JP2015031614A - 原子炉格納容器 - Google Patents

原子炉格納容器 Download PDF

Info

Publication number
JP2015031614A
JP2015031614A JP2013161933A JP2013161933A JP2015031614A JP 2015031614 A JP2015031614 A JP 2015031614A JP 2013161933 A JP2013161933 A JP 2013161933A JP 2013161933 A JP2013161933 A JP 2013161933A JP 2015031614 A JP2015031614 A JP 2015031614A
Authority
JP
Japan
Prior art keywords
containment vessel
heat transfer
reactor containment
reactor
transfer plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013161933A
Other languages
English (en)
Inventor
政隆 日高
Masataka Hidaka
政隆 日高
一雄 中島
Kazuo Nakajima
一雄 中島
隆久 松崎
Takahisa Matsuzaki
隆久 松崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi GE Nuclear Energy Ltd
Original Assignee
Hitachi GE Nuclear Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi GE Nuclear Energy Ltd filed Critical Hitachi GE Nuclear Energy Ltd
Priority to JP2013161933A priority Critical patent/JP2015031614A/ja
Publication of JP2015031614A publication Critical patent/JP2015031614A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Abstract

【課題】炉心溶融や圧力容器の破損が生じるシビアアクシデント時に格納容器下部区画への事前注水で炉心溶融物を冷却するアクシデントマネジメント対策において、炉心溶融物の冷却性を向上するとともに下部区画コンクリート側壁への侵食を防止して、格納容器構造の耐力、健全性を確保可能で事故事象を収束させるのに好適な原子炉格納容器を提供することを目的とする。
【解決手段】原子炉格納容器床上に設置された原子炉格納容器側壁の上方で圧力容器を支持構造物により支持、固定することで、圧力容器下部に原子炉格納容器床上と原子炉格納容器側壁に囲まれた格納容器下部区画を形成し、原子炉の異常発生時に格納容器下部区画に注水を行うようにされた原子炉格納容器であって、原子炉格納容器側壁で形成された格納容器下部区画の内部周囲に間隙を介して伝熱板を配置して伝熱板による空間を形成し、当該伝熱板による空間内に原子炉の異常発生時に生じた炉心溶融物を収納することを特徴とする。
【選択図】図1

