジン冷却水の温度を検出する水温センサ 41が接続されている。ェン ジン回転数センサ 38、エンジン負荷センサ 39により、エンジン運転状態が検知され、 水温センサ 41によりエンジン温度状態が検知されるようになって 、る。  [0028] Further, a fuel pressure sensor 36 and a fuel temperature sensor 37 disposed in the DI delivery pipe 23 are connected to the ECU 35, and an engine as an internal combustion engine speed detecting means is connected to the ECU 35. An engine speed sensor 38 for detecting the engine speed, an engine load sensor 39 for detecting the engine load as an internal combustion engine load detecting means, and a water temperature sensor 41 for detecting the temperature of the engine cooling water as a water temperature detecting means are connected. Yes. The engine operating state is detected by the engine speed sensor 38 and the engine load sensor 39, and the engine temperature state is detected by the water temperature sensor 41.
[0029] 内燃機関の運転状態を検知する運転状態検知手段は、前記内燃機関回転数検知 手段、前記内燃機関負荷検知手段、前記水温検知手段等からなる。  [0029] The operation state detection means for detecting the operation state of the internal combustion engine includes the internal combustion engine speed detection means, the internal combustion engine load detection means, the water temperature detection means, and the like.
[0030] そのエンジン負荷センサ 39としては、例えば吸入空気量を検出する吸入空気量検 知手段としての吸入空気量検知センサ、アクセル開度を検出するアクセル開度検知 手段としてのアクセル開度検知センサ、又は吸気管負圧を検出する吸気管負圧検知 手段としての吸気管負圧検知センサ等の何れかを用いることができる。  [0030] As the engine load sensor 39, for example, an intake air amount detection sensor as an intake air amount detection means for detecting an intake air amount, and an accelerator opening detection sensor as an accelerator opening detection means for detecting an accelerator opening Or an intake pipe negative pressure detection sensor or the like as an intake pipe negative pressure detection means for detecting the intake pipe negative pressure.
[0031] この ECU35には、各種のァクチユエータ 40が接続され、このァクチユエータ 40が E CU35からの信号により制御されるように構成されている。 ECU35は、エンジン回転 数センサ 38及び、エンジン負荷センサ 39、水温センサ 41からの情報を所定のサン プリング時間ごとに取得し、 DIインジ クタ 15および PFIインジ クタ 16がそれぞれ 気筒 12内に燃料を噴射するのに必要とされる要求噴射量を求める。  [0031] Various actuators 40 are connected to the ECU 35, and the actuator 40 is configured to be controlled by a signal from the ECU 35. The ECU 35 acquires information from the engine speed sensor 38, the engine load sensor 39, and the water temperature sensor 41 at predetermined sampling times, and the DI injector 15 and the PFI injector 16 inject fuel into the cylinder 12, respectively. The required injection amount required to do this is obtained.
[0032] そして、この ECU35により、燃焼室内の混合気に点火する点火時期が制御される ように構成されている。 [0032] The ECU 35 controls the ignition timing for igniting the air-fuel mixture in the combustion chamber. It is configured as follows.
[0033] 詳しくは、 ECU35の備える記憶手段 (記憶部 35a)には内燃機関の運転状態に応 じた点火時期マップが記憶され、 ECU35の中央演算手段(中央演算部 35b)はこれ らのマップの値を用い、実装されたソフトウェアなどに基づいて演算を行うことで内燃 機関の運転状態に応じた点火時期の制御を行う。  [0033] Specifically, the storage means (storage unit 35a) included in the ECU 35 stores an ignition timing map corresponding to the operating state of the internal combustion engine, and the central processing unit (central processing unit 35b) of the ECU 35 stores these maps. The ignition timing is controlled according to the operating state of the internal combustion engine by performing calculations based on the installed software and other values.
[0034] また、 ECU35の中央演算手段 35bは、記憶部 35aに記憶された各種プログラム等 と協働し、 DIインジェクタ 15や PFIインジェクタ 16の燃料噴射量を制御する噴射量制 御手段 (噴射量制御部 35c)や、気筒 12の点火時期を制御する点火時期制御手段( 点火時期制御部 35d)や、気筒 12の点火時期を算出する点火時期算出手段 (点火 時期算出部 35e)などの機能を実現する。  [0034] Further, the central processing means 35b of the ECU 35 cooperates with various programs stored in the storage unit 35a and controls the injection amount control means (injection amount) for controlling the fuel injection amount of the DI injector 15 and the PFI injector 16. Functions such as the control unit 35c), ignition timing control means for controlling the ignition timing of the cylinder 12 (ignition timing control section 35d), and ignition timing calculation means for calculating the ignition timing of the cylinder 12 (ignition timing calculation section 35e). Realize.
[0035] ECU35は、点火時期マップとして 4枚の点火時期マップと補正量マップとを備えて いる。  The ECU 35 includes four ignition timing maps and a correction amount map as ignition timing maps.
[0036] 図 5に、 ECU35の備える 4枚の点火時期マップの模式図を示す。 4枚の点火時期 マップとしては、(1) DIインジェクタ 15のみを用いて燃料噴射をした場合の内燃機関 の点火時期を最大トルク発生時期 (Minimum Spark Advance for Best Torque以下「 MBT」と称する。 )に略一致するよう内燃機関の運転状態に基づいて割り付けた第 1 点火時期マップ (A)、 (2) DIインジェクタ 15のみを用いて燃料噴射をした場合の内 燃機関の点火時期をノッキング限界トルク発生時期(以下「TK」と称する。)に略一致 するよう内燃機関の運転状態に基づ 、て割り付けた第 2点火時期マップ (Β)、(3) Ρ FIインジェクタ 16のみを用いて燃料噴射をした場合の内燃機関の点火時期を ΜΒΤ に略一致するよう内燃機関の運転状態に基づ!、て割り付けた第 3点火時期マップ (C )、(4) PFIインジェクタ 16のみを用いて燃料噴射をした場合の内燃機関の点火時期 を ΤΚに略一致するよう内燃機関の運転状態に基づいて割り付けた第 4点火時期マ ップ (D)、の 4枚が備えられている。各点火時期マップは、エンジン回転数 (rpm)とェ ンジン負荷とをパラメータとし、 WOT(Wide Open Throttle)までの値について、一定 間隔ごとに点火時期の値が割り付けられている。  FIG. 5 shows a schematic diagram of four ignition timing maps provided in the ECU 35. The four ignition timing maps are: (1) The ignition timing of the internal combustion engine when fuel injection is performed using only the DI injector 15 (maximum spark advance for best torque, hereinafter referred to as “MBT”). The first ignition timing map assigned based on the operating state of the internal combustion engine (A), (2) When the fuel injection is performed using only the DI injector 15, the ignition timing of the internal combustion engine is determined as the knock limit torque. Second ignition timing map (Β) and (3) Ρ FI injector 16 only assigned based on the operating state of the internal combustion engine so that it almost coincides with the occurrence timing (hereinafter referred to as “TK”) The third ignition timing map (C), (4) assigned by the PFI injector 16 only, based on the operating state of the internal combustion engine so that the ignition timing of the internal combustion engine substantially matches ΜΒΤ! Ignition of the internal combustion engine Four sheets of the fourth ignition timing map (D) assigned based on the operating state of the internal combustion engine so that the timing substantially coincides with ΤΚ are provided. Each ignition timing map uses the engine speed (rpm) and engine load as parameters, and values of ignition timing are assigned at regular intervals for values up to WOT (Wide Open Throttle).
