JP2009257929A - 炉心溶融物保持装置および原子炉格納容器 - Google Patents

炉心溶融物保持装置および原子炉格納容器 Download PDF

Info

Publication number
JP2009257929A
JP2009257929A JP2008107332A JP2008107332A JP2009257929A JP 2009257929 A JP2009257929 A JP 2009257929A JP 2008107332 A JP2008107332 A JP 2008107332A JP 2008107332 A JP2008107332 A JP 2008107332A JP 2009257929 A JP2009257929 A JP 2009257929A
Authority
JP
Japan
Prior art keywords
water supply
cooling
channel
water
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008107332A
Other languages
English (en)
Inventor
Shinji Kubo
伸二 久保
Shinichi Morooka
慎一 師岡
Yasushi Yamamoto
泰 山本
Toshimi Tobimatsu
敏美 飛松
Kazuyoshi Aoki
一義 青木
Chikako Iwaki
智香子 岩城
Tatsumi Ikeda
達實 池田
Yuka Suzuki
由佳 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2008107332A priority Critical patent/JP2009257929A/ja
Publication of JP2009257929A publication Critical patent/JP2009257929A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

【課題】炉心溶融物保持装置における冷却水循環流量を増加させる。
【解決手段】原子炉圧力容器下方のペデスタル床7上に、冷却流路11を放射状に並べる。冷却流路11の伝熱面には傾斜をつける。冷却流路11の下部は給水容器10に接続され、冷却流路11の上部は開口している。給水容器10には、冷却水を供給する給水流路9が接続される。給水流路9の他端は、冷却流路11の開口部と同じ空間に開口している。自然循環流路は、給水流路9と冷却流路11、垂直流路12およびこれらを結ぶ給水流路水平部15からなっている。自然循環流路のコーナー部は、流線型の滑らかな形状に形成される。
【選択図】図1