Description

本発明は、原子炉格納容器における高温溶融物の冷却技術に係り、特に原子炉のシビアアクシデント時に炉心溶融と溶融した炉心の熱負荷によって原子炉圧力容器が破損して、炉心溶融物が原子炉格納容器の下部区画に落下する事象を想定した場合に、炉心溶融物の冷却促進と格納容器の破損防止に好適な原子炉格納容器に関する。
原子炉には、非特許文献1に記載のように、核燃料を封止した燃料棒と、燃料棒を束ねた燃料集合体を装架する炉心と、炉心を内包する圧力容器、圧力容器を気密構造で取り囲む格納容器によって核分裂生成物の放散を防止する構造物と、非常用炉心冷却系等の非常時の炉心冷却設備からなる工学的安全設備が設けられる。
係る原子炉において地震、風水害等で外部電源が喪失した場合、非常用炉心冷却系は非常用発電機で機能し、炉心の溶融を防ぐに十分な容量を有するが、万が一非常用炉心冷却系が機能せず炉心が溶融するようなシビアアクシデントが発生し、圧力容器が破損して格納容器下部区画に落下した場合においても格納容器で核分裂生成物の放散を防止する必要がある。
このため鋼製あるいはコンクリート製の格納容器の最低部に、格納容器内側にコンクリートのベースマットが敷かれ、ペデスタル構造のコンクリート側壁によって圧力容器が支持される。この格納容器下部区画は、圧力容器下面の機器類と維持管理の作業用の空間であり、コンクリート側壁によって仕切られる。
非特許文献2に記載のように、過去のシビアアクシデントで得られた知見を基に原子炉の安全機能を強化するアクシデントマネジメント(AM)対策が提案されている。AM対策として、高温で且つ崩壊熱による温度上昇が生じる炉心溶融物を冷却し、格納容器の破損を防止するため、復水貯蔵タンクの水を格納容器の下部区画に注水する方式や、格納容器ドライウェルへのスプレイ水の格納容器下部区画への流入を利用する方式がある。
また、格納容器下部区画で高温の炉心溶融物を受け止め冷却して、格納容器の破損を防止する技術として、特許文献1には、格納容器下部区画において圧力容器から落下する炉心溶融物を受け止める構造面、その端部に炉心溶融物を受け止めるライザー部から構成される炉心溶融物保持装置の技術が開示されている。本技術では、格納容器床上に炉心溶融物保持装置を設け、耐熱材のライザー部を通してその構造面の下面に冷却水を供給するとともに、炉心溶融物の除熱で発生した蒸気をライザー部から格納容器下部区画の水中に放出する。
特開2012−247216号公報
長谷川修、"原子炉工学大要"、養賢堂、162頁−167頁、1981年 原子力安全基盤機構、"アクシデントマネジメント策の有効性評価に係わる検討に関する報告書"、JNES/SAE05−061、05解部報−0061、3−1頁−3−21頁、2004年
前記AM対策の一つである格納容器下部区画への注水方式では、炉心溶融物が十分に拡がった場合を想定すると、炉心溶融物上面での冷却水への熱伝達と、炉心溶融物下面、側面の格納容器床面と側壁面への熱伝達が主要な除熱源である。このうち、格納容器床面と側壁面への熱伝達は、床面と側壁面を構成するコンクリートの侵食を生じ、床面への浸食は格納容器バウンダリの損傷を、側壁面では圧力容器を支えるペデスタル構造の側壁の崩壊に繋がる可能性がある。また、炉心溶融物が十分に拡がらずに堆積した場合には、炉心溶融物の側面から冷却水への除熱が期待できる一方で、上面の伝熱面積が減少するとともに、床面に対する熱負荷が増加して床面への侵食量が増加する可能性がある。
これに対して、特許文献1は炉心溶融物を受け止める保持面と、その下方に多面体構造で、内部に冷却水を流通可能な炉心溶融物保持構造体を設けるとともに、その外縁に炉心溶融物を側方から保持するライザー部を設け、ライザーの外側から前記炉心溶融物保持構造体に冷却水を流通する方法を用いている。
特許文献1では、既設炉では予め圧力容器下部構造や格納容器下部区画に設ける機器、構造物を考慮して設計されているが、炉心溶融物保持構造体の設置スペースを考慮して設計されていないため、耐熱材や炉心溶融物保持構造体、及びライザーを設けることが困難になる可能性がある。また、新設の原子炉においても格納容器寸法が増大するとともに、その強度を確保するため、安全性の向上には多大な寄与が期待される反面、建設コストが増大する課題もある。
本発明は、炉心溶融や圧力容器の破損が生じるシビアアクシデント時に格納容器下部区画への事前注水で炉心溶融物を冷却するアクシデントマネジメント対策において、下部区画のコンクリート側壁に寸法上の変化の少ない簡素な構造物を設けることによって、炉心溶融物の冷却性を向上するとともに下部区画コンクリート側壁への侵食を防止して、格納容器構造の耐力、健全性を確保可能で事故事象を収束させるのに好適な原子炉格納容器を提供することを目的とする。
