JP2009259487A - 燃料電池 - Google Patents

燃料電池 Download PDF

Info

Publication number
JP2009259487A
JP2009259487A JP2008104839A JP2008104839A JP2009259487A JP 2009259487 A JP2009259487 A JP 2009259487A JP 2008104839 A JP2008104839 A JP 2008104839A JP 2008104839 A JP2008104839 A JP 2008104839A JP 2009259487 A JP2009259487 A JP 2009259487A
Authority
JP
Japan
Prior art keywords
fuel cell
flow path
gas flow
path member
seal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008104839A
Other languages
English (en)
Inventor
Kei Yamamoto
佳位 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2008104839A priority Critical patent/JP2009259487A/ja
Publication of JP2009259487A publication Critical patent/JP2009259487A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

【課題】燃料電池の反応ガスの電極面への配流性を向上する技術を提供する。
【解決手段】燃料電池スタックは、流体の漏洩を防止するためのシールガスケット12によって外周縁を被覆された電解質膜13を備える。電解質膜13の両面にはそれぞれ、シールガスケット12によって囲まれた発電領域11に、2つの電極層14a、14cが配置されている。2つの電極層14a、14cの外表面には、2つの電極層14a、14cに反応ガスを供給するための流路となるガス流路部材60が配置される。ガス流路部材60は、2つの電極層14a、14cの全面を被覆する。
【選択図】図3

