WO2013159439A1 - 一种核电站事故后ⅳ型堆外熔融物滞留装置 - Google Patents

一种核电站事故后ⅳ型堆外熔融物滞留装置 Download PDF

Info

Publication number
WO2013159439A1
WO2013159439A1 PCT/CN2012/077185 CN2012077185W WO2013159439A1 WO 2013159439 A1 WO2013159439 A1 WO 2013159439A1 CN 2012077185 W CN2012077185 W CN 2012077185W WO 2013159439 A1 WO2013159439 A1 WO 2013159439A1
Authority
WO
WIPO (PCT)
Prior art keywords
wall
molten material
core
retention device
refractory material
Prior art date
Application number
PCT/CN2012/077185
Other languages
English (en)
French (fr)
Inventor
郑明光
叶成
顾国兴
严锦泉
叶元伟
史国宝
陈松
曹克美
Original Assignee
上海核工程研究设计院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海核工程研究设计院 filed Critical 上海核工程研究设计院
Priority to GB1323163.4A priority Critical patent/GB2506781B8/en
Priority to US14/130,402 priority patent/US9384863B2/en
Publication of WO2013159439A1 publication Critical patent/WO2013159439A1/zh
Priority to ZA2014/00026A priority patent/ZA201400026B/en

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C9/00Emergency protection arrangements structurally associated with the reactor, e.g. safety valves provided with pressure equalisation devices
    • G21C9/016Core catchers
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C13/00Pressure vessels; Containment vessels; Containment in general
    • G21C13/02Details
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Definitions