以上のことから本発明に係る原子炉格納容器では、原子炉格納容器床上に設置された原子炉格納容器側壁の上方で圧力容器を支持構造物により支持、固定することで、圧力容器下部に原子炉格納容器床上と原子炉格納容器側壁に囲まれた格納容器下部区画を形成し、原子炉の異常発生時に格納容器下部区画に注水を行うようにされた原子炉格納容器であって、原子炉格納容器側壁で形成された格納容器下部区画の内部周囲に間隙を介して伝熱板を配置して伝熱板による空間を形成し、当該伝熱板による空間内に原子炉の異常発生時に生じた炉心溶融物を収納することを特徴とする。
本発明によれば、格納容器下部区画への注水による炉心溶融物冷却対策において、炉心溶融物による下部区画側壁コンクリートへの伝熱を伝熱板による冷却水への熱伝達に変えることが出来るので、下部区画側壁コンクリートの侵食が防止される効果がある。
実施例1に係る原子炉格納容器の縦断面図。 実施例1に係る原子炉格納容器の横断面図。 実施例1の変形例に係る原子炉格納容器の縦断面図。 実施例1の変形例に係る原子炉格納容器の縦断面図。 実施例2に係る原子炉格納容器の縦断面図。 実施例2の変形例に係る原子炉格納容器の縦断面図。 実施例2の変形例に係る原子炉格納容器の縦断面図。 実施例3に係る原子炉格納容器の縦断面図。 実施例3の変形例に係る原子炉格納容器の縦断面図。
以下本発明の実施例について図面を用いて詳細に説明する。
但し本発明の実施の態様は下記実施例、図面の格納容器に限定されるものではなく、沸騰水型原子炉、加圧水型原子炉等の軽水炉を始めとする原子炉の各種格納容器に適用可能であり、本発明の趣旨を逸脱しない範囲において各種の変形が可能である。
本発明は、原子炉のシビアアクシデントに対応し格納容器下部区画に圧力容器の破損前に事前注水して、落下する炉心溶融物を冷却するアクシデントマネジメント対策において、炉心溶融物の冷却性を向上するとともに下部区画コンクリート側壁への侵食を防止して、格納容器構造の耐力、健全性の確保に有効な原子炉格納容器の構造を提供するものである。この実現のための主な実施例は以下の実施例1から実施例3により示されている。
本発明の実施例1について、図1〜図4を参照して詳細に説明する。図1は本発明の実施例1に係る原子炉格納容器の縦断面図であり、図2はその横断面図である。
原子炉は、原子炉格納容器の内部に原子炉圧力容器を内包し、さらに原子炉圧力容器の内部に原子炉炉心を収納する容器構造になっている。図1は、このうち原子炉圧力容器を支持する原子炉格納容器部分(原子炉下部部分)の構成を示している。
具体的な図1の原子炉下部部分においては、核燃料で構成される炉心(図示せず)を収納する原子炉圧力容器1(以下単に圧力容器という)は、原子炉格納容器床2(以下単に格納容器床という)上に形成された原子炉格納容器側壁3(以下単に格納容器側壁という)の上方に圧力容器支持構造物21で固定される。格納容器側壁3は圧力容器1の基礎(ペデスタル)として機能している。
ここでは格納容器側壁3の上方で圧力容器1を支持することで、圧力容器1と格納容器床2と格納容器側壁3に囲まれた空間として、格納容器下部区画10を形成している。圧力容器1の下方で格納容器側壁3に囲まれる格納容器下部区画10は、図示しないが炉心の出力を制御する制御棒駆動機構や計装管の取り付けられた圧力容器下部構造物12がその上方空間を占めている。これらの構造物は圧力容器1の下方に固定設置されたものであり、ここまでの構造は従来通りである。
本発明の実施例1では、格納容器下部区画10をさらに以下のように利用する。まず格納容器下部区画10には、シビアアクシデント時のアクシデントマネジメント対策として、圧力容器破損前に格納容器下部区画10に冷却水W1を事前注水するための格納容器下部区画注水配管5が取り付けられ、注水口16から格納容器下部区画10内に注水される。冷却水W1の水源は、図示しないが復水貯蔵タンクの水や消火用のろ過水タンク、あるいは海水等の外部水源を利用可能である。
また、格納容器下部区画10への注水の手段として、図示しないがアクシデントマネジメント対策として格納容器の気相空間にスプレイした水が下方に流下し、その一部が圧力容器1と格納容器側壁3の内側の間隙を通って格納容器下部区画10に流入する現象を利用することも出来る。図中のL1は、冷却水W1の注水により形成される格納容器下部区画10の注水水面を表している。