Description

本発明は、原子炉圧力容器内の炉心が溶融して原子炉圧力容器を貫通した際に発生する炉心デブリを受け止める炉心溶融物保持装置およびこれを用いた原子炉格納容器に関する。
水冷却型原子炉では、原子炉圧力容器内への給水の停止や、原子炉圧力容器に接続された配管の破断による冷却水の喪失によって、原子炉水位が低下し炉心が露出して冷却が不十分になる可能性がある。このような場合を想定して、水位低下の信号により自動的に原子炉は非常停止され、非常用炉心冷却装置(ECCS)による冷却材の注入によって炉心を冠水させて冷却し、炉心溶融事故を未然に防ぐようになっている。
しかしながら、極めて低い確率ではあるが、上記非常用炉心冷却装置が作動せず、かつ、その他の炉心への注水装置も利用できない事態も想定され得る。このような場合、原子炉水位の低下により炉心は露出し、十分な冷却が行われなくなり、原子炉停止後も発生し続ける崩壊熱によって燃料棒温度が上昇し、最終的には炉心溶融に至るおそれがある。
このような事態に至ると、高温の炉心溶融物(コリウム)が原子炉圧力容器内下部に溶け落ち、さらに原子炉圧力容器下部ヘッドを溶融貫通して、コリウムは原子炉格納容器内の床上に落下する。コリウムは格納容器床に張られたコンクリートを加熱し、接触面が高温状態になるとコンクリートと反応し、二酸化炭素、水素等の非凝縮性ガスを大量に発生させるとともにコンクリートを溶融浸食する。
発生した非凝縮性ガスは格納容器内の圧力を高め、原子炉格納容器を破損させる可能性があり、また、コンクリートの溶融浸食により格納容器バウンダリを破損させたり、格納容器構造強度を低下させる可能性がある。結果的に、コリウムとコンクリートの反応が継続すると格納容器破損に至り、格納容器内の放射性物質が外部環境へ放出させるおそれがある。
このようなコリウムとコンクリートの反応を抑制するためには、コリウムを冷却し、コリウム底部のコンクリートとの接触面の温度を浸食温度以下(一般的なコンクリートで1500K以下)に冷却するか、コリウムとコンクリートが直接接触しないようにする必要がある。そのため、炉心溶融物が落下した場合に備えて様々な対策が提案されている。代表的なものが炉心溶融物保持装置(コアキャッチャー)と呼ばれるもので、落下した炉心溶融物を耐熱材で受け止めて、注水手段と組み合わせて炉心溶融物の冷却を図る設備である。
原子炉格納容器の床(ドライウェル床)に落下した炉心溶融物の上面に冷却水を注水しても、炉心溶融物の底部での除熱量が小さいと、崩壊熱によって炉心溶融物底部が高温のまま維持され、格納容器床のコンクリート侵食を停止することができない可能性がある。そこで、炉心溶融物を底面から冷却するという方法が提案されている(たとえば特許文献1参照)。
特開2007−232529号公報
コリウムの上からの注水だけでは、コリウム上面の水の沸騰による冷却のみであり、コリウム堆積厚さが厚いとコリウム底部まで十分に冷却できない可能性がある。したがって、床面積を広くとり、コリウムの堆積厚さを冷却可能な厚さ以下にする必要があった。しかし、十分大きな床面積を確保することは格納容器構造設計上困難であった。
たとえば、典型的なコリウムの崩壊熱は、定格熱出力の約1%程度であり、定格熱出力4000MWの炉の場合には、40MW程度の発熱量になる。上面の沸騰熱伝達量にはコリウム上面の状態により幅があるが、すくなくとも0.4MW/m程度の熱流束が想定される。この場合には、コリウムの発熱量を上面の熱伝達のみで取るとすると、100m程度(円直径で11.3m)の床面積が必要になる。これまでの格納容器の構造を考慮すると、この面積を確保することは困難であった。
これに対し、コリウム堆積床面の下方に冷却水流路を設け、ここに冷却水を導くことによってコリウムを底面から除熱する方法が知られている。しかし、流路上面が加熱面となっている状態では、加熱面で発生したボイドが加熱面に沿って滞留し、蒸気膜を形成することで伝熱を妨げるという問題があった。
そこで、特許文献1には、発生したボイドを速やかに冷却流路から排出するように、伝熱面に傾斜をつける方法が開示されている。溶融コリウムからの伝熱量分布を考えた場合に、特許文献1のようにコアキャッチャー中心部に給水ヘッダーを設けた構造では、事故初期にはコアキャチャー中心部の除熱が良く、これによってコリウムが冷却・固化しクラストを形成することで、この部分の熱伝達速度が低下し、中・長期的にはコアキャチャー周辺部での伝熱が支配的になると考えられる。冷却水は冷却流路内の沸騰により生じる自然循環により給水流路に供給される。
しかしながら、冷却水流路で発生したボイドは冷却水プールへ排出された後、大部分は冷却プール液面から抜けるが、一部は自然循環流に巻き込まれてダウンカマに流入する可能性が高い。そのボイドは自然循環力を低減させるとともに、流れが不安定となり振動を起こすことも考えられる。さらに、自然循環流路は多数の曲がり部で構成されており、その曲がり部形状によっては前記ボイドが合体して蓄積され流路を狭めることで圧力損失が大きくなり自然循環流量が抑制されることが懸念される。
そこで、本発明は、炉心溶融物保持装置における冷却水循環流量を増加させることを目的とする。
上述の目的を達成するため、本発明は、原子炉圧力容器下方の格納容器床上に、冷却流路を放射状に並べ、前記冷却流路の伝熱面に傾斜がついており、前記冷却流路の下部は給水容器に接続され、前記冷却流路上部は開口しており、前記給水容器には冷却水を供給する給水流路が接続され、前記給水流路の他端は前記冷却流路開口部と同じ空間に開口している炉心溶融物保持装置において、自然循環流路のコーナー部を流線型の滑らかな形状としたことを特徴とする。