  • the invention relates to a type IV extra-throw molten material retention device after a nuclear power plant accident, in particular to a type IV external molten material retention device after a nuclear power plant accident using a core completely passive cooling device + to improve the safety of the nuclear power plant.
  • the melt retention technology is an important mitigation measure for nuclear power for serious accidents, which can effectively solve the radioactive release and maintain the integrity of the safety boundary.
  • the third generation of nuclear power has adopted serious accident mitigation measures after the damage of the pressure vessel.
  • AP-I000 uses passive measures to prevent and mitigate serious accidents ; it mainly includes the installation of a molten core retention facility (IVR).
  • IVR molten core retention facility
  • the heap submerged system injects water into the reactor and also injects pressure. a space between the outer wall of the vessel and the insulating layer of the pit to cool the core melt falling from the core to the lower head of the pressure vessel, ensuring that the lower head is not melted through, and the core melt is maintained in the reactor pressure vessel Inside, avoid the exothermic reaction between the core melt and the concrete shell of the containment, so as to prevent direct damage to the shell of the containment and steam explosion. It is worth noting that once the core melt penetrates the pressure vessel, the IVR will be powerless. Therefore, it is urgent to provide a new type IV extra-throw melt retention device after a nuclear power plant accident.
  • the technical problem to be solved by the present invention is to provide a type IV extra-throw melt retention device after an accident of a nuclear power plant that improves the high integrity of a nuclear power plant.
  • the present invention provides a type IV extra-throw melt retentate after a nuclear power plant accident.
  • the utility model comprises an inner wall closed at the periphery, a steam passage wall fixed at the bottom of the inner wall, a pressure vessel placed inside the wall of the steam passage, a steam rising channel formed between the pressure vessel and the steam passage wall, and a surrounding a closed outer wall on the floor outside the inner wall, a core melt retention device fixed at the bottom of the inner wall, and an inner wall and a core melt retention device located between the inner wall and the outer wall a deflector that maintains a certain gap; a coolant descending passage is formed between the outer wall and the deflector, a coolant inlet is provided at the bottom of the deflector, and a coolant passage is provided between the inner wall and the core melt retaining device;
  • the upper surface of the core melt retention device is provided with a core molten material retention groove at a position directly below the pressure vessel, and the lower surface of the core molten material
  • the inorganic non-metallic refractory material is an acidic refractory material, a neutral refractory material, an alkaline refractory material, or a high temperature composite material.
  • the acidic refractory material is silica.
  • the neutral refractory material is alumina, chromia or graphite.
  • the basic refractory material is magnesium oxide, calcium oxide, cerium oxide, cerium oxide or zirconium oxide.
  • the high temperature composite material is a cermet or fiber reinforced ceramic.
  • the core retentate retention groove has a diameter of 4 m to 8 m and a depth of 1.8 m to 4 m, and the core of the core retentate groove has a thickness of 0.5 m to 2 m from the bottom of the core retentate retention device.
  • the arch height of the lower surface of the core melt retention device is 0.1m ⁇ 2m.
  • the gap between the deflector and the inner wall and the core melt retention device is 0.1m ⁇ 2m.
  • the area of the coolant inlet of the deflector is 0.1 m 2 ⁇ lm 2 .
  • the invention adopts the design of the molten material retention outside the pile, and the molten material is contained by a material different from the pressure vessel, and then the structure of the coolant loop and the baffle is used to cool the melt, thereby ensuring timely derivation of the decay heat of the melt and preventing The interaction between the melt and the concrete and the direct heating of the containment maintain the integrity of the safety barrier and prevent the leakage of radioactivity, which greatly improves the high integrity of the nuclear power plant.
  • FIG. 1 is a schematic view showing the structure of a type IV extra-throw melt retention device after a nuclear power plant accident provided by the present invention.
