JP2009275765A - 遊星差動式運動変換機構、並びにこれを具備する動力装置 - Google Patents

遊星差動式運動変換機構、並びにこれを具備する動力装置 Download PDF

Info

Publication number
JP2009275765A
JP2009275765A JP2008126100A JP2008126100A JP2009275765A JP 2009275765 A JP2009275765 A JP 2009275765A JP 2008126100 A JP2008126100 A JP 2008126100A JP 2008126100 A JP2008126100 A JP 2008126100A JP 2009275765 A JP2009275765 A JP 2009275765A
Authority
JP
Japan
Prior art keywords
planetary
shaft
screw
rotor
peripheral surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008126100A
Other languages
English (en)
Inventor
Michihiko Masuda
道彦 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2008126100A priority Critical patent/JP2009275765A/ja
Publication of JP2009275765A publication Critical patent/JP2009275765A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Retarders (AREA)
  • Transmission Devices (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

【課題】プラネタリシャフトが傾くことに起因して同プラネタリシャフトに形成された螺子やギア、並びにこれらの螺子やギアと噛合する螺子やギアの歯面に偏磨耗や欠損が発生することを抑制することのできる遊星差動式運動変換機構を提供する。
【解決手段】遊星差動式運動変換機構100にあっては、荷重Fの作用方向側に位置するフロント側リングギア112aとフロント側プラネタリギア32aとの噛合部分におけるクリアランスが荷重の作用方向とは反対側に位置するリア側リングギア12bとリア側プラネタリギア32bとの噛合部分におけるクリアランスよりも小さくされている。
【選択図】図1