[0037] 図 6に、補正量マップの模式図を示す。補正量マップは、エンジン冷却水の水温を ノ ラメータとし、 A°C、 B°C、 · · 'N°C (A、 B、 · · ·Νは所定の値)について、点火時期を 補正する補正量 (補正角の値)が割り付けられて 、る。 FIG. 6 shows a schematic diagram of the correction amount map. The correction amount map uses the engine coolant temperature as a parameter, and the ignition timing for A ° C, B ° C, ··· 'N ° C (A, B, ··· Ν is a predetermined value). The correction amount (correction angle value) to be corrected is assigned.
[0038] ECU35は、 4枚の点火時期マップの値と、補正量マップの値とを用いて気筒 12に おける点火時期を算出する点火時期算出手段としての機能や、点火時期に点火プ ラグ 14aを発火させる指令を出す点火時期制御手段としての機能を有する。  The ECU 35 functions as an ignition timing calculation means for calculating the ignition timing in the cylinder 12 using the values of the four ignition timing maps and the correction amount map, and the ignition plug 14a It has a function as ignition timing control means for issuing a command to ignite.
[0039] 図 7は、この実施の形態における ECU35の点火時期制御の原理を示す模式図で ある。同図において、横軸は点火時期 Ig. T (右方向が進角側、左方向が遅角側)を 示し、縦軸はトルクを示す。  FIG. 7 is a schematic diagram showing the principle of ignition timing control of the ECU 35 in this embodiment. In the figure, the horizontal axis indicates the ignition timing Ig. T (the right direction is the advance side and the left direction is the retard side), and the vertical axis is the torque.
[0040] エンジン点火時期に対するトルクの値を図示した場合、山型の曲線 (以下この曲線 を「点火時期—トルク曲線」と称する。)を描くことになり、点火時期—トルク曲線の頂 点が MBTを示し、頂点の一方側に TKがくる。点火時期 トルク曲線の形状や、曲 線の頂点、曲線上の TKの位置は、 DIインジェクタ 15を用いた場合と PFIインジエタ タ 16を用いた場合で相違する。従って、例えば、エンジン回転数センサ 38およびェ ンジン負荷センサ 39がひとつのサンプリング時間においてひとつの値を取得し、この ときの値を図 5 (A)〜(D)に示す点 rl〜r4 (すべて図上の同一の点)とすると、図 7に 示すとおり、 rlおよび r2はひとつの点火時期—トルク曲線(図 7の DI= 100%の曲線 )上の点となり、 r3および r4は他の点火時期 トルク曲線(図 7の PFI= 100%の曲 線)上の点となる。  [0040] When the torque value with respect to the engine ignition timing is illustrated, a mountain-shaped curve (hereinafter referred to as "ignition timing-torque curve") is drawn, and the peak of the ignition timing-torque curve is MBT is shown, and TK comes to one side of the vertex. Ignition timing The shape of the torque curve, the apex of the curve, and the position of TK on the curve differ depending on whether the DI injector 15 is used or the PFI indicator 16 is used. Therefore, for example, the engine speed sensor 38 and the engine load sensor 39 obtain one value at one sampling time, and the values at this time are shown as points rl to r4 (all shown in FIGS. 5A to 5D). As shown in Fig. 7, rl and r2 are points on one ignition timing-torque curve (DI = 100% curve in Fig. 7), and r3 and r4 are other ignition points as shown in Fig. 7. Time Points on the torque curve (PFI = 100% curve in Fig. 7).
[0041] エンジンの運転状態に応じて DIインジェクタ 15と PFIインジェクタ 16との燃料噴射 量を調整しながら駆動させる場合には、両インジェクタ 15、 16の燃料噴射量の比率 に依存して補間した値をとると、図 7に示すとおり、ひとつの点火時期 トルク曲線 (D 1= 100%の曲線)と他の点火時期—トルク曲線 (PFI= 100%の曲線)との間に補間 値の点火時期 トルク曲線(中間の曲線)が形成される。補間値の点火時期 トルク 曲線上において、 rlと r3とを結ぶ直線との交点には第 1の補間値 r5が形成され、 r2 と r4とを結ぶ直線との交点には第 2の補間値 r6が形成される。  [0041] When driving while adjusting the fuel injection amount of the DI injector 15 and the PFI injector 16 according to the operating state of the engine, the value interpolated depending on the ratio of the fuel injection amounts of the injectors 15 and 16 As shown in Fig. 7, the interpolated ignition timing between one ignition timing torque curve (D 1 = 100% curve) and the other ignition timing-torque curve (PFI = 100% curve). A torque curve (intermediate curve) is formed. Ignition timing of the interpolated value On the torque curve, the first interpolated value r5 is formed at the intersection with the straight line connecting rl and r3, and the second interpolated value r6 at the intersection with the straight line connecting r2 and r4 Is formed.
[0042] 第 1の補間値 r5と第 2の補間値 r6とのうち、遅角側に位置する値を気筒 12の点火 時期とすれば、 DIインジェクタ 15および PFIインジェクタ 16を!、かなる燃料噴射量の 比率で用いても、気筒 12にノッキングの発生を回避し、最適な点火時期制御を行うこ とができる。したがって、図 7に示す場合は、第 2の補間値 r6を気筒 12の点火時期と して適用する。 [0042] Of the first interpolated value r5 and the second interpolated value r6, if the value positioned on the retard side is the ignition timing of the cylinder 12, the DI injector 15 and the PFI injector 16 are! Even if it is used at the ratio of the injection amount, the occurrence of knocking in the cylinder 12 can be avoided and optimal ignition timing control can be performed. Therefore, in the case shown in FIG. 7, the second interpolation value r6 is set as the ignition timing of the cylinder 12. And apply.
[0043] 図 8は、この実施の形態のエンジンの点火時期制御手順を示すフローチャートであ る。以下、このフローチャートに即してこの実施形態の作用を説明する。  FIG. 8 is a flowchart showing an ignition timing control procedure of the engine according to this embodiment. Hereinafter, the operation of this embodiment will be described with reference to this flowchart.