また、本発明は、原子炉圧力容器下方の格納容器床上に、冷却流路を放射状に並べ、前記冷却流路の伝熱面に傾斜がついており、前記冷却流路の下部は給水容器に接続され、前記冷却流路上部は開口しており、前記給水容器には冷却水を供給する給水流路が接続され、前記給水流路の他端は前記冷却流路開口部と同じ空間に開口している炉心溶融物保持装置において、自然循環流路の冷却水合流部に冷却水の流れ方向を変える構造物を設けたことを特徴とする。
また、本発明は、原子炉圧力容器下方の格納容器床上に、冷却流路を放射状に並べ、前記冷却流路の伝熱面に傾斜がついており、前記冷却流路の下部は給水容器に接続され、前記冷却流路上部は開口しており、前記給水容器には冷却水を供給する給水流路が接続され、前記給水流路の他端は前記冷却流路開口部と同じ空間に開口している炉心溶融物保持装置において、冷却流路そして給水流路の壁面に細い溝(リブレット)あるいは突起のような圧力損失が減少する表面処理を設けたことを特徴とする。
また、本発明は、原子炉圧力容器下方の格納容器床上に、冷却流路を放射状に並べ、前記冷却流路の伝熱面に傾斜がついており、前記冷却流路の下部は給水容器に接続され、前記冷却流路上部は開口しており、前記給水容器には冷却水を供給する給水流路が接続され、前記給水流路の他端は前記冷却流路開口部と同じ空間に開口している炉心溶融物保持装置において、伝熱面の傾斜を設ける構造物の支持柱が流線型であることを特徴とする。
また、本発明は、原子炉圧力容器下方の格納容器床上に、冷却流路を放射状に並べ、前記冷却流路の伝熱面に傾斜がついており、前記冷却流路の下部は給水容器に接続され、前記冷却流路上部は開口しており、前記給水容器には冷却水を供給する給水流路が接続され、前記給水流路の他端は前記冷却流路開口部と同じ空間に開口している炉心溶融物保持装置において、傾斜伝熱流路支持構造物の下面に合流部側が高くなるような傾斜が設けられていることを特徴とする。
また、本発明は、原子炉圧力容器下方の格納容器床上に、冷却流路を放射状に並べ、前記冷却流路の伝熱面に傾斜がついており、前記冷却流路の下部は給水容器に接続され、前記冷却流路上部は開口しており、前記給水容器には冷却水を供給する給水流路が接続され、前記給水流路の他端は前記冷却流路開口部と同じ空間に開口している炉心溶融物保持装置において、給水流路入口の断面形状がドーナツ状となっていることを特徴とする。
また、本発明は、原子炉圧力容器下方の格納容器床上に、冷却流路を放射状に並べ、前記冷却流路の伝熱面に傾斜がついており、前記冷却流路の下部は給水容器に接続され、前記冷却流路上部は開口しており、前記給水容器には冷却水を供給する給水流路が接続され、前記給水流路の他端は前記冷却流路開口部と同じ空間に開口している炉心溶融物保持装置において、給水流路入口に気泡分離部を設けたことを特徴とする。
また、本発明は、原子炉圧力容器下方の格納容器床上に、冷却流路を放射状に並べ、前記冷却流路の伝熱面に傾斜がついており、前記冷却流路の下部は給水容器に接続され、前記冷却流路上部は開口しており、前記給水容器には冷却水を供給する給水流路が接続され、前記給水流路の他端は前記冷却流路開口部と同じ空間に開口している炉心溶融物保持装置において、垂直流路出口に旋回流誘起翼を設けたことを特徴とする。
また、本発明は、原子炉圧力容器下方の格納容器床上に、冷却流路を放射状に並べ、前記冷却流路の伝熱面に傾斜がついており、前記冷却流路の下部は給水容器に接続され、前記冷却流路上部は開口しており、前記給水容器には冷却水を供給する給水流路が接続され、前記給水流路の他端は前記冷却流路開口部と同じ空間に開口している炉心溶融物保持装置において、給水流路内に気泡合体部材を設けたことを特徴とする。
また、本発明は、原子炉圧力容器下方の格納容器床上に、冷却流路を放射状に並べ、前記冷却流路の伝熱面に傾斜がついており、前記冷却流路の下部は給水容器に接続され、前記冷却流路上部は開口しており、前記給水容器には冷却水を供給する給水流路が接続され、前記給水流路の他端は前記冷却流路開口部と同じ空間に開口している炉心溶融物保持装置において、給水流路内の周方向にジェットポンプを複数設けたことを特徴とする。
また、本発明は、原子炉格納容器において、炉心を内蔵してなる原子炉圧力容器と、上述のいずれかの炉心溶融物保持装置とを有することを特徴とする。
本発明によれば、炉心溶融物保持装置における冷却水循環流量を増加させることができる。
本発明に係る炉心溶融物保持装置の実施の形態を、図面を参照して説明する。なお、同一または類似の構成には同一の符号を付し、重複する説明は省略する。
[第1の実施の形態]
図2は、本発明に係る炉心溶融物保持装置の第1の実施の形態における原子炉格納容器の立断面図である。
原子炉格納容器2には、下部に位置するペデスタル床7、および、その周りを取り囲む円筒面状のペデスタル24によって下部ドライウェル63が形成されている。炉心70を内蔵する原子炉圧力容器1は、ペデスタル24によって支持されている。
また、原子炉格納容器2の下部には、ペデスタル24を取り囲むようにサプレッションプール4が形成されている。サプレッションプール4には、水が貯えられている。
原子炉圧力容器1下部のペデスタル床7の上には、炉心溶融物保持装置51が配設されている。炉心溶融物保持装置51には、注水配管8が接続されている。また、注水配管8は、注入弁62を介して、原子炉格納容器2の上部に位置する水槽5に接続されている。