Description

この発明は、円環状のロータと、このロータに内挿されるサンシャフトと、これらロータ及びサンシャフトの間に介装されるプラネタリシャフトとを備え、これらの各部材に形成されて互いに螺合する螺子の作用を利用してロータの回転運動をサンシャフトの直線運動に変換する遊星差動式運動変換機構、並びにこれを具備する動力装置に関する。
モータの回転力を利用して制御軸をその軸方向に変位させる動力装置には、モータの回転運動を制御軸の直線運動に変換する運動変換機構が搭載されている。例えば、こうした運動変換機構として、特許文献1には、モータによって回転駆動される円環状のロータにサンシャフトを内挿し、これらロータとサンシャフトとの間に複数のプラネタリシャフトを介装させるとともに、各部材にそれぞれ設けられた螺子を互いに螺合させた遊星差動式の運動変換機構が記載されている。
この遊星差動式運動変換機構は、いわゆる差動螺子を有しており、プラネタリシャフトに形成された螺子とサンシャフトに形成された螺子とのリード角が異なっている。これにより、ロータの回転運動に伴ってプラネタリシャフトがサンシャフトの外周面上を転動すると、このリード角の違いの分だけサンシャフトが軸方向に変位するようになる。
こうした遊星差動式運動変換機構にあっては、プラネタリシャフトに形成された前記螺子を挟むように同プラネタリシャフトの両端部に一対のプラネタリギアを設け、サンシャフトの外周面に形成されたサンギアと、ロータの内周面に形成されたリングギアとの双方にこれを噛合させてこれらのギアを介してロータの回転力をプラネタリシャフトに伝達するようにしている。こうした構成によれば、ギアを介して確実に回転力が伝達されるようになるため、螺子の噛合部分における滑りを抑制してロータの回転運動をサンシャフトの直線運動に変換する効率を向上させることができる。
特開2007‐177912号公報
ところで、遊星差動式運動変換機構にあっては、上述したようにリード角の異なる螺子と、この螺子を挟むように配設される一対のギアとによってロータ及びサンシャフトとプラネタリシャフトとを噛合させているため、各部材を滑らかに運動させるためには、各部材の間にある程度のクリアランスを設けることが必要とされる。しかしながら、サンシャフトに軸方向の一方に向かう荷重が作用している状況下で遊星差動式運動変換機構が使用される場合には、このクリアランスの分だけロータとサンシャフトとの間でプラネタリシャフトが傾くこととなる。
具体的には、図13の右側に矢印で示されるようにサンシャフト20に図13における右側に向かって荷重Fが作用している場合には、プラネタリシャフト30の螺子31におけるサンシャフト20の螺子21と噛合する部分には図13の右側に向かう方向の荷重f1が作用する。一方で、プラネタリシャフト30の螺子31におけるロータ10の螺子11と噛合する部分にはロータ10から受ける抵抗力によって図13の左側に向かう方向の荷重f2が作用する。その結果、プラネタリシャフト30には、図13の中央に矢印で示されるように同プラネタリシャフト30を左周りに回転させるモーメントMが作用するようになる。また、ロータ10のサンシャフト20の中心軸を中心にして回転するのに伴いプラネタリシャフト30がサンシャフト20の外周面上を転動すると、同プラネタリシャフト30には図13に矢印で示されるようにこれをロータ10に押し付ける遠心力Fcが作用する。そのため、遊星差動式運動変換機構にあっては、上記モーメントMとこの遠心力Fcとの合力が作用することにより、図13に破線で示されるようにプラネタリシャフト30の荷重Fの作用方向側の部分がロータ10側に開くようになり、ロータ10とサンシャフト20との間でプラネタリシャフト30が傾くようになる。
このようにプラネタリシャフト30が傾くと、ロータ10の内周面において荷重Fの作用方向側に位置する第1リングギア12aと、第1プラネタリギア32aとが接触する部分ではこれらのギア同士が傾いた状態で接触し、片当たりするようになる。また、プラネタリシャフト30の螺子31とロータ10の螺子11との噛合部分においても同様に片当たりが生じ、これらの部分においてギアや螺子の偏磨耗や欠損が発生しやすくなり、遊星差動式運動変換機構の耐久性が低下するおそれがある。
この発明は、上記実情に鑑みてなされたものでありその目的は、プラネタリシャフトが傾くことに起因して同プラネタリシャフトに形成された螺子やギア、並びにこれらの螺子やギアと噛合する螺子やギアの歯面に偏磨耗や欠損が発生することを抑制することのできる遊星差動式運動変換機構、並びに同遊星差動式運動変換機構を具備する動力装置を提供することにある。
以下、上記目的を達成するための手段及びその作用効果について記載する。
請求項1に記載の発明は、円環状のロータと同ロータに内挿されるサンシャフトとの間に複数のプラネタリシャフトを介装し、同プラネタリシャフトの両端部に設けられた一対のプラネタリギアを前記ロータの内周面に設けられた一対のリングギアと前記サンシャフトの外周面に設けられた一対のサンギアとの双方にそれぞれ噛合させるとともに、同プラネタリシャフトの外周面における前記一対のプラネタリギアの間に設けられた螺子を前記ロータの内周面に設けられた螺子と前記サンシャフトの外周面に設けられた螺子との双方に螺合させることによって各部材を噛合させ、前記各部材に設けられた螺子のリード角の差を利用して前記ロータの回転運動を前記サンシャフトの直線運動に変換する遊星差動式運動変換機構において、同遊星差動式運動変換機構は前記サンシャフトにその軸方向の一方に向かう荷重が常に作用する状況下で使用されるものであり、互いに噛合する前記一対のリングギアと前記一対のプラネタリギアとの噛合部分のうち、前記荷重の作用方向側に位置する第1リングギアと第1プラネタリギアとの噛合部分におけるクリアランスを前記荷重の作用方向とは反対側に位置する第2リングギアと第2プラネタリギアとの噛合部分におけるクリアランスよりも小さくすることをその要旨とする。
上記構成によれば、サンシャフトに作用する荷重の作用方向側に位置する第1リングギアと第1プラネタリギアとの噛合部分におけるクリアランスが小さくされているため、プラネタリシャフトにおける前記荷重の作用方向側の部分がロータ側に傾いたときに第1リングギアと第1プラネタリギアとが当接しやすくなる。そして、第1リングギアと第1プラネタリギアが当接することによりプラネタリシャフトの変位が規制されるようになる。そのため、上記請求項1に記載の構成によれば、プラネタリシャフトの傾きを抑制することができ、プラネタリシャフトが傾くことに起因して同プラネタリシャフトに形成された螺子やギア、並びにこれらの螺子やギアと噛合する螺子やギアの歯面に偏磨耗や欠損が発生することを抑制することができるようになる。
また、サンシャフトに軸方向の荷重が作用することに起因してプラネタリシャフトは前記荷重の作用方向側の部分がロータ側に開くように傾く。これに対して、上記請求項1に記載の発明では、プラネタリシャフトにおける前記荷重の作用方向側の端部に位置する第1プラネタリギアと第1リングギアとを当接させることによってプラネタリシャフトの傾きを規制するようにしている。そのため、上記請求項1に記載の構成によれば、プラネタリシャフトが傾く際の支点から離間した部分においてプラネタリシャフトの変位を規制することとなり、効果的にプラネタリシャフトの傾きを抑制することができる。
尚、各ギアの間のクリアランスを小さくするほど、プラネタリシャフトは傾きにくくなるが、各ギアの間のクリアランスを過剰に小さくすると、遊星差動式運動変換機構を駆動する際にこれらの部分に生じる摩擦力が過剰に増大し、遊星差動式運動変換機構の効率が低下したり、この噛合部分においてかえって摩耗が進行しやすくなったりするおそれがある。そのため、各ギアの間のクリアランスを小さくすることにより、プラネタリシャフトの傾きを抑制する上では、こうした効率の低下や摩耗の進行を招かない程度に同クリアランスの大きさを設定することが望ましい。
請求項2に記載の発明は、請求項1に記載の遊星差動式運動変換機構において、前記第1リングギアの基準円半径を前記第2リングギアの基準円半径よりも小さくすることにより、前記第1リングギアと前記第1プラネタリギアとの噛合部分におけるクリアランスを前記第2リングギアと前記第2プラネタリギアとの噛合部分におけるクリアランスよりも小さくすることをその要旨とする。
具体的には、請求項2に記載の発明によるように第1リングギアの基準円半径を第2リングギアの基準円半径よりも小さくすることにより、第1リングギアと第1プラネタリギアとの噛合部分におけるクリアランスを第2リングギアと第2プラネタリギアとの噛合部分におけるクリアランスよりも小さくすることができる。また、こうした構成を採用すれば、第1、第2プラネタリギアや第2リングギアの設計を変更することなく、第1リングギアの基準円半径を小さくする簡単な構成の変更のみによって、プラネタリシャフトの傾きを抑制することができる。
請求項3に記載の発明は、円環状のロータと同ロータに内挿されるサンシャフトとの間に複数のプラネタリシャフトを介装し、同プラネタリシャフトの両端部に設けられた一対のプラネタリギアを前記ロータの内周面に設けられた一対のリングギアと前記サンシャフトの外周面に設けられた一対のサンギアとの双方にそれぞれ噛合させるとともに、同プラネタリシャフトの外周面における前記一対のプラネタリギアの間に設けられた螺子を前記ロータの内周面に設けられた螺子と前記サンシャフトの外周面に設けられた螺子との双方に螺合させることによって各部材を噛合させ、前記各部材に設けられた螺子のリード角の差を利用して前記ロータの回転運動を前記サンシャフトの直線運動に変換する遊星差動式運動変換機構において、同遊星差動式運動変換機構は前記サンシャフトにその軸方向の一方に向かう荷重が常に作用する状況下で使用されるものであり、前記ロータの内周面における前記一対のプラネタリギアのうち前記荷重の作用方向側に位置する第1プラネタリギアと対向する部位に、前記第1プラネタリギアとのクリアランスが、同第1プラネタリギアとこれに噛合する第1リングギアとの間のクリアランスよりも小さくなるようにその厚さが設定されて、前記プラネタリシャフトが傾いたときに前記第1リングギアと前記第1プラネタリギアとが当接する前に同第1プラネタリギアに当接する緩衝部材を備えることをその要旨とする。
上記構成によれば、プラネタリシャフトが傾いたときに第1プラネタリギアが第1リングギアに当接する前に緩衝部材に当接するようになる。このように第1リングギアに当接する前に第1プラネタリギアを緩衝部材に接触させることにより、第1プラネタリギアと第1リングギアとが当接する際の衝撃を和らげることができ、プラネタリシャフトが傾いたときに第1プラネタリギアと第1リングギアとが衝突して各ギアが損傷することを抑制することができる。また、緩衝部材と当接することによって第1プラネタリギアが支持されるようになるため、プラネタリシャフトが傾くのに伴って第1プラネタリギアが第1リングギアに片当たりすることを抑制することができ、これらのギアにおける歯面の偏磨耗の発生を抑制することができる。
請求項4に記載の発明は、請求項3に記載の遊星差動式運動変換機構において、前記緩衝部材は、繊維強化樹脂からなることをその要旨とする。
具体的には、請求項4に記載の発明のように、耐磨耗性があり、且つ弾性を有する繊維強化樹脂によって緩衝部材を形成することが望ましい。
請求項5に記載の発明は、円環状のロータと同ロータに内挿されるサンシャフトとの間に複数のプラネタリシャフトを介装し、同プラネタリシャフトの両端部に設けられた一対のプラネタリギアを前記ロータの内周面に設けられた一対のリングギアと前記サンシャフトの外周面に設けられた一対のサンギアとの双方にそれぞれ噛合させるとともに、同プラネタリシャフトの外周面における前記一対のプラネタリギアの間に設けられた螺子を前記ロータの内周面に設けられた螺子と前記サンシャフトの外周面に設けられた螺子との双方に螺合させることによって各部材を噛合させ、前記各部材に設けられた螺子のリード角の差を利用して前記ロータの回転運動を前記サンシャフトの直線運動に変換する遊星差動式運動変換機構において、同遊星差動式運動変換機構は前記サンシャフトにその軸方向の一方に向かう荷重が常に作用する状況下で使用されるものであり、前記ロータの内周面に設けられる螺子及び前記プラネタリシャフトの外周面に設けられる螺子は、前記荷重の作用方向側に向かってそのピッチが次第に小さくなるように形成されてなることをその要旨とする。
上記構成によれば、互いに螺合するロータの内周面に形成される螺子とプラネタリシャフトの外周面に形成される螺子のピッチがともにサンシャフトに作用する荷重の作用方向側ほど小さくされる。このように前記荷重の作用方向側における螺子のピッチを小さくすることによって前記荷重の作用方向側の部分ほど互いに噛合する螺子山の間のクリアランスが小さくなり、プラネタリシャフトが傾いたときに互いに噛合する螺子山同士が当接しやすくなる。そのため、サンシャフトに軸方向の荷重が作用することにより、プラネタリシャフトにおける前記荷重の作用方向側の部分をロータ側に開くように傾けるトルクが作用した場合であっても、互いに噛合する螺子山同士が当接することにより、プラネタリシャフトの傾きが抑制されるようになる。したがって、上記請求項5に記載の構成によれば、プラネタリシャフトが傾くことに起因して同プラネタリシャフトに形成された螺子やギア、並びにこれらの螺子やギアと噛合する螺子やギアの歯面に偏磨耗や欠損が発生することを抑制することができるようになる。
また、ロータに形成される螺子とプラネタリシャフトに形成される螺子の螺子山のクリアランスを小さくした場合には、それに伴ってこれらの噛合部分における摩擦が増大し、遊星差動式運動変換機構の効率が低下するおそれがある。これに対して、上記構成では、サンシャフトに前記荷重が作用することに起因してプラネタリシャフトとロータとが接近する荷重の作用方向側の部分においてロータに形成された螺子とプラネタリシャフトに形成された螺子とのクリアランスが小さくなるようにしている。そのため、ロータに形成される螺子及びプラネタリシャフトに形成される螺子の全体に亘ってピッチを小さくてこれらの螺子山の間のクリアランスを小さくする構成と比較して、各螺子山のクリアランスを小さくすることによる遊星差動式運動変換機構の効率の低下を抑制しながら、プラネタリシャフトの傾きを好適に抑制することができるようになる。
