JP2005336407A - Composite material excellent in surface smoothness - Google Patents

Composite material excellent in surface smoothness Download PDF

Info

Publication number
JP2005336407A
JP2005336407A JP2004160347A JP2004160347A JP2005336407A JP 2005336407 A JP2005336407 A JP 2005336407A JP 2004160347 A JP2004160347 A JP 2004160347A JP 2004160347 A JP2004160347 A JP 2004160347A JP 2005336407 A JP2005336407 A JP 2005336407A
Authority
JP
Japan
Prior art keywords
resin
composite material
surface smoothness
layer
material excellent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004160347A
Other languages
Japanese (ja)
Inventor
Toru Kaneko
徹 金子
Sadataka Umemoto
禎孝 梅元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Toho Tenax Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Tenax Co Ltd filed Critical Toho Tenax Co Ltd
Priority to JP2004160347A priority Critical patent/JP2005336407A/en
Publication of JP2005336407A publication Critical patent/JP2005336407A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a composite material excellent in surface smoothness for obtaining a molded article of reinforced plastic having a smooth surface (surface with good design). <P>SOLUTION: The invention relates to the composite material excellent in surface smoothness comprising a laminate comprising a nonwoven fabric layer laminated on at least a surface of a reinforcing material sheet layer and a matrix resin impregnated in the laminate. The composite material includes the nonwoven fabric constituting the composite material comprising a resin layer for design formed by coating or other methods on the out sidesurface of the nonwoven fabric. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、繊維強化プラスチック成形品として利用される、表面平滑性に優れた複合材料に関する。 The present invention relates to a composite material that is used as a fiber-reinforced plastic molded article and has excellent surface smoothness.

繊維強化プラスチック成形品は、従来、繊維強化材に予め樹脂を含浸したシートを用いたオートクレーブ成形が主流であった。
近年、繊維強化プラスチック成形品のコスト削減の要望が高く、従来のオートクレーブ成形方法から樹脂トランスファー成形法(RTM法)またはレジンフィルムインフュージョン成形法(RFI法)を用いた成形に移りつつある。 RTM法またはRFI法は、熱硬化性樹脂を用いた成形法の一種であり、繊維強化プラスチック成形品は、繊維強化材を型に敷設した後、型のキャビティーに樹脂を注入し、または樹脂フィルムを型に敷設して、繊維強化材に樹脂を含浸させ硬化させることにより製造される。
Conventionally, a fiber reinforced plastic molded product has been mainly autoclave molding using a sheet in which a fiber reinforcing material is impregnated with a resin in advance.
In recent years, there is a high demand for cost reduction of fiber-reinforced plastic molded products, and the conventional autoclave molding method is being shifted to molding using a resin transfer molding method (RTM method) or a resin film infusion molding method (RFI method). The RTM method or the RFI method is a kind of molding method using a thermosetting resin, and a fiber reinforced plastic molded product is formed by injecting a resin into a mold cavity after laying a fiber reinforcing material on a mold, or a resin It is manufactured by laying a film in a mold, and impregnating and curing a resin in a fiber reinforcement.

オートクレーブ成形、RTM法、RFI法で使用する繊維強化材は、通常織物等のシート状に加工した繊維強化材を用いる。
シート状の繊維強化材としては様々な形態のものがあるが、織物、多軸織物が汎用されている。織物、多軸織物等のシート状繊維強化材を、繊維強化プラスチック成形品の表面に配置する場合、織目の凹凸、多軸織物のステッチ部の凹凸が成形品の表面に現れるため、成形品の平滑性が損なわれる欠点がある。
The fiber reinforcement used in the autoclave molding, the RTM method, and the RFI method is usually a fiber reinforcement processed into a sheet shape such as a fabric.
There are various forms of sheet-like fiber reinforcement, but woven fabrics and multiaxial fabrics are widely used. When sheet-like fiber reinforcements such as woven fabrics and multiaxial fabrics are placed on the surface of a fiber-reinforced plastic molded product, the unevenness of the texture and the unevenness of the stitches of the multiaxial fabric appear on the surface of the molded product. There is a drawback that the smoothness of the glass is impaired.

多軸織物を使用した場合、表面平滑性を向上させる方法として、多軸織物のステッチ糸に低融点ポリマーを使用し、繊維強化プラスチック成形品を成形する際、低融点ポリマーの融点以上で加熱成形し、ステッチ糸を溶融する方法が紹介されている(特許文献1)。しかし、低融点ポリマーをステッチ糸に使用した多軸織物を用いた場合でも、ステッチ糸が溶融される前の形状が保持され、ステッチ糸の周辺には、僅かな凹みが観察され、表面を完全に平滑にするのは困難である。また、表面平滑性を向上させる方法として、成形品の表面に、不織布等のサーフェースマットの使用やゲルコート剤を使用する方法が実施されている。しかし、サーフェースマットを使用しても、サーフェースマットの材質、厚み及びサーフェースマット材の下の層に使用する繊維強化材の種類によっては、製品表面が平滑にならない事がある。
特開2002−227066号公報
When using multiaxial woven fabric, as a method to improve surface smoothness, use low melting point polymer for stitch yarn of multiaxial woven fabric, and when molding fiber reinforced plastic molded product, heat molding above melting point of low melting point polymer A method of melting the stitch yarn has been introduced (Patent Document 1). However, even when using a multi-axial woven fabric using a low melting point polymer for the stitch yarn, the shape before the stitch yarn is melted is retained, and a slight dent is observed around the stitch yarn, and the surface is completely It is difficult to smooth out. In addition, as a method for improving the surface smoothness, a method of using a surface mat such as a nonwoven fabric or a gel coating agent on the surface of a molded product has been implemented. However, even if a surface mat is used, the product surface may not be smooth depending on the material and thickness of the surface mat and the type of fiber reinforcement used for the layer below the surface mat material.
JP 2002-227066 A

本発明の目的は、平滑な表面(意匠性表面)を有する繊維強化プラスチック成形品を得るための、表面平滑性に優れた複合材料を提供することにある。 An object of the present invention is to provide a composite material excellent in surface smoothness for obtaining a fiber-reinforced plastic molded article having a smooth surface (designable surface).