原子炉格納容器2の上には、冷却器6が配設されている。冷却器6は、たとえば、格納容器2内に事故時に放出された蒸気を導いて水中に沈めた熱交換器61で凝縮させ、水槽5に凝縮水を戻すものである。このような冷却器6として、静的(ポンプ等動的機器を有さない)格納容器冷却設備やドライウェルクーラーなどを用いることができる。
図1は、本実施の形態における炉心溶融物保持装置近傍の立断面図である。
原子炉圧力容器1下部のペデスタル床7上に傾斜伝熱面を持った中空の冷却流路11を円周方向に密に並べ、全体として円錐形状に配置する。冷却流路11の外周部は垂直に立ち上がって垂直流路12を形成し、出口は開口している。
冷却流路11は下部の円筒形の給水容器10に接続されている。円錐形状をした冷却流路集合体の内側に耐熱材13を設置し、内側壁全面と給水容器10の上面全面を覆っている。給水容器10への初期の給水は、炉心溶融物保持装置51より上方に設置された冷却器6のプール水を重力落下させることにより注水配管8を介して行われる。初期注水終了後は、炉心溶融物保持装置51へ溢水した水が、冷却流路11内の沸騰により生じる自然循環により、給水流路9を通って給水容器に供給される。
注入弁62は、原子炉圧力容器1の下部ヘッド3の破損を検知する信号(下部ヘッド温度高やペデスタル雰囲気温度高)により開放され、冷却器6の冷却水が重力落下により供給される。溶融炉心冷却により生じた蒸気は、原子炉格納容器2上部の冷却器6(静的格納容器冷却設備やドライウェルクーラーなど)によって凝縮される。凝縮水は水槽5に戻るようになっており、水が自然循環することによりコリウム14の冷却が継続される。
自然循環流路は、給水流路9と冷却流路11、垂直流路12およびこれらを結ぶ給水流路水平部15からなっている。この自然循環流路のコーナー部16は、流線型、すなわち曲線のような滑らかな形状に形成されている。このため、冷却水流を乱す自然循環流路コーナー部の圧力損失は低減される。この結果、冷却水循環流量を増加させることができ、炉心溶融物の除熱を促進することができる。
[第2の実施の形態]
図3は、本発明に係る炉心溶融物保持装置の第2の実施の形態における炉心溶融物保持装置近傍の立断面図である。
本実施の形態の炉心溶融物保持装置51は、第1の実施の形態の炉心溶融物保持装置に、冷却水が流れる方向を変化させる構造物17を追加したものである。この構造物17は、給水容器10の内部で、冷却水が冷却流路11に流入する直前の合流部に設けられている。
冷却水が流れる方向を変化させる構造物17は、冷却水の流れ方向を冷却流路11に向かわせ、合流部に集合した冷却水が衝突してできる乱れを緩和する。このため、圧力損失が低減され、冷却水循環流量を増加させることができ、炉心溶融物の除熱を促進することができる。
[第3の実施の形態]
図4は、本発明に係る炉心溶融物保持装置の第3の実施の形態におけるリブレットの平面図である。図5は、本実施の形態におけるリブレットの一部拡大断面図である。
本実施の形態の炉心溶融物保持装置は、第2の実施の形態の炉心溶融物保持装置の一部にリブレット18を形成したものである。
コリウム14からの熱は、耐熱材13を介して冷却流路11の水に伝えられる。冷却流路11の水は加熱されて、やがて沸騰する。冷却流路11は傾斜しているため、沸騰で発生した蒸気泡は、冷却流路11を上方に流れ、最終的には上面プールへ流出する。
給水流路9および給水流路水平部15の水は液体単相であるから、冷却流路11との間に密度差が生じる。このため、上面プール、給水流路9、給水流路水平部15、給水容器10、冷却流路11そして上面プールという通路の自然循環が生じる。自然循環であるので、流速も小さく流路の圧力損失は摩擦が支配的である。
本実施の形態の炉心溶融物保持装置では、冷却流路11、給水流路9および給水流路水平部15の壁面には、リブレット(細かい溝)18が形成されている。自然循環流路の内壁側面上にリブレット18を設けることにより、リブレット18がない場合に比べて、摩擦抵抗が低減される。流路の摩擦損失を低減することができ自然循環流量を増大することが可能となる。このため、炉心溶融物の除熱を促進することができる。
リブレット18は、たとえば図5に示すようなV字型の形状のものである。この図においてhはリブレット18の高さを、また、dはリブレット18の間隔を示す。ここで、リブレット18の高さh及び間隔dは、乱流の粘性底層の厚さδ1 と等しいものを採用したときが、壁面上の液膜流の摩擦低減に最適である。このときの粘性底層の厚さδ1を最適リブレット溝幅といい、すなわちδ1 =h(リブレット高さ)=d(間隔)である。
この最適リブレット溝幅δ1 は、流速及び粘性係数によって決定されるものであり、次式で与えられる。
δ1 = 123・δ/(uD/ν)^(7/8)
ここで、
u: 流速
D:流路の直径(矩形流路の場合は水力直径)
ν:粘性係数
δ:流路の半径
である。また、この式におけるuD/νはレイノルズ数と呼ばれる。この式から摩擦抵抗低減の効果が最大となる最適リブレット溝幅δ1を決定する。
また、壁面に形成されたリブレット(細かい溝)の代わりに、図6のように突起19を多数取り付けて圧損を低減することも可能である。
[第4の実施の形態]
図7は、本発明に係る炉心溶融物保持装置の第4の実施の形態における炉心溶融物保持装置近傍の立断面図である。