本発明の実施例1では上記注水手段に加えて、この格納容器下部区画10の格納容器側壁3の内面に伝熱板支持構造物22を用いて伝熱板6を取り付ける。取り付けに際し、格納容器側壁3と伝熱板6の間に間隙7を形成するように取り付ける。また隣接する伝熱板6の間に高さ方向のスリット13が形成される。伝熱板6は、高熱伝導性材を用いて製作する。伝熱板6の上端高さは、予め炉心全量が溶融落下した場合に相当する炉心溶融物4が格納容器下部区画10の床に堆積する高さを計算しておき、その炉心溶融物上端より上方に設定する。図1では、伝熱板6の下端が格納容器床2に接触するように配置している。なお図1において8は圧力容器破損口であり、9は落下する炉心溶融物である。
図2は格納容器の横断面図であり、格納容器下部区画10を含む断面構造が示されている。この外周は格納容器側壁3であり、その一部に作業員が出入りするための格納容器下部区画扉11が形成されている。格納容器側壁3の内側には、伝熱板支持構造物22により支持された複数の伝熱板6が間隙7を介してほぼ円周状に配置されている。
本実施例では、図2に示すように伝熱板6はパネル平板状であり、格納容器側壁3の内面に沿って複数枚を、スリット13を与えて配置している。格納容器側壁3に、格納容器下部区画10の出入りのための切り欠き、及び格納容器下部区画扉が設置されている場合は、例えば伝熱板6の一部を分割して蝶番23で留め、開閉機能を付与することによって、伝熱板6を格納容器側壁3の全周に配置可能である。
伝熱板6によって形成された円筒状の空間内には、溶融落下した炉心溶融物4が収納される。この場合に、圧力容器下部構造物12の位置は図2に点線で示した通りであり、最初に圧力容器下部構造物12がこの点線内の位置に落下し、その後伝熱板6によって形成された円筒状の空間内周囲に拡散する。さらに溶融が進展すると炉心溶融物4が落下してくるが、その場合であっても、伝熱板6によって形成された円筒状の空間の径は圧力容器1の径に比して十分に大きいので、炉心溶融物4は伝熱板6によって形成された円筒状の空間内に収納されることになる。
図1、図2のように構成された実施例1の原子炉格納容器によれば、炉心への給水機能が失われ炉心が溶融するようなシビアアクシデント時に以下のように機能する。
まずシビアアクシデントの初期では、圧力容器1の下部に落下した炉心溶融物によって圧力容器が破損する前に、アクシデントマネジメント対策として格納容器下部区画注水配管5から格納容器下部区画10に、冷却水W1が注水される。冷却水W1は、格納容器床2から徐々に水位を形成し、伝熱板6より上方の水位L1に達するまで注水される。なお水位L1は最低水位であり、水位L1への到達を水位計を用いて測定し冷却水W1の注水を停止しても良く、注水を続けても良い。
シビアアクシデントが進展して、炉心溶融物による熱負荷によって圧力容器1が破損すると、図1に概念を示すように破損口8から炉心溶融物9が圧力容器下部構造物12をともなって落下し、最悪の場合、炉心全量相当の炉心溶融物が格納容器床2に落下する可能性がある。
炉心溶融物4の過熱度が高い場合、炉心溶融物4は伝熱板6に到達するまで格納容器床2に拡がる。炉心溶融物4が伝熱板6に接触すると、伝熱板6壁面の熱伝達によって炉心溶融物4から除熱する。ここでは伝熱板6が高熱伝導性材で作られているため比較的低い熱抵抗で伝熱板6内を熱が伝わって、間隙7を満たす冷却水W2に壁面熱伝達で放熱する。
炉心溶融物4が高温の間は、伝熱板6から間隙7を満たす冷却水W2への熱伝達は沸騰熱伝達であり、発生した蒸気Sが間隙7を上昇して、水位L1から格納容器下部区画10の上部空間に抜ける。一方、蒸気Sが抜けた後の間隙7には伝熱板6の上方やスリット13から冷却水W2が流入し、伝熱板6を介した炉心溶融物4から間隙7の冷却水W2への除熱が継続する。
以上の説明では、十分な冷却水量が注入されてから本格的な炉心溶融による落下が生じた例を述べた。これに対し実施例1では、冷却水W1の注水完了前に圧力容器1が破損して炉心溶融物4が格納容器床2に落下した場合においても有効に機能する。係る状態では、伝熱板6と格納容器側壁3の間隙にスリット13を通して冷却水W1が浸入するため伝熱板6による炉心溶融物4の冷却と格納容器側壁3コンクリートの侵食防止機能は保持される。スリット13の幅は、冷却水W1の浸入が容易で、且つ炉心溶融物4がスリット13を通過する間に冷却水W2による冷却、凝固が可能な厚さに設定することで炉心溶融物4の間隙7への浸入は防止される。このようにスリット13は、伝熱板6で形成した内部空間と間隙7の間を連通して冷却水が行き来する連通部として機能している。
なお冷却水W1の注水開始は、炉心溶融物4の拡がり状態をリアルタイムで把握する計測手段を有し、炉心溶融物4の熱負荷に対して伝熱板6の熱的強度が保たれる範囲の時間内に注水を開始できる場合は、炉心溶融物4の格納容器床2への落下後に炉心溶融物4が十分に拡がった後に、格納容器下部区画注水配管5から格納容器下部区画10への冷却水W1の注水を開始しても良い。