本発明の目的・課題は、繊維強化材シート層と少なくともその一面に積層された不織布層からなる積層体と、該積層体に含浸せしめられたマトリックス樹脂とからなる表面平滑性に優れた複合材料によって達成される。 An object and problem of the present invention is a composite material excellent in surface smoothness comprising a laminate comprising a fiber reinforcement sheet layer, a nonwoven fabric layer laminated on at least one surface thereof, and a matrix resin impregnated in the laminate. Achieved by:

本発明の複合材料は、表面に不織布を使用し且つ内層の繊維強化材シートを適正化しているため、複合材料表面に凹凸が無く、表面平滑な成形面が得られる。そしてまた、平滑性に優れた意匠性表面を有する繊維強化複合材料(成形品を含む)が得られる。 Since the composite material of the present invention uses a non-woven fabric on the surface and optimizes the inner-layer fiber reinforcing material sheet, the composite material surface has no irregularities and a smooth surface can be obtained. Moreover, a fiber-reinforced composite material (including a molded product) having a design surface excellent in smoothness can be obtained.

本発明における複合材料は、繊維強化材シート層とそれに積層された不織布層からなる積層体と、この積層体に含浸せしめられたマトリックス樹脂とからなるものであるが、積層体は、繊維強化材シート層の片面に不織布層が積層されたものでも、繊維強化材シート層の両面に不織布層が積層されたものであっても良い。また、本発明における複合材料は、最終的に、種々の用途の繊維強化プラスチック成形品とされる場合に、複合材料を構成する不織布層の外表面に、意匠性樹脂層が、塗装その他の方法で形成される場合があるが、かかる態様のものも、本発明の範囲に含まれるものである。なお、本発明において、層とは、例えば、繊維強化材シート層と言う場合には、一枚の繊維強化材シートの場合もあるし、それを複数枚重ねたものであっても良い。 The composite material in the present invention comprises a laminate comprising a fiber reinforcing material sheet layer and a nonwoven fabric layer laminated thereon, and a matrix resin impregnated in the laminate. The nonwoven fabric layer may be laminated on one side of the sheet layer, or the nonwoven fabric layer may be laminated on both sides of the fiber reinforcing material sheet layer. Moreover, when the composite material in the present invention is finally formed into a fiber-reinforced plastic molded article for various uses, the design resin layer is applied to the outer surface of the nonwoven fabric layer constituting the composite material, and other methods are applied. However, such an embodiment is also included in the scope of the present invention. In the present invention, for example, when referring to a fiber reinforcing material sheet layer, the layer may be a single fiber reinforcing material sheet, or may be a stack of a plurality of sheets.

本発明において、繊維強化材シートは、シート状の繊維強化材を意味する。そして、繊維強化材としては、特に制限はなく、複合材料に使用される繊維強化材であれば何でも使用できるが、炭素繊維、ガラス繊維、アラミド繊維が好ましい。繊維強化材シートとしては、連続したフィラメントをサイズ剤を用いて収束した束(ストランド)、織物、多軸織物等に加工したシート状物が適当である。織物の場合は、平織、2/2綾織、朱子織が好ましい。多軸織物の場合は、不織布に接している面の多軸織物の各ストランド間の隙間が、0.2mm以下であることが好ましい。 In the present invention, the fiber reinforcing material sheet means a sheet-like fiber reinforcing material. The fiber reinforcing material is not particularly limited, and any fiber reinforcing material used for composite materials can be used, but carbon fiber, glass fiber, and aramid fiber are preferable. As the fiber reinforcing material sheet, a sheet-like product obtained by processing continuous filaments into bundles (strands), woven fabrics, multiaxial woven fabrics and the like that are converged using a sizing agent is suitable. In the case of a woven fabric, plain weave, 2/2 twill weave, and satin weave are preferable. In the case of a multiaxial woven fabric, the gap between the strands of the multiaxial woven fabric in contact with the nonwoven fabric is preferably 0.2 mm or less.

繊維強化材シートとして織物を使用する場合、織物1層の厚みが0.2mm以下であり、且つ、(不織布層の厚み)÷(織物1層の厚み)の値が0.5以上であることが好ましい。織物の厚みが0.2mmを超えていたり、または織物の厚みが0.2mm以下でも(不織布層の厚み)÷(織物1層の厚み)の値が0.5未満であると、複合材料の表面側に不織布を使用しても、内層の繊維強化材シート層の凹凸が表面に現れてしまうので、好ましくない。多軸織物の場合も、各ストランド間の隙間が0.2mmを超えると、同様な現象が生じるので好ましくない。 When a woven fabric is used as the fiber reinforcement sheet, the thickness of one woven fabric is 0.2 mm or less, and the value of (thickness of non-woven fabric layer) ÷ (thickness of one woven fabric) is 0.5 or more. Is preferred. Even if the thickness of the woven fabric exceeds 0.2 mm, or the thickness of the woven fabric is 0.2 mm or less (thickness of the non-woven fabric layer) ÷ (thickness of one woven fabric layer) is less than 0.5, Even if a nonwoven fabric is used on the surface side, the irregularities of the inner fiber reinforcing material sheet layer appear on the surface, which is not preferable. Also in the case of a multiaxial woven fabric, if the gap between the strands exceeds 0.2 mm, the same phenomenon occurs, which is not preferable.