Description

この発明は、燃料電池に関する。
燃料電池は通常、電解質膜の両面にアノード及びカソードが配置された発電体である膜電極接合体(MEA;Membrane Electrode Assembly)を備える。膜電極接合体は、アノード及びカソードにそれぞれ燃料ガス及び酸化ガス(反応ガス)が供給されてその電気化学反応(燃料電池反応)によって発電する。ところで、燃料電池では、発電効率を向上するためにアノード及びカソード全体に渡って反応ガスがほぼ一様に供給されることが好ましい。そのため、アノード及びカソードの外表面(電極面)には、反応ガスの流路として機能する多孔体などのガス流路部材が配置される場合がある(特許文献1等)。
特開2007−250351号公報 特開2007−53007号公報 特開2007−12399号公報
しかし、こうしたガス流路部材を電極面に配置しても、電極面には他の領域に比較して反応ガスの供給量が不足する領域が生じていた。これまで、こうした反応ガスの配流性に関しては十分な工夫がなされていないのが実情であった。
本発明は、燃料電池の反応ガスの電極面への配流性を向上する技術を提供することを目的とする。
本発明は、上述の課題の少なくとも一部を解決するためになされたものであり、以下の形態又は適用例として実現することが可能である。
[適用例1]
燃料電池であって、流体の漏洩を防止するためのシール部によって外周縁を被覆された電解質膜と、前記電解質膜の両面の前記シール部によって囲まれた発電領域に配置される電極層と、前記電極層の外表面に配置され、前記電極層に反応ガスを供給するための流路となるガス流路部材とを備え、前記ガス流路部材は、前記電極層の全面を被覆している、燃料電池。
この燃料電池によれば、ガス流路部材によって、電極層の全面に渡って反応ガスを供給することが可能である。従って、燃料電池の反応ガスの電極面への配流性が向上し、燃料電池の発電効率を向上させることができる。
[適用例2]
適用例1記載の燃料電池であって、前記ガス流路部材の外周縁は、前記燃料電池に組み付けられた状態において、前記シール部材と接している、燃料電池。
この燃料電池によれば、反応ガスが、比較的流路抵抗の少ないガス流路部材とシール部との間へと流れて、反応に供されることなく排出されてしまうことを抑制できる。従って、燃料電池の反応ガスの電極面への配流性が向上し、燃料電池の発電効率を向上させることができる。
[適用例3]
適用例2記載の燃料電池であって、さらに、前記シール部を前記電解質膜の両面から挟持するセパレータを備え、前記シール部の外表面には、前記セパレータによって押圧されてシールラインを形成する突起部が設けられており、前記シールラインは、前記発電領域を囲む発電領域シールラインを含み、前記発電領域シールラインは、前記燃料電池に組み付けられている状態において、前記ガス流路部材の外周縁と接している、燃料電池。
この燃料電池によれば、発電領域外部へと反応ガスが流れてしまうことを抑制できる。従って、燃料電池の反応ガスの電極面への配流性が向上し、燃料電池の発電効率を向上させることができる。
[適用例4]
適用例3記載の燃料電池であって、前記突起部の高さは、前記燃料電池に組み付けられていない状態において、前記ガス流路部材の厚みより大きい、燃料電池。
この燃料電池によれば、燃料電池として組み付けられたときに、突起部がセパレータに押圧されて横幅方向へと膨張し、ガス流路部材の外周端を押圧してシールする。従って、ガス流路部材の外部へと反応ガスが流れてしまうことを抑制でき、燃料電池の反応ガスの電極面への配流性が向上する。
[適用例5]
適用例2ないし適用例4のいずれかに記載の燃料電池であって、前記セパレータには、前記反応ガスのためのガス流路が設けられており、前記前記ガス流路は、前記ガス流路部材へと連通している、燃料電池。
この燃料電池によれば、セパレータのガス流路からガス流路部材の領域へと反応ガスが流れてしまうことを抑制できる。従って、燃料電池の反応ガスの電極面への配流性が向上する。
なお、本発明は、種々の形態で実現することが可能であり、例えば、燃料電池、その燃料電池を備えた燃料電池システム、その燃料電池システムを搭載した車両等の形態で実現することができる。
A.第1実施例:
図1(A)は、本発明の一実施例として燃料電池スタックの構成を示す概略図である。この燃料電池スタック100は、反応ガスの供給を受けて、その電気化学反応(燃料電池反応)によって発電する固体高分子型燃料電池である。具体的には、燃料ガスとして水素が供給され、酸化ガスとして酸素を含有する高圧空気が供給される。なお、燃料電池スタック100としては、固体高分子型燃料電池でなくとも良く、任意の種々のタイプの燃料電池に本発明を適用することが可能である。
燃料電池スタック100は、複数のシール一体型膜電極接合体10(後述)がセパレータ20(後述)によって挟持された状態で積層された積層体30を備えている。積層体30は、その積層方向から2枚のエンドプレート40に挟持されており、2枚のエンドプレート40を介してその外周縁に設けられた締結部材50によって、その積層方向に締結荷重を付与される。