図3は、本発明の実施例1の変形例に係る原子炉格納容器の縦断面図である。図1との相違点は、図1では伝熱板6の下端が格納容器床2に達しており、周状の伝熱板6により閉鎖空間を形成していたのに対し、図2では伝熱板6の下端が格納容器床2に達しておらず、周状の伝熱板6により下部が開放された空間を形成している点で相違する。
つまり図3では図1の配置において、伝熱板6の上端高さを炉心全量に相当する炉心溶融物4の上端より上方に設定するとともに、伝熱板6の下端高さを格納容器床2より上方に設定する。図1に示した伝熱板6のように上部のみを開口部とせず、伝熱板6下部も開口することによって、通常運転時の間隙7の外気流通を促進し維持管理性を向上するとともに、事故時の冷却水W1の間隙7への浸入経路を多様化することができる。この伝熱板6下部の開口もまた、伝熱板6で形成した内部空間と間隙7の間を連通して冷却水が行き来する連通部として機能している。
この場合、伝熱板6下部の開口高さは、冷却水W1の浸入が容易で、且つ炉心溶融物4が伝熱板6下部の開口部を通過する間に冷却水W2による冷却、凝固が可能な厚さに設定することで炉心溶融物4の間隙7への浸入は防止される。
図4は、本発明の実施例1の変形例に係る原子炉格納容器の縦断面図である。図3に示す伝熱板6下部開口の配置において、さらに伝熱板6にスリット13に換えて流通孔14を設け、伝熱板6を分割せずに円筒状の形状とする。この流通孔14も、伝熱板6で形成した内部空間と間隙7の間を連通して冷却水が行き来する連通部として機能している。
これによって、伝熱板6の強度が向上し、炉心溶融物4による加重の受容限度を増加できる効果がある。また、伝熱板6の周方向の熱伝導伝熱が可能となり、炉心溶融物4の接触に偏りがある場合においても、伝熱板6の熱負荷の平準化が可能となる。
なお、図1、図3の場合に伝熱板6はパネル平板状であり、格納容器側壁3の内面に沿って複数枚を、スリット13を与えて配置しているが、図4の場合には伝熱板6は円筒状に形成されスリット13を備えていない点でも相違している。
以上説明したように、本実施例1とその変形例によれば、格納容器側壁への炉心溶融物の直接接触を防止可能であるだけでなく、炉心溶融物上面のみならず側面も高い熱伝達率で除熱できるので、炉心溶融物の冷却性能が向上する。また、炉心溶融物の冷却性能の向上にともなって、炉心溶融物から格納容器床への熱負荷も減少するため、格納容器床のコンクリート侵食も緩和される。
本発明の実施例2について、図5、図6、図7を参照して詳細に説明する。図5は本発明の実施例2に係る原子炉格納容器の縦断面図である。図5の構成では基本的に実施例1の格納容器下部区画構造において、図1の下端部閉止構造を適用している。さらに格納容器側壁3と伝熱板6の間の間隙7に、伝熱板6に平行に対流板15を設けている。対流板15は低熱伝導性材を用いて製作され、間隙7に沿って複数枚がスリットを与えて配置されている。
係る構成により、炉心が溶融し、圧力容器1が破損するようなシビアアクシデント時には以下のように機能する。まずアクシデントマネジメント対策として格納容器下部区画10に、冷却水W1が伝熱板6より上方の水位L1に達するまで注水される。
この状態で圧力容器1が破損し、落下した炉心溶融物4は伝熱板6に到達するまで格納容器床2に拡がる。炉心溶融物4が接触すると伝熱板6壁面の熱伝達によって炉心溶融物4は除熱され、伝熱板6と対流板15の間隙7aの冷却水W2に沸騰熱伝達で熱が伝わる。発生した蒸気Sが間隙7aを上昇して伝熱板6の上方に抜ける。これによって、間隙7内において気液対向流制限(CCFL:Counter Current Flow Limitation)現象による液相の流入制限を防止できるため、冷却水W1の間隙7への流入が円滑になり、伝熱板6による炉心溶融物4の冷却が促進される。
また、格納容器側壁3と対流板15の間の間隙7bの冷却水W2は、伝熱板6から直接加熱されず、格納容器側壁3の表面から冷却されており、ほぼ単相流状態を保つ。これによって、対流板15を挟んで蒸気の存在する間隙7aと間隙7b間に密度差が生じるため、自然循環が発生し、伝熱板6側は上昇流、格納容器側壁3側は下降流となる。
対流板15を設けない場合は、上昇流路と下降流路が同一空間を占めるため自然循環が比較的弱いが、対流板15によって自然循環力が増加するため、伝熱板6側の加熱と格納容器側壁3側の冷却はともに熱伝達率が増加し、炉心溶融物4の冷却性能が向上する。本実施例では、対流板15を低熱伝導材で製作することによって、間隙7aと間隙7bの冷却水W2の間の伝熱量が減少するため、対流板15を挟んだ自然循環力が確保される。