多軸織物とは、一方向に引き揃えた繊維強化材の束をシート状にして角度を変えて積層し、ナイロン糸、ポリエステル糸、ガラス繊維糸等のステッチ糸で、この積層体を厚さ方向に貫通して、積層体の表面と裏面の間を表面方向に沿って往復しステッチした織物をいう。
多軸織物は面対称となるように選択する事が好ましい。多軸織物の目付は、100〜2000g/mが好ましく、200〜800g/mがより好ましい。多軸織物の1層当たりの厚みは、0.1〜2mmが好ましい。 好ましい多軸織物の例としては、〔45/−45/−45/45〕、〔0/−45/−45/0〕、〔0/+45/−45/−45/+45/0〕、〔0/+45/90/−45/−45/90/+45/0〕等を挙げることができる。
積重して面対称となる多軸織物の組合わせとしては、例えば〔45/−45〕及び〔−45/45〕、〔0/+45/−45〕及び〔−45/+45/0〕、〔0/+45/−45/90〕及び〔90/−45/+45/0〕等を挙げることができる。0、±45、90は、多軸織物を構成する各層の積層角度を表し、それぞれ一方向に引き揃えた繊維強化材の繊維軸方向が、織物の長さ方向に対して0°、±45°、90°であることを示している。積層角度はこれらの角度に限定されず、任意の角度とすることができる。
Multiaxial woven fabric is a bundle of fiber reinforcements aligned in one direction, laminated at different angles, and stitched yarns such as nylon yarn, polyester yarn, and glass fiber yarn. It refers to a woven fabric that penetrates in the direction and stitches by reciprocating along the surface direction between the front and back surfaces of the laminate.
The multiaxial fabric is preferably selected so as to be plane symmetric. Basis weight of the multiaxial fabric is preferably 100~2000g / m 2, 200~800g / m 2 is more preferable. The thickness per layer of the multiaxial fabric is preferably 0.1 to 2 mm. Examples of preferred multiaxial fabrics include [45 / −45 / −45 / 45], [0 / −45 / −45 / 0], [0 / + 45 / −45 / −45 / + 45/0], [ 0 / + 45/90 / −45 / −45 / 90 / + 45/0] and the like.
For example, [45 / −45] and [−45/45], [0 / + 45 / −45] and [−45 / + 45/0], [0 / + 45 / −45 / 90] and [90 / −45 / + 45/0] can be exemplified. 0, ± 45, 90 represents the stacking angle of each layer constituting the multiaxial fabric, and the fiber axis direction of the fiber reinforcement arranged in one direction is 0 °, ± 45 with respect to the length direction of the fabric. It indicates that the angle is 90 °. The stacking angle is not limited to these angles, and can be any angle.

本発明において用いられる不織布の材料は、複合材料に使用される繊維強化材であれば特に制限はなく、炭素繊維、ガラス繊維、アラミド繊維、ボロン繊維、金属繊維等を使用できるが、特に炭素繊維、ガラス繊維等の無機繊維が好ましい。本発明において、不織布層の外表面(繊維強化材シート層に接している面ではない方の面)に塗装等を施して意匠性樹脂層を形成する場合、成形に用いた離型剤を取り除くため、あるいは塗装の密着性を向上させるために、不織布層の外表面を目粗しすることが必要な場合がある。かかる場合、
不織布が有機繊維から構成されていると、目粗し操作によってフィブリル化した繊維のヒゲが表面に出てきて、その状態で塗装等を行うと、塗装面が平滑ではなくなる場合がある。従って、本発明においては、不織布層は無機繊維からなるものの方が好ましいのである。
なお、本発明において不織布とは、 マット、不織布、ペーパー
等、織物以外のもの(織ってないもの)を意味する。そして、不織布層とは、かかる不織布が一枚あるいは複数枚重ねられたものを意味する。かかる不織布層の厚みは 0.05〜0.5mmが適当で、0.1〜0.3mmがより好ましい。
不織布の厚みが0.05mm以下では、不織布の内層に使用する繊維強化材シートの凹凸が表面に現れ、表面平滑性が損なわれる。
また、0.5mm以上では、繊維強化複合材料の重量を増加させる問題があり、軽量化を目指す用途には適さない。
The material of the nonwoven fabric used in the present invention is not particularly limited as long as it is a fiber reinforcing material used for the composite material, and carbon fiber, glass fiber, aramid fiber, boron fiber, metal fiber, etc. can be used. Inorganic fibers such as glass fibers are preferred. In the present invention, when the outer surface of the nonwoven fabric layer (the surface that is not in contact with the fiber reinforcing material sheet layer) is coated to form the design resin layer, the release agent used for molding is removed. For this reason, or in order to improve the adhesion of the coating, it may be necessary to roughen the outer surface of the nonwoven fabric layer. In such a case,
If the nonwoven fabric is composed of organic fibers, the fibrillated fiber mustache will come out on the surface, and if coating or the like is performed in that state, the coated surface may not be smooth. Therefore, in the present invention, the nonwoven fabric layer is preferably made of inorganic fibers.
In addition, in this invention, a nonwoven fabric means things other than textiles (thing which is not woven), such as a mat, a nonwoven fabric, and paper. And a nonwoven fabric layer means what laminated | stacked one or more of this nonwoven fabric. The thickness of the nonwoven fabric layer is suitably 0.05 to 0.5 mm, more preferably 0.1 to 0.3 mm.
When the thickness of the nonwoven fabric is 0.05 mm or less, the unevenness of the fiber reinforcing material sheet used for the inner layer of the nonwoven fabric appears on the surface, and the surface smoothness is impaired.
On the other hand, when the thickness is 0.5 mm or more, there is a problem of increasing the weight of the fiber-reinforced composite material, which is not suitable for applications aiming at weight reduction.

本発明のマトリックス樹脂としては、通常、成形品の製造に用いられる熱硬化性樹脂が使用できる。具体的には、エポキシ樹脂、不飽和ポリエステル樹脂、フェノール樹脂、ビニルエステル樹脂、シアン酸エステル樹脂、ウレタンアクリレート樹脂、フェノキシ樹脂、アルキド樹脂、ウレタン樹脂、マレイミド樹脂とシアン酸エステル樹脂の予備重合樹脂から選ばれる樹脂がある。これらは1種又は2種以上の混合物として用いることもできるし、また、用途によっては、一部熱可塑性樹脂と混合して用いることもできる。中でも、耐熱性、弾性率、耐薬品性に優れたエポキシ樹脂やビニルエステル樹脂が、特に好ましい。これらの熱硬化性樹脂には、硬化剤、硬化促進剤以外に、通常用いられる着色剤や各種添加剤等が含まれていてもよい。複合材料中の、マトリックス樹脂の含有率は、通常、10〜70重量%にあるのが適当である。 As the matrix resin of the present invention, a thermosetting resin usually used for producing a molded product can be used. Specifically, from epoxy resin, unsaturated polyester resin, phenol resin, vinyl ester resin, cyanate ester resin, urethane acrylate resin, phenoxy resin, alkyd resin, urethane resin, maleimide resin and prepolymerized resin of cyanate ester resin There are resins to be selected. These can also be used as a 1 type, or 2 or more types of mixture, and can also be mixed with a thermoplastic resin and used depending on a use. Of these, epoxy resins and vinyl ester resins excellent in heat resistance, elastic modulus, and chemical resistance are particularly preferable. These thermosetting resins may contain commonly used colorants and various additives in addition to the curing agent and the curing accelerator. The content of the matrix resin in the composite material is usually 10 to 70% by weight.