図1(B)は、燃料電池スタック100のうちの任意の1つのシール一体型膜電極接合体10と、それを挟持する2つのセパレータ20とを示す概略図である。このセパレータ20は、アノードプレート20aとカソードプレート20cとそれらに挟持される中間プレート20iとを備える3層式セパレータである。アノードプレート20aは、シール一体型膜電極接合体10のアノード側に配置され、カソードプレート20cは、シール一体型膜電極接合体10のカソード側に配置される。セパレータ20は、カーボンや金属などのガス不透過の導電性部材によって構成することができる。
図2は、シール一体型膜電極接合体10のアノード側の面を示す概略図である。なお、シール一体型膜電極接合体10のカソード側の面は、アノード側の面と同様の構成であるため図示は省略する。
このシール一体型膜電極接合体10は、燃料電池反応が行われる発電部11と、その外周縁に設けられたシールガスケット12とを有する略長方形の部材である。シールガスケット12には、水素、空気、冷媒などの流体の供給及び排出を担う貫通孔であるマニホールド孔M1〜M6が設けられている。具体的には以下の構成となる。
マニホールド孔M1は水素の供給を担い、マニホールド孔M2は反応に供されることのなかった水素を含むアノード排ガスの排出を担う。マニホールド孔M3は空気の供給を担い、マニホールド孔M4は反応に供されることのなかった酸素や、反応によって生成した水分などを含むカソード排ガスの排出を担う。マニホールド孔M5、M6はそれぞれ、発電によって生じた燃料電池スタック100の熱を冷却するための冷媒(水)の供給、排出を担う。
水素供給用マニホールド孔M1及び冷媒供給用マニホールド孔M5は、水素排出用マニホールド孔M2及び冷媒排出用マニホールド孔M6と、発電部11を挟んで対向する位置に、シール一体型膜電極接合体10の長辺に沿って設けられている。また、酸素供給用マニホールド孔M3は、酸素排出用マニホールド孔M4と発電部11を挟んで対向する位置に、シール一体型膜電極接合体10の短辺に沿って略長辺形として、それぞれ1個ずつ設けられている。なお、マニホールド孔M1〜M6は、他の構成・配置であっても良い。
シールガスケット12の外表面には、個々のマニホールド孔M1〜M6と発電部11とをそれぞれ囲むようにシールラインSL(一点鎖線で図示)が形成されている。シールラインSLについては後述する。なお、シールガスケット12はシリコンゴムなどの絶縁性シール部材で構成することができる。
図3は、図2の3−3切断におけるシール一体型膜電極接合体10の断面を示す概略断面図である。発電部11には、電解質膜13とアノード電極層14aとカソード電極層14cとが含まれる。電解質膜13は、湿潤状態で良好なプロトン伝導性を示す固体高分子薄膜である。電解質膜13の両面には、アノード電極層14a及びカソード電極層14cがそれぞれ配置されており、発電体である膜電極接合体15が構成される。
各電極層14a、14cの電解質膜13と接する面側には、それぞれ燃料電池反応を促進するための触媒が担持された触媒層(図示せず)が設けられている。また、各電極層14a、14cの電解質膜13と接しない面側には、発電部11の全体に反応ガスを行き渡らせるためのガス拡散層(図示せず)が設けられている。各電極層14a、14cはそれぞれ、例えば、カーボンペーパに触媒として白金(Pt)を担持させることによって構成できる。なお、本明細書中において、各電極層14a、14cの電解質膜13と接しない側の外表面を「電極面」と呼ぶ。
電解質膜13の外周縁(「膜端部13e」と呼ぶ)は、2つの電極層14a、14cの外周の端部(「電極端部14e」と呼ぶ)より突出しており、シールガスケット12は、この膜端部13eを被覆するように設けられている。即ち、2つの電極層14a、14cはそれぞれ、シールガスケット12によって囲まれた領域に配置されている。このように、膜端部13eがシールガスケット12によって被覆されることにより、膜電極接合体15がシールガスケット12に一体的に保持される。また、燃料電池の発電の際に水素が反応に供されることなくカソード側に移動してしまう、いわゆるクロスリークの発生を抑制することができる。なお、このような構成により、このシール一体型膜電極接合体10では、発電に供される発電部11と電極面とがほぼ一致する。
シールガスケット12の両面には、上述したシールラインSL(図2)を形成する突起部であるリップ16が設けられている。即ち、このリップ16の頂点である頂部16tが燃料電池スタック100として組み付けられたときにセパレータ20に一様に押圧されることによって、セパレータ20とシールガスケット12との接触界面における流体の漏洩を防止する。
ここで、燃料電池スタック100として組み付けられるときに、シール一体型膜電極接合体10の両電極面にはそれぞれ、反応ガスの流路となるガス流路部材60が配置される。より具体的には、ガス流路部材60は、発電部11の外側に設けられたリップ16によって囲まれた発電部11を含む領域(「発電部シール領域17」と呼ぶ)に配置される。ガス流路部材60は、カーボンや、焼結金属などの導電性を有する多孔体で構成することができる。
ガス流路部材60は、電極面に沿った方向に反応ガスを拡散させつつ、その厚み方向(図中の矢印Y)に向かって反応ガスを透過する。また、ガス流路部材60は、アノード又はカソードの電極面とセパレータ20とに接しており、発電した電気をセパレータ20へ導く導電パスとして機能する。なお、ガス流路部材60における電極面と接する側の面の面積は、発電部シール領域17の面積とほぼ等しく、電極面全体を被覆する。これにより、ガス流路部材60は、2つの電極層14a、14cの電極面全体に一様に反応ガスを行き渡らせることができる。具体的な反応ガスの流れについては後述する。