図6は、本発明の実施例2の変形例に係る原子炉格納容器の縦断面図である。この構造は図5の配置において、対流板15の上端高さを伝熱板6の上端より上方に設定したものである。これによって、間隙7上端部における気液対向流制限現象を防止できるため、冷却水W1の間隙7への流入がより円滑になり、伝熱板6による炉心溶融物4の冷却が促進される。
図7も本発明の実施例2の変形例に係る原子炉格納容器の縦断面図である。この構造は図6の配置において、さらに対流板15の上端に格納容器下部区画中心に指向する邪魔板17を設けたものである。これによって、間隙7を上昇する蒸気が格納容器下部区画中心向きに流れるため、間隙7上端部における気液対向流制限現象の防止効果が上がるため、冷却水W1の間隙7への流入がさらに円滑になり、伝熱板6による炉心溶融物4の冷却が促進される。
以上説明したように、実施例2によれば、実施例1に加えて炉心溶融物側面をさらに高い熱伝達率で除熱できるので、炉心溶融物の冷却性能が向上する。また、炉心溶融物の冷却性能の向上にともなって、炉心溶融物から格納容器床への熱負荷も減少するため、格納容器床のコンクリート侵食もさらに緩和される。
本発明の実施例3について、図8と図9を参照して詳細に説明する。図8は、本発明の実施例3に係る原子炉格納容器の縦断面図である。図8の構造は、実施例1、2の格納容器下部区画構造において、さらに伝熱板6の間隙7側の表面にフィン18を取り付けたものである。
図8において、フィン18は高熱伝導性材を用いて製作する。伝熱促進体としてフィン18を取り付けることにより伝熱面積が増加し、伝熱板6による炉心溶融物4からの除熱量を増加できる。また、フィン18を鉛直方向に取り付けることによって、伝熱板6の鉛直方向の曲げ強度が増加するため、炉心溶融物4による加重の受容限度を増加できる効果がある。
また図9は、本発明の実施例3の変形例に係る原子炉格納容器の縦断面図である。この構造は実施例1、2の格納容器下部区画構造において、伝熱板6の間隙7側の表面に伝熱促進体としての突起部19を取り付ける。突起部19が間隙7の冷却水W2の流動を乱すことによって、伝熱板6の熱伝達率が増加するため、炉心溶融物4からの除熱量を増加できる。
以上説明したように、実施例3によれば、第1と第2の実施形態に加えて炉心溶融物側面をさらに高い熱伝達率で除熱できるので、炉心溶融物の冷却性能が向上する。また、炉心溶融物の冷却性能の向上にともなって、炉心溶融物から格納容器床への熱負荷も減少するため、格納容器床のコンクリート侵食もさらに緩和される。
以上述べた本発明によれば、炉心溶融と圧力容器破損が発生するシビアアクシデント時に格納容器下部区画への事前注水で炉心溶融物を冷却するアクシデントマネジメント対策において、炉心全量落下時の炉心溶融物高さより上方に上部開口部を有し、床面近傍に下部開口部有す少なくとも1枚以上の伝熱板を側壁に間隙を形成する。
また、前記伝熱板に伝熱板内外面を貫通する流通孔、あるいはスリットを設けるか、あるいは伝熱板を格納容器下部区画の周方向に複数に分割する。
または、前記伝熱板と格納容器下部区画側壁の間に対流板を設け、蒸気の上昇流路と水の下降流路を分ける。
または、前記伝熱板に突起部、あるいはフィン構造の伝熱促進体を設ける。
または、前記対流板の上端を前記伝熱板の上端より上方に位置し、または前記対流板で仕切られる蒸気の上昇流路端部に格納容器ペデスタル中心に指向する邪魔板を設ける。
上記構成の本発明によれば、格納容器下部区画への注水による炉心溶融物冷却対策において、炉心溶融物による下部区画側壁コンクリートへの伝熱を伝熱板による冷却水への熱伝達に変えることが出来るので、下部区画側壁コンクリートの侵食が防止される効果がある。
また、下部区画側壁コンクリートへの伝熱が、より除熱量の大きい冷却水への伝熱に置き換わるため、炉心溶融物の冷却性能が向上し、格納容器床面へのコンクリート侵食を緩和できる効果がある。
また、伝熱促進体や前記対流板の設置によって、炉心溶融物の冷却性能がさらに向上するため、格納容器床面へのコンクリート侵食をさらに緩和できる効果がある。
以上の効果によって、原子炉の安全性と事故収束性を向上させた原子炉格納容器を提供できる。
1:圧力容器
2:格納容器床
3:格納容器側壁
4:炉心溶融物
5:格納容器下部区画注水配管
6:伝熱板
7:間隙
8:破損口
9:炉心溶融物
10:格納容器下部区画
11:格納容器下部区画扉
12:圧力容器下部構造物
13:間隙
14:流通孔
15:対流板
16:注水口
17:邪魔板
18:フィン
19:突起部
21:圧力容器支持構造物
22:伝熱板支持構造物
23:蝶番
L1:注水水面
W1:冷却水
W2:冷却水