本実施の形態では、第3の実施の形態におけるリブレット18あるいは突起19の形成位置を限定したものである。本実施の形態では、流れが単相で流れが縦溝群に沿った流れである給水流路9および給水流路水平部15の壁面の表面加工施工部分20(図7において破線で示した)にのみ、リブレット18あるいは突起19を設ける。
冷却流路11内は、水と蒸気が混じった流れ(二相流)のため、かなり乱れた流れになっている。リブレット18は、流体の流れに沿った縦溝群により構成され、乱流境界層の粘性底層近傍の構造を変化させることによって摩擦抵抗を低減させる役割を果たすデバイスである。二相流のように、かなり横流れが大きな流れでは、圧損低減率が減少するため、流れが単相で流れが縦溝群に沿った流れである給水流路9および給水流路水平部15の壁面にのみ、リブレット18あるいは突起19を設ける。
このような炉心溶融物保持装置では、冷却水循環流量を増加させることができ、炉心溶融物の除熱を促進することができる。
[第5の実施の形態]
図8は、本発明に係る炉心溶融物保持装置の第5の実施の形態における炉心溶融物保持装置近傍の立断面図である。図9は、本実施の形態における炉心余裕物保持装置近傍の平断面図である。
本実施の形態では、原子炉圧力容器1下部のペデスタル床7上に傾斜伝熱流路支持構造物22を設け、その上に傾斜伝熱面を持った中空の冷却流路11を円周方向に密に並べ、全体として円錐形状に配置する。流路外周部は垂直に立ち上がり、出口は開口している。傾斜伝熱流路支持構造物22は、支持柱23により支えられ、ペデスタル床7との間に自然循環流路を形成している。
自然循環流は、ペデスタル床7上と傾斜伝熱流路支持構造物22の間の流路を周辺から中央に流れ、支持柱23は流れを乱しにくい流線型となっている。このため、冷却水流を妨げる傾斜伝熱流路支持構造物22の圧力損失は、低減され、冷却水循環流量を増加させることができ、炉心溶融物の除熱を促進することができる。
また、支持柱23は、図10に示すように、複数の大きさのものを用いてもよい。
[第6の実施の形態]
図11は、本発明に係る炉心溶融物保持装置の第6の実施の形態における炉心溶融物保持装置近傍の立断面図である。
本実施の形態では、圧力容器1下部のペデスタル床7上に傾斜伝熱流路支持構造物22を設け、その上に傾斜伝熱面を持った中空の冷却流路11を円周方向に密に並べ、全体として円錐形状に配置する。流路外周部は垂直に立ち上がり、出口は開口している。この傾斜伝熱流路支持構造物22の下面には、合流部側が高くなるような傾斜が設けられている。
冷却水は、冷却流路内の沸騰により生じる自然循環により給水流路9に供給される。しかし、冷却流路11で発生したボイドは、上面プールへ排出された後、大部分は上面プール液面から抜けるが、一部は自然循環流に巻き込まれて給水流路9に流入する可能性が高い。巻き込まれた気泡は、傾斜伝熱流路支持構造物22の下面に蓄積され、流れを不安定にするとともに流路を狭め圧力損失が増大することが考えられる。
本実施の形態では、傾斜伝熱流路支持構造物22の下面に傾斜を設けているため、給水流路9に巻き込まれて入ってきたボイドを蓄積することなく自然循環流路外へ排出することが可能となり、圧力損失を低減する作用がある。このため、冷却水循環流量を増加させることができ、炉心溶融物の除熱を促進することができる。
[第7の実施の形態]
図12は、本発明に係る炉心溶融物保持装置の第7の実施の形態における平面図である。
本実施の形態の炉心溶融物保持装置は、コリウム14を保持する耐熱材13(図1参照)と冷却流路11と上面プールおよび断面がドーナツ状の給水流路9を有している。このような炉心溶融物保持装置において、耐熱材13に保持された高温のコリウム14によって、上面プールの水が激しく沸騰し、気泡が大量に発生する。冷却流路11に供給される水は、給水流路9の入口を介して上面プールから取り入れられる。
この取り入れる水中に気泡を巻き込む可能性があるが、給水流路入口の断面形状がドーナツ状であることにより、配管を並べて配置した場合よりも流路断面積が大きく、水の流速が小さくなる。このため、気泡が浮上して水面より離脱し、給水流路への気泡の巻き込みを低減させる事が可能となる。よって、冷却水循環流量を増加させることができ、炉心溶融物の除熱を促進することができる。
[第8の実施の形態]
図13は、本発明に係る炉心溶融物保持装置の第8の実施の形態における炉心溶融物保持装置近傍の立断面図である。
本実施の形態の炉心溶融物保持装置は、耐熱材13と冷却流路11と上面プールと給水流路9および気泡分離部35を有している。気泡分離部35は、給水流路9の入口に設けられている。気泡分離部35は、給水流路9よりも流路断面積が多くなるように形成されている。
このような炉心溶融物保持装置において、気泡分離部35は、流路断面積が大きいため、この部分では水の流速が小さくなる。このため、気泡が浮上して水面より離脱し、給水流路9への気泡の巻き込みを低減させることが可能となる。よって、冷却水循環流量を増加させることができ、炉心溶融物の除熱を促進することができる。
[第9の実施の形態]
図14は、本発明に係る炉心溶融物保持装置の第9の実施の形態における炉心溶融物保持装置近傍の立断面図である。図15は、本実施の形態における炉心溶融物保持装置の平面図である。