図4(A)、(B)は、ガス流路部材60のシール一体型膜電極接合体10への配置状態をより具体的に説明するための模式図である。図4(A)は、図3と同様なシール一体型膜電極接合体10の概略断面図であり、ガス流路部材60の配置されたシール一体型膜電極接合体10が、セパレータ20によって挟持される前の状態を示している。この状態では、リップ16の電極面からの高さhは、ガス流路部材60の厚みtよりもxだけ大きい(x>0)。
図4(B)は、ガス流路部材60の配置されたシール一体型膜電極接合体10が、セパレータ20によって挟持された後の状態を示している。この状態では、セパレータ20によってリップ16は押圧されてその高さhがガス流路部材60の厚みtと等しくなる。このとき、リップ16は押圧されて圧縮された分だけ電極面に沿った方向に膨張し、ガス流路部材60の外周端面60eを押圧して、ガス流路部材60の外周端面60eとリップ16との間の空隙を低減する。これによって、反応ガスが、流路抵抗の比較的小さいリップ16とガス流路部材60との間の空隙へと流れて、反応に供されることなく燃料電池スタック100の外部へと排出されてしまうことを抑制できる。
図5は、セパレータ20を構成するアノードプレート20aの構成を示す概略図である。なお、図には、燃料電池スタック100を積層方向に沿って見たときに、ガス流路部材60の配置領域が投影される領域をガス流路部材配置領域60aとして破線で示す。アノードプレート20aには、シール一体型膜電極接合体10と同様に貫通孔であるマニホールド孔M1〜M6が設けられている。また、ガス流路部材配置領域60a内には、長辺形の貫通孔である水素流入孔P1及び水素流出孔P2が設けられている。水素流入孔P1は、水素供給用マニホールド孔M1側のガス流路部材配置領域60aの短辺に沿って設けられており、水素流出孔P2は、水素排出用マニホールド孔M2側のガス流路部材配置領域60aの短辺に沿って設けられている。水素流入孔P1は、発電部11への水素の供給孔として機能し、水素流出孔P2は、発電部11からのアノード排ガスの排出孔として機能する。なお、具体的な水素の流れについては後述する。
図6は、カソードプレート20cの構成を示す概略図である。図5は、水素流入孔P1及び水素流出孔P2に換えて、酸素流入孔P3及び酸素流出孔P4が設けられている点以外は、図5のアノードプレート20aと同じである。酸素流入孔P3及び酸素流出孔P4はそれぞれ、ガス流路部材配置領域60a内に酸素供給用マニホールド孔M3及び酸素排出用マニホールド孔M4と並列に設けられた貫通孔である。酸素流入孔P3は、発電部11への空気の供給孔として機能し、酸素流出孔P4は、発電部11からのカソード排ガスの排出孔として機能する。具体的な空気の流れについては後述する。
図7は、中間プレート20iの構成を示す概略図である。図7には、図5及び図6と同様にガス流路部材配置領域60aが破線で示してある。また、燃料電池スタック100を積層方向に沿って見たときに、アノードプレート20aの水素流入孔P1及び水素流出孔P2と重なる領域を連通領域P1a、P2aとして破線で示す。同様に、カソードプレート20cの酸素流入孔P3及び酸素流出孔P4と重なる領域を連通領域P3a、P4aとして破線で示す。さらに、図7には、燃料電池スタック100を積層方向に沿って見たときに、2つのプレート20a、20cに設けられている冷媒用マニホールド孔M5、M6と重なる領域を破線で示してある。
中間プレート20iには、他のプレート20a、20cと同様に水素用マニホールド孔M1〜M2及び酸素用マニホールド孔M3〜M4が設けられている。中間プレート20iには、2つのアノード流路AP1、AP2が貫通して設けられている。第1のアノード流路AP1は、水素供給用マニホールド孔M1と連通しており、連通領域P1aとほぼ重なるように設けられている。第2のアノード流路AP2は、水素排出用マニホールド孔M2と連通しており、連通領域P2aとほぼ重なるように設けられている。
また、中間プレート20iには、櫛歯状のスリットである2組のカソード流路列CP1、CP2が貫通して設けられている。第1のカソード流路列CP1は、一端が酸素供給用マニホールド孔M3と連通しており、他端が連通領域P3aと重なるように設けられている。第2のカソード流路列CP2は、一端が酸素排出用マニホールド孔M4と連通しており、他端が連通領域P4aと重なるように設けられている。具体的な水素及び空気の流れについては後述する。
さらに、中間プレート20iには、複数の並列な冷媒流路WPが貫通して設けられている。冷媒流路WPは、2つのプレート20a、20cに設けられた冷媒用マニホールド孔M5、M6と連通するように設けられている。従って、冷媒供給用マニホールド孔M5へ供給された冷媒は、その一部が分岐して、図中の矢印が示すように冷媒流路WPを通過し、発電によって生じた熱を伴って冷媒排出用マニホールド孔M6へと排出される。なお、冷媒流路WPは、冷媒が発電部11の全体を冷却できるように設けられていることが好ましい。