[0044] ECU35は、所定のサンプリング時間ごとにエンジン回転数センサ 38、エンジン負 荷センサ 39、水温センサ 41の値を読み込む(ステップ Sl)。 ECU35は、ステップ S1 で読み込んだエンジン回転数の値とエンジン負荷の値より DIインジェクタ 15および P FIインジェクタ 16の燃料噴射量の比率 (燃料噴射比率)を設定する (ステップ S 2)。 なお、算出の結果により、 DIインジェクタ 15のみ燃料を噴射する場合、および PFIィ ンジェクタ 16のみ燃料を噴射する場合、 DIインジェクタ 15および PFIインジェクタ 16 の双方が燃料を噴射する場合、という 3通りの場合が生ずる。  The ECU 35 reads the values of the engine speed sensor 38, the engine load sensor 39, and the water temperature sensor 41 at every predetermined sampling time (step Sl). The ECU 35 sets the fuel injection amount ratio (fuel injection ratio) of the DI injector 15 and the PFI injector 16 based on the engine speed value and the engine load value read in step S1 (step S2). Depending on the calculation results, there are three cases: fuel injection only for DI injector 15, fuel injection only for PFI injector 16, and fuel injection for both DI injector 15 and PFI injector 16. Will occur.
[0045] ECU35は、第 1〜第 4点火時期マップ (A)〜(D)を読み込む (ステップ S3)。  [0045] The ECU 35 reads the first to fourth ignition timing maps (A) to (D) (step S3).
[0046] ECU35は、さらに、読み込んだ水温センサ 41の値をもとに補正量マップを読み込 む(ステップ S4)。  The ECU 35 further reads a correction amount map based on the read value of the water temperature sensor 41 (step S4).
[0047] ECU35は、以下(1)〜(4)の演算を行い、点火時期を算出する (ステップ S5)。  [0047] The ECU 35 performs the following calculations (1) to (4) to calculate the ignition timing (step S5).
(1) ECU35は、ステップ SIで読み込んだエンジン回転数と吸入空気量の値、およ びステップ S3で読み込んだ 4枚の点火時期マップに基づき、  (1) Based on the engine speed and intake air amount values read at step SI and the four ignition timing maps read at step S3, ECU35
[0048] (a)第 1点火時期マップ (A)に基づぐ DIインジェクタ 15の燃料噴射量の比率が 10[0048] (a) The ratio of the fuel injection amount of the DI injector 15 based on the first ignition timing map (A) is 10
0%のときの MBTにおける点火時期 Ignition timing in MBT at 0%
[0049] (b)第 2点火時期マップ (B)に基づぐ DIインジェクタ 15の燃料噴射量の比率が 10(B) The ratio of the fuel injection amount of the DI injector 15 based on the second ignition timing map (B) is 10
0%のときの TKにおける点火時期 Ignition timing at TK at 0%
[0050] (c)第 3点火時期マップ (C)に基づぐ PFIインジェクタ 16の燃料噴射量の比率が 1[0050] (c) Ratio of fuel injection amount of PFI injector 16 based on third ignition timing map (C) is 1
00%のときの MBTにおける点火時期 Ignition timing in MBT at 00%
[0051] (d)第 4点火時期マップ (D)に基づぐ PFIインジェクタ 16の燃料噴射量の比率が 1[0051] (d) The ratio of the fuel injection amount of the PFI injector 16 based on the fourth ignition timing map (D) is 1
00%のときの TKにおける点火時期 Ignition timing at TK at 00%
の値をそれぞれ基本点火時期として算出する。  Are calculated as basic ignition timings.
[0052] 読み込んだエンジン回転数の値とエンジン負荷の値とが、第 1〜第 4点火時期マツ プ (A)〜(D)上に割り付けられた値に一致する場合には、各点火時期マップ上の値 を (a)〜 (d)の点火時期とする。 [0053] 読み込んだエンジン回転数の値とエンジン負荷の値とが第 1〜第 4点火時期マップ (A)〜(D)上に割り付けられた値に一致しな 、場合には、各点火時期マップ上の近 傍の値をもとに値を算出する。たとえば、図 5に示すように、エンジン回転数の値とェ ンジン負荷の値と力 点火時期マップ (A)〜(D)において、割り付けられていない点 である点 Pを示す場合、点 Pと、点 Pの周囲 4近傍における割り付けられた値である点 ql〜q4との距離をそれぞれ算出し、点 ql〜q4の値に、点 qlから点 Pまでの距離、 · · '点 q4から点 Pまでの距離、にそれぞれ依存した値を乗じ、乗じた結果得た値を点 P の点火時期の値とする。 [0052] When the read engine speed value and engine load value match the values assigned in the first to fourth ignition timing maps (A) to (D), each ignition timing The values on the map are the ignition timings (a) to (d). [0053] If the read engine speed value and engine load value do not match the values assigned on the first to fourth ignition timing maps (A) to (D), each ignition timing The value is calculated based on the neighboring values on the map. For example, as shown in FIG. 5, when the point P, which is an unassigned point, is indicated in the engine speed value, the engine load value, and the power ignition timing maps (A) to (D), , Calculate the distance from the points ql to q4, which are assigned values in the vicinity of point P around 4 points, to the values of points ql to q4, the distance from point ql to point P, ... Multiply the values depending on the distance to P, respectively, and the result of multiplication will be the value of the ignition timing at point P.
(2) (1)で算出した (a)の値と (c)の値を補間演算した値を第 1の補間値 Ig. T(MB T)とする。補間演算は、(a)の値と (c)の値力もステップ S2で算出した DIインジ クタ 15と PFIインジェクタ 16の燃料噴射量の比率に依存した値を算出する。たとえば、燃 料噴射量の比率が DIインジェクタ 15が 60%、 PFIインジェクタ 16が 40%の場合、(a ) X O. 6+ (c) X O. 4のような演算により値を算出する。  (2) The value obtained by interpolating the value of (a) calculated in (1) and the value of (c) is defined as the first interpolation value Ig. T (MB T). In the interpolation calculation, the values of (a) and (c) are also calculated depending on the ratio of the fuel injection amounts of the DI injector 15 and the PFI injector 16 calculated in step S2. For example, if the ratio of the fuel injection amount is 60% for DI injector 15 and 40% for PFI injector 16, the value is calculated by the calculation such as (a) X O. 6+ (c) X O. 4.
(3) (1)で算出した (b)の値と (d)の値を補間演算した値を第 2の補間値 Ig. T(TK) とする。補間演算は、上記 (2)と同様に行う。  (3) The value obtained by interpolating the values of (b) and (d) calculated in (1) is the second interpolation value Ig. T (TK). Interpolation is performed in the same manner as (2) above.
(4) 第 1の補間値 Ig. T(MBT)と第 2の補間値 Ig. T(TK)とを比較し、これらのうち V、ずれか遅角側の値に、ステップ S4で読み込んだ補正量をカ卩えた値を点火時期 Ig . Tとして算出する。  (4) Compare the first interpolation value Ig. T (MBT) with the second interpolation value Ig. T (TK), and read the value of V, deviation or retarded side in step S4. The value obtained by adjusting the correction amount is calculated as the ignition timing Ig.T.
[0054] ステップ S5の手順ののち、 ECU35は、ステップ S5で算出した点火時期において 気筒 12内の燃料に点火を行う(ステップ S6)。  [0054] After the procedure of step S5, the ECU 35 ignites the fuel in the cylinder 12 at the ignition timing calculated in step S5 (step S6).
[0055] 以上の手順はエンジン停止まで繰り返される (ステップ S7)。 [0055] The above procedure is repeated until the engine is stopped (step S7).
[0056] 以上、この実施の形態においては、 ECU35が DI方式における第 1および第 2点火 時期マップと、 PFI方式における第 3および第 4時期マップとを用いて気筒 12の点火 時期を制御することにより、簡易な制御によって、気筒 12の点火時期を MBTや TK にそれぞれ対応させることが可能になる。  [0056] As described above, in this embodiment, the ECU 35 controls the ignition timing of the cylinder 12 using the first and second ignition timing maps in the DI method and the third and fourth timing maps in the PFI method. Thus, it becomes possible to make the ignition timing of the cylinder 12 correspond to MBT and TK, respectively, by simple control.