  • 1 is the pressure vessel
  • 2 is the coolant descending channel
  • 3 is the outer wall
  • 4 is the deflector
  • 5 is the core melt retention device
  • 6 is the coolant inlet
  • 7 is the core melt
  • 8 is The steam rise channel
  • 9 is the inner wall
  • 10 is the steam passage wall.
  • the invention includes a pressure vessel 1, an exterior wall 3, an interior wall 9, a core melt retention device 5, and a baffle 4.
  • the inner wall 9 is closed to open and close, and the inner side of the inner wall 9 is filled with concrete to be fixed with a bottom open steam passage wall 10.
  • the pressure vessel 1 is placed in the steam passage wall 10 by pipe support.
  • a vapor rise passage 8 is formed between the pressure vessel 1 and the steam passage wall 10.
  • the core melt retention device 5 is fixed to the bottom of the inner wall 9 by concrete pouring.
  • a coolant passage is provided between the inner wall 9 and the core melt retention device 5.
  • the core melt retention device 5 is composed of an inorganic non-metallic refractory material which is subjected to an upper limit temperature of not less than 1,580 degrees Celsius, has good heat shock resistance and chemical resistance, a low thermal conductivity and a low expansion coefficient.
  • the fine channels can direct coolant vapor to the vapor rise channel 8.
  • the inorganic non-metallic refractory material may be an acidic refractory material, a neutral refractory material, an alkaline refractory material, or a high temperature composite material.
  • the acidic refractory material is preferably silica.
  • the neutral refractory material is preferably alumina, chromia or graphite.
  • the basic refractory material is preferably magnesium oxide, calcium oxide, cerium oxide, cerium oxide or zirconium oxide.
  • the high temperature composite material is preferably a cermet or a fiber reinforced ceramic.
  • the upper surface of the core melt retention device 5 is provided with a core molten material retention groove at a position directly below the pressure vessel, and the core molten material retention groove has a diameter of 4 m to 8 m to provide a sufficient core capture area, depth. The requirement is greater than 1.8m ⁇ 4m to withstand the core melt.
  • the core molten material retention device 5 has an arched lower surface with an arch height of 0.1 m to 2 m.
  • the bottom of the core melt retention groove is 0.5 m ⁇ 2 m from the bottom of the core melt retention device 5 .
  • the deflector 4 is fixedly connected to the outer wall of the inner wall by a plurality of (10 to 100) metal couplings or metal bolts evenly arranged, and the connection is stable.
  • the baffle 4 increases the natural circulation, because the baffle 4 only serves as a spacer, and a conventional heat insulating material, such as a metal heat insulating plate, has no special requirement for its thickness, as long as it can meet the required strength. can.
  • the coolant inlet of the deflector adopts a circular structure. The area is not too strict, and 0.1m 2 ⁇ lm 2 can meet the requirements of convective heat transfer.
  • the gap between the deflector 4 and the inner wall and the core melt retention device is 0.1 m 2 m.
  • the outer wall 3 is closed all around and is fixed to the floor by concrete.
  • the inner wall 9 and the core melt retention device 5 are integrally disposed within the outer wall 3, and the fixing between the inner wall 9 and the outer wall 3 is achieved by a plurality of fixed points.
  • a coolant descending passage 2 is formed between the inner wall 9 and the outer wall 3.
  • the pressure vessel 1 ruptures, the core melts the core melt 7, and when the core melt 7 flows out, the external melt retentate 6 occupies the core melt 7, but the core melts
  • the material will continue to generate decay heat. If the heat is not released in time, the heat generated and accumulated by the core melt 7 will penetrate through the bottom plate, and the coolant will descend from the coolant descending passage 2, and the coolant from the deflector 4 will be cooled.
  • the inlet 6 enters, then enters from the coolant passage, cools the upper portion of the core melt 7, and after the coolant evaporates, a portion passes through the extra-layer melt retention device 5 and rises along the steam.
  • the passage 8 enters the containment, and the other portion enters the containment through the gap between the deflector 4 and the inner wall 9. After the water vapor is cooled in the containment, it becomes coolant water, and then enters the coolant descending passage 2, Thereby forming a loop.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Abstract