本実施の形態の炉心溶融物保持装置は、耐熱材13と冷却流路11と上面プールと給水流路9および旋回流誘起翼25を有している。このような炉心溶融物保持装置において、冷却流路11の出口付近に旋回流誘起翼25を設けることにより、上面プールに旋回流26を発生させる。この旋回流26によって、気泡は上面プールの中心付近に集まるため、上面プールの外周部に設けられた給水流路9の入口付近の気泡は少なくなり、給水流路9への気泡の巻き込みを低減させることが可能となる。このため、冷却水循環流量を増加させることができ、炉心溶融物の除熱を促進することができる。
[第10の実施の形態]
図16は、本発明に係る炉心溶融物保持装置の第10の実施の形態における炉心溶融物保持装置近傍の立断面図である。
本実施の形態の炉心溶融物保持装置は、給水流路9と給水流路内に設けた気泡合体部材27を有している。気泡合体部材27は、たとえばメッシュ状のものである。
このような炉心溶融物保持装置において、垂直流路12および上面プールの大量の気泡を給水流路9に巻き込む可能性がある。しかし、給水流路内に気泡合体部材27を設けることにより、巻き込まれた気泡がトラップされ、合体することで浮力が大きくなり下降流に対抗して上方に移動され易くなる。このため、給水流路9以降への気泡の巻き込みを低減させる事が可能となる。よって、冷却水循環流量を増加させることができ、炉心溶融物の除熱を促進することができる。
[第11の実施の形態]
図17は、本発明に係る炉心溶融物保持装置の第11の実施の形態における炉心溶融物保持装置近傍の立断面図である。
本実施の形態の炉心溶融物保持装置は、給水流路9の入口にジェットポンプ28が設けられている。
図18は、本実施の形態におけるジェットポンプの縦断面図である。
ジェットポンプ28は、駆動部をもたない静的ポンプである。ジェットポンプ28は噴流ノズル29と、混合ノズル30およびディフューザ31により構成される。噴流ノズル29によって噴出される高速噴流は、周囲流体を引き込み、これら駆動水と被駆動水は混合ノズル30において混合され、ディフューザ31で静圧変換されて大きな吐出圧力で吐き出される。
このような機能を有するジェットポンプ28を給水流路9に設けることにより、原子炉格納容器2上部の冷却器6(静的格納容器冷却設備やドライウェルクーラーなど)で凝縮された蒸気の戻り水を、注水配管8を通してジェットポンプ28に導くことで、自然循環力を増大させることが可能である。また、ジェットポンプ28は、円周上に複数設けることによって、圧力容器下部に流入する流量を均一に保つことができる。
このように本実施の形態の炉心溶融物保持装置は、冷却水循環流量を増加させることができ、炉心溶融物の除熱を促進することができる。
[他の実施の形態]
上述の各実施の形態は単なる例示であり、本発明はこれらに限定されない。また、各実施の形態の特徴を組み合わせて実施することもできる。
本発明に係る炉心溶融物保持装置の第1の実施の形態における炉心溶融物保持装置近傍の立断面図である。 本発明に係る炉心溶融物保持装置の第1の実施の形態における原子炉格納容器の立断面図である。 本発明に係る炉心溶融物保持装置の第2の実施の形態における炉心溶融物保持装置近傍の立断面図である。 本発明に係る炉心溶融物保持装置の第3の実施の形態におけるリブレットの平面図である。 本発明に係る炉心溶融物保持装置の第3の実施の形態におけるリブレットの一部拡大断面図である。 本発明に係る炉心溶融物保持装置の第3の実施の形態における流路側面の他の例の平面図である。 本発明に係る炉心溶融物保持装置の第4の実施の形態における炉心溶融物保持装置近傍の立断面図である。 本発明に係る炉心溶融物保持装置の第5の実施の形態における炉心溶融物保持装置近傍の立断面図である。 本発明に係る炉心溶融物保持装置の第5の実施の形態における炉心余裕物保持装置近傍の平断面図である。 本発明に係る炉心溶融物保持装置の第5の実施の形態における炉心余裕物保持装置近傍の他の例の平断面図である。 本発明に係る炉心溶融物保持装置の第6の実施の形態における炉心溶融物保持装置近傍の立断面図である。 本発明に係る炉心溶融物保持装置の第7の実施の形態における平面図である。 本発明に係る炉心溶融物保持装置の第8の実施の形態における炉心溶融物保持装置近傍の立断面図である。 本発明に係る炉心溶融物保持装置の第9の実施の形態における炉心溶融物保持装置近傍の立断面図である。 本発明に係る炉心溶融物保持装置の第9の実施の形態における炉心溶融物保持装置の平面図である。 本発明に係る炉心溶融物保持装置の第10の実施の形態における炉心溶融物保持装置近傍の立断面図である。 本発明に係る炉心溶融物保持装置の第11の実施の形態における炉心溶融物保持装置近傍の立断面図である。 本発明に係る炉心溶融物保持装置の第11の実施の形態におけるジェットポンプの縦断面図である。
符号の説明
1…原子炉圧力容器、2…原子炉格納容器、3…下部ヘッド、4…サプレッションプール、5…水槽、6…冷却器、7…ペデスタル床、8…注水配管、9…給水流路、10…給水容器、11…冷却流路、12…垂直流路、13…耐熱材、14…コリウム、15…給水流路水平部、16…自然循環流路のコーナー部、17…冷却水が流れる方向を変化させる構造物、18…リブレット、19…突起、20…表面加工施工部分、22…傾斜伝熱流路支持構造物、23…支持柱、24…ペデスタル、25…旋回流誘起翼、26…旋回流、27…気泡合体部材、28…ジェットポンプ、29…噴流ノズル、30…混合ノズル、31…ディフューザ、35…気泡分離部、51…炉心溶融物保持装置、61…熱交換器、62…注入弁、63…下部ドライウェル、70…炉心