[0057] この実施の形態によれば、第 1ないし第 4点火時期マップ (A)〜(D)中に割り付け られた値を参照して点火時期 (a)〜 (d)を算出することにより、各点火時期マップ (A) 〜 (D)の領域内にぉ 、て値の割り付けが存在しな 、箇所も、各点火時期マップ (A) 〜 (D)をもとに値を簡易に算出することが可能になる。 [0057] According to this embodiment, the ignition timings (a) to (d) are calculated by referring to the values assigned in the first to fourth ignition timing maps (A) to (D). In each ignition timing map (A) to (D), if there is no value assignment, each ignition timing map (A) It becomes possible to easily calculate the value based on (D).
[0058] また、この実施の形態によれば、第 1な 、し第 4点火時期マップ (A)〜(D)を DIイン ジェクタ 15のみ、または PFIインジェクタ 16のみを用いて燃料噴射した場合の点火時 期のみを割り付けることにより、マップを作成する際に両インジェクタ 15、 16を併用し 燃料噴射量を調整しながら実験を繰り返す手間が省け、少な 、工程で正確な点火 時期マップ (A)〜(D)を作成できる。  [0058] Also, according to this embodiment, the first and fourth ignition timing maps (A) to (D) are obtained when fuel is injected using only the DI injector 15 or only the PFI injector 16. By assigning only the ignition timing, there is no need to repeat the experiment while adjusting the fuel injection amount using both injectors 15 and 16 when creating the map, and the ignition timing map (A) ~ (D) can be created.
[0059] また、この実施の形態によれば、 DI方式および PFI方式の最大トルク発生時期の 点火時期マップ (A) (C)を用い、燃料噴射量の比率に依存して補間演算して第 1の 補間値を算出し、同様に、 DI方式および PFI方式のノッキング限界トルク発生時期の 点火時期マップ (B) (D)を用い、燃料噴射量の比率に依存して補間演算して第 2の 補間値を算出し、第 1の補間値と第 2の補間値とのいずれか遅角側を気筒の点火時 期とすることにより、 PFI方式および DI方式という 2系統の燃料噴射方式を併有する 内燃機関において、エンジンの運転状態に応じて DIインジェクタ 15と PFIインジエタ タ 16との燃料噴射量を調整しながら駆動させる場合であっても、 4枚の点火時期マツ プを使用するのみで、複雑な演算処理を行うことなぐ点火時期を常時エンジンの運 転状態に適した状態に維持することができる。  [0059] Further, according to this embodiment, the ignition timing maps (A) and (C) of the maximum torque generation timing of the DI method and the PFI method are used to perform interpolation calculation depending on the ratio of the fuel injection amount. Similarly, using the ignition timing maps (B) and (D) of the knocking limit torque generation timing of the DI method and PFI method, the interpolation value is calculated according to the ratio of the fuel injection amount, and the second interpolation value is calculated. The interpolated value of the first and second interpolated values is calculated as the ignition timing of the cylinder, so that two fuel injection methods, the PFI method and the DI method, are combined. Even if the internal combustion engine is driven while adjusting the fuel injection amount of the DI injector 15 and the PFI indicator 16 according to the operating state of the engine, it is only necessary to use four ignition timing maps. Ignition timing without complicated calculation processing It can be maintained in a state suitable for rolling state.
[0060] この実施の形態によれば、エンジン回転数センサ 38とエンジン負荷センサ 39によ つて、エンジンの回転数と負荷を検知でき、エンジンの回転数とエンジンの負荷とを ノ ラメータとした点火時期の制御を実現できる。  [0060] According to this embodiment, the engine speed sensor 38 and the engine load sensor 39 can detect the engine speed and the load, and the ignition is performed using the engine speed and the engine load as a parameter. Time control can be realized.
[0061] この実施の形態によれば、吸入空気量検知センサ、アクセル開度検知センサ、吸 気管負圧検知センサのうち少なくともいずれかを内燃機関負荷検知手段として備え ることにより、エンジンにかかった負荷量を正確に検知できる。  [0061] According to this embodiment, at least one of the intake air amount detection sensor, the accelerator opening detection sensor, and the intake pipe negative pressure detection sensor is provided as the internal combustion engine load detection means, so that it is applied to the engine. The load amount can be detected accurately.
[0062] この実施の形態によれば、水温センサ 41によってエンジンの冷却水の水温を検知 し、水温に依存して点火時期の補正量を算出することにより、点火時期に影響を及ぼ しゃす 、エンジンの暖気状態に基づ 、て点火時期を調整できる。  [0062] According to this embodiment, the coolant temperature of the engine is detected by the water temperature sensor 41, and the correction amount of the ignition timing is calculated depending on the water temperature, thereby affecting the ignition timing. The ignition timing can be adjusted based on the warm-up condition.
[0063] なお、上記実施の形態にお!、ては、エンジンの冷却水の水温に基づ!/、て補正量を 算出したが、エンジンの運転状態を反映し、定常的に値を検知できるものであればど のようなものを用いてもょ 、。 [0064] また、上記実施の形態においては、各気筒 12ごとに DIインジェクタ 15と PFIインジ ェクタ 16とを設けた力 両インジェクタ 15、 16の設置個数は各気筒ごとに 1個づつで なくてもよい。上記実施の形態以外の両インジヱクタ 15、 16の設置形態としては、例 えば、各気筒 12ごとに DIインジヱクタ 15を設け、各気筒 12の吸気ポート 13に配設さ れる吸気管の上流側を 1本に束ね、束ねられた吸気管部分にひとつの PFIインジエタ タ 16を設ける構成などが考えられる。 [0063] In the above embodiment, the correction amount is calculated based on the coolant temperature of the engine! However, the value is steadily detected reflecting the operating state of the engine. Anything that can be used. [0064] In the above-described embodiment, the number of power injectors 15 and 16 provided with DI injectors 15 and PFI injectors 16 for each cylinder 12 may not be one for each cylinder. Good. As an installation form of both the injectors 15 and 16 other than the above embodiment, for example, a DI indicator 15 is provided for each cylinder 12, and the upstream side of the intake pipe disposed in the intake port 13 of each cylinder 12 is set to 1 A configuration in which a single PFI indicator 16 is provided in the bundled intake pipe section is conceivable.
[0065] 上記実施の形態は本発明の実施の態様の一例を示すものであり、本発明がこの実 施の形態のみに限定されることを示すものではな 、ことは、 V、うまでもな 、。  [0065] The above embodiment shows an example of the embodiment of the present invention, and does not indicate that the present invention is limited to this embodiment. ,.
符号の説明  Explanation of symbols
11 · · ·エンジン  11 · · · Engine
12· • 同  12 · • Same
is••DIインジェクタ  is •• DI injector
le- ••PFIインジェクタ  le- •• PFI injector
35 · ••ECU  35 •• ECU
38 · • 'エンジン回転数センサ  38 · • 'Engine speed sensor
39 · · ·エンジン負荷センサ  39 · · · Engine load sensor
40· · ·ァクチユエータ  40 ·································
41 · · ·水温センサ  41 · · · Water temperature sensor