Claims (13)

  1. 原子炉格納容器床上に設置された原子炉格納容器側壁の上方で圧力容器を支持構造物により支持、固定することで、前記圧力容器下部に前記原子炉格納容器床上と前記原子炉格納容器側壁に囲まれた格納容器下部区画を形成し、原子炉の異常発生時に前記格納容器下部区画に注水を行うようにされた原子炉格納容器であって、
    前記原子炉格納容器側壁で形成された前記格納容器下部区画の内部周囲に間隙を介して伝熱板を配置して伝熱板による空間を形成し、当該伝熱板による空間内に原子炉の異常発生時に生じた炉心溶融物を収納することを特徴とする原子炉格納容器。
  2. 請求項1記載の原子炉格納容器であって、
    前記伝熱板で形成した内部空間と間隙の間を連通して冷却水が行き来する連通部を備えることを特徴とする原子炉格納容器。
  3. 請求項2記載の原子炉格納容器であって、
    前記伝熱板はパネル平板状であり、前記格納容器側壁の内面に沿って複数枚を配置して内部空間を形成するとともに、前記導通部は前記パネル平板状の伝熱板の間に設けられたスリットであることを特徴とする原子炉格納容器。
  4. 請求項2記載の原子炉格納容器であって、
    前記導通部は前記伝熱板の下端部と前記原子炉格納容器床との間に形成された間隙であることを特徴とする原子炉格納容器。
  5. 請求項2記載の原子炉格納容器であって、
    前記伝熱板は前記格納容器側壁の内面に沿って円筒状に形成されるとともに、前記導通部は前記伝熱板に形成された連通孔であることを特徴とする原子炉格納容器。
  6. 請求項1から請求項5のいずれか1項に記載の原子炉格納容器であって、
    前記伝熱板により形成された空間は、炉心全量落下時の炉心溶融物高さよりも上方に前記伝熱板の上端が位置づけられていることを特徴とする原子炉格納容器。
  7. 請求項1から請求項6のいずれか1項に記載の原子炉格納容器であって、
    前記伝熱板が高熱伝導材で構成されていることを特徴とする原子炉格納容器。
  8. 請求項1から請求項7のいずれか1項に記載の原子炉格納容器であって、
    前記伝熱板と前記格納容器側壁の間の前記間隙に高さ方向に対流板を設け、蒸気の上昇流路と水の下降流路を分けるとともに自然対流を促進することを特徴とする原子炉格納容器。
  9. 請求項8に記載の原子炉格納容器であって、
    前記対流板が低熱伝導材であることを特徴とする原子炉格納容器。
  10. 請求項8または請求項9に記載の原子炉格納容器であって、
    前記対流板の上端が前記伝熱板の上端より上方に位置することを特徴とする原子炉格納容器。
  11. 請求項10に記載の原子炉格納容器であって、
    前記対流板で仕切られる蒸気の上昇流路端部に前記格納容器下部区画中心に指向する邪魔板を設けたことを特徴とする原子炉格納容器。
  12. 請求項1から請求項11のいずれか1項に記載の原子炉格納容器であって、
    前記伝熱板に突起部からなる伝熱促進体を設けたことを特徴とする原子炉格納容器。
  13. 請求項1から請求項12のいずれか1項に記載の原子炉格納容器であって、
    前記伝熱板にフィン構造の伝熱促進体を設けたことを特徴とする原子炉格納容器。
JP2013161933A 2013-08-05 2013-08-05 原子炉格納容器 Pending JP2015031614A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013161933A JP2015031614A (ja) 2013-08-05 2013-08-05 原子炉格納容器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013161933A JP2015031614A (ja) 2013-08-05 2013-08-05 原子炉格納容器