一种核电站事故后Ⅳ型堆外熔融物滞留装置,包括内墙(9)、固定于内墙(9)内侧的底部开口的蒸汽通道壁(10)、置于蒸汽通道壁(10)之内的压力容器(1),还包括围于内墙(9)之外的外墙(3)、固定于内墙(9)底部的堆芯熔融物滞留装置(5)、以及与内墙(9)、堆芯熔融物滞留装置(5)保持一定间隙的导流板(4);外墙(3)与导流板(4)之间形成冷却剂下降通道(2),导流板(4)底部设有冷却剂入口(6),内墙(9)与堆芯熔融物滞留装置(5)之间设有冷却剂通道;堆芯熔融物滞留装置(5)上设有堆芯熔融物滞留凹槽,堆芯熔融物滞留装置(5)下面为拱形;堆芯熔融物滞留装置(5)由无机非金属耐火材料构成。本发明采用堆外的熔融物滞留设计,用不同的材料包容熔融物,应用冷却剂环路和导流板的结构对熔融物进行冷却,提高了核电站的安全性。

Description

一种核电站事故后 IV型堆外熔融物滞留装置
技术领域
本发明涉及一种核电站事故后 IV型堆外熔融物滞留装置, 特别是涉及一 种采用堆芯完全非能动冷却设+, 提高核电站安全性的核电站事故后 IV型堆 外熔融物滞留装置。 背景技术
熔融物滞留技术是核电针对严重事故的一项重要缓解措施, 可以有效的 解决放射性释放, 维持安全边界的完整。 目前第三代核电都采用了压力容器 破损后的严重事故缓解措施。
AP-I000采用非能动的预防和缓解严重事故的措施 ;主要包括设置熔融堆 芯滞留设施 (IVR), 在发生堆芯融化事故时, 堆腔淹没系统将水注入堆内的 同时, 也注入压力容器外壁与堆坑绝热层之间的空间, 以冷却从堆芯落到压 力容器下封头上的堆芯熔融物, 保证下封头不被熔穿, 使堆芯熔融物保持在 反应堆压力容器内, 避免堆芯熔融物与安全壳混凝土底板发生放热反应, 这 样来防止安全壳底板直接受热破损和蒸汽爆炸的发生。 值得注意的是, 一旦 堆芯熔融物熔穿压力容器, 则 IVR将无能为力。 因此亟需提供一种新型的核 电站事故后 IV型堆外熔融物滞留装置。
发明内容
本发明要解决的技术问题是提供一种提高核电站高全性的核电站事故后 IV型堆外熔融物滞留装置。
为解决上述技术问题, 本发明一种核电站事故后 IV型堆外熔融物滞留装 置, 包括四周闭合的内墙、 固定于内墙内侧的底部开口的蒸汽通道壁、 置于 蒸汽通道壁之内的压力容器,压力容器与蒸汽通道壁之间形成蒸汽上升通道, 还包括围于内墙之外的位于底板之上的四周闭合的外墙、 固定于内墙底部的 堆芯熔融物滞留装置、 以及位于内墙、 外墙之间的, 与内墙、 堆芯熔融物滞 留装置保持一定间隙的导流板; 外墙与导流板之间形成冷却剂下降通道, 导 流板底部设有冷却剂入口, 内墙与堆芯熔融物滞留装置之间设有冷却剂通道; 堆芯熔融物滞留装置上表面位于压力容器正下方的位置上设有堆芯熔融物滞 留凹槽, 堆芯熔融物滞留装置下表面为拱形; 堆芯熔融物滞留装置由无机非 金属耐火材料构成。
无机非金属耐火材料为酸性耐火材料、 中性耐火材料、 碱性耐火材料、 或高温复合材料。
酸性耐火材料为氧化硅。
中性耐火材料为氧化铝、 氧化铬或石墨。
碱性耐火材料为氧化镁、 氧化钙、 氧化镧、 氧化铍或氧化锆。
高温复合材料为金属陶瓷或纤维增强陶瓷。
堆芯熔融物滞留凹槽的直径为 4m〜8m, 深度为 1.8m〜4m, 堆芯熔融物 滞留凹槽底部距离堆芯熔融物滞留装置底部的厚度为 0.5 m ~2m。
堆芯熔融物滞留装置下表面的拱高为 0.1m~2m。
导流板与内墙、 堆芯熔融物滞留装置之间的间隙为 0.1m~2m。