図8(A)〜(C)は、燃料電池スタック100内における水素及び空気の流れを模式的に示す説明図である。図8(A)〜(C)はそれぞれ、燃料電池スタック100として組み付けられた際のセパレータ20に挟持された任意のシール一体型膜電極接合体10における一部位の概略断面図である。具体的には以下の通りである。
図8(A)、(B)はそれぞれ、図7に示した8A−8A切断及び8B−8B切断における概略断面図であり、水素の流路を示している。燃料電池スタック100の外部から水素供給用マニホールド孔M1へ供給された水素の一部は、図8(A)の矢印に示すように、中間プレート20iに設けられた第1のアノード流路AP1へと流入する。その後、アノードプレート20aに設けられた水素流入孔P1を介してアノード側に配置されたガス流路部材60へと至る。一方、アノード排ガスは、図8(B)の矢印に示すように、ガス流路部材60から水素流出孔P2を介して第2のアノード流路AP2へと流入し、水素排出用マニホールド孔M2へと至り、燃料電池スタック100の外部へ排出される。
図8(C)は、図7に示した8C−8C切断における断面図であり、空気の流路を示している。燃料電池スタック100の外部からマニホールド孔M3へ供給された空気の一部は、図8(C)の矢印に示すように、中間プレート20iに設けられた第1のカソード流路列CP1へと流入する。その後、カソードプレート20cに設けられた酸素流入孔P3を介してカソード側のガス流路部材60へと流入する。一方、カソード排ガスは、ガス流路部材から酸素流出孔P4を介して第2のカソード流路列CP2へと流入し、酸素排出用マニホールド孔M4へと至り、燃料電池スタック100の外部へ排出される。
このように、2つのプレート20a、20cの貫通孔P1、P2、P3、P4はガス流路部材配置領域60aに設けられているため(図5,図6)、上述したセパレータ20における反応ガスの流路は、電極面に配置されたガス流路部材60と直接的に連通する。これによって、ガス流路部材60の外部に反応ガスが流れてしまうことを抑制できる。なお、ガス流路部材60における反応ガスの流れについては以下に説明する。
図9(A)は、ガス流路部材60内における反応ガスの流れを説明するための模式図である。図9(A)は、ガス流路部材60内における水素の流れを示す矢印が追加されており、水素の排出側が省略されている点以外は、図8(A)とほぼ同じである。なお、水素の排出側における水素の流れと、空気の供給側及び排出側における空気の流れも同様であるため、図示及び説明は省略する。上述したように、反応ガスはガス流路部材60内を電極面に沿った方向に拡散しつつ、その厚み方向に流れる。従って、水素流入孔P1から流入した水素は、ガス流路部材60のほぼ全体に行き渡る。
図9(B)は、比較例としての燃料電池スタック100aにおけるガス流路部材60内における反応ガスの流れを説明するための模式図である。比較例の燃料電池スタック100aは、シール一体型膜電極接合体10aの構成が本実施例の燃料電池スタック100のシール一体型膜電極接合体10と異なっており、 図9(B)は、シール一体型膜電極接合体10aの構成が異なる点以外は、図9(A)とほぼ同じである。比較例のシール一体型膜電極接合体10aは、膜端部13eとともに電極端部14eがシールガスケット12によって被覆されている。
本実施例の燃料電池スタック100では、ガス流路部材60が電極面を被覆するように配置されているため、ガス流路部材60を介して水素が電極端部14eまで供給される(図9(A))。一方、比較例の燃料電池スタック100aは、ガス流路部材60と電極端部14eとが接しておらず、電極端部14eまで供給される水素量は本実施例のシール一体型膜電極接合体10に比較して低減してしまう。このように、本実施例の構成によれば、電極端部14eを含む電極面全体により一様に反応ガスを行き渡らせることができる。また、電極面とガス流路部材60との接触面積が大きい分だけ、ガス流路部材60による集電効率が向上する。
ところで、本実施例のシール一体型膜電極接合体10は、電解質膜13の外周縁にシールガスケット12を射出成形した後に、電解質膜13の外表面に2つの電極層14a、14cを形成して製造される。一方、比較例のシール一体型膜電極接合体10aは、電解質膜13に2つの電極層14a、14cを形成した後に、シールガスケット12を射出成形して製造される。従って、シールガスケット12の成形工程における成形不良が発生した場合には、比較例のシール一体型膜電極接合体10aの製造工程では、電解質膜13とともに電極層14a、14cが廃棄されてしまう。一方、本実施例のシール一体型膜電極接合体10の製造工程では、シールガスケット12の成形不良が発生した場合であっても、当該成形不良となった電解質膜13のみが廃棄され、電極層14a、14cの廃棄は回避できるため、製造コストの増加を抑制できる。
このように、本実施例の構成によれば、電極面への反応ガスの配流性を向上させることができ、電極面の単位面積あたりの発電量(電極利用率)を向上させることができる。従って、燃料電池スタック100の発電効率を向上させることができる。
B.第2実施例:
図10は、本発明の第2実施例としてのシール一体型膜電極接合体10B及びガス流路部材60の構成を示す概略断面図である。図10は、ガス流路部材60の電極面と接する側の面の面積が電極面の面積とほぼ等しい点と、シールガスケット12の構成が異なる点以外は、図3とほぼ同じである。なお、第2実施例の燃料電池スタックの他の構成は、第1実施例のものと同様である。