Claims

請求の範囲 The scope of the claims
[1] 筒内噴射用インジェクタおよび吸気管噴射用インジェクタと、  [1] In-cylinder injector and intake pipe injector;
内燃機関の運転状態を検知する運転状態検知手段と、  An operating state detecting means for detecting the operating state of the internal combustion engine;
前記運転状態を監視するとともに前記運転状態に依存して前記筒内噴射用インジ ェクタおよび前記吸気管噴射用インジェクタのそれぞれの燃料噴射量を制御する噴 射量制御手段と、  An injection amount control means for monitoring the operating state and controlling the fuel injection amount of each of the in-cylinder injector and the intake pipe injector depending on the operating state;
前記筒内噴射用インジェクタのみを用いて燃料噴射をした場合の前記内燃機関の 点火時期を最大トルク発生時期に略一致するよう前記内燃機関の運転状態に基づ いて割り付けた第 1点火時期マップ、および前記筒内噴射用インジェクタのみを用い て燃料噴射をした場合の前記内燃機関の点火時期をノッキング限界トルク発生時期 に略一致するよう前記内燃機関の運転状態に基づいて割り付けた第 2点火時期マツ プ、および前記吸気管噴射用インジェクタのみを用いて燃料噴射をした場合の前記 内燃機関の点火時期を最大トルク発生時期に略一致するよう前記内燃機関の運転 状態に基づ 、て割り付けた第 3点火時期マップ、および前記吸気管噴射用インジェ クタのみを用いて燃料噴射をした場合の前記内燃機関の点火時期をノッキング限界 トルク発生時期に略一致するよう前記内燃機関の運転状態に基づいて割り付けた第 4点火時期マップを備えた記憶手段と、  A first ignition timing map assigned based on the operating state of the internal combustion engine so that the ignition timing of the internal combustion engine when fuel injection is performed using only the in-cylinder injector is substantially the same as the maximum torque generation timing; And a second ignition timing pine assigned based on the operating state of the internal combustion engine so that the ignition timing of the internal combustion engine when fuel is injected using only the in-cylinder injector is substantially coincident with the knocking limit torque generation timing. And the third timing assigned based on the operating state of the internal combustion engine so that the ignition timing of the internal combustion engine when the fuel injection is performed using only the intake pipe injection injector substantially matches the maximum torque generation timing. The ignition timing map and the ignition timing of the internal combustion engine when fuel injection is performed using only the intake pipe injector are knocking limits. Storage means comprising a fourth ignition timing map assigned based on the operating state of the internal combustion engine so as to substantially coincide with the torque generation timing;
前記筒内噴射用インジェクタおよび前記吸気管噴射用インジェクタがそれぞれ噴 射する前記燃料噴射量の比率、および前記 4種類の点火時期マップを用いて前記 気筒の点火時期を制御する点火時期制御手段と  Ignition timing control means for controlling the ignition timing of the cylinder using the ratio of the fuel injection amount injected by the in-cylinder injector and the intake pipe injector and the four types of ignition timing maps, respectively.
を備えたことを特徴とする 2系統燃料噴射式内燃機関。  A dual fuel injection internal combustion engine characterized by comprising:
[2] 前記運転状態検知手段が検知した運転状態において、前記第 1ないし第 4点火時 期マップ中に割り付けられた値を参照して基本点火時期を算出し、前記燃料噴射量 の比率に依存して前記第 1点火時期マップの前記基本点火時期および前記第 3点 火時期マップの前記基本点火時期を補間演算した第 1の補間値を算出するとともに 、前記燃料噴射量の比率に依存して前記第 2点火時期マップの前記基本点火時期 および前記第 4点火時期マップの前記基本点火時期を補間演算した第 2の補間値を 算出し、前記第 1の補間値と前記第 2の補間値とを比較していずれか遅角側の前記 補間値を前記気筒の点火時期とする点火時期算出手段を備えた [2] In the operation state detected by the operation state detection means, the basic ignition timing is calculated with reference to the values assigned in the first to fourth ignition timing maps, and depends on the ratio of the fuel injection amount Calculating a first interpolation value obtained by interpolating the basic ignition timing of the first ignition timing map and the basic ignition timing of the third point fire timing map, and depending on the ratio of the fuel injection amount A second interpolation value obtained by interpolating the basic ignition timing of the second ignition timing map and the basic ignition timing of the fourth ignition timing map is calculated, and the first interpolation value, the second interpolation value, Compare either the retarded side of the Ignition timing calculation means for setting the interpolation value as the ignition timing of the cylinder is provided.
ことを特徴とする、請求項 1に記載の 2系統燃料噴射式内燃機関。  The dual-fuel-injection internal combustion engine according to claim 1, wherein
[3] 前記運転状態検知手段は、前記内燃機関の冷却水の水温を検知する水温検知手 段を備え、 [3] The operating state detecting means includes a water temperature detecting means for detecting the temperature of the cooling water of the internal combustion engine,
前記点火時期算出手段は、前記冷却水の水温に依存して前記気筒の点火時期の 補正量を算出する  The ignition timing calculation means calculates a correction amount of the ignition timing of the cylinder depending on the coolant temperature.
ことを特徴とする、請求項 2に記載の 2系統燃料噴射式内燃機関。  The dual fuel injection internal combustion engine according to claim 2, wherein
[4] 前記運転状態検知手段は、 [4] The operating state detection means includes:
内燃機関回転数検知手段と、  An internal combustion engine speed detection means;
内燃機関負荷検知手段と  Internal combustion engine load detection means;
を備えたことを特徴とする、請求項 1に記載の 2系統燃料噴射式内燃機関。  2. The dual fuel injection internal combustion engine according to claim 1, further comprising:
[5] 前記内燃機関負荷検知手段は、 [5] The internal combustion engine load detection means includes:
吸入空気量検知手段と、  Intake air amount detection means;
アクセル開度検知手段と、  Accelerator opening detection means;
吸気管負圧検知手段と  Intake pipe negative pressure detection means and
のうち少なくともいずれかを備えたことを特徴とする、請求項 4に記載の 2系統燃料 噴射式内燃機関。  5. The dual fuel injection internal combustion engine according to claim 4, comprising at least one of the two.
PCT/JP2006/304775 2005-03-18 2006-03-10 Dual fuel injection system internal combustion engine WO2006100943A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2007509198A JP4369514B2 (en) 2005-03-18 2006-03-10 Dual fuel injection internal combustion engine
CN2006800087668A CN101142403B (en) 2005-03-18 2006-03-10 Dual fuel injection system internal combustion engine
AU2006225810A AU2006225810B2 (en) 2005-03-18 2006-03-10 Dual fuel injection system internal combustion engine
EP06715545.7A EP1881192B1 (en) 2005-03-18 2006-03-10 Internal combustion engine provided with double system of fuel injection
BRPI0609367A BRPI0609367B1 (en) 2005-03-18 2006-03-10 internal combustion engine fitted with dual fuel injection system
CA2602060A CA2602060C (en) 2005-03-18 2006-03-10 Internal combustion engine provided with double system of fuel injection