Claims (12)

  1. 原子炉圧力容器下方の格納容器床上に、冷却流路を放射状に並べ、前記冷却流路の伝熱面に傾斜がついており、前記冷却流路の下部は給水容器に接続され、前記冷却流路上部は開口しており、前記給水容器には冷却水を供給する給水流路が接続され、前記給水流路の他端は前記冷却流路開口部と同じ空間に開口している炉心溶融物保持装置において、
    自然循環流路のコーナー部を流線型の滑らかな形状とした
    ことを特徴とする炉心溶融物保持装置。
  2. 原子炉圧力容器下方の格納容器床上に、冷却流路を放射状に並べ、前記冷却流路の伝熱面に傾斜がついており、前記冷却流路の下部は給水容器に接続され、前記冷却流路上部は開口しており、前記給水容器には冷却水を供給する給水流路が接続され、前記給水流路の他端は前記冷却流路開口部と同じ空間に開口している炉心溶融物保持装置において、
    自然循環流路の冷却水合流部に冷却水の流れ方向を変える構造物を設けた
    ことを特徴とする炉心溶融物保持装置。
  3. 原子炉圧力容器下方の格納容器床上に、冷却流路を放射状に並べ、前記冷却流路の伝熱面に傾斜がついており、前記冷却流路の下部は給水容器に接続され、前記冷却流路上部は開口しており、前記給水容器には冷却水を供給する給水流路が接続され、前記給水流路の他端は前記冷却流路開口部と同じ空間に開口している炉心溶融物保持装置において、
    冷却流路そして給水流路の壁面に細い溝(リブレット)あるいは突起のような圧力損失が減少する表面処理を設けた
    ことを特徴とする炉心溶融物保持装置。
  4. 前記表面処理は、髄給水流路および給水流路水平部の壁面のみに形成されていることを特徴とする請求項3に記載の炉心溶融物保持装置。
  5. 原子炉圧力容器下方の格納容器床上に、冷却流路を放射状に並べ、前記冷却流路の伝熱面に傾斜がついており、前記冷却流路の下部は給水容器に接続され、前記冷却流路上部は開口しており、前記給水容器には冷却水を供給する給水流路が接続され、前記給水流路の他端は前記冷却流路開口部と同じ空間に開口している炉心溶融物保持装置において、
    伝熱面の傾斜を設ける構造物の支持柱が流線型である
    ことを特徴とする炉心溶融物保持装置。
  6. 原子炉圧力容器下方の格納容器床上に、冷却流路を放射状に並べ、前記冷却流路の伝熱面に傾斜がついており、前記冷却流路の下部は給水容器に接続され、前記冷却流路上部は開口しており、前記給水容器には冷却水を供給する給水流路が接続され、前記給水流路の他端は前記冷却流路開口部と同じ空間に開口している炉心溶融物保持装置において、
    傾斜伝熱流路支持構造物の下面に合流部側が高くなるような傾斜が設けられている
    ことを特徴とする炉心溶融物保持装置。
  7. 原子炉圧力容器下方の格納容器床上に、冷却流路を放射状に並べ、前記冷却流路の伝熱面に傾斜がついており、前記冷却流路の下部は給水容器に接続され、前記冷却流路上部は開口しており、前記給水容器には冷却水を供給する給水流路が接続され、前記給水流路の他端は前記冷却流路開口部と同じ空間に開口している炉心溶融物保持装置において、
    給水流路入口の断面形状がドーナツ状となっている
    ことを特徴とする炉心溶融物保持装置。
  8. 原子炉圧力容器下方の格納容器床上に、冷却流路を放射状に並べ、前記冷却流路の伝熱面に傾斜がついており、前記冷却流路の下部は給水容器に接続され、前記冷却流路上部は開口しており、前記給水容器には冷却水を供給する給水流路が接続され、前記給水流路の他端は前記冷却流路開口部と同じ空間に開口している炉心溶融物保持装置において、
    給水流路入口に気泡分離部を設けた
    ことを特徴とする炉心溶融物保持装置。
  9. 原子炉圧力容器下方の格納容器床上に、冷却流路を放射状に並べ、前記冷却流路の伝熱面に傾斜がついており、前記冷却流路の下部は給水容器に接続され、前記冷却流路上部は開口しており、前記給水容器には冷却水を供給する給水流路が接続され、前記給水流路の他端は前記冷却流路開口部と同じ空間に開口している炉心溶融物保持装置において、
    垂直流路出口に旋回流誘起翼を設けた
    ことを特徴とする炉心溶融物保持装置。
  10. 原子炉圧力容器下方の格納容器床上に、冷却流路を放射状に並べ、前記冷却流路の伝熱面に傾斜がついており、前記冷却流路の下部は給水容器に接続され、前記冷却流路上部は開口しており、前記給水容器には冷却水を供給する給水流路が接続され、前記給水流路の他端は前記冷却流路開口部と同じ空間に開口している炉心溶融物保持装置において、
    給水流路内に気泡合体部材を設けた
    ことを特徴とする炉心溶融物保持装置。
  11. 原子炉圧力容器下方の格納容器床上に、冷却流路を放射状に並べ、前記冷却流路の伝熱面に傾斜がついており、前記冷却流路の下部は給水容器に接続され、前記冷却流路上部は開口しており、前記給水容器には冷却水を供給する給水流路が接続され、前記給水流路の他端は前記冷却流路開口部と同じ空間に開口している炉心溶融物保持装置において、
    給水流路内の周方向にジェットポンプを複数設けた
    ことを特徴とする炉心溶融物保持装置。
  12. 炉心を内蔵してなる原子炉圧力容器と、請求項1ないし請求項11のいずれか1項記載の炉心溶融物保持装置とを有することを特徴とする原子炉格納容器。
JP2008107332A 2008-04-16 2008-04-16 炉心溶融物保持装置および原子炉格納容器 Pending JP2009257929A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008107332A JP2009257929A (ja) 2008-04-16 2008-04-16 炉心溶融物保持装置および原子炉格納容器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008107332A JP2009257929A (ja) 2008-04-16 2008-04-16 炉心溶融物保持装置および原子炉格納容器