Publications (1)

Publication Number Publication Date
JP2015031614A true JP2015031614A (ja) 2015-02-16

Family

ID=52517041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013161933A Pending JP2015031614A (ja) 2013-08-05 2013-08-05 原子炉格納容器

Country Status (1)

Country Link
JP (1) JP2015031614A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016197034A (ja) * 2015-04-02 2016-11-24 株式会社東芝 炉心溶融物保持装置および原子炉施設
CN108538411A (zh) * 2018-03-08 2018-09-14 中国核电工程有限公司 一种堆坑直接滞留的反应堆堆芯熔融物捕集装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63259496A (ja) * 1987-04-17 1988-10-26 株式会社日立製作所 溶融炉心物質保持装置
JPH0387693A (ja) * 1989-04-13 1991-04-12 Ente Naz Energia Elettrica 原子力発電所の原子炉収容建物の保護装置
JPH05249273A (ja) * 1991-11-05 1993-09-28 Enel Spa 原子炉格納容器の基部を保護する方法及び装置
JPH09211166A (ja) * 1996-02-02 1997-08-15 Toshiba Corp 原子炉のコアキャッチャー
JP2005195595A (ja) * 2003-12-31 2005-07-21 General Electric Co <Ge> 炉心キャッチャ冷却
JP2009257929A (ja) * 2008-04-16 2009-11-05 Toshiba Corp 炉心溶融物保持装置および原子炉格納容器
JP2012042336A (ja) * 2010-08-19 2012-03-01 Toshiba Corp 炉心溶融物保持装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63259496A (ja) * 1987-04-17 1988-10-26 株式会社日立製作所 溶融炉心物質保持装置
JPH0387693A (ja) * 1989-04-13 1991-04-12 Ente Naz Energia Elettrica 原子力発電所の原子炉収容建物の保護装置
JPH05249273A (ja) * 1991-11-05 1993-09-28 Enel Spa 原子炉格納容器の基部を保護する方法及び装置
JPH09211166A (ja) * 1996-02-02 1997-08-15 Toshiba Corp 原子炉のコアキャッチャー
JP2005195595A (ja) * 2003-12-31 2005-07-21 General Electric Co <Ge> 炉心キャッチャ冷却
JP2009257929A (ja) * 2008-04-16 2009-11-05 Toshiba Corp 炉心溶融物保持装置および原子炉格納容器
JP2012042336A (ja) * 2010-08-19 2012-03-01 Toshiba Corp 炉心溶融物保持装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016197034A (ja) * 2015-04-02 2016-11-24 株式会社東芝 炉心溶融物保持装置および原子炉施設
CN108538411A (zh) * 2018-03-08 2018-09-14 中国核电工程有限公司 一种堆坑直接滞留的反应堆堆芯熔融物捕集装置
CN108538411B (zh) * 2018-03-08 2021-06-25 中国核电工程有限公司 一种堆坑直接滞留的反应堆堆芯熔融物捕集装置

Similar Documents

Publication Publication Date Title
BR112017013046B1 (pt) Sistema de confinamento e resfriamento de material fundido de núcleo de reator nuclear moderado por água e resfriado a água
RU2576516C1 (ru) Система локализации и охлаждения расплава активной зоны ядерного реактора водоводяного типа
RU2575878C1 (ru) Система локализации и охлаждения расплава активной зоны ядерного реактора водоводяного типа
WO2007099698A1 (ja) コアキャッチャーおよびその製造方法、並びに、原子炉格納容器およびその改造方法
JP5306257B2 (ja) 炉心溶融物冷却装置および原子炉格納容器
JP4620449B2 (ja) 炉心キャッチャ冷却のアセンブリおよび該アセンブリを有する原子炉
JP2014081212A (ja) 炉心溶融物保持装置および原子炉格納容器
JP3263402B2 (ja) 原子炉容器用間隙構造物
WO2013159439A1 (zh) 一种核电站事故后ⅳ型堆外熔融物滞留装置
JP2015031614A (ja) 原子炉格納容器
Singh et al. Experimental investigation on melt coolability under bottom flooding with and without decay heat simulation
JP2012021877A (ja) 炉心溶融物保持装置および格納容器
JP6590492B2 (ja) 原子炉格納容器、及び原子炉格納容器の施工方法
JP2015125006A (ja) コアキャッチャ
WO2022126445A1 (zh) 预防堆芯熔融物熔穿rpv的安全系统及安全控制方法
KR101404954B1 (ko) 액체금속층을 이용한 노심용융물 냉각방법 및 이를 이용한 원자로 냉각시스템
RU2165108C2 (ru) Система защиты защитной оболочки реакторной установки водо-водяного типа
RU100326U1 (ru) Устройство стенки корпуса теплообменника
Tao et al. A study on natural circulation flow under reactor cavity flooding condition in advanced PWR
KR0169864B1 (ko) 원자로심 용융사고시 원자로용기 하반부 천공방어용 간극 구조물
JP2015049112A (ja) コアキャッチャ
JP2016197034A (ja) 炉心溶融物保持装置および原子炉施設

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161019

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170321