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-080698 2005-03-18
JP2005080698 2005-03-18

Publications (1)

Publication Number Publication Date
WO2006100943A1 true WO2006100943A1 (en) 2006-09-28

Family

ID=37009007

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/304775 WO2006100943A1 (en) 2005-03-18 2006-03-10 Dual fuel injection system internal combustion engine

Country Status (10)

Country Link
US (1) US7216627B2 (en)
EP (1) EP1881192B1 (en)
JP (1) JP4369514B2 (en)
KR (1) KR100877838B1 (en)
CN (1) CN101142403B (en)
AU (1) AU2006225810B2 (en)
BR (1) BRPI0609367B1 (en)
CA (1) CA2602060C (en)
RU (1) RU2358143C1 (en)
WO (1) WO2006100943A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016103408A1 (en) * 2014-12-25 2016-06-30 三菱自動車工業株式会社 Engine
CN108087135A (en) * 2017-12-15 2018-05-29 奇瑞汽车股份有限公司 The control method and device of dual-fuel vehicle

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006100849A1 (en) * 2005-03-18 2006-09-28 Toyota Jidosha Kabushiki Kaisha Dual-system fuel injection engine
JP4542135B2 (en) * 2005-03-18 2010-09-08 トヨタ自動車株式会社 Dual fuel injection internal combustion engine
JP4297160B2 (en) * 2006-12-22 2009-07-15 トヨタ自動車株式会社 Internal combustion engine
US7770560B2 (en) * 2008-03-17 2010-08-10 Ford Global Technologies, Llc System and control method for an engine having two types of fuel injectors
US9157825B2 (en) 2008-05-01 2015-10-13 GM Global Technology Operations LLC Engine knock diagnostic
DE102010037003A1 (en) * 2010-08-16 2012-02-16 Ford Global Technologies, Llc. Method for operating an internal combustion engine with gas as fuel and internal combustion engine for carrying out such a method
WO2012098661A1 (en) * 2011-01-20 2012-07-26 トヨタ自動車株式会社 Control device for internal combustion engine
JP5723201B2 (en) * 2011-04-18 2015-05-27 川崎重工業株式会社 Fuel injection control device
BR112013030294B1 (en) * 2011-07-11 2020-12-15 Toyota Jidosha Kabushiki Kaisha CONTROL EQUIPMENT FOR INTERNAL COMBUSTION ENGINES
CN102418614A (en) * 2011-08-13 2012-04-18 镇江恒驰科技有限公司 Fuel injection control system of flexible fuel engine
US9303577B2 (en) 2012-12-19 2016-04-05 Ford Global Technologies, Llc Method and system for engine cold start and hot start control
US9422898B2 (en) 2013-02-12 2016-08-23 Ford Global Technologies, Llc Direct injection fuel pump
US9429124B2 (en) 2013-02-12 2016-08-30 Ford Global Technologies, Llc Direct injection fuel pump
US9599082B2 (en) 2013-02-12 2017-03-21 Ford Global Technologies, Llc Direct injection fuel pump
US9441556B2 (en) * 2013-03-15 2016-09-13 GM Global Technology Operations LLC Noise updating systems and methods
US9297329B2 (en) 2013-04-01 2016-03-29 Ford Global Technologies, Llc Method and system for engine control
US9255541B2 (en) 2013-04-01 2016-02-09 Ford Global Technologies, Llc Method and system for engine control
US9453474B2 (en) * 2013-06-12 2016-09-27 Ford Global Technologies, Llc Method for operating a direct fuel injection system
US9303583B2 (en) 2014-01-14 2016-04-05 Ford Global Technologies, Llc Robust direct injection fuel pump system
US9435287B2 (en) * 2014-02-25 2016-09-06 Ford Global Technologies, Llc Method for fuel injection control
US9458773B2 (en) * 2014-05-15 2016-10-04 Ford Global Technologies, Llc Method and system for ignition energy control
US9683512B2 (en) 2014-05-23 2017-06-20 Ford Global Technologies, Llc Pressure device to reduce ticking noise during engine idling
US9732695B2 (en) * 2015-05-19 2017-08-15 Ford Global Technologies, Llc Method and system for supplying fuel to an engine
CN104989532A (en) * 2015-07-09 2015-10-21 申屠淼 Mechanically-controlled bi-direction oil supply piston type internal combustion engine
US9920705B2 (en) 2015-12-16 2018-03-20 Robert Bosch, Llc Fuel injection system and method
DE102016218912A1 (en) 2016-09-29 2018-03-29 Robert Bosch Gmbh Cost effective and energy saving fuel injection system
CN109790787A (en) * 2016-09-30 2019-05-21 罗伯特·博世有限公司 For in the method for changing intake manifold injection and the distribution directly between injection in internal combustion engine
DE112019003324T5 (en) * 2018-08-02 2021-03-25 Mazda Motor Corporation CONTROL DEVICE FOR MOTOR
CN111636970B (en) * 2020-06-05 2021-08-24 吉林大学 Cold start oil injection ignition control method based on composite injection engine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002195141A (en) * 2000-12-22 2002-07-10 Toyota Motor Corp Device for controlling ignition timing of internal combustion engine
JP3414303B2 (en) * 1998-03-17 2003-06-09 日産自動車株式会社 Control device for direct injection spark ignition type internal combustion engine
JP2006057594A (en) * 2004-08-23 2006-03-02 Toyota Motor Corp Ignition timing control method for internal combustion engine
JP7099113B2 (en) * 2018-07-19 2022-07-12 三菱ケミカル株式会社 Manufacturing method of carbon fiber prepreg