尚、上記螺子のピッチはプラネタリシャフトに形成された螺子と、ロータ及びサンシャフトに形成された螺子とを互いに螺合させることのできる範囲内で前記荷重の作用方向側に向かって次第に小さくなるように設定される。
請求項6に記載の発明は、円環状のロータと同ロータに内挿されるサンシャフトとの間に複数のプラネタリシャフトを介装し、同プラネタリシャフトの両端部に設けられた一対のプラネタリギアを前記ロータの内周面に設けられた一対のリングギアと前記サンシャフトの外周面に設けられた一対のサンギアとの双方にそれぞれ噛合させるとともに、同プラネタリシャフトの外周面における前記一対のプラネタリギアの間に設けられた螺子を前記ロータの内周面に設けられた螺子と前記サンシャフトの外周面に設けられた螺子との双方に螺合させることによって各部材を噛合させ、前記各部材に設けられた螺子のリード角の差を利用して前記ロータの回転運動を前記サンシャフトの直線運動に変換する遊星差動式運動変換機構において、同遊星差動式運動変換機構は前記サンシャフトにその軸方向の一方に向かう荷重が常に作用する状況下で使用されるものであり、前記サンシャフトの外周面に形成される螺子は、前記荷重の作用方向側から前記荷重の作用方向とは反対側の方向側に向かって次第にその外径が大きくなるようにテーパ状に形成されてなることをその要旨とする。
サンシャフトに軸方向の荷重が作用すること起因してプラネタリシャフトにおける前記荷重の作用方向側の部分がロータ側に開くように傾いた場合には、ロータの内周面に形成された螺子とプラネタリシャフトの外周面に形成された螺子との噛合部分における前記荷重の作用方向側の部分の接触面圧が局所的に大きくなり、この部分が偏磨耗するようになる。これに対して、上記請求項6に記載の発明では、サンシャフトの外周面に形成される螺子を前記荷重の作用方向とは反対の方向側の部分ほどその外径が大きくなるようにテーパ状に形成するようにしている。そのため、この螺子と噛合するプラネタリシャフトは前記荷重の作用方向とは反対側の部分がこの螺子の外径の大きい部分によってロータ側に持ち上げられた状態となる。その結果、サンシャフトに軸方向の荷重が作用すること起因してプラネタリシャフトにおける前記荷重の作用方向側の部分がロータ側に開くようにトルクが作用したときにプラネタリシャフトに形成された螺子とロータに形成された螺子とが均一に噛合しやすくなる。すなわち、上記請求項6に記載の発明によれば、プラネタリシャフトが傾くことに起因して同プラネタリシャフトに形成された螺子やギア、並びにこれらの螺子やギアと噛合する螺子やギアの歯面に偏磨耗や欠損が発生することを抑制することができるようになる。
請求項7に記載の発明は、円環状のロータと同ロータに内挿されるサンシャフトとの間に複数のプラネタリシャフトを介装し、同プラネタリシャフトの両端部に設けられた一対のプラネタリギアを前記ロータの内周面に設けられた一対のリングギアと前記サンシャフトの外周面に設けられた一対のサンギアとの双方にそれぞれ噛合させるとともに、同プラネタリシャフトの外周面における前記一対のプラネタリギアの間に設けられた螺子を前記ロータの内周面に設けられた螺子と前記サンシャフトの外周面に設けられた螺子との双方に螺合させることによって各部材を噛合させ、前記各部材に設けられた螺子のリード角の差を利用して前記ロータの回転運動を前記サンシャフトの直線運動に変換する遊星差動式運動変換機構において、同遊星差動式運動変換機構は前記サンシャフトにその軸方向の一方に向かう荷重が常に作用する状況下で使用されるものであり、前記ロータの内周面に形成される螺子は、前記荷重の作用方向側に向かってその内径が次第に大きくなるようにテーパ状に形成されてなることをその要旨とする。
サンシャフトに軸方向の荷重が作用すること起因してプラネタリシャフトにおける前記荷重の作用方向側の部分がロータ側に開くように傾いた場合には、ロータの内周面に形成された螺子とプラネタリシャフトの外周面に形成された螺子との噛合部分における前記荷重の作用方向側の部分の接触面圧が大きくなり、この部分が偏磨耗しやすくなる。これに対して、上記請求項7に記載の発明では、ロータの内周面に形成される螺子を前記荷重の作用方向側ほどその内径が大きくなるようにテーパ状に形成するようにしている。そのため、サンシャフトに軸方向の荷重が作用すること起因してプラネタリシャフトにおける前記荷重の作用方向側の部分がロータ側に開くように傾いたときに、ロータの内周面に形成されたこの螺子と、傾いたプラネタリシャフトの外周面に形成された螺子とが均一に噛合しやすくなる。すなわち、上記請求項7に記載の構成によれば、プラネタリシャフトが傾くことに起因して同プラネタリシャフトに形成された螺子、並びにこの螺子と噛合する螺子に偏磨耗が発生することを抑制することができるようになる。
尚、テーパ状に形成される螺子の内周面の傾斜角度は、プラネタリシャフトが傾いたときに同ロータに形成された螺子と、プラネタリシャフトに形成された螺子とが均一に当接するように、プラネタリシャフトとロータ及びサンシャフトとの間のクリアランスの大きさ等によって算出することのできるプラネタリシャフトの傾斜角度に基づいて設定することが望ましい。
請求項8に記載の発明は、請求項1〜7のいずれか一項に記載の遊星差動式運動変換機構を具備し、モータの駆動力によって前記ロータを回転させることにより前記サンシャフトを軸方向に変位させる動力装置である。
具体的には、上記構成のように請求項1〜7のいずれか一項に記載の遊星差動式運動変換機構は、ロータを回転させるモータと組み合わされ、モータの回転力を利用してサンシャフトを軸方向に変位させる動力装置に適用される。
請求項9に記載の発明は、制御軸の軸方向の変位に伴って機関バルブの最大リフト量及びリフト期間を変更する内燃機関のバルブ特性変更機構と組み合わされ、前記制御軸を軸方向に変位させる動力装置として適用される請求項8に記載の動力装置である。
機関バルブの最大リフト量及びリフト期間を変更する内燃機関のバルブ特性変更機構の制御軸には、バルブスプリングの反力によって機関バルブの最大リフト量及びリフト期間を小さくする方向に制御軸を変位させる荷重が常に作用する。そのため、請求項9に記載の発明のように、こうしたバルブ特性変更機構の制御軸を駆動する動力装置として、上記請求項8に記載の動力装置を適用することが望ましい。
(第1の実施形態)
以下、この発明にかかる遊星差動式運動変換機構を、内燃機関の吸気バルブの最大リフト量及びリフト期間を変更するバルブ特性変更機構を駆動する動力装置に搭載される遊星差動式運動変換機構として具体化した第1の実施形態について、図1及び図2を参照して説明する。
図1は本実施形態にかかる遊星差動式運動変換機構100を具備する動力装置200の断面図である。図1に示されるように本実施形態の動力装置200は、内燃機関のシリンダヘッド300に取り付けられ、吸気バルブの最大リフト量及びリフト期間を変更するバルブ特性変更機構を駆動する。バルブ特性変更機構は、制御軸310を軸方向に変位させることにより同制御軸310の位置に対応して吸気バルブの最大リフト量及びリフト期間を変更するものであり、図1の右方向に制御軸310を変位させるほど吸気バルブの最大リフト量及びリフト期間が小さくなる。
動力装置200にあっては、モータが回転するのに伴ってハウジング210から突出したサンシャフト20がその軸方向に変位する。図1の右側に示されるようにサンシャフト20は、その先端部が留め具320によってバルブ特性変更機構の制御軸310と連結されている。これにより、動力装置200を制御してサンシャフト20の軸方向の変位量を制御することにより、バルブ特性変更機構の制御軸310を軸方向に変位させ、吸気バルブの最大リフト量及びリフト期間を変更することができる。
動力装置200は、その内部にモータの回転運動をサンシャフト20の軸方向の直線運動に変換する遊星差動式運動変換機構100を有している。図1に示されるように遊星差動式運動変換機構100は、円筒状のロータ10にサンシャフト20を内挿するとともに、サンシャフト20とロータ10との間に複数のプラネタリシャフト30を介装させることにより構成されている。尚、本実施形態の遊星差動式運動変換機構100にあっては、サンシャフト20を取り囲むように9本のプラネタリシャフト30を等角度間隔で配設している。
以下、この遊星差動式運動変換機構100の構成を詳しく説明する。尚、以下の説明では図1における右側、すなわちサンシャフト20が突出している方向を遊星差動式運動変換機構100のフロント側、図1における左側を遊星差動式運動変換機構100のリア側として説明を行う。
図1に示されるようにロータ10の外側には、外周面上に永久磁石が取り付けられたカバー15が固定されている。カバー15は、図1に示されるようにベアリング220を介して動力装置200のハウジング210に回動可能に固定されている。尚、ハウジング210の内周面におけるカバー15に固定された永久磁石と対向可能な位置には、ステータ230が取り付けられており、このステータ230を励磁することによりカバー15とともにロータ10が回転するようになっている。すなわち、このステータ230とカバー15に固定された永久磁石とによりロータ10を回転させるモータが構成されている。
また、ロータ10の内周面には、その中央部分にフロント側からリア側に向かって左回りに進行する5条の左螺子からなる螺子11が形成されている。そして、ロータ10の内周面にはこの螺子11を挟むようにフロント側リングギア112aとリア側リングギア12bとが固定されている。
このロータ10に内挿されたサンシャフト20の外周面には、ロータ10に形成された螺子11と対向する位置にフロント側からリア側に向かって右回りに進行する4条の右螺子からなる螺子21が形成されている。また、サンシャフト20の外周面にはこの螺子21を挟むようにフロント側サンギア22aとリア側サンギア22bとが形成されている。
尚、図1の右側に示されるようにサンシャフト20の外周面にはストレートスプライン23が形成されている。このストレートスプライン23は、ハウジング210の開口部分に形成されているストレートスプライン215に噛み合わされる。これにより、これらストレートスプライン23,215の噛み合いの作用によってサンシャフト20は、ハウジング210に対して軸方向には移動可能であるが、回転は規制された状態になっている。
ロータ10とサンシャフト20との間に介装された各プラネタリシャフト30の外周面には、図1に示されるようにロータ10の内周面に形成された螺子11とサンシャフト20の外周面に形成された螺子21との双方に螺合する螺子31が形成されている。この螺子31はフロント側からリア側に向かって左回りに進行する1条の左螺子である。
また、図1に示されるように各プラネタリシャフト30には、この螺子31を挟むように、そのフロント側の端部にフロント側プラネタリギア32aが、リア側の端部にリア側プラネタリギア32bがそれぞれ形成されている。そして、フロント側プラネタリギア32aがロータ10に形成されたフロント側リングギア112aとサンシャフト20に形成されたフロント側サンギア22aとの双方に噛合しており、リア側プラネタリギア32bがロータ10に形成されたリア側リングギア12bとサンシャフト20に形成されたリア側サンギア22bとの双方に噛合している。
尚、図1に示されるようにプラネタリシャフト30は、螺子31及びフロント側プラネタリギア32aが一体に形成されたシャフト本体35と、同シャフト本体35と別体に形成されたリア側プラネタリギア32bとによって構成されている。リア側プラネタリギア32bには、その中心軸に沿って延びる軸受孔34が形成されている一方、シャフト本体35には、螺子31側の先端部にこの軸受孔34に挿入される軸部33が設けられている。そして、シャフト本体35に形成された軸部33をリア側プラネタリギア32bの軸受孔34に挿入することによってリア側プラネタリギア32bとシャフト本体35とが連結されている。このようにしてリア側プラネタリギア32bとシャフト本体とが連結されていることにより、リア側プラネタリギア32bは、シャフト本体35から脱着可能であり、且つシャフト本体35に対して回動可能となっている。
プラネタリシャフト30の両端部にプラネタリギア32a,32bが設けられていると、サンシャフト20、プラネタリシャフト30、ロータ10を一体に組み付ける際に各部材の螺子及びギアが干渉してその組み付けが困難になる。これに対して本実施形態のようにリア側プラネタリギア32bをシャフト本体35から脱着可能としていれば、リア側プラネタリギア32bを取り外した状態にてサンシャフト20の周囲にシャフト本体35を配設し、この状態でロータ10をサンシャフト20及びシャフト本体35に被せてその螺子11をシャフト本体35の螺子31に螺合させることができる。そして、こうしてロータ10、シャフト本体35、サンシャフト20の螺子をそれぞれ螺合させた後にリア側プラネタリギア32bを組み付けることにより、各部材を容易に組み付けることができるようになる。
また、各プラネタリギア32a,32b及びこれらにそれぞれ噛合するギアの製造誤差等によってフロント側プラネタリギア32aとリア側プラネタリギア32bとの回転位相には僅かな差が生じることがある。これに対して、上記のようにシャフト本体35とリア側プラネタリギア32bの連結部分における相対回動が許容されていれば、こうした回転位相の差に起因してプラネタリシャフト30にねじれが生じることも抑制することができる。
上記のように本実施形態の遊星差動式運動変換機構100にあっては、ロータ10、サンシャフト20及びプラネタリシャフト30のそれぞれが各部材に形成された螺子及びギアを介して互いに噛合している。