Publications (1)

Publication Number Publication Date
JP2009257929A true JP2009257929A (ja) 2009-11-05

Family

ID=41385536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008107332A Pending JP2009257929A (ja) 2008-04-16 2008-04-16 炉心溶融物保持装置および原子炉格納容器

Country Status (1)

Country Link
JP (1) JP2009257929A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011169764A (ja) * 2010-02-19 2011-09-01 Toshiba Corp 炉心溶融物冷却装置および原子炉格納容器
JP2011174790A (ja) * 2010-02-24 2011-09-08 Toshiba Corp 炉心溶融物保持装置および格納容器
WO2011145293A1 (ja) * 2010-05-21 2011-11-24 株式会社 東芝 原子炉格納容器
JP2015031614A (ja) * 2013-08-05 2015-02-16 日立Geニュークリア・エナジー株式会社 原子炉格納容器
JP2015045592A (ja) * 2013-08-29 2015-03-12 日立Geニュークリア・エナジー株式会社 原子炉のコアキャッチャ
CN105931680A (zh) * 2016-06-20 2016-09-07 中广核(北京)仿真技术有限公司 一种堆熔物收集冷却系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09500207A (ja) * 1993-07-02 1997-01-07 シーメンス アクチエンゲゼルシヤフト 炉心溶融物の捕集及び冷却装置
JP2007232529A (ja) * 2006-02-28 2007-09-13 Toshiba Corp 炉心溶融物冷却装置、原子炉格納容器および炉心溶融物冷却装置の設置方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09500207A (ja) * 1993-07-02 1997-01-07 シーメンス アクチエンゲゼルシヤフト 炉心溶融物の捕集及び冷却装置
JP2007232529A (ja) * 2006-02-28 2007-09-13 Toshiba Corp 炉心溶融物冷却装置、原子炉格納容器および炉心溶融物冷却装置の設置方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011169764A (ja) * 2010-02-19 2011-09-01 Toshiba Corp 炉心溶融物冷却装置および原子炉格納容器
JP2011174790A (ja) * 2010-02-24 2011-09-08 Toshiba Corp 炉心溶融物保持装置および格納容器
WO2011145293A1 (ja) * 2010-05-21 2011-11-24 株式会社 東芝 原子炉格納容器
JP2011247584A (ja) * 2010-05-21 2011-12-08 Toshiba Corp 原子炉格納容器
JP2015031614A (ja) * 2013-08-05 2015-02-16 日立Geニュークリア・エナジー株式会社 原子炉格納容器
JP2015045592A (ja) * 2013-08-29 2015-03-12 日立Geニュークリア・エナジー株式会社 原子炉のコアキャッチャ
CN105931680A (zh) * 2016-06-20 2016-09-07 中广核(北京)仿真技术有限公司 一种堆熔物收集冷却系统
CN105931680B (zh) * 2016-06-20 2018-04-06 中广核(北京)仿真技术有限公司 一种堆熔物收集冷却系统

Similar Documents

Publication Publication Date Title
JP2009257929A (ja) 炉心溶融物保持装置および原子炉格納容器
KR101056010B1 (ko) 기수 분리기
JP2009145135A (ja) 原子炉格納容器及び漏水検知床
JP2009222697A (ja) 炉心バレル上の注入延長ダクトを備える安全注入システム
JP5306257B2 (ja) 炉心溶融物冷却装置および原子炉格納容器
JPH10221480A (ja) 気水分離装置、原子力発電プラント及びボイラー装置
KR20130116258A (ko) 통합된 나트륨 냉각 급속 원자로
JP2022097583A (ja) 上昇式熱交換器を備えた原子炉
JP4828963B2 (ja) 炉心溶融物冷却装置、原子炉格納容器および炉心溶融物冷却装置の設置方法
JP2009047637A (ja) 炉心溶融物保持装置および格納容器
JP2009052951A (ja) 炉心溶融物冷却装置および原子炉格納容器
JP4731577B2 (ja) 非常炉心冷却水の原子炉容器直接注入装置
JP2010271261A (ja) 炉心溶融物保持装置および格納容器
JP2010038571A (ja) 炉心溶融物冷却装置および炉心溶融物冷却方法
JPH085772A (ja) 原子炉格納容器
JP6204823B2 (ja) コアキャッチャ
JP2014157029A (ja) 原子炉システムおよび原子炉溶融物保持装置
JP7182521B2 (ja) 原子炉システム
JP2012058113A (ja) 原子炉の気水分離設備
JPH0347479B2 (ja)
JP4504343B2 (ja) 自然循環型沸騰水型原子炉
JP6535580B2 (ja) 原子炉のコアキャッチャ
JP2007315938A (ja) 自然循環型沸騰水型原子炉の流力振動試験方法
JP2972162B2 (ja) 高速炉の炉壁冷却保護構造
JP2012112590A (ja) 蒸気発生器及び原子力プラント

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101213

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110420

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130521