このシール一体型膜電極接合体10Bのシールガスケット12には、発電部11を囲む第1と第2のリップ16a、16bが設けられている。具体的には、第1のリップ16aは電極端部14eに隣接して設けられており、第2のリップ16bは第1のリップ16aの外側に設けられている。即ち、発電部11は、第1と第2のリップ16a、16bによって形成される2重のシールラインによって囲まれており、発電部11と発電部シール領域17とがほぼ一致する。
このように、第2実施例の構成であっても、電極面がガス流路部材60によって被覆されているため、第1実施例と同様に、電極面への反応ガスの配流性を向上させることができ、電極利用率を向上させることができる。従って、燃料電池スタックの発電効率を向上させることができる。
C.変形例:
なお、この発明は上記の実施例や実施形態に限られるものではなく、その要旨を逸脱しない範囲において種々の態様において実施することが可能であり、例えば次のような変形も可能である。
C1.変形例1:
上記実施例においてガス流路部材60は、カーボンや、焼結金属などの導電性を有する多孔体で構成されていた。しかし、ガス流路部材60としては、上記部材に限定されるものではなく、ガスの透過性を有する導電性部材であれば良い。例えば、エキスパンドメタルや、パンチングメタルなど、金属板を加工して複数の貫通孔が設けられた部材であっても良い。
C2.変形例2:
上記実施例において、ガス流路部材60の外周縁は、発電部11を囲むシールラインSLを形成するリップ16と接するように配置されていたが、ガス流路部材60は、リップ16と接していなくとも良い。ただし、反応に供されることなく排出されてしまう反応ガスを低減するために、ガス流路部材60の外周縁とリップ16とが、燃料電池に組み付けられた状態で接することが好ましい。
C3.変形例3:
上記実施例において、セパレータ20は、いわゆる3層セパレータを構成していたが、これに限定されることはなく、他の構成を有していても良い。例えば、中間プレート20iが省略された2層式セパレータであっても良い。ただし、上記実施例のようにセパレータに設けられた反応ガスのための流路は、ガス流路部材60と直接的に連通していることが好ましい。
C4.変形例4:
上記実施例において、リップ16は、その高さhが燃料電池スタック100に組み付けられていない状態でガス流路部材60の厚みtより大きくなるように設けられていた。しかし、リップ16の高さhは、ガス流路部材60の厚みt以下であっても良い。ただし、この場合には、燃料電池スタックとして組み付けられたときに、リップ16の高さhとガス流路部材60の厚みtとがほぼ等しくなるように、リップ16及びガス流路部材60が変形することが好ましい。
C5.変形例5:
上記実施例において、各電極層14a、14cはガス拡散層を含んでおり、その外側にガス流路部材60が設けられていたが、ガス流路部材60を省略し、セパレータ20と各電極層14a、14cとが直接的に接するように構成しても良い。この場合には、ガス拡散層がガス流路部材として機能し、各電極層14a、14cのうちの触媒層が電極層として機能していると解釈することができる。
C6.変形例6:
上記実施例において、各電極層14a、14cはガス拡散層を含んでいたが、ガス拡散層を省略し、ガス流路部材60と各電極層14a、14cの触媒層とが直接的に接するように構成しても良い。この場合には、ガス流路部材60が、各電極層14a、14cにおけるガス拡散層としても機能していると解釈することができる。
燃料電池スタックの構成を示す概略図。 シール一体型膜電極接合体の構成を示す概略図。 シール一体型膜電極接合体及びガス流路部材の構成を示す概略断面図。 ガス流路部材のシール一体型膜電極接合体部における配置状態を説明するための模式図。 セパレータのうちアノードプレートの構成を示す概略図。 セパレータのうちカソードプレートの構成を示す概略図。 セパレータのうち中間プレートの構成を示す概略図。 燃料電池スタックにおける反応ガスの流れを説明するための説明図。 第1実施例及び比較例のガス流路部材における反応ガスの流れを示す模式図。 第2実施例におけるシール一体型膜電極接合体及びガス流路部材を示す概略断面図。
符号の説明
10,10a,10B…シール一体型膜電極接合体
11…発電部
12…シールガスケット
13…電解質膜
13e…膜端部
14a…アノード電極層
14c…カソード電極層
14e…電極端部
15…膜電極接合体
16…リップ
16a…第1のリップ
16b…第2のリップ
16t…頂部
17…発電部シール領域
20…セパレータ
20a…アノードプレート
20c…カソードプレート
20i…中間プレート
30…積層体
40…エンドプレート
50…締結部材
60…ガス流路部材
60a…ガス流路部材配置領域
60e…外周端面
100,100a…燃料電池スタック
AP1…第1のアノード流路
AP2…第2のアノード流路
CP1…第1のカソード流路列
CP2…第2のカソード流路列
P1…水素流入孔
P1a…連通領域
P2…水素流出孔
P2a…連通領域
P3…酸素流入孔
P3a…連通領域
P4…酸素流出孔
P4a…連通領域
SL…シールライン
WP…冷媒流路