ここで、ロータ10の螺子11とプラネタリシャフト30の螺子31とは、そのピッチ円径の比と螺子条数の比とがどちらも「5:1」に設定されている。そのため、ロータ10の螺子11とプラネタリシャフト30の螺子31とは、そのリード角がともに等しくなっている。これにより、プラネタリシャフト30がロータ10の内周面に沿って転動した場合にはロータ10とプラネタリシャフト30との間では軸方向の相対的な変位は生じない。
一方、プラネタリシャフト30の螺子31とサンシャフト20の螺子21とは、ピッチ円径の比と螺子条数の比とが異なっている。具体的にはピッチ円径の比が「1:3」に設定されているのに対して、上述したようにプラネタリシャフト30の螺子31の螺子条数が1条であり、サンシャフト20の螺子21の螺子条数は4条であるため、螺子条数の比は「1:4」に設定されている。そのため、サンシャフト20の螺子21とプラネタリシャフト30の螺子31に形成されている螺子は、そのリード角が異なっている。これにより、プラネタリシャフト30が、サンシャフト20の外周面に沿って転動した場合にはこのリード角の差の分だけサンシャフト20とプラネタリシャフト30とが軸方向にずれて、その相対的な位置が変化するようになる。
上記のように遊星差動式運動変換機構100にあっては、このような螺子に加えて、ギアを介してロータ10、サンシャフト20及びプラネタリシャフト30が互いに噛合されている。そのため、モータの駆動力によってロータ10をサンシャフト20に対して相対回動させることにより、ロータ10の回転力が各ギアを介してプラネタリシャフト30に伝達され、プラネタリシャフト30がサンシャフト20の外周面上で転動するようになる。そして、プラネタリシャフト30がサンシャフト20の外周面上で転動すると、上述したリード角の違いの分だけサンシャフト20が軸方向に変位するようになる。すなわちモータから入力される回転運動を遊星差動式運動変換機構100を通じてサンシャフト20の直線運動に変換して出力することができる。
バルブ特性変更機構の制御軸310には、バルブスプリングの反力によって吸気バルブの最大リフト量及びリフト期間を小さくする方向に同制御軸310を変位させる荷重Fが常に作用する。そのため、遊星差動式運動変換機構100のサンシャフト20には、図1に矢印で示されるようにフロント側に向かう荷重Fが常に作用することになる。
ところで、遊星差動式運動変換機構100にあっては、上述したようにリード角の異なる螺子と、螺子を挟むように配設される一対のギアとによってロータ10及びサンシャフト20とプラネタリシャフト30とを噛合させているため、各部材を滑らかに運動させるためには、各部材の間にある程度のクリアランスを設けることが必要とされる。その結果、図1に矢印で示されるようにサンシャフト20にフロント側に向かう荷重Fが作用している状況下で遊星差動式運動変換機構100が使用される場合には、上記のように各部材の間に所定のクリアランスが存在することに起因してこのクリアランスの分だけロータ10とサンシャフト20との間でプラネタリシャフト30が傾くこととなる。
具体的には、サンシャフト20に荷重Fが作用することに起因して、プラネタリシャフト30のフロント側をロータ10側に近接させるとともに、リア側をサンシャフト20側に近接させるようなモーメントがプラネタリシャフト30に作用する。また、プラネタリシャフト30がサンシャフト20の外周面上を転動しているときには、プラネタリシャフト30には、これをロータ10側に押し付けるような遠心力が作用する。そのため、この遠心力と上記モーメントとの合力によりプラネタリシャフト30にはそのフロント側の部分をロータ側に開くようなトルクが作用し、フロント側の部分がロータ10側に開くよう傾くようになる。
このようにプラネタリシャフト30のフロント側がロータ10側に傾くと、ロータ10の内周面に固定されたフロント側リングギア112aと、フロント側プラネタリギア32aとが接触する部分ではこれらのギア同士が傾いた状態で接触し、片当たりするようになる。また、プラネタリシャフト30の螺子31とロータ10の螺子11との噛合部分においても同様に片当たりが生じ、これらの部分においてギアや螺子の偏磨耗や欠損が発生しやすくなり、遊星差動式運動変換機構100の耐久性が低下するおそれがある。
そこで、本実施形態の遊星差動式運動変換機構100にあっては、通常、フロント側とリア側とで同じ寸法のものが使用されるリングギアの基準円半径をフロント側とリア側とで異ならせ、フロント側に固定されるフロント側リングギア112aの基準円半径を通常よりも小さく設定している。すなわち、フロント側リングギア112aの基準円半径をリア側リングギア12bの基準円半径よりも小さくしている。
以下、フロント側リングギア112aとフロント側プラネタリギア32aとの噛合状態をリア側リングギア12bとリア側プラネタリギア32bとの噛合状態と比較して示す図2を参照して、このようにフロント側リングギア112aの基準円半径をリア側リングギア12bの基準円半径よりも小さくしたことによる作用を説明する。尚、図2にあっては、フロント側リングギア112aを実線で示すとともに、リア側リングギア12bを二点鎖線で示している。また、図2にあっては、これらのギアの噛合状態を模式的に示しており、各プラネタリギア32a,32bと各リングギア112a,12bとのクリアランスを誇張して示している。
図2に示されるように、本実施形態の遊星差動式運動変換機構100にあっては、フロント側プラネタリギア32aとリア側プラネタリギア32bは、そのギア部分が同じ寸法で設計されている。一方で、上述したようにフロント側リングギア112aはその基準円半径がリア側リングギア12bの基準円半径よりも小さく設定されている。
そのため、図2に示されるようにフロント側リングギア112aとフロント側プラネタリギア32aとの噛合部分におけるクリアランス、より具体的には幅方向のクリアランスCLWa及び高さ方向のクリアランスCLHaがともにリア側リングギア12bとリア側プラネタリギア32bとの噛合部分における幅方向のクリアランスCLWb及び高さ方向のクリアランスCLHbよりも小さくなっている。
これにより、本実施形態の遊星差動式運動変換機構100にあっては、プラネタリシャフト30フロント側の部分がロータ10側に傾いたときにフロント側リングギア112aとフロント側プラネタリギア32aとが当接しやすくなる。そして、フロント側リングギア112aとフロント側プラネタリギア32aが当接することによりプラネタリシャフト30の変位が規制されるようになる。
以上説明した第1の実施形態によれば、以下の効果が得られるようになる。
(1)サンシャフト20に作用する荷重Fの作用方向側に位置するフロント側リングギア112aとフロント側プラネタリギア32aとの噛合部分におけるクリアランスが小さくされている。そのため、プラネタリシャフト30のフロント側の部分がロータ10側に傾いたときにフロント側リングギア112aとフロント側プラネタリギア32aとが当接しやすくなる。そして、フロント側リングギア112aとフロント側プラネタリギア32aが当接することによりプラネタリシャフト30の変位が規制されるようになる。そのため、プラネタリシャフト30の傾きを抑制することができ、プラネタリシャフト30が傾くことに起因して同プラネタリシャフト30に形成された螺子31やプラネタリギア32a,32b、並びにこれらと噛合する螺子やギアの歯面に偏磨耗や欠損が発生することを抑制することができるようになる。
(2)また、サンシャフト20に軸方向の荷重Fが作用することに起因してプラネタリシャフト30はフロント側の部分がロータ10側に開くように傾く。これに対して、上記第1の実施形態にかかる遊星差動式運動変換機構100では、プラネタリシャフト30のフロント側の端部に位置するフロント側プラネタリギア32aとフロント側リングギア112aとを当接させることによってプラネタリシャフト30の傾きを規制するようにしている。そのため、プラネタリシャフト30が傾く際の支点から離間した部分においてプラネタリシャフト30の変位を規制することとなり、効果的にプラネタリシャフト30の傾きを抑制することができる。
(3)フロント側リングギア112aの基準円半径をリア側リングギア12bの基準円半径よりも小さくすることによってフロント側リングギア112aとフロント側プラネタリギア32aとの噛合部分におけるクリアランスをリア側リングギア12bとリア側プラネタリギア32bとの噛合部分におけるクリアランスよりも小さくしている。そのため、各プラネタリギア32a,32bやリア側リングギア12bの設計を変更することなく、フロント側リングギア112aの基準円半径を小さくする簡単な構成の変更のみによって、プラネタリシャフト30の傾きを抑制することができる。
尚、上記第1の実施形態は、これを適宜変更した以下の形態にて実施することもできる。
・フロント側リングギア112aとフロント側プラネタリギア32aとの間のクリアランスを小さくするほど、プラネタリシャフト30は傾きにくくなる。しかしながら、各ギアの間のクリアランスを過剰に小さくすると、遊星差動式運動変換機構100を駆動する際にこれらの部分に生じる摩擦力が過剰に増大し、遊星差動式運動変換機構100の効率が低下したり、この噛合部分においてかえって摩耗が進行しやすくなったりするおそれがある。そのため、各ギアの間のクリアランスを小さくすることにより、プラネタリシャフト30の傾きを抑制する上では、こうした効率の低下や摩耗の進行を招かない程度に同クリアランスの大きさを設定することが望ましい。
・上記第1の実施形態に記載の構成と併せてフロント側サンギア22aとフロント側プラネタリギア32aとの噛合部分におけるクリアランスをリア側サンギア22bとリア側プラネタリギア32bとの噛合部分におけるクリアランスよりも小さくする構成を採用することもできる。こうした構成を採用すれば、プラネタリシャフト30のフロント側の部分がサンシャフト20側に傾くことも抑制することができるようになり、プラネタリシャフト30の揺動を抑制することができる。しかし、上述したように各ギアの噛合部分におけるクリアランスを小さくするほど遊星差動式運動変換機構100を駆動する際にこれらの部分に生じる摩擦力が増大し、遊星差動式運動変換機構100の効率が低下するおそれがある。サンシャフト20に荷重Fが作用することによってプラネタリシャフト30にはそのフロント側の部分をロータ10側に傾けるトルクが作用し、プラネタリシャフト30はそのフロント側部分がロータ10側に傾く。そのため、上記のような効率の低下を抑制しつつ、プラネタリシャフト30が傾くことによる不都合の発生を好適に抑制する上では、上記第1の実施形態のようにフロント側リングギア112aとフロント側プラネタリギア32aとの噛合部分におけるクリアランスのみを小さくする構成を採用することが望ましい。
・フロント側リングギア112aの基準円半径をリア側リングギア12bの基準円半径よりも小さくする構成に替えて、フロント側プラネタリギア32aの基準円半径をリア側プラネタリギア32bの基準円半径よりも大きくすることによってフロント側リングギアとリア側プラネタリギアとの噛合部分におけるクリアランスを小さくすることもできる。しかしながら、こうした構成を採用した場合には、フロント側プラネタリギア32aの基準円半径を大きくすることによって、フロント側プラネタリギア32aとフロント側サンギア22aとの噛合部分におけるクリアランスまで小さくなってしまう。そのため、遊星差動式運動変換機構100の各部材を円滑に運動させるべく、これら各部材間のクリアランスを好適に確保しつつ、プラネタリシャフト30の傾きを抑制する上では、上記実施形態のようにフロント側リングギア112aの基準円半径をリア側リングギア12bの基準円半径よりも小さくする構成を採用することが望ましい。
・また上記第1の実施形態では、バルブスプリングの反力によってサンシャフト20に図1における右向きの荷重Fが作用することを説明したが、バルブ特性変更機構の構成によってはバルブスプリングの反力によって図1における左向きの荷重が作用する場合もある。尚、この場合には、プラネタリシャフト30に作用するモーメントの方向が上記実施形態におけるモーメントの方向とは反対になるため、遠心力とこのモーメントの合力の作用により、プラネタリシャフト30はリア側の部分がロータ10側に開くように傾くこととなる。そのため、こうした場合にあっては、リア側リングギアとリア側プラネタリギアとの噛合部分におけるクリアランスをフロント側リングギアとフロント側プラネタリギアとの噛合部分におけるクリアランスよりも小さくする構成を採用すればよい。すなわち、いずれにせよリングギアとプラネタリギアとが噛合する一対の噛合部分のうち、サンシャフトに作用する荷重の作用方向側に位置する噛合部分におけるクリアランスを他方の噛合部分におけるクリアランスよりも小さくする構成を採用すればよい。
(第2の実施形態)
以下、この発明にかかる遊星差動式運動変換機構を、内燃機関の吸気バルブの最大リフト量及びリフト期間を変更するバルブ特性変更機構を駆動する動力装置に搭載される遊星差動式運動変換機構として具体化した第2の実施形態について、図3及び図4を参照して説明する。尚、第2の実施形態は、その基本的な構成は第1の実施形態と同様であり、その一部のみを変更したものであるため、以下では同様の構成については同一の符号を付すのみとしてその説明を割愛し、第1の実施形態と異なる構成を中心に説明する。尚、図3は本実施形態にかかる遊星差動式運動変換機構100を具備する動力装置200の断面図である。
図3に示されるように本実施形態の遊星差動式運動変換機構100にあっては、ロータ10の内周面にフロント側リングギア112aに替えて、従来の遊星差動式運動変換機構と同様にリア側リングギア12bと寸法の同じフロント側リングギア12aを設けるようにしている。すなわち、本実施形態の遊星差動式運動変換機構100にあっては、フロント側リングギア12aの基準円半径とリア側リングギア12bの基準円半径とが等しくなっている。
また、図3に示されるように本実施形態の遊星差動式運動変換機構100にあっては、ロータ10の内周面におけるフロント側リングギア12aよりもフロント側の部位に円環状の緩衝部材40が固定されている。尚、緩衝部材40は耐磨耗性と弾性を有する繊維強化プラスチックによって形成されている。