导流板的冷却剂入口的面积为 0.1m2~lm2。 当发生严重事故, 堆芯熔化后, 由于堆内熔融物滞留机理复杂, 难以完 全认识, 因此存在压力容器破损的可能性。 当压力容器破损后, 熔融物流出, 将会与原腔室底部的混凝土发生反应, 产生大量不凝气体, 有可能使安全壳 超压, 同时由于熔融物内部不断产生衰变热, 如果得不到充分冷却, 熔融物 会不断向下熔穿最终对安全壳直接加热, 熔穿最后一道安全屏障, 导致放射 性大量外泄。 本发明采用堆外的熔融物滞留设计, 用与压力容器不同的材料 包容熔融物, 再应用冷却剂环路和导流板的结构对熔融物进行冷却, 保证及 时导出熔融物的衰变热,阻止熔融物与混凝土相互作用以及安全壳直接加热, 维持安全屏障完整, 防止放射性大量外泄, 极大地提高了核电站的高全性。
附图说明
图 1为本发明所提供的一种核电站事故后 IV型堆外熔融物滞留装置的结 构示意图。
图中: 1 为压力容器, 2为冷却剂下降通道, 3为外墙, 4为导流板, 5 为堆芯熔融物滞留装置, 6为冷却剂入口, 7为堆芯熔融物, 8为蒸汽上升通 道, 9为内墙, 10为蒸汽通道壁。 具体实施方式
下面结合附图和实施例对本发明作进一步详细的说明。
本发明包括压力容器 1、 外墙 3、 内墙 9、 堆芯熔融物滞留装置 5, 以及 导流板 4。
内墙 9四周闭合上下敞开, 内墙 9内侧通过混凝土浇筑固定有的底部开 口的蒸汽通道壁 10。 压力容器 1通过管道支撑置于蒸汽通道壁 10中。 压力 容器 1与蒸汽通道壁 10之间形成蒸汽上升通道 8。
堆芯熔融物滞留装置 5由混凝土浇筑固定于内墙 9底部。 内墙 9与堆芯 熔融物滞留装置 5之间设有冷却剂通道。 堆芯熔融物滞留装置 5由承受上限 温度不低于 1580摄氏度的无机非金属耐火材料构成,有较好的抗热冲击和化 学侵蚀的能力、 导热系数低和膨胀系数低。 无机非金属耐火材料内部有多条 微细通道可以将冷却剂蒸汽导出到蒸汽上升通道 8。 无机非金属耐火材料可 以为酸性耐火材料、 中性耐火材料、 碱性耐火材料、 或高温复合材料。 其中 酸性耐火材料优选为氧化硅。 中性耐火材料优选为氧化铝、 氧化铬或石墨。 碱性耐火材料优选为氧化镁、 氧化钙、 氧化镧、 氧化铍或氧化锆。 高温复合 材料优选为金属陶瓷或纤维增强陶瓷。
堆芯熔融物滞留装置 5上表面位于压力容器正下方的位置上设有堆芯熔 融物滞留凹槽, 堆芯熔融物滞留凹槽的直径为 4m〜8m以提供足够的堆芯捕 捉面积, 深度要求要大于 1.8m〜4m, 以承受堆芯熔融物。 堆芯熔融物滞留装 置 5下表面为拱形, 拱高 0.1m~2m。 堆芯熔融物滞留凹槽底部距离堆芯熔融 物滞留装置 5底部的厚度为 0.5 m ~2m。
导流板 4通过均匀布置的若干个 (10〜100个) 金属联接件或金属螺栓 等连接固定在内墙外壁上, 连接稳固即可。 导流板 4增加自然循环, 因为导 流板 4只起到间隔做用, 用常规绝热材料即可, 如金属保温板等, 对它的厚 度没有特别的要求, 只要能满足应有的强度即可。 导流板的冷却剂入口采用 圆形结构, 对于面积没有太严格的要求, 0.1m2~lm2就可以满足对流传热的要 求。 导流板 4与内墙、 堆芯熔融物滞留装置之间的间隙为 0.1m~2m。
外墙 3整体四周闭合, 通过混凝土固定于底板之上。 内墙 9与堆芯熔融 物滞留装置 5整体置于外墙 3之内, 通过若干固定点实现内墙 9与外墙 3之 间的固定。 内墙 9与外墙 3之间形成冷却剂下降通道 2。
对于核电站, 在严重事故情况下, 压力容器 1破裂, 堆芯熔化堆芯熔融 物 7, 当堆芯熔融物 7流出, 堆外熔融物滞留装置 6, 滞留堆芯熔融物 7, 但 是堆芯熔融物会持续不断地产生衰变热, 如果不及时将热量导出, 堆芯熔融 物 7产生和积聚的热量会熔穿底板, 冷却剂从冷却剂下降通道 2下降, 从导 流板 4上的冷却剂入口 6进入, 再从冷却剂通道进入, 冷却堆芯熔融物 7的 上部, 冷却剂蒸发后, 一部分透过堆外熔融物滞留装置 5, 沿着蒸汽上升通 道 8进入安全壳, 另一部分通过导流板 4与内墙 9之间的间隙进入安全壳; 水蒸气在安全壳内被冷却后, 变成冷却剂水, 再由冷却剂下降通道 2进入, 从而形成循环。