繊維強化材シート層と少なくともその一面に積層された不織布層からなる積層体と、この積層体に含浸せしめられたマトリックス樹脂とからなる本発明の複合材料において、不織布層の外表面(繊維強化材シート層に接している面ではない方の面)に、塗装等によって意匠性樹脂層が形成されている複合材料(成形品となっているものも含む)も、本発明の他の態様である。かかる樹脂層を形成するためには、例えば、アクリル系、アクリルウレタン系、フッ素系、シリコーン系、エポキシ系の樹脂を用いることができ、樹脂層には、染料や顔料などの着色剤を添加することもできる。かかる樹脂層は、繊維強化材シート層と不織布層からなる積層体とマトリックス樹脂から成形された複合材料に、意匠性樹脂層を塗布する方法、例えば、スプレー、バーコーター、ダイコーター、スピンナー方法によって形成することができる。 In the composite material of the present invention comprising a laminate comprising a fiber reinforcement sheet layer and a nonwoven fabric layer laminated on at least one surface thereof, and a matrix resin impregnated in the laminate, the outer surface of the nonwoven fabric layer (fiber reinforcement) A composite material (including a molded product) in which a designable resin layer is formed by painting or the like on the surface that is not in contact with the sheet layer is another aspect of the present invention. . In order to form such a resin layer, for example, acrylic, acrylurethane, fluorine, silicone, and epoxy resins can be used, and coloring agents such as dyes and pigments are added to the resin layer. You can also. Such a resin layer is formed by a method of applying a design resin layer to a composite material formed from a laminate formed of a fiber reinforcing material sheet layer and a nonwoven fabric layer and a matrix resin, for example, spray, bar coater, die coater, spinner method. Can be formed.

本発明において、繊維強化材シート層と不織布層からなる積層体とマトリックス樹脂から複合材料を成形する方法としては、従来公知の方法、例えば、オートクレーブ法、樹脂トランスファー成形法(RTM法)、レジンフィルムインフュージョン成形法(RFI成形法)を採用することができるが、特に、製造コストの削減の観点から、樹脂トランスファー成形法又はレジンフィルムインフュージョン成形法で低コスト、高品位の複合材料が得られるので適当である。 In the present invention, as a method of molding a composite material from a laminate comprising a fiber reinforcing material sheet layer and a nonwoven fabric layer and a matrix resin, a conventionally known method such as an autoclave method, a resin transfer molding method (RTM method), a resin film An infusion molding method (RFI molding method) can be adopted, but a low-cost, high-quality composite material can be obtained by a resin transfer molding method or a resin film infusion molding method, particularly from the viewpoint of reducing manufacturing costs. So it is appropriate.

図面により、本発明の複合材料の態様について説明する。図1は、繊維強化材シート層1とその片面に積層された不織布層2とからなる積層体と、この積層体に含浸・硬化せしめられたマトリックス樹脂3からなる複合材料を示している。図2は、図1の複合材料の不織布層2の外表面に、意匠性樹脂層4が形成された複合材料を示している。以下、実施例により、本発明を詳述する。 The aspect of the composite material of the present invention will be described with reference to the drawings. FIG. 1 shows a composite material composed of a laminate composed of a fiber reinforcement sheet layer 1 and a nonwoven fabric layer 2 laminated on one side thereof, and a matrix resin 3 impregnated and cured in the laminate. FIG. 2 shows a composite material in which a designable resin layer 4 is formed on the outer surface of the nonwoven fabric layer 2 of the composite material shown in FIG. Hereinafter, the present invention will be described in detail by way of examples.