以下、フロント側リングギア12aとフロント側プラネタリギア32aとの噛合部分を拡大して示す図4を参照して、この緩衝部材40の構成及び作用を詳しく説明する。
図4に示されるように、緩衝部材40は、ロータ10の内周面におけるフロント側リングギア12aよりもフロント側の部位であり、且つフロント側プラネタリギア32aと対向する部位に固定されている。緩衝部材40の径方向の厚さTは、図4に示されるように同緩衝部材40がロータ10の内周面に固定された状態において、同緩衝部材40の内周面41がロータ10の径方向においてフロント側リングギア12aの歯先16と歯底17の間に位置するように設定されている。すなわち、図4に示されるようにフロント側リングギア12aとフロント側プラネタリギア32aとが噛合した状態において、同緩衝部材40の内周面41とフロント側プラネタリギア32aの歯先36とのクリアランスが、フロント側リングギア12aの歯底17とフロント側プラネタリギア32aの歯先36との間のクリアランスよりも小さくなるようにその厚さTが設定されている。
これにより、図3に示されるようにサンシャフト20に荷重Fが作用することに起因してプラネタリシャフト30のフロント側の部分がロータ10側に開くように同プラネタリギアが傾くときには、フロント側プラネタリギア32aの歯先36がフロント側リングギア12aの歯底17に当接する前に緩衝部材40の内周面41と当接するようになる。
以上説明した第2の実施形態によれば、以下の効果が得られるようになる。
(1)プラネタリシャフト30がロータ10側に傾いたときにフロント側プラネタリギア32aがフロント側リングギア12aに当接する前に緩衝部材40に当接するようになる。このようにフロント側リングギア12aに当接する前にフロント側プラネタリギア32aを緩衝部材40に接触させることにより、フロント側プラネタリギア32aとフロント側リングギア12aとが当接する際の衝撃を和らげることができる。その結果、プラネタリシャフト30が傾いたときにフロント側プラネタリギア32aとフロント側リングギア12aとが衝突して各ギアが損傷することを抑制することができる。また、緩衝部材40と当接することによってフロント側プラネタリギア32aが支持されるようになるため、プラネタリシャフト30が傾くことを抑制することができ、フロント側プラネタリギア32aがフロント側リングギア12aに片当たりすることを抑制してこれらのギアにおける歯面の偏磨耗の発生を抑制することができる。
尚、上記第2の実施形態は、これを適宜変更した以下の形態にて実施することもできる。
・上記実施形態では、緩衝部材40を繊維強化プラスチックによって形成する構成を示したが、緩衝部材40の材質はこれに限定されるものではない。すなわち、緩衝部材40の材質は、同緩衝部材40がフロント側リングギア12aよりも先にフロント側プラネタリギア32aと当接することにより、フロント側リングギア12aとフロント側プラネタリギア32aとが当接する際の衝撃を和らげることのできるものであればよい。例えば、その他の繊維強化樹脂、またはゴム等によってこれを形成することもできる。
・また、フロント側プラネタリギア32aと対向する位置であれば、ロータ10の内周面におけるフロント側リングギア12aよりもリア側の部位に緩衝部材40を設けることもできる。
・上記第2の実施形態では、バルブスプリングの反力によってサンシャフト20に図3における右向きの荷重Fが作用することを想定していたが、バルブ特性変更機構の構成によってはバルブスプリングの反力によって図3における左向きの荷重が作用する場合もある。尚、この場合には、プラネタリシャフト30に作用するモーメントの方向が上記実施形態におけるモーメントの方向とは反対になるため、遠心力とこのモーメントの合力の作用により、プラネタリシャフト30はリア側の部分がロータ10側に開くように傾くこととなる。そのため、こうした場合にあっては、ロータ10の内周面におけるリア側リングギア12bよりもリア側の部位に緩衝部材40を固定するようにすればよい。すなわち、いずれにせよロータ10の内周面における荷重の作用方向側に位置するプラネタリギアと対向する部位に、緩衝部材40を備えるようにすればよい。
(第3の実施形態)
以下、この発明にかかる遊星差動式運動変換機構を、内燃機関の吸気バルブの最大リフト量及びリフト期間を変更するバルブ特性変更機構を駆動する動力装置に搭載される遊星差動式運動変換機構として具体化した第3の実施形態について、図5及び図6を参照して説明する。尚、第3の実施形態は、その基本的な構成は第1の実施形態と同様であり、その一部のみを変更したものであるため、以下では同様の構成については同一の符号を付すのみとしてその説明を割愛し、第1の実施形態と異なる構成を中心に説明する。尚、図5は本実施形態にかかる遊星差動式運動変換機構100を具備する動力装置200の断面図である。
図5に示されるように本実施形態の遊星差動式運動変換機構100にあっては、ロータ10の内周面にフロント側リングギア112aに替えて、従来の遊星差動式運動変換機構と同様にリア側リングギア12bと寸法の同じフロント側リングギア12aを設けるようにしている。すなわち、本実施形態の遊星差動式運動変換機構100にあっては、フロント側リングギア12aの基準円半径とリア側リングギア12bの基準円半径とが等しくなっている。
また、図5に示されるように本実施形態にあっては、ロータ10とプラネタリシャフト30とをリア側からフロント側に向かってそのピッチが次第に小さくなる螺子111と131によって噛合させるようにしている。
具体的には、図5に示されるようにロータ10の内周面における中央部分にフロント側からリア側に向かって左回りに進行する5条の左螺子からなり、そのピッチがフロント側ほど小さくなる螺子111を形成するようにしている。また、プラネタリシャフト30にあっては、その外周面における中央部分にフロント側からリア側に向かって左回りに進行する1条の左螺子からなり、そのピッチがフロント側ほど小さくなる螺子131を形成するようにしている。
尚、プラネタリシャフト30の螺子131はサンシャフト20に形成された螺子21と噛合するため、同螺子131は螺子21と螺合させることのできる範囲で僅かにフロント側に向かってそのピッチが小さくなるように形成されている。また、ロータ10の螺子111とプラネタリシャフト30の螺子131とは互いに噛合する。そのため、各螺子111,131の互いに噛合する部分のピッチが等しくなるように、螺子111と螺子131にあっては、リア側からフロント側に向かって小さくなるそのピッチが互いに等しく設定されている。
以下、螺子111と螺子131の噛合状態を模式的に示す図6(a),(b)を参照して、このようにピッチをフロント側に向かって小さくすることによる作用を詳しく説明する。尚、図6(a)は図5における破線で囲んだ部分A、すなわちリア側における螺子111と螺子131との噛合状態を示す模式図であり、図6(b)は図5における破線で囲んだ部分B、すなわちフロント側における螺子111と螺子131との噛合状態を示す模式図である。また、図6(a),(b)にあってはプラネタリシャフト30に形成された螺子131の螺子山を実線で示す一方、これと噛合するロータ10の螺子111の螺子山を二点鎖線で示し、説明の便宜上、各螺子山のクリアランスや図(a)と図6(b)におけるピッチの差を誇張して示している。
螺子111と螺子131の噛合部分におけるリア側の部位にあっては、図6(a)に示されるように螺子111のピッチと螺子131のピッチがともにPrに設定されており、互いに噛合する螺子111の螺子山と螺子131の螺子山とのクリアランスはCLrになっている。一方で、螺子111と螺子131の噛合部分におけるフロント側の部位にあっては、図(b)に示されるように螺子111のピッチと螺子131のピッチがともにPrよりも小さなPfに設定されている。そのため、フロント側の噛合部分にあっては、図6(b)に示されるように互いに噛合する螺子111の螺子山と螺子131の螺子山とのクリアランスCLfがリア側のクリアランスCLrよりも小さくなっている。
これにより、サンシャフト20にフロント側に向かう荷重Fが作用することに起因してプラネタリシャフト30のフロント側の部分をロータ10側に開くように傾けるトルクが作用する場合であっても、プラネタリシャフト30の螺子131とロータ10の螺子111とが互いに当接してプラネタリシャフト30の傾きが抑制されるようになる。
以上説明した第3の実施形態によれば、以下の効果が得られるようになる。
(1)ロータ10の内周面に形成される螺子111とプラネタリシャフト30の外周面に形成される螺子131のピッチがともにリア側からフロント側に向かって小さくされる。このようにフロント側における螺子111,131のピッチを小さくすることによってフロント側の部分ほど互いに噛合する螺子山の間のクリアランスが小さくなり、プラネタリシャフト30が傾いたときに互いに噛合する螺子山同士が当接しやすくなる。そのため、サンシャフト20にフロント側に向かって荷重Fが作用することにより、プラネタリシャフト30のフロント側の部分をロータ10側に開くように傾けるトルクがプラネタリシャフト30に作用した場合であっても、互いに噛合する螺子山同士が当接することにより、同プラネタリシャフト30の傾きが抑制されるようになる。したがって、上記第3の実施形態の構成によれば、プラネタリシャフト30が傾くことに起因して同プラネタリシャフト30に形成された螺子131やプラネタリギア32a,32b、並びにこれらの螺子やギアと噛合する螺子やギアの歯面に偏磨耗や欠損が発生することを抑制することができるようになる。
(2)また、ロータ10に形成される螺子とプラネタリシャフト30に形成される螺子のクリアランスを小さくした場合には、それに伴ってこの部分における摩擦が増大し、遊星差動式運動変換機構100の効率が低下するおそれがある。これに対して、上記第3の実施形態では、サンシャフト20に荷重Fが作用することに起因してプラネタリシャフト30とロータ10とが接近するフロント側の部分において螺子111と螺子131とのクリアランスが小さくなるようにしている。そのため、螺子111と螺子131の全体に亘ってピッチを小さくてクリアランスを小さくする構成と比較して、螺子111と螺子131のクリアランスを小さくすることによる遊星差動式運動変換機構100の効率の低下を抑制しながら、プラネタリシャフト30の傾きを好適に抑制することができるようになる。
尚、上記第3の実施形態は、これを適宜変更した以下の形態にて実施することもできる。
・上記第3の実施形態では、バルブスプリングの反力によってサンシャフト20に図5における右向きの荷重Fが作用することを想定していたが、バルブ特性変更機構の構成によってはバルブスプリングの反力によって図5における左向きの荷重が作用する場合もある。尚、この場合には、プラネタリシャフト30に作用するモーメントの方向が上記実施形態におけるモーメントの方向とは反対になるため、遠心力とこのモーメントの合力の作用により、プラネタリシャフト30はリア側の部分がロータ10側に開くように傾くこととなる。そのため、こうした場合にあっては、ロータ10の内周面に形成される螺子及びプラネタリシャフト30の外周面に形成される螺子をリア側に向かって次第にそのピッチが小さくなるように形成するようにすればよい。すなわち、いずれにせよロータ10の内周面に設けられる螺子及びプラネタリシャフト30の外周面に設けられる螺子を、荷重の作用方向側に向かってそのピッチが次第に小さくなるように形成すればよい。
(第4の実施形態)
以下、この発明にかかる遊星差動式運動変換機構を、内燃機関の吸気バルブの最大リフト量及びリフト期間を変更するバルブ特性変更機構を駆動する動力装置に搭載される遊星差動式運動変換機構として具体化した第4の実施形態について、図7〜9を参照して説明する。尚、第4の実施形態は、その基本的な構成は第1の実施形態と同様であり、その一部のみを変更したものであるため、以下では同様の構成については同一の符号を付すのみとしてその説明を割愛し、第1の実施形態と異なる構成を中心に説明する。尚、図7は本実施形態にかかる遊星差動式運動変換機構100を具備する動力装置200の断面図であり、図8はサンシャフト20の図7における破線で囲んだ部分Cを拡大して示す断面図である。
図7に示されるように本実施形態の遊星差動式運動変換機構100にあっては、ロータ10の内周面にフロント側リングギア112aに替えて、従来の遊星差動式運動変換機構と同様にリア側リングギア12bと寸法の同じフロント側リングギア12aを設けるようにしている。すなわち、本実施形態の遊星差動式運動変換機構100にあっては、フロント側リングギア12aの基準円半径とリア側リングギア12bの基準円半径とが等しくなっている。
また、本実施形態の遊星差動式運動変換機構100にあっては、サンシャフト20の外周面におけるフロント側サンギア22aとリア側サンギア22bとの間に4条の右螺子からなり、図8に示されるようにその外径がリア側ほど次第に大きくなる螺子121を形成するようにしている。具体的には図8に示されるようにサンシャフト20の外周面上に形成される螺子121は、フロント側のピッチ円半径Rfよりもリア側のピッチ円半径Rrが大きくなるようにその外径がリア側に向かって大きくなるテーパ状に形成されている。尚、図8にあっては説明の便宜上、螺子121の外周面の傾きを誇張して示している。
以下、本実施形態にかかる遊星差動式運動変換機構100のロータ10、プラネタリシャフト30、サンシャフト20の噛合状態を模式的に示す図9を参照して、螺子121をその外径がリア側ほど大きくなるテーパ状に形成することによる作用を説明する。