Family Cites Families (77)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4981719A (en) 1972-12-11 1974-08-07
DE7333072U (en) * 1973-09-12 1977-01-20 Adam Opel Ag, 6090 Ruesselsheim INTAKE FILTER OR NOISE DAMPERS FOR COMBUSTION MACHINES
CA1102191A (en) 1977-11-21 1981-06-02 Lauren L. Bowler Fuel injection apparatus with wetting action
DE2757248A1 (en) * 1977-12-22 1979-06-28 Porsche Ag FUEL INJECTION SYSTEM FOR MIXED COMPRESSING, EXTERNAL IGNITION ENGINEERING
DE3019544A1 (en) * 1980-05-22 1981-11-26 Robert Bosch Gmbh, 7000 Stuttgart FUEL SUPPLY SYSTEM
DE3140948A1 (en) * 1981-10-15 1983-05-05 Robert Bosch Gmbh, 7000 Stuttgart METHOD AND FUEL INJECTION SYSTEM FOR FUEL SUPPLYING A MIXTURING COMPRESSIVE IGNITION COMBUSTION ENGINE
US4526152A (en) 1984-01-12 1985-07-02 Ford Motor Company Low pressure low cost automotive type fuel injection system
JPS6125928A (en) 1984-07-17 1986-02-05 Hitachi Ltd Throttle valve assembly
JPS61243706A (en) * 1985-04-18 1986-10-30 Kongo Kk Motor-driven moving rack
DE3539012A1 (en) * 1985-11-02 1987-05-07 Vdo Schindling ARRANGEMENT WITH AN ELECTRONIC REGULATOR FOR INTERNAL COMBUSTION ENGINES
DE3707805A1 (en) 1986-03-20 1987-09-24 Volkswagen Ag Intake pipe arrangement for multi-cylinder internal combustion engines with fuel injection nozzles
JPS6398479A (en) 1986-10-16 1988-04-28 Canon Inc Thermal transfer material
JPH0799113B2 (en) * 1986-11-28 1995-10-25 マツダ株式会社 Stratified combustion control system for engine
JP2669021B2 (en) * 1988-12-27 1997-10-27 株式会社デンソー Ignition coil for internal combustion engine
JP2765726B2 (en) 1989-06-13 1998-06-18 マツダ株式会社 Engine port structure
DE59002312D1 (en) * 1989-12-22 1993-09-16 Fev Motorentech Gmbh & Co Kg SUCTION AND MIXTURE FORMING SYSTEM FOR MULTI-CYLINDRICAL, NON-IGNITIONED INTERNAL COMBUSTION ENGINES.
JPH03275978A (en) 1990-03-22 1991-12-06 Mazda Motor Corp Intake device of engine
JP2997750B2 (en) 1990-08-08 2000-01-11 ヤマハ発動機株式会社 Fuel injection engine
JPH04203211A (en) * 1990-11-28 1992-07-23 Yamaha Motor Co Ltd Ignition plug arrangement structure of engine for vehicle
US6405704B2 (en) * 1992-07-27 2002-06-18 Kruse Technology Partnership Internal combustion engine with limited temperature cycle
US5265562A (en) * 1992-07-27 1993-11-30 Kruse Douglas C Internal combustion engine with limited temperature cycle
JPH0799113A (en) * 1993-09-29 1995-04-11 Univ Nagoya Magnetoresistance effect multilayer film and magnetic head
US5608632A (en) * 1993-10-19 1997-03-04 White; Robert M. Self-contained sequential-throttle-body-injection engine control system
JPH07247924A (en) 1994-03-10 1995-09-26 Keihin Seiki Mfg Co Ltd Fuel injection device
JPH07269394A (en) 1994-03-31 1995-10-17 Suzuki Motor Corp Fuel injection controller
JP3690824B2 (en) 1994-06-03 2005-08-31 スズキ株式会社 Fuel injection device for internal combustion engine
JPH08109861A (en) 1994-10-13 1996-04-30 Hitachi Ltd Control device for internal combustion engine
JPH08121285A (en) 1994-10-27 1996-05-14 Hitachi Ltd Fuel supplying device and fuel supplying system
JPH08144889A (en) 1994-11-15 1996-06-04 Toyota Motor Corp Fuel feeder of v-engine
US5894832A (en) * 1996-07-12 1999-04-20 Hitachi America, Ltd., Research And Development Division Cold start engine control apparatus and method
US6024064A (en) * 1996-08-09 2000-02-15 Denso Corporation High pressure fuel injection system for internal combustion engine
JPH1054318A (en) 1996-08-09 1998-02-24 Denso Corp Accumulator type fuel supply device for engine
JPH10115270A (en) 1996-10-11 1998-05-06 Daihatsu Motor Co Ltd Fuel injection device for internal combustion engine
JPH10141194A (en) * 1996-11-01 1998-05-26 Yanmar Diesel Engine Co Ltd Ignition timing control method for internal combustion engine
JPH10176574A (en) * 1996-12-19 1998-06-30 Toyota Motor Corp Fuel injection controller for internal combustion engine
JPH10227239A (en) 1997-02-13 1998-08-25 Mazda Motor Corp Engine control device
JP3886217B2 (en) * 1997-03-27 2007-02-28 ヤマハ発動機株式会社 4 cycle engine intake system
JPH1182250A (en) 1997-09-02 1999-03-26 Denso Corp Intake device for internal combustion device
JP3267217B2 (en) 1997-10-29 2002-03-18 株式会社デンソー Fuel injection control device for internal combustion engine
JPH11159424A (en) 1997-11-27 1999-06-15 Denso Corp Fuel injection device for internal combustion engine
JPH11315733A (en) 1998-05-01 1999-11-16 Yamaha Motor Co Ltd In-cylinder direct injection engine
JP4194002B2 (en) * 1998-05-13 2008-12-10 ヤマハマリン株式会社 In-cylinder fuel injection engine
JPH11350966A (en) 1998-06-11 1999-12-21 Fuji Heavy Ind Ltd Fuel injection type internal combustion engine
JP2000008931A (en) * 1998-06-19 2000-01-11 Hitachi Ltd Engine control device with electromagnetic drive type intake/exhaust valve
JP2000097132A (en) 1998-09-22 2000-04-04 Yamaha Motor Co Ltd Fuel piping structure
JP2000097131A (en) 1998-09-22 2000-04-04 Yamaha Motor Co Ltd Setting structure of fuel injection valve
JP2000130234A (en) 1998-10-23 2000-05-09 Toyota Motor Corp Fuel injection control device for direct injection internal combustion engine
JP4023020B2 (en) 1999-02-19 2007-12-19 トヨタ自動車株式会社 Fuel pressure control device for high pressure fuel injection system
JP2001020837A (en) * 1999-07-07 2001-01-23 Nissan Motor Co Ltd Fuel injection control device for engine
JP4227264B2 (en) 1999-10-13 2009-02-18 本田技研工業株式会社 Motorcycle fuel supply system
JP2001132589A (en) 1999-11-01 2001-05-15 Honda Motor Co Ltd Fuel supply device for engine
JP2001169497A (en) * 1999-12-06 2001-06-22 Moriyama Manufacturing Co Ltd Stator for ac generator
JP3583673B2 (en) 1999-12-14 2004-11-04 三菱電機株式会社 Fuel injection control device for in-cylinder injection engine
JP2001248478A (en) 2000-02-29 2001-09-14 Hitachi Ltd Fuel injection device for internal combustion engine and fuel injection controlling method
SE522625C2 (en) 2000-04-19 2004-02-24 Sem Ab Methods and apparatus for internal combustion engine
JP2002048035A (en) 2000-08-02 2002-02-15 Yamaha Motor Co Ltd Cylinder fuel injection engine with supercharger
JP2002047973A (en) 2000-08-03 2002-02-15 Denso Corp Fuel injection controller of direct injection engine
JP2002091933A (en) * 2000-09-20 2002-03-29 Hitachi Ltd Processor system
US6467465B1 (en) * 2001-01-10 2002-10-22 Anthony R. Lorts Throttle body fuel injector adapter manifold
JP4198329B2 (en) 2001-04-18 2008-12-17 本田技研工業株式会社 Fuel injection device for internal combustion engine
JP3896813B2 (en) * 2001-08-31 2007-03-22 トヨタ自動車株式会社 Fuel injection device for in-cylinder internal combustion engine
DE60103277D1 (en) 2001-09-14 2004-06-17 Ducati Motor Holding Spa Device for mixing air and fuel for an internal combustion engine
JP4357800B2 (en) 2002-06-24 2009-11-04 トヨタ自動車株式会社 Fuel supply device for internal combustion engine
JP3741087B2 (en) * 2002-07-12 2006-02-01 トヨタ自動車株式会社 Fuel injection control device for in-cylinder internal combustion engine
JP4077266B2 (en) 2002-07-30 2008-04-16 ヤマハ発動機株式会社 Fuel supply device for motorcycle engine
JP4024629B2 (en) 2002-09-03 2007-12-19 本田技研工業株式会社 Fuel injection device for internal combustion engine
JP4290948B2 (en) * 2002-09-11 2009-07-08 本田技研工業株式会社 Engine fuel injection system
JP3970725B2 (en) * 2002-09-11 2007-09-05 本田技研工業株式会社 Engine fuel injection system
JP4161746B2 (en) 2003-03-07 2008-10-08 トヨタ自動車株式会社 INJECTION CHARACTERISTICS DETECTING DEVICE FOR FUEL INJECTION VALVE AND FUEL INJECTION CONTROL DEVICE FOR INTERNAL COMBUSTION ENGINE EQUIPPED
JP2004308510A (en) * 2003-04-04 2004-11-04 Toyota Motor Corp Internal combustion engine detecting failure of compression ratio change mechanism for control
US7007667B2 (en) * 2003-07-22 2006-03-07 Hitachi, Ltd. Cold start fuel control system
JP4238166B2 (en) * 2004-03-22 2009-03-11 ヤマハ発動機株式会社 Fuel supply device and vehicle
JP4462079B2 (en) * 2004-11-11 2010-05-12 トヨタ自動車株式会社 Control device for internal combustion engine
EP1860303B1 (en) * 2005-03-18 2019-10-30 Toyota Jidosha Kabushiki Kaisha Internal combustion engine
WO2006100849A1 (en) * 2005-03-18 2006-09-28 Toyota Jidosha Kabushiki Kaisha Dual-system fuel injection engine
JP4643323B2 (en) * 2005-03-18 2011-03-02 トヨタ自動車株式会社 Control device for internal combustion engine
JP4542135B2 (en) * 2005-03-18 2010-09-08 トヨタ自動車株式会社 Dual fuel injection internal combustion engine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3414303B2 (en) * 1998-03-17 2003-06-09 日産自動車株式会社 Control device for direct injection spark ignition type internal combustion engine
JP2002195141A (en) * 2000-12-22 2002-07-10 Toyota Motor Corp Device for controlling ignition timing of internal combustion engine
JP2006057594A (en) * 2004-08-23 2006-03-02 Toyota Motor Corp Ignition timing control method for internal combustion engine
JP7099113B2 (en) * 2018-07-19 2022-07-12 三菱ケミカル株式会社 Manufacturing method of carbon fiber prepreg