炭素繊維HTA−12K(東邦テナックス社製)を使用した多軸織物(1)
(+45/−45/−45/+45の角度で4枚積層したもの、ストランド間の隙間が0.1mm、織物の目付800g/m)を、幅500mm、長さ500mmにカットした。700×700mmの離型処理したアルミ板の上に、不織布(炭素繊維で作られたペーパーであるBP−1030A−ES、目付け30g/m、東邦テナックス社製)、その上に多軸織物(1)
を2枚、その上に不織布(炭素繊維で作られたペーパーであるBP−1030A−ES、目付け30g/m、東邦テナックス社製)を重ねて積層体とした。
更に積層体の上に、離型性機能を付与した基材であるピールクロスのRelease Ply C(AIRTECH社製)と樹脂拡散基材のResin Flow 60(AIRTECH社製)を積層した。
その後、樹脂注入口と樹脂排出口形成のためのホースを配置し、全体をナイロンバッグフィルムで覆い、シーラントテープで密閉し、内部を真空にした。続いてアルミ板を80℃に加温し、バック内を5torr以下に減圧した後、樹脂注入口を通して、真空系内へエポキシ樹脂(ジャパンエポキシレジン社製EP807の100質量部と、サンテクノケミカル社製ジェファーミンT-403の45質量部の混合物)の注入を行った。 注入した混合樹脂がバック内に充満し、積層体に含浸した状態で80℃で2時間保持し、本発明の複合材料を得た。 複合材料の断面厚みを測定したところ、表面の不織布部が0.2mm、多軸織物(1)が2枚で1.6mm、裏側の不織布部が0.2mmであった。得られた複合材料の表面を目視評価したところ、凹凸が無くきれいな表面であった。
Multiaxial fabric using carbon fiber HTA-12K (Toho Tenax Co., Ltd.) (1)
(4 layers laminated at an angle of + 45 / −45 / −45 / + 45, a gap between strands of 0.1 mm, and a fabric basis weight of 800 g / m 2 ) was cut into a width of 500 mm and a length of 500 mm. A non-woven fabric (BP-1030A-ES which is a paper made of carbon fiber, basis weight 30 g / m 2 , manufactured by Toho Tenax Co., Ltd.) on a 700 × 700 mm release aluminum plate, and a multiaxial fabric ( 1)
And a non-woven fabric (BP-1030A-ES, which is a paper made of carbon fiber, 30 g / m 2 basis weight, manufactured by Toho Tenax Co., Ltd.).
Further, peel cross Release Ply C (manufactured by AIRTECH), which is a base material having a releasability function, and resin diffusion base material Resin Flow 60 (manufactured by AIRTECH) were laminated on the laminate.
Thereafter, a hose for forming a resin inlet and a resin outlet was disposed, the whole was covered with a nylon bag film, sealed with a sealant tape, and the inside was evacuated. Subsequently, the aluminum plate was heated to 80 ° C., and the pressure in the bag was reduced to 5 torr or less. Then, through the resin inlet, 100 parts by mass of epoxy resin (EP807 manufactured by Japan Epoxy Resin Co., Ltd. and Sun Techno Chemical Co., Ltd.) A mixture of 45 parts by weight of Jeffamine T-403). The injected mixed resin was filled in the bag, and maintained at 80 ° C. for 2 hours in a state of impregnating the laminate to obtain a composite material of the present invention. When the cross-sectional thickness of the composite material was measured, the nonwoven fabric portion on the surface was 0.2 mm, the multiaxial woven fabric (1) was 1.6 mm, and the nonwoven fabric portion on the back side was 0.2 mm. When the surface of the obtained composite material was visually evaluated, there was no unevenness and the surface was clean.

実施例1の多軸織物(1)の代わりに、炭素繊維HTA−3K(東邦テナックス社製)を使用した平織物W-3101(目付200g/m)を8枚使用した以外は、実施例1と同様な方法で、本発明の複合材料を得た。複合材料の断面厚みを測定したところ、表面の不織布部が0.2mm、平織物部が8枚で1.6mm、裏側の不織布部が0.2mmであった。得られた複合材料の表面を目視評価したところ、凹凸が無くきれいな表面であった。 Example except that eight plain fabrics W-3101 (weight per unit area: 200 g / m 2 ) using carbon fiber HTA-3K (manufactured by Toho Tenax Co., Ltd.) were used instead of the multiaxial fabric (1) of Example 1. 1 was used to obtain the composite material of the present invention. When the cross-sectional thickness of the composite material was measured, the nonwoven fabric portion on the surface was 0.2 mm, the plain woven fabric portion was 1.6 mm, and the nonwoven fabric portion on the back side was 0.2 mm. When the surface of the obtained composite material was visually evaluated, there was no unevenness and the surface was clean.

実施例2で作製した複合材料の表面を、#600番のサンドペーパーで研磨し離型剤を除去後、スプレーガンでウレタン塗装(関西ペイント製 レタンPG2Kホワイト)を行った。塗装の厚みは0.1mmであった。得られた複合材料の表面を目視評価したところ、凹凸が無くきれいな表面であった。 The surface of the composite material produced in Example 2 was polished with # 600 sandpaper to remove the mold release agent, and then urethane coating (Kansai Paint Retan PG2K White) was performed with a spray gun. The coating thickness was 0.1 mm. When the surface of the obtained composite material was visually evaluated, there was no unevenness and the surface was clean.

ビスフェノールA型エポキシ樹脂、エピコート834(ジャパンエポキシレジン社製)を77部、エピコート1001(ジャパンエポキシレジン社製)を23部、ジシアンジアミド(ジャパンエポキシレジン社製)を5部、3−(3,4−ジクロロフェニル)−1,1−ジメチルユリア(保士谷化学工業社製)を5部計量し、70℃でロールミルで混錬し、樹脂組成物を得た。
その後、70℃でドクターブレード法により樹脂目付1300g/mの樹脂フィルムを得た。
77 parts of bisphenol A type epoxy resin, Epicoat 834 (manufactured by Japan Epoxy Resin), 23 parts of Epicoat 1001 (manufactured by Japan Epoxy Resin), 5 parts of dicyandiamide (manufactured by Japan Epoxy Resin), 3- (3,4 -Dichlorophenyl) -1,1-dimethylurea (manufactured by Hoshigaya Chemical Industry Co., Ltd.) was weighed in 5 parts and kneaded with a roll mill at 70 ° C. to obtain a resin composition.
Thereafter, a resin film having a resin basis weight of 1300 g / m 2 was obtained at 70 ° C. by a doctor blade method.