図9に示されるようにサンシャフト20にフロント側に向かって荷重Fが作用すると、プラネタリシャフト30にはモーメントMが作用し、このモーメントMと駆動中に働く遠心力とによって遊星差動式運動変換機構100の駆動中には同プラネタリシャフト30のフロント側の部分をロータ10側に開くようなトルクが作用する。これに対して上記のようにリア側ほどその外径が大きくなるように螺子121がテーパ状に形成されている場合には、図9に矢印で示されるように螺子121のリア側の部分によって、これと噛合するプラネタリシャフト30の螺子31がロータ10側に持ち上げられるようになる。これにより、プラネタリシャフト30には、フロント側をロータ10側に開くトルクと、リア側をロータ10側に持ち上げる力とがの作用するようになり、上記のようなトルクが作用している場合であっても、螺子31及び各プラネタリギア32a,32bがロータ10の螺子11及び各リングギア12a,12bと均一に接触しやすくなる。
以上説明した第4の実施形態によれば、以下の効果が得られるようになる。
(1)サンシャフト20に荷重Fが作用すること起因してプラネタリシャフト30における荷重Fの作用方向側の部分がロータ10側に開くように傾いた場合には、ロータ10の内周面に形成された螺子11とプラネタリシャフト30の外周面に形成された螺子31との噛合部分における前記荷重Fの作用方向側の部分の接触面圧が局所的に大きくなり、この部分が偏磨耗するようになる。これに対して、サンシャフト20の外周面に形成される螺子121を前記荷重Fの作用方向とは反対の方向のリア側の部分ほどその外径が大きくなるようにテーパ状に形成するようにしている。そのため、この螺子121と噛合するプラネタリシャフト30はリア側の部分がこの螺子121の外径の大きい部分によってロータ10側に持ち上げられた状態となる。その結果、サンシャフト20にフロント側に向かって荷重Fが作用すること起因してプラネタリシャフト30におけるフロント側の部分がロータ10側に開くようにトルクが作用したときにプラネタリシャフト30に形成された螺子31とロータ10に形成された螺子11とが均一に噛合しやすくなる。すなわち、プラネタリシャフト30が傾くことに起因して同プラネタリシャフト30に形成された螺子31やプラネタリギア32a,32b、並びにこれらの螺子31やプラネタリギア32a,32bと噛合する螺子やギアの歯面に偏磨耗や欠損が発生することを抑制することができるようになる。
尚、上記第4の実施形態は、これを適宜変更した以下の形態にて実施することもできる。
・上記第4の実施形態では、バルブスプリングの反力によってサンシャフト20に図7における右向きの荷重Fが作用することを想定していたが、バルブ特性変更機構の構成によってはバルブスプリングの反力によって図7における左向きの荷重が作用する場合もある。尚、この場合には、プラネタリシャフト30に作用するモーメントMの方向が上記実施形態におけるモーメントMの方向とは反対になるため、遠心力とこのモーメントMの合力の作用により、プラネタリシャフト30はリア側の部分がロータ10側に開くように傾くこととなる。そのため、こうした場合にあっては、フロント側ほどその外径が大きくなるように螺子121をテーパ状に形成すればよい。こうした構成によれば、この螺子121と噛合するプラネタリシャフト30はフロント側の部分がこの螺子121の外径の大きい部分によってロータ10側に持ち上げられた状態となる。その結果、プラネタリシャフト30におけるリア側の部分がロータ10側に開くようにトルクが作用したときにプラネタリシャフト30に形成された螺子31とロータ10に形成された螺子11とが均一に噛合しやすくなる。すなわち、いずれにせよサンシャフト20の外周面に形成される螺子を、荷重Fの作用方向側から荷重Fの作用方向とは反対側の方向側に向かって次第にその外径が大きくなるようにテーパ状に形成するようにすればよい。
(第5の実施形態)
以下、この発明にかかる遊星差動式運動変換機構を、内燃機関の吸気バルブの最大リフト量及びリフト期間を変更するバルブ特性変更機構を駆動する動力装置に搭載される遊星差動式運動変換機構として具体化した第5の実施形態について、図10〜12を参照して説明する。尚、第5の実施形態は、その基本的な構成は第1の実施形態と同様であり、その一部のみを変更したものであるため、以下では同様の構成については同一の符号を付すのみとしてその説明を割愛し、第1の実施形態と異なる構成を中心に説明する。尚、図10は本実施形態にかかる遊星差動式運動変換機構100を具備する動力装置200の断面図であり、図11はロータ10の図10における破線で囲んだ部分Dを拡大して示す断面図である。
図10に示されるように本実施形態の遊星差動式運動変換機構100にあっては、ロータ10の内周面にフロント側リングギア112aに替えて、従来の遊星差動式運動変換機構と同様にリア側リングギア12bと寸法の同じフロント側リングギア12aを設けるようにしている。すなわち、本実施形態の遊星差動式運動変換機構100にあっては、フロント側リングギア12aの基準円半径とリア側リングギア12bの基準円半径とが等しくなっている。
また、本実施形態の遊星差動式運動変換機構100にあっては、ロータ10の内周面における中央部分に5条の左螺子からなり、図11に示されるようにその内径がフロント側ほど次第に大きくなる螺子211を形成するようにしている。具体的には図11に示されるようにロータ10の内周面上に形成される螺子211は、フロント側のピッチ円半径RFがリア側のピッチ円半径RRよりも大きくなるようにその内径がフロント側に向かって次第に大きくなるようにテーパ状に形成されている。尚、図11にあっては説明の便宜上、螺子211の内周面の傾きを誇張して示している。
以下、本実施形態にかかる遊星差動式運動変換機構100におけるロータ10の螺子211とプラネタリシャフト30の螺子31との噛合状態を示す図12を参照して、螺子211をその内径がフロント側ほど大きくなるテーパ上に形成さすることによる作用を説明する。
図10に矢印で示されるようにサンシャフト20にフロント側に向かって荷重Fが作用すること起因してプラネタリシャフト30におけるフロント側の部分がロータ10側に開くように傾く。このとき、本実施形態の遊星差動式運動変換機構100にあっては、ロータ10の内周面に形成される螺子211をフロント側ほどその内径が大きくなるようにテーパ状に形成するようにしている。そのため、図12に示されるようにサンシャフト20に軸方向の荷重Fが作用すること起因してプラネタリシャフト30におけるフロント側の部分がロータ10側に開くように傾いたときに、ロータ10の内周面に形成されたこの螺子211と、傾いたプラネタリシャフト30の外周面に形成された螺子31とが均一に噛合しやすくなる。
以上説明した第5の実施形態によれば、以下の効果が得られるようになる。
(1)通常、サンシャフト20に軸方向の荷重Fが作用すること起因してプラネタリシャフト30におけるフロント側の部分がロータ10側に開くように傾いた場合には、ロータ10の内周面に形成された螺子とプラネタリシャフト30の外周面に形成された螺子31との噛合部分におけるフロント側の部分の接触面圧が大きくなり、この部分が偏磨耗しやすくなる。これに対して、上記第4の実施形態では、ロータ10の内周面に形成される螺子211をフロント側ほどその内径が大きくなるようにテーパ状に形成するようにしている。そのため、サンシャフト20に軸方向の荷重Fが作用すること起因してプラネタリシャフト30におけるフロント側の部分がロータ10側に開くように傾いたときに、ロータ10の内周面に形成されたこの螺子211と、傾いたプラネタリシャフト30の外周面に形成された螺子31とが均一に噛合しやすくなる。すなわち、プラネタリシャフト30が傾くことに起因して同プラネタリシャフト30に形成された螺子31、並びにこの螺子31と噛合する螺子211に偏磨耗が発生することを抑制することができるようになる。
尚、上記第5の実施形態は、これを適宜変更した以下の形態にて実施することもできる。
・テーパ状に形成される螺子211の内周面の傾斜角度は、プラネタリシャフト30が傾いたときにロータ10に形成された同螺子211と、プラネタリシャフト30に形成された螺子31とが均一に当接するように、プラネタリシャフト30とロータ10及びサンシャフト20との間のクリアランスの大きさ等によって算出することのできるプラネタリシャフト30の傾斜角度に基づいて設定することが望ましい。
・上記第5の実施形態では、バルブスプリングの反力によってサンシャフト20に図10における右向きの荷重Fが作用することを想定していたが、バルブ特性変更機構の構成によってはバルブスプリングの反力によって図10における左向きの荷重が作用する場合もある。尚、この場合には、プラネタリシャフト30に作用するモーメントの方向が上記実施形態におけるモーメントの方向とは反対になるため、遠心力とこのモーメントの合力の作用により、プラネタリシャフト30はリア側の部分がロータ10側に開くように傾くこととなる。そのため、こうした場合にあっては、リア側ほどその内径が大きくなるようにロータ10の内周面に形成する螺子をテーパ状に形成すればよい。こうした構成によれば、ロータ10の内周面に形成されたこの螺子と、傾いたプラネタリシャフト30の外周面に形成された螺子31とが均一に噛合しやすくなる。すなわち、いずれにせよロータ10の内周面に形成される螺子を、荷重Fの作用方向側に向かって次第にその内径が大きくなるようにテーパ状に形成するようにすればよい。
尚、上記第1〜5の各実施形態は、これを適宜変更した以下の形態にて実施することもできる。
・上記各実施形態の構成を適宜組み合わせて適用することもできる。例えば、第1の実施形態と第2の実施形態とを組み合わせ、リングギアとプラネタリギアの噛合部分のうち、フロント側リングギア112aとフロント側プラネタリギア32aとの噛合部分におけるクリアランスを小さくするとともに、ロータ10のフロント側の内周面に緩衝部材40を設ける構成を採用することもできる。
・上記実施形態では、ロータ10の内周面に形成される螺子を左螺子、サンシャフト20の外周面に形成される螺子を右螺子、プラネタリシャフト30の外周面に形成される螺子を左螺子にした構成を示したが、これらの螺子は互いに噛合する螺子の関係が同じであれば、その向きが反対であってもよい。すなわち、ロータ10の内周面に5条の右螺子を形成し、サンシャフト20の外周面に4条の左螺子を形成し、プラネタリシャフト30の外周面に1条の右螺子を形成することもできる。こうした構成を採用した場合であっても、ロータ10を回転させることによりサンシャフト20を軸方向に変位させることができる。
・また、上記実施形態において示したロータ10、サンシャフト20、プラネタリシャフト30にそれぞれ形成される螺子の条数は、各螺子のリード角との差を利用してロータ10の回転運動をサンシャフト20の直線運動に変換することのできる螺子条数の設定態様のほんの一例である。すなわち、本願発明はここで示した螺子条数で形成された各螺子を有する遊星差動式運動変換機構100に限定して適用されるものではない。
・遊星差動式運動変換機構100のロータ10に永久磁石が取り付けられたカバー15を固定し、ロータ10自体をモータのロータとして構成する動力装置200を例示したが、本願発明にかかる遊星差動式運動変換機構100は、こうした構成の動力装置200に限定して適用されるものではない。例えば、電動モータの駆動力をギアやベルト、チェーン等を介してロータ10に伝達する動力装置であっても本願発明の遊星差動式運動変換機構100を適用することができる。
・吸気バルブの最大リフト量及びリフト期間を変更するバルブ特性変更機構を駆動する動力装置として、本願発明にかかる遊星差動式運動変換機構100を具備する動力装置200を適用する構成を例示した。これに対して本願発明の遊星差動式運動変換機構100を具備する動力装置200を排気バルブの最大リフト量及びリフト期間を変更するバルブ特性変更機構の動力装置として適用することもできる。
・尚、本願発明は、上記のようなバルブ特性変更機構の動力装置に搭載される遊星差動式運動変換機構100に限らず、制御軸から一方向の荷重を受ける動力装置に搭載される遊星差動式運動変換機構全般に適用することができる。
この発明の第1の実施形態にかかる動力装置の断面図。 同実施形態にかかるフロント側リングギアとフロント側プラネタリギアとの噛合状態をリア側リングギアとリア側プラネタリギアとの噛合状態と比較して示す模式図。 この発明の第2の実施形態にかかる動力装置の断面図。 同実施形態にかかる遊星差動式運動変換機構におけるフロント側プラネタリギアとフロント側リングギアとの噛合部分を拡大して示す断面図。 この発明の第3の実施形態にかかる動力装置の断面図。 (a)はリア側におけるロータの螺子とプラネタリシャフトの螺子との噛合状態を示す模式図、(b)はフロント側におけるロータの螺子とプラネタリシャフトの螺子との噛合状態を示す模式図。 この発明の第4の実施形態にかかる動力装置の断面図。 同実施形態の遊星差動式運動変換機構のサンシャフトに形成された螺子を拡大して示す断面図。 同実施形態にかかる遊星差動式運動変換機構におけるロータ、プラネタリシャフト、サンシャフトの噛合状態を示す模式図。 この発明の第5の実施形態にかかる動力装置の断面図。 同実施形態にかかる遊星差動式運動変換機構のロータに形成された螺子を拡大して示す断面図。 同実施形態にかかる遊星差動式運動変換機構におけるロータの螺子とプラネタリシャフトの螺子との噛合状態を拡大して示す断面図。 サンシャフトに軸方向の荷重が作用することに起因してプラネタリシャフトが傾くことを説明する模式図。
符号の説明
10…ロータ、11…螺子、12a…フロント側リングギア、12b…リア側リングギア、15…カバー、16…歯先、17…歯底、20…サンシャフト、21…螺子、22a…フロント側サンギア、22b…リア側サンギア、23…ストレートスプライン、30…プラネタリシャフト、31…螺子、32a…フロント側プラネタリギア、32b…リア側プラネタリギア、33…軸部、34…軸受孔、35…シャフト本体、36…歯先、40…緩衝部材、41…内周面、100…遊星差動式運動変換機構、111…螺子、112a…フロント側リングギア、121…螺子、131…螺子、200…動力装置、210…ハウジング、211…螺子、215…ストレートスプライン、220…ベアリング、230…ステータ、300…シリンダヘッド、310…制御軸、320…留め具。