Claims (5)

  1. 燃料電池であって、
    流体の漏洩を防止するためのシール部によって外周縁を被覆された電解質膜と、
    前記電解質膜の両面の前記シール部によって囲まれた発電領域に配置される電極層と、
    前記電極層の外表面に配置され、前記電極層に反応ガスを供給するための流路となるガス流路部材と、
    を備え、
    前記ガス流路部材は、前記電極層の全面を被覆している、燃料電池。
  2. 請求項1記載の燃料電池であって、
    前記ガス流路部材の外周縁は、前記燃料電池に組み付けられた状態において、前記シール部材と接している、燃料電池。
  3. 請求項2記載の燃料電池であって、さらに、
    前記シール部を前記電解質膜の両面から挟持するセパレータを備え、
    前記シール部の外表面には、前記セパレータによって押圧されてシールラインを形成する突起部が設けられており、
    前記シールラインは、前記発電領域を囲む発電領域シールラインを含み、
    前記発電領域シールラインは、前記燃料電池に組み付けられている状態において、前記ガス流路部材の外周縁と接している、燃料電池。
  4. 請求項3記載の燃料電池であって、
    前記突起部の高さは、前記燃料電池に組み付けられていない状態において、前記ガス流路部材の厚みより大きい、燃料電池。
  5. 請求項2ないし請求項4のいずれかに記載の燃料電池であって、
    前記セパレータには、前記反応ガスのためのガス流路が設けられており、
    前記前記ガス流路は、前記ガス流路部材へと連通している、燃料電池。
JP2008104839A 2008-04-14 2008-04-14 燃料電池 Pending JP2009259487A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008104839A JP2009259487A (ja) 2008-04-14 2008-04-14 燃料電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008104839A JP2009259487A (ja) 2008-04-14 2008-04-14 燃料電池