炭素繊維HTA−12K(東邦テナックス社製)を使用した多軸織物(1)(+45/−45/−45/+45の角度で4枚積層したもの、ストランド間の隙間が0.1mm、織物の目付800g/m)を幅500mm、長さ500mmにカットした。700×700mmの離型処理したアルミ板の上に、不織布(炭素繊維で作られたペーパーであるBP−1030A−ES、目付け30g/m、東邦テナックス社製)、その上に多軸織物(1)
を2枚、その上に不織布(炭素繊維で作られたペーパーであるBP−1030A−ES、目付け30g/m、東邦テナックス社製)を重ねて積層体とした。
積層体の上に上記樹脂フィルムを重ね、全体をナイロンバッグフィルムで覆い、シーラントテープで密閉し、内部を真空にした。その後、硬化炉内で130℃で2時間、真空ポンプで減圧しながら加熱硬化し、本発明の複合材料を得た。複合材料の断面厚みを測定したところ、表面の不織布部が0.2mm、多軸織物(1)が2枚で1.6mm、裏側の不織布部が0.2mmであった。得られた複合材料の表面を目視評価したところ、凹凸が無くきれいな表面であった。
Multiaxial woven fabric (1) using carbon fiber HTA-12K (manufactured by Toho Tenax Co., Ltd.) (4 layers laminated at an angle of + 45 / −45 / −45 / + 45, the gap between strands is 0.1 mm, A basis weight of 800 g / m 2 ) was cut into a width of 500 mm and a length of 500 mm. A non-woven fabric (BP-1030A-ES which is a paper made of carbon fiber, 30 g / m 2 basis weight, manufactured by Toho Tenax Co., Ltd.) on a 700 × 700 mm release aluminum plate, and a multiaxial fabric ( 1)
And a non-woven fabric (BP-1030A-ES, which is a paper made of carbon fiber, 30 g / m 2 basis weight, manufactured by Toho Tenax Co., Ltd.).
The resin film was stacked on the laminate, and the whole was covered with a nylon bag film, sealed with a sealant tape, and the inside was evacuated. Thereafter, it was cured by heating in a curing furnace at 130 ° C. for 2 hours while reducing the pressure with a vacuum pump to obtain a composite material of the present invention. When the cross-sectional thickness of the composite material was measured, the nonwoven fabric portion on the surface was 0.2 mm, the multiaxial woven fabric (1) was 1.6 mm, and the nonwoven fabric portion on the back side was 0.2 mm. When the surface of the obtained composite material was visually evaluated, there was no unevenness and the surface was clean.

[比較例1](不織布層を用いない例)
炭素繊維HTA−3K(東邦テナックス社製)を使用した平織物W-3101(目付200g/m)を幅500mm、長さ500mmにカットした。700×700mmの離型処理したアルミ板上に、平織物を8枚重ねて積層体とした。
更に積層体の上に、離型性機能を付与した基材であるピールクロスのRelease Ply C(AIRTECH社製)と樹脂拡散基材のResin Flow 60(AIRTECH社製)を積層した。その後は、実施例1と同様な方法で本発明の複合材料を得た。得られた複合材料の表面を目視評価したところ、HTA−3Kのストランド幅の2mm間隔で凹凸があり、平滑な面は得られなかった。
[Comparative Example 1] (Example using no nonwoven fabric layer)
A plain fabric W-3101 (weight per unit area: 200 g / m 2 ) using carbon fiber HTA-3K (manufactured by Toho Tenax Co., Ltd.) was cut into a width of 500 mm and a length of 500 mm. Eight plain fabrics were stacked on a 700 × 700 mm release aluminum plate to form a laminate.
Further, peel cross Release Ply C (manufactured by AIRTECH), which is a base material having a releasability function, and resin diffusion base material Resin Flow 60 (manufactured by AIRTECH) were laminated on the laminate. Thereafter, the composite material of the present invention was obtained in the same manner as in Example 1. When the surface of the obtained composite material was visually evaluated, there were irregularities at intervals of 2 mm of the strand width of HTA-3K, and a smooth surface was not obtained.

[比較例2]
比較例1で作製した複合材料の表面を#600番のサンドペーパーで研磨し離型剤を除去後、スプレーガンでウレタン塗装(関西ペイント製 レタンPG2Kホワイト)を行った。塗装の厚みは0.1mmであった。得られた複合材料の表面を目視評価したところ、表面は2mm間隔で凹凸があり、平滑な面は得られなかった。
[Comparative Example 2]
The surface of the composite material produced in Comparative Example 1 was polished with # 600 sandpaper to remove the mold release agent, and then urethane coating (retane PG2K white manufactured by Kansai Paint) was performed with a spray gun. The coating thickness was 0.1 mm. When the surface of the obtained composite material was visually evaluated, the surface was uneven at intervals of 2 mm, and a smooth surface was not obtained.

本発明によって得られた表面平滑性に優れた複合材料は、優れた意匠性表面を有する種々の繊維強化プラスチック成形品として利用される。 The composite material excellent in surface smoothness obtained by the present invention is used as various fiber-reinforced plastic molded articles having an excellent design surface.

本発明の表面平滑性に優れた複合材料の一例を示す。An example of the composite material excellent in surface smoothness of the present invention is shown. 本発明の表面平滑性に優れた複合材料の他の一例を示す。The other example of the composite material excellent in the surface smoothness of this invention is shown.

符号の説明Explanation of symbols

1 繊維強化材シート層
2 不織布層
3 マトリックス樹脂
4 意匠性樹脂層


DESCRIPTION OF SYMBOLS 1 Fiber reinforcing material sheet layer 2 Nonwoven fabric layer 3 Matrix resin 4 Design resin layer


Claims (11)