Claims (9)

  1. 円環状のロータと同ロータに内挿されるサンシャフトとの間に複数のプラネタリシャフトを介装し、同プラネタリシャフトの両端部に設けられた一対のプラネタリギアを前記ロータの内周面に設けられた一対のリングギアと前記サンシャフトの外周面に設けられた一対のサンギアとの双方にそれぞれ噛合させるとともに、同プラネタリシャフトの外周面における前記一対のプラネタリギアの間に設けられた螺子を前記ロータの内周面に設けられた螺子と前記サンシャフトの外周面に設けられた螺子との双方に螺合させることによって各部材を噛合させ、前記各部材に設けられた螺子のリード角の差を利用して前記ロータの回転運動を前記サンシャフトの直線運動に変換する遊星差動式運動変換機構において、
    同遊星差動式運動変換機構は前記サンシャフトにその軸方向の一方に向かう荷重が常に作用する状況下で使用されるものであり、互いに噛合する前記一対のリングギアと前記一対のプラネタリギアとの噛合部分のうち、前記荷重の作用方向側に位置する第1リングギアと第1プラネタリギアとの噛合部分におけるクリアランスを前記荷重の作用方向とは反対側に位置する第2リングギアと第2プラネタリギアとの噛合部分におけるクリアランスよりも小さくする
    ことを特徴とする遊星差動式運動変換機構。
  2. 前記第1リングギアの基準円半径を前記第2リングギアの基準円半径よりも小さくすることにより、前記第1リングギアと前記第1プラネタリギアとの噛合部分におけるクリアランスを前記第2リングギアと前記第2プラネタリギアとの噛合部分におけるクリアランスよりも小さくする
    請求項1に記載の遊星差動式運動変換機構。
  3. 円環状のロータと同ロータに内挿されるサンシャフトとの間に複数のプラネタリシャフトを介装し、同プラネタリシャフトの両端部に設けられた一対のプラネタリギアを前記ロータの内周面に設けられた一対のリングギアと前記サンシャフトの外周面に設けられた一対のサンギアとの双方にそれぞれ噛合させるとともに、同プラネタリシャフトの外周面における前記一対のプラネタリギアの間に設けられた螺子を前記ロータの内周面に設けられた螺子と前記サンシャフトの外周面に設けられた螺子との双方に螺合させることによって各部材を噛合させ、前記各部材に設けられた螺子のリード角の差を利用して前記ロータの回転運動を前記サンシャフトの直線運動に変換する遊星差動式運動変換機構において、
    同遊星差動式運動変換機構は前記サンシャフトにその軸方向の一方に向かう荷重が常に作用する状況下で使用されるものであり、前記ロータの内周面における前記一対のプラネタリギアのうち前記荷重の作用方向側に位置する第1プラネタリギアと対向する部位に、前記第1プラネタリギアとのクリアランスが、同第1プラネタリギアとこれに噛合する第1リングギアとの間のクリアランスよりも小さくなるようにその厚さが設定されて、前記プラネタリシャフトが傾いたときに前記第1リングギアと前記第1プラネタリギアとが当接する前に同第1プラネタリギアに当接する緩衝部材を備える
    ことを特徴とする遊星差動式運動変換機構。
  4. 請求項3に記載の遊星差動式運動変換機構において、
    前記緩衝部材は、繊維強化樹脂からなる
    ことをその特徴とする遊星差動式運動変換機構。
  5. 円環状のロータと同ロータに内挿されるサンシャフトとの間に複数のプラネタリシャフトを介装し、同プラネタリシャフトの両端部に設けられた一対のプラネタリギアを前記ロータの内周面に設けられた一対のリングギアと前記サンシャフトの外周面に設けられた一対のサンギアとの双方にそれぞれ噛合させるとともに、同プラネタリシャフトの外周面における前記一対のプラネタリギアの間に設けられた螺子を前記ロータの内周面に設けられた螺子と前記サンシャフトの外周面に設けられた螺子との双方に螺合させることによって各部材を噛合させ、前記各部材に設けられた螺子のリード角の差を利用して前記ロータの回転運動を前記サンシャフトの直線運動に変換する遊星差動式運動変換機構において、
    同遊星差動式運動変換機構は前記サンシャフトにその軸方向の一方に向かう荷重が常に作用する状況下で使用されるものであり、前記ロータの内周面に設けられる螺子及び前記プラネタリシャフトの外周面に設けられる螺子は、前記荷重の作用方向側に向かってそのピッチが次第に小さくなるように形成されてなる
    ことを特徴とする遊星差動式運動変換機構。
  6. 円環状のロータと同ロータに内挿されるサンシャフトとの間に複数のプラネタリシャフトを介装し、同プラネタリシャフトの両端部に設けられた一対のプラネタリギアを前記ロータの内周面に設けられた一対のリングギアと前記サンシャフトの外周面に設けられた一対のサンギアとの双方にそれぞれ噛合させるとともに、同プラネタリシャフトの外周面における前記一対のプラネタリギアの間に設けられた螺子を前記ロータの内周面に設けられた螺子と前記サンシャフトの外周面に設けられた螺子との双方に螺合させることによって各部材を噛合させ、前記各部材に設けられた螺子のリード角の差を利用して前記ロータの回転運動を前記サンシャフトの直線運動に変換する遊星差動式運動変換機構において、
    同遊星差動式運動変換機構は前記サンシャフトにその軸方向の一方に向かう荷重が常に作用する状況下で使用されるものであり、前記サンシャフトの外周面に形成される螺子は、前記荷重の作用方向側から前記荷重の作用方向とは反対側の方向側に向かって次第にその外径が大きくなるようにテーパ状に形成されてなる
    ことを特徴とする遊星差動式運動変換機構。
  7. 円環状のロータと同ロータに内挿されるサンシャフトとの間に複数のプラネタリシャフトを介装し、同プラネタリシャフトの両端部に設けられた一対のプラネタリギアを前記ロータの内周面に設けられた一対のリングギアと前記サンシャフトの外周面に設けられた一対のサンギアとの双方にそれぞれ噛合させるとともに、同プラネタリシャフトの外周面における前記一対のプラネタリギアの間に設けられた螺子を前記ロータの内周面に設けられた螺子と前記サンシャフトの外周面に設けられた螺子との双方に螺合させることによって各部材を噛合させ、前記各部材に設けられた螺子のリード角の差を利用して前記ロータの回転運動を前記サンシャフトの直線運動に変換する遊星差動式運動変換機構において、
    同遊星差動式運動変換機構は前記サンシャフトにその軸方向の一方に向かう荷重が常に作用する状況下で使用されるものであり、前記ロータの内周面に形成される螺子は、前記荷重の作用方向側に向かってその内径が次第に大きくなるようにテーパ状に形成されてなる
    ことを特徴とする遊星差動式運動変換機構。
  8. 請求項1〜7のいずれか一項に記載の遊星差動式運動変換機構を具備し、モータの駆動力によって前記ロータを前記サンシャフトの中心軸を中心に回転させることにより前記サンシャフトを軸方向に変位させる動力装置。
  9. 制御軸の軸方向の変位に伴って機関バルブの最大リフト量及びリフト期間を変更する内燃機関のバルブ特性変更機構と組み合わされ、前記制御軸を軸方向に変位させる動力装置として適用される
    請求項8に記載の動力装置。
JP2008126100A 2008-05-13 2008-05-13 遊星差動式運動変換機構、並びにこれを具備する動力装置 Pending JP2009275765A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008126100A JP2009275765A (ja) 2008-05-13 2008-05-13 遊星差動式運動変換機構、並びにこれを具備する動力装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008126100A JP2009275765A (ja) 2008-05-13 2008-05-13 遊星差動式運動変換機構、並びにこれを具備する動力装置