Claims

权 利 要 求 书
1. 一种核电站事故后 IV型堆外熔融物滞留装置, 包括四周闭合的内墙、 固定于内墙内侧的底部开口的蒸汽通道壁、置于蒸汽通道壁之内的压力容器, 所述压力容器与蒸汽通道壁之间形成蒸汽上升通道, 其特征在于: 还包括围 于内墙之外的位于底板之上的四周闭合的外墙、 固定于内墙底部的堆芯熔融 物滞留装置、 以及位于所述内墙、 外墙之间的, 与所述内墙、 堆芯熔融物滞 留装置保持一定间隙的导流板;所述外墙与导流板之间形成冷却剂下降通道, 所述导流板底部设有冷却剂入口, 所述内墙与堆芯熔融物滞留装置之间设有 冷却剂通道; 所述堆芯熔融物滞留装置上表面位于压力容器正下方的位置上 设有堆芯熔融物滞留凹槽, 所述堆芯熔融物滞留装置下表面为拱形; 所述堆 芯熔融物滞留装置由无机非金属耐火材料构成。
2. 根据权利要求 1所述的一种核电站事故后 IV型堆外熔融物滞留装置, 其特征在于: 所述无机非金属耐火材料为酸性耐火材料、 中性耐火材料、 碱 性耐火材料、 或高温复合材料。
3. 根据权利要求 2所述的一种核电站事故后 IV型堆外熔融物滞留装置, 其特征在于: 所述酸性耐火材料为氧化硅。
4. 根据权利要求 2所述的一种核电站事故后 IV型堆外熔融物滞留装置, 其特征在于: 所述中性耐火材料为氧化铝、 氧化铬或石墨。
5. 根据权利要求 2所述的一种核电站事故后 IV型堆外熔融物滞留装置, 其特征在于: 所述碱性耐火材料为氧化镁、 氧化钙、 氧化镧、 氧化铍或氧化 锆。
6. 根据权利要求 2所述的一种核电站事故后 IV型堆外熔融物滞留装置, 其特征在于: 所述高温复合材料为金属陶瓷或纤维增强陶瓷。
7. 根据权利要求 1所述的一种核电站事故后 IV型堆外熔融物滞留装置, 其特征在于:所述堆芯熔融物滞留凹槽的直径为 4m〜8m,深度为 1.8m〜4m, 所述堆芯熔融物滞留凹槽底部距离所述堆芯熔融物滞留装置底部的厚度为 0.5 m ~2m。
8. 根据权利要求 1所述的一种核电站事故后 IV型堆外熔融物滞留装置, 其特征在于: 所述堆芯熔融物滞留装置下表面的拱高为 0.1m~2m。
9. 根据权利要求 1所述的一种核电站事故后 IV型堆外熔融物滞留装置, 其特征在于: 所述导流板与内墙、 堆芯熔融物滞留装置之间的间隙为 0.1m~2m。
10.根据权利要求 1所述的一种核电站事故后 IV型堆外熔融物滞留装置, 其特征在于: 所述导流板的冷却剂入口的面积为 0.1m2~lm2
PCT/CN2012/077185 2012-04-27 2012-06-20 一种核电站事故后ⅳ型堆外熔融物滞留装置 WO2013159439A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
GB1323163.4A GB2506781B8 (en) 2012-04-27 2012-06-20 Apparatus for retention of molten material outside generation IV reactor after nuclear power plant accident
US14/130,402 US9384863B2 (en) 2012-04-27 2012-06-20 Apparatus for retention of molten material outside generation IV reactor after nuclear power plant accident
ZA2014/00026A ZA201400026B (en) 2012-04-27 2014-01-06 Retention apparatus for post-nuclear power plant incident molten material outside of generation iv reactor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210127012.1 2012-04-27
CN201210127012.1A CN103377720B (zh) 2012-04-27 2012-04-27 一种核电站事故后堆外熔融物滞留装置

Publications (1)

Publication Number Publication Date
WO2013159439A1 true WO2013159439A1 (zh) 2013-10-31

Family

ID=49462717

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/077185 WO2013159439A1 (zh) 2012-04-27 2012-06-20 一种核电站事故后ⅳ型堆外熔融物滞留装置

Country Status (5)

Country Link
US (1) US9384863B2 (zh)
CN (1) CN103377720B (zh)
GB (1) GB2506781B8 (zh)
WO (1) WO2013159439A1 (zh)
ZA (1) ZA201400026B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY196713A (en) * 2014-12-16 2023-05-02 Joint Stock Company Atomenergoproekt Water-cooled water-moderated nuclear reactor core melt cooling and confinement system
CN105551541B (zh) * 2015-12-16 2020-06-23 中国核电工程有限公司 一种堆芯熔融物分组捕集和冷却系统
US11309096B1 (en) 2018-07-25 2022-04-19 National Technology & Engineering Solutions Of Sandia, Llc Injectable sacrificial material systems and methods to contain molten corium in nuclear accidents
CN109346196B (zh) * 2018-11-13 2022-04-15 中国核动力研究设计院 一种能动和非能动冷却相结合的熔融物堆内滞留系统
RU2742583C1 (ru) * 2020-03-18 2021-02-08 Акционерное Общество "Атомэнергопроект" Система локализации и охлаждения расплава активной зоны ядерного реактора
CN114005555B (zh) * 2021-10-22 2024-02-20 中国原子能科学研究院 反应堆及其堆芯熔融物收集装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1029176C (zh) * 1990-12-21 1995-06-28 西门子公司 核反应堆装置及其急冷方法
JP2010271261A (ja) * 2009-05-25 2010-12-02 Toshiba Corp 炉心溶融物保持装置および格納容器
KR20110115725A (ko) * 2010-04-16 2011-10-24 국립대학법인 울산과학기술대학교 산학협력단 그라핀/그라핀-산화물 분산 냉각재의 이용방법 및 이를 이용한 원자로 노심용융물 냉각 시스템
CN102306507A (zh) * 2011-09-15 2012-01-04 华北电力大学 一种预防反应堆压力容器熔穿的应急保护系统