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016103408A1 (en) * 2014-12-25 2016-06-30 三菱自動車工業株式会社 Engine
JPWO2016103408A1 (en) * 2014-12-25 2017-07-06 三菱自動車工業株式会社 engine
US10344729B2 (en) 2014-12-25 2019-07-09 Mitsubishi Kogyo Kabushiki Kaisha Engine including direct injector and port injector
CN108087135A (en) * 2017-12-15 2018-05-29 奇瑞汽车股份有限公司 The control method and device of dual-fuel vehicle

Also Published As

Publication number Publication date
KR100877838B1 (en) 2009-01-08
CN101142403B (en) 2010-05-26
CA2602060A1 (en) 2006-09-28
US20060207555A1 (en) 2006-09-21
BRPI0609367A2 (en) 2010-03-30
CA2602060C (en) 2011-05-17
EP1881192A4 (en) 2015-05-27
EP1881192B1 (en) 2016-09-07
AU2006225810B2 (en) 2009-06-11
EP1881192A1 (en) 2008-01-23
RU2358143C1 (en) 2009-06-10
US7216627B2 (en) 2007-05-15
JPWO2006100943A1 (en) 2008-09-04
JP4369514B2 (en) 2009-11-25
BRPI0609367B1 (en) 2018-08-28
KR20070101378A (en) 2007-10-16
CN101142403A (en) 2008-03-12
AU2006225810A1 (en) 2006-09-28

Similar Documents

Publication Publication Date Title
JP4369514B2 (en) Dual fuel injection internal combustion engine
US7841316B2 (en) Controller for direct injection engine
JP5451687B2 (en) Engine control device
US7347185B2 (en) Unit and method for controlling internal combustion engines
JPH11210536A (en) Fuel control device for multiple cylinder engine
EP2851541B1 (en) Engine control device
JPH09195826A (en) Air-fuel ratio control method of multicylinder engine
JP6520910B2 (en) Control device for internal combustion engine
MX2015001616A (en) Method and system of controlling bank to bank component temperature protection during individual cylinder knock control.
US10294875B2 (en) Control device for adjusting first and second fuel ratios
US9002618B2 (en) Variable valve timing control apparatus for engine
US7363889B2 (en) Control device for multicylinder internal combustion engine
JPH04140435A (en) Output controller of engine
WO2016190092A1 (en) Engine control device
US7140351B2 (en) Method and device for operating an internal combustion engine
JP2004116420A (en) Ignition timing controlling device for engine
JP6077371B2 (en) Control device for internal combustion engine
JP3720200B2 (en) Damage detection device for intake manifold of internal combustion engine
CN100383370C (en) Control device for multicylinder internal combustion engine
JP2024020875A (en) Internal combustion engine control device
JP5400700B2 (en) Fuel injection control device for internal combustion engine
JP2021161976A (en) Knocking control method of internal combustion engine and knocking control device
JP2017066925A (en) Combustion fluctuation detecting device, engine control device, combustion fluctuation detecting method and engine control method
JPS59226242A (en) Apparatus for starting electronically controlled fuel injection in internal-combustion engine
JP2012072738A (en) Control device of internal combustion engine

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680008766.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007509198

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2006225810

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 1020077020304

Country of ref document: KR

REEP Request for entry into the european phase

Ref document number: 2006715545

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006715545

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2602060

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2006225810

Country of ref document: AU

Date of ref document: 20060310

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2006225810

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2007138332

Country of ref document: RU

WWP Wipo information: published in national office

Ref document number: 2006715545

Country of ref document: EP

ENP Entry into the national phase

Ref document number: PI0609367

Country of ref document: BR

Kind code of ref document: A2