繊維強化材シート層と少なくともその一面に積層された不織布層からなる積層体と、該積層体に含浸せしめられたマトリックス樹脂とからなる表面平滑性に優れた複合材料。 A composite material excellent in surface smoothness comprising a laminate comprising a fiber reinforcing material sheet layer and a nonwoven fabric layer laminated on at least one surface thereof, and a matrix resin impregnated in the laminate. 不織布層の外表面に意匠性樹脂層が形成されている、請求項1記載の表面平滑性に優れた複合材料。 The composite material excellent in surface smoothness according to claim 1, wherein a design resin layer is formed on the outer surface of the nonwoven fabric layer. 不織布層が無機繊維からなる、請求項1又は2記載の表面平滑性に優れた複合材料。   The composite material excellent in surface smoothness according to claim 1 or 2, wherein the nonwoven fabric layer comprises inorganic fibers. 不織布層の厚みが
0.05〜0.5mmである、請求項1〜4記載の表面平滑性に優れた複合材料。
The composite material excellent in surface smoothness according to claim 1, wherein the nonwoven fabric layer has a thickness of 0.05 to 0.5 mm.
繊維強化材シートが2次元の織物からなり、織物1層の厚みが0.2mm以下で、且つ、(不織布層の厚み)/(織物1層の厚み)の値が0.5以上である、請求項1〜4記載の表面平滑性に優れた複合材料。 The fiber reinforcement sheet is made of a two-dimensional fabric, the thickness of one layer of the fabric is 0.2 mm or less, and the value of (thickness of the nonwoven fabric layer) / (thickness of the one layer of fabric) is 0.5 or more. The composite material excellent in the surface smoothness of Claims 1-4. 2次元の織物が、平織、2/2綾織、朱子織のいずれかである、請求項5に記載の表面平滑性に優れた複合材料。   The composite material excellent in surface smoothness according to claim 5, wherein the two-dimensional woven fabric is one of plain weave, 2/2 twill weave, and satin weave. 繊維強化材シートが多軸織物からなる、請求項1〜4記載の表面平滑性に優れた複合材料。 The composite material excellent in surface smoothness according to claim 1, wherein the fiber reinforcing material sheet comprises a multiaxial woven fabric. 繊維強化材シートが多軸織物からなり、不織布に接している面の多軸織物の各ストランド間の隙間が0.2mm以下である、請求項7記載の表面平滑性に優れた複合材料。 The composite material excellent in surface smoothness according to claim 7, wherein the fiber reinforcing material sheet is made of a multiaxial woven fabric, and a gap between each strand of the multiaxial woven fabric in contact with the nonwoven fabric is 0.2 mm or less. マトリックス樹脂が、エポキシ樹脂、不飽和ポリエステル樹脂、フェノール樹脂、ビニルエステル樹脂、シアン酸エステル樹脂、ウレタンアクリレート樹脂、フェノキシ樹脂、アルキド樹脂、ウレタン樹脂、マレイミド樹脂とシアン酸エステル樹脂の予備重合樹脂から選ばれる熱硬化性樹脂の1種又は2種以上の混合物である、請求項1〜8記載の表面平滑性に優れた複合材料。 The matrix resin is selected from epoxy resin, unsaturated polyester resin, phenol resin, vinyl ester resin, cyanate ester resin, urethane acrylate resin, phenoxy resin, alkyd resin, urethane resin, maleimide resin and prepolymerized resin of cyanate ester resin The composite material excellent in the surface smoothness of Claims 1-8 which is a 1 type, or 2 or more types of mixture of the thermosetting resin which is obtained. 複合材料中の、マトリックス樹脂の含有率が10〜70重量%である、請求項1〜9記載の表面平滑性に優れた複合材料。 The composite material excellent in surface smoothness according to claim 1, wherein the content of the matrix resin in the composite material is 10 to 70% by weight. 樹脂トランスファー成形法又はレジンフィルムインフュージョン成形法により成形した、請求項1〜10記載の表面平滑性に優れた複合材料。 The composite material excellent in surface smoothness according to claim 1, which is formed by a resin transfer molding method or a resin film infusion molding method.
JP2004160347A 2004-05-28 2004-05-28 Composite material excellent in surface smoothness Pending JP2005336407A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004160347A JP2005336407A (en) 2004-05-28 2004-05-28 Composite material excellent in surface smoothness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004160347A JP2005336407A (en) 2004-05-28 2004-05-28 Composite material excellent in surface smoothness

Publications (1)

Publication Number Publication Date
JP2005336407A true JP2005336407A (en) 2005-12-08

Family

ID=35490320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004160347A Pending JP2005336407A (en) 2004-05-28 2004-05-28 Composite material excellent in surface smoothness

Country Status (1)

Country Link
JP (1) JP2005336407A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007045004A (en) * 2005-08-10 2007-02-22 Sekisui Chem Co Ltd Vacuum injection molding method of fiber reinforced resin molded product
JP2008273010A (en) * 2007-04-27 2008-11-13 Sekisui Chem Co Ltd Method for manufacturing fiber-reinforced plastic molded body
WO2013056254A2 (en) 2011-10-14 2013-04-18 E. I. Du Pont De Nemours And Company Composite laminate having improved impact strength and the use thereof
JP2013540902A (en) * 2010-11-03 2013-11-07 エスゲーエル・オートモーティブ・カーボン・ファイバーズ・ゲーエムベーハー・ウント・コ・カーゲー Reinforced nonwoven fabric
US20140370237A1 (en) * 2011-12-20 2014-12-18 Cytec Industries Inc. Dry fibrous material for subsequent resin infusion
JP2017503679A (en) * 2014-01-09 2017-02-02 トヨタ モーター ヨーロッパ ナームロゼ フェンノートシャップ/ソシエテ アノニム Reinforced plastic material with high smoothness
CN112046093A (en) * 2019-06-06 2020-12-08 双叶电子工业株式会社 Carbon fiber-reinforced plastic plate and method for producing carbon fiber-reinforced plastic plate
CN113547800A (en) * 2020-04-24 2021-10-26 双叶电子工业株式会社 Carbon fiber-reinforced plastic plate, processed product, and method for producing carbon fiber-reinforced plastic plate
CN113547801A (en) * 2020-04-24 2021-10-26 双叶电子工业株式会社 Carbon fiber-reinforced plastic plate, processed product, and method for producing carbon fiber-reinforced plastic plate
CN114746266A (en) * 2019-11-20 2022-07-12 赫克塞尔合成有限公司 Molding material

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02137924A (en) * 1988-11-18 1990-05-28 Sumitomo Bakelite Co Ltd Manufacture of thermosetting resin laminated plate
JPH08134757A (en) * 1994-11-14 1996-05-28 Kuraray Co Ltd Reinforcing material and fiber-reinforced resin formed article using the material
WO2000056539A1 (en) * 1999-03-23 2000-09-28 Toray Industries, Inc. Composite reinforcing fiber base material, preform and production method for fiber reinforced plastic
JP2001322179A (en) * 2000-03-06 2001-11-20 Toray Ind Inc Sheet material made of frp

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02137924A (en) * 1988-11-18 1990-05-28 Sumitomo Bakelite Co Ltd Manufacture of thermosetting resin laminated plate
JPH08134757A (en) * 1994-11-14 1996-05-28 Kuraray Co Ltd Reinforcing material and fiber-reinforced resin formed article using the material
WO2000056539A1 (en) * 1999-03-23 2000-09-28 Toray Industries, Inc. Composite reinforcing fiber base material, preform and production method for fiber reinforced plastic
JP2001322179A (en) * 2000-03-06 2001-11-20 Toray Ind Inc Sheet material made of frp