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4306864C2 (de) * 1993-03-05 1995-01-26 Siempelkamp Gmbh & Co Anordnung für die Sicherung eines Kernreaktors im Falle einer Kernschmelze
US6353651B1 (en) * 1999-11-17 2002-03-05 General Electric Company Core catcher cooling by heat pipe

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1029176C (zh) * 1990-12-21 1995-06-28 西门子公司 核反应堆装置及其急冷方法
JP2010271261A (ja) * 2009-05-25 2010-12-02 Toshiba Corp 炉心溶融物保持装置および格納容器
KR20110115725A (ko) * 2010-04-16 2011-10-24 국립대학법인 울산과학기술대학교 산학협력단 그라핀/그라핀-산화물 분산 냉각재의 이용방법 및 이를 이용한 원자로 노심용융물 냉각 시스템
CN102306507A (zh) * 2011-09-15 2012-01-04 华北电力大学 一种预防反应堆压力容器熔穿的应急保护系统

Also Published As

Publication number Publication date
CN103377720B (zh) 2016-01-27
GB2506781B8 (en) 2018-06-20
GB201323163D0 (en) 2014-02-12
CN103377720A (zh) 2013-10-30
GB2506781A (en) 2014-04-09
GB2506781B (en) 2017-10-04
US9384863B2 (en) 2016-07-05
ZA201400026B (en) 2016-10-26
US20140241483A1 (en) 2014-08-28

Similar Documents

Publication Publication Date Title
WO2013159439A1 (zh) 一种核电站事故后ⅳ型堆外熔融物滞留装置
CN107251153B (zh) 核反应堆堆芯熔融物的冷却和封闭系统
EP3236472B1 (en) System for confining and cooling melt from the core of a water cooled and moderated reactor
WO2007099698A1 (ja) コアキャッチャーおよびその製造方法、並びに、原子炉格納容器およびその改造方法
CN107251152B (zh) 核反应堆堆芯熔融物的冷却和封闭系统
RU100327U1 (ru) Устройство локализации расплава
CN108053895B (zh) 一种分装强化冷却的反应堆堆芯熔融物捕集装置
TW201117229A (en) Drain sump of nuclear reactor containment vessel
JP5377064B2 (ja) 炉心溶融物保持装置および原子力プラント
CN105551539A (zh) 一种反应堆熔融物堆外滞留系统
CN103377722B (zh) 一种核电站事故后堆外熔融物滞留装置
JP4828963B2 (ja) 炉心溶融物冷却装置、原子炉格納容器および炉心溶融物冷却装置の設置方法
JP2011169764A (ja) 炉心溶融物冷却装置および原子炉格納容器
WO2007136261A1 (en) A nuclear reactor
JP5582858B2 (ja) 炉心溶融物保持構造体
JP2011163829A (ja) 炉心溶融物冷却構造
JP2013104711A (ja) 液体金属冷却原子炉
JP2008241657A (ja) 原子炉格納容器
JP2012093282A (ja) 炉心溶融物の保持装置
CN103377723A (zh) 一种核电站事故后ⅲ型堆外熔融物滞留装置
JP2008139023A (ja) 原子炉溶融物保持装置および原子炉格納容器
JP2010271261A (ja) 炉心溶融物保持装置および格納容器
CN103377724A (zh) 一种核电站事故后ⅰ型堆外熔融物滞留装置
JP2012021877A (ja) 炉心溶融物保持装置および格納容器
CN109102906B (zh) 一种基于内置换料水箱的堆芯捕集器系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12875241

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 1323163

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20120620

WWE Wipo information: entry into national phase

Ref document number: 1323163.4

Country of ref document: GB

WWE Wipo information: entry into national phase

Ref document number: 14130402

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12875241

Country of ref document: EP

Kind code of ref document: A1