Publications (1)

Publication Number Publication Date
JP2009275765A true JP2009275765A (ja) 2009-11-26

Family

ID=41441393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008126100A Pending JP2009275765A (ja) 2008-05-13 2008-05-13 遊星差動式運動変換機構、並びにこれを具備する動力装置

Country Status (1)

Country Link
JP (1) JP2009275765A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110701270A (zh) * 2019-09-20 2020-01-17 宝鸡法士特齿轮有限责任公司 一种行星差动式自变矩电控装置
WO2021020319A1 (ja) * 2019-07-26 2021-02-04 株式会社デンソー クラッチ装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021020319A1 (ja) * 2019-07-26 2021-02-04 株式会社デンソー クラッチ装置
CN110701270A (zh) * 2019-09-20 2020-01-17 宝鸡法士特齿轮有限责任公司 一种行星差动式自变矩电控装置

Similar Documents

Publication Publication Date Title
JP6002614B2 (ja) Vベルト式無段変速機
US8888374B1 (en) Bearing with antiskid design
WO2018088161A1 (ja) 減速又は増速装置及びアクチュエータ
KR101007069B1 (ko) 2단 유성기어시스템을 구비한 기어박스
US9989122B2 (en) Planetary gear device and jet engine with a planetary gear device
JP2009275765A (ja) 遊星差動式運動変換機構、並びにこれを具備する動力装置
JP5167180B2 (ja) 遊星差動式動力装置
JP5893206B2 (ja) 自動押圧摩擦伝動減速装置
JP6815936B2 (ja) はすば歯車装置
JP5067271B2 (ja) 遊星差動式運動変換機構を具備する動力装置
JP6333154B2 (ja) 偏心揺動型減速装置
JP4894574B2 (ja) プーリユニット
JP2009281443A (ja) 遊星差動式運動変換機構及びその組み立て方法、並びに同遊星差動式運動変換機構を具備する動力装置
JP4330023B2 (ja) エンジン始動装置
JP2008069928A (ja) 摩擦伝動変速装置
CN219570757U (zh) 摆线齿轮款减速机
JP5117946B2 (ja) ボールねじ
JP2009270637A (ja) 遊星差動式運動変換機構、並びにこれを具備する動力装置
JP4277732B2 (ja) 歯車の軸線位置を自動補正する歯車装置
JP2014196784A (ja) Vベルト式無段変速機
JP2010038285A (ja) 遊星差動式運動変換機構
JP2008291949A (ja) 遊星差動ネジ型回転−直動変換機構
JP2010060066A (ja) 遊星差動式運動変換機構
JP2009275766A (ja) 遊星差動式運動変換機構、並びにこれを具備する動力装置
JP2009257418A (ja) 遊星差動式運動変換機構及びその組み立て方法、並びに同遊星差動式運動変換機構を具備する動力装置