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007045004A (en) * 2005-08-10 2007-02-22 Sekisui Chem Co Ltd Vacuum injection molding method of fiber reinforced resin molded product
JP2008273010A (en) * 2007-04-27 2008-11-13 Sekisui Chem Co Ltd Method for manufacturing fiber-reinforced plastic molded body
JP2013540902A (en) * 2010-11-03 2013-11-07 エスゲーエル・オートモーティブ・カーボン・ファイバーズ・ゲーエムベーハー・ウント・コ・カーゲー Reinforced nonwoven fabric
WO2013056254A2 (en) 2011-10-14 2013-04-18 E. I. Du Pont De Nemours And Company Composite laminate having improved impact strength and the use thereof
US20140370237A1 (en) * 2011-12-20 2014-12-18 Cytec Industries Inc. Dry fibrous material for subsequent resin infusion
US9393758B2 (en) * 2011-12-20 2016-07-19 Cytec Industries Inc. Dry fibrous material for subsequent resin infusion
US10369773B2 (en) * 2011-12-20 2019-08-06 Cytec Industries Inc. Dry fibrous material for subsequent resin infusion
JP2017503679A (en) * 2014-01-09 2017-02-02 トヨタ モーター ヨーロッパ ナームロゼ フェンノートシャップ/ソシエテ アノニム Reinforced plastic material with high smoothness
US10226903B2 (en) 2014-01-09 2019-03-12 Toyota Motor Europe Reinforced plastic material having high smoothness
US20200384724A1 (en) * 2019-06-06 2020-12-10 Futaba Corporation Carbon Fiber Reinforced Plastic Plate and Method for Producing Carbon Fiber Reinforced Plastic Plate
CN112046093A (en) * 2019-06-06 2020-12-08 双叶电子工业株式会社 Carbon fiber-reinforced plastic plate and method for producing carbon fiber-reinforced plastic plate
JP2020199643A (en) * 2019-06-06 2020-12-17 双葉電子工業株式会社 Carbon fiber-reinforced plastic plate and method for producing carbon fiber-reinforced plastic plate
JP7005557B2 (en) 2019-06-06 2022-01-21 双葉電子工業株式会社 Manufacturing method of carbon fiber reinforced plastic plate and carbon fiber reinforced plastic plate
TWI779294B (en) * 2019-06-06 2022-10-01 日商雙葉電子工業股份有限公司 Carbon fiber reinforced plastic sheet and method for producing carbon fiber reinforced plastic sheet
CN114746266A (en) * 2019-11-20 2022-07-12 赫克塞尔合成有限公司 Molding material
CN113547800A (en) * 2020-04-24 2021-10-26 双叶电子工业株式会社 Carbon fiber-reinforced plastic plate, processed product, and method for producing carbon fiber-reinforced plastic plate
CN113547801A (en) * 2020-04-24 2021-10-26 双叶电子工业株式会社 Carbon fiber-reinforced plastic plate, processed product, and method for producing carbon fiber-reinforced plastic plate
JP2021172013A (en) * 2020-04-24 2021-11-01 双葉電子工業株式会社 Carbon fiber reinforced plastic plate, processed product and manufacturing method of carbon fiber reinforced plastic plate
CN113547801B (en) * 2020-04-24 2023-06-27 双叶电子工业株式会社 Carbon fiber-reinforced plastic sheet, processed product, and method for producing carbon fiber-reinforced plastic sheet
CN113547800B (en) * 2020-04-24 2023-06-27 双叶电子工业株式会社 Carbon fiber-reinforced plastic sheet, processed product, and method for producing carbon fiber-reinforced plastic sheet

Similar Documents

Publication Publication Date Title
JP5572947B2 (en) Molding material, fiber reinforced plastic, and production method thereof
JP4988229B2 (en) A hybrid composite material excellent in surface smoothness and a molding method thereof.
US8906494B2 (en) Process for producing composite prepreg base, layered base, and fiber-reinforced plastic
US8840988B2 (en) Fiber preform made from reinforcing fiber bundles and comprising unidirectional fiber tapes, and composite component
JP5272418B2 (en) Cut prepreg base material, composite cut prepreg base material, laminated base material, fiber reinforced plastic, and method for producing cut prepreg base material
JP2009286817A (en) Laminated substrate, fiber-reinforced plastic, and methods for producing them
JP4779754B2 (en) Prepreg laminate and fiber reinforced plastic
JP2009114612A (en) Method for producing chopped fiber bundle and molding material, molding material, and fiber-reinforced plastic
WO2013129541A1 (en) Sheet for fiber-reinforced plastic molded body, and molded body thereof
JP5767415B1 (en) Decorative molded product manufacturing method and decorative molded product
JP2009114611A (en) Method for producing chopped fiber bundle and molding material, molding material, and fiber-reinforced plastic
JP2009062474A (en) Molding material, fiber-reinforced plastic, and manufacturing method for them
JP4613298B2 (en) Composite sheet and composite material having smooth surface using the same
JP2013202890A (en) Molding material and method of manufacturing the same
US20060121805A1 (en) Non-woven, uni-directional multi-axial reinforcement fabric and composite article
JP2005336407A (en) Composite material excellent in surface smoothness
CN113573875A (en) Stitched multiaxial reinforcement
JP4558398B2 (en) Composite material with smooth surface
JP4759303B2 (en) Composite material using multiaxial fabric
JP2007090811A (en) Member of fiber-reinforced plastic and manufacturing method of the same
JP2005262818A (en) Reinforcing fiber substrate, preform and reinforcing fiber substrate manufacturing method
CN1074857A (en) Ballistic materials
JP2004299178A (en) Resin transfer molding method
JP2004338270A (en) Method for producing fiber-reinforced resin composite material and fiber-reinforced resin composite material
JP2006138031A (en) Reinforcing fiber substrate, preform and method for producing them

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090901

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100420