Publications (1)

Publication Number Publication Date
JP2009259487A true JP2009259487A (ja) 2009-11-05

Family

ID=41386677

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008104839A Pending JP2009259487A (ja) 2008-04-14 2008-04-14 燃料電池

Country Status (1)

Country Link
JP (1) JP2009259487A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015147098A1 (ja) * 2014-03-25 2015-10-01 凸版印刷株式会社 膜電極接合体の製造方法、膜電極接合体、および、固体高分子形燃料電池

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015147098A1 (ja) * 2014-03-25 2015-10-01 凸版印刷株式会社 膜電極接合体の製造方法、膜電極接合体、および、固体高分子形燃料電池
JPWO2015147098A1 (ja) * 2014-03-25 2017-04-13 凸版印刷株式会社 膜電極接合体の製造方法、膜電極接合体、および、固体高分子形燃料電池

Similar Documents

Publication Publication Date Title
JP4856006B2 (ja) 改善された燃料電池設計のためのシール支持用の拡散媒体
KR101047524B1 (ko) 연료전지 및 그 제조방법
JP2008171615A (ja) シール一体型膜電極接合体
JP2008171613A (ja) 燃料電池
JP2007207586A (ja) 燃料電池
JP2016091849A (ja) 燃料電池用セパレータ、燃料電池セル及び燃料電池
JP6053649B2 (ja) 燃料電池
JP5365162B2 (ja) 燃料電池
JP2011070805A (ja) 固体高分子型燃料電池
KR20180008899A (ko) 연료 전지
JP5082467B2 (ja) 燃料電池、および、燃料電池を構成するセパレータ
JP6581156B2 (ja) 発電セル
JP2013258107A (ja) 燃料電池
JP2009094046A (ja) 燃料電池
JP2007329083A (ja) 燃料電池
JP2007250432A (ja) 燃料電池
CN115149057A (zh) 发电电池和带树脂框的膜电极组件
JP2004335179A (ja) 燃料電池
JP2006147258A (ja) セパレータ及び燃料電池スタック
JP2009259487A (ja) 燃料電池
JP2008293808A (ja) セパレータおよび燃料電池
JP2013089517A (ja) 燃料電池
JP2009129650A (ja) 燃料電池
JP6208650B2 (ja) 燃料電池
JP2012033325A (ja) 燃料電池