JP2009257169A - 多気筒エンジン - Google Patents

多気筒エンジン Download PDF

Info

Publication number
JP2009257169A
JP2009257169A JP2008106344A JP2008106344A JP2009257169A JP 2009257169 A JP2009257169 A JP 2009257169A JP 2008106344 A JP2008106344 A JP 2008106344A JP 2008106344 A JP2008106344 A JP 2008106344A JP 2009257169 A JP2009257169 A JP 2009257169A
Authority
JP
Japan
Prior art keywords
cylinder
engine
vibration
cylinder engine
cylinders
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008106344A
Other languages
English (en)
Inventor
Tomohiro Shinagawa
知広 品川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2008106344A priority Critical patent/JP2009257169A/ja
Publication of JP2009257169A publication Critical patent/JP2009257169A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

【課題】 休筒運転が行われる多気筒エンジンにおける振動・騒音をより効果的に抑制すること。
【解決手段】 稼動気筒数が少なくなったり、稼働気筒間の点火・爆発間隔が一定にならなくなったりした場合に、振動・騒音が大きくなるおそれがある。この点、アクティブマウントを用いた振動抑制が行われ得る。もっとも、振動発生状態(周波数帯域)によっては、この種の振動抑制手段によっても、振動・騒音が充分に抑制されないことがあり得る。そこで、本発明においては、エンジン回転数が上昇した場合に、複数の稼働気筒における発生トルクの変動周期が長くなるように、各稼働気筒における燃焼条件(点火時期や燃料噴射条件等)が調整される。これにより、当該多気筒エンジンの運転に伴う振動の周波数の変動範囲が、従来よりも狭くされる。したがって、振動抑制対策が簡略且つ確実に実施され得るようになる。
【選択図】 図2

Description

本発明は、休筒運転(一部の気筒における燃焼が休止されること)が可能な多気筒エンジンに関する。
この種のエンジンとして、例えば、特開平5−248216号公報、特開2004−300994号公報、特開2006−22667号公報、特開2007−15653号公報、特開2007−23793号公報、特開2007−162606号公報、特開2007−162607号公報、等に開示されたものが知られている。この種のエンジンは、好適には、休止気筒における吸気弁及び排気弁が停止(閉弁状態に維持)されるようになっている。
特開平5−248216号公報 特開2004−300994号公報 特開2006−22667号公報 特開2007−15653号公報 特開2007−23793号公報 特開2007−162606号公報 特開2007−162607号公報
この種のエンジンにおいては、振動・騒音対策が問題となる。例えば、稼動気筒数が少なくなったり、稼働気筒間の点火・爆発間隔が一定にならなくなったりした場合に、振動・騒音が大きくなるおそれがある。特に、上述のような不等間隔点火が伴う休筒運転時においては、休止気筒の直後の稼働気筒とそれ以外の稼働気筒との間で吸気量にばらつきが生じることでトルク変動が生じ(特開2007−162606号公報の課題欄参照)、かかるトルク変動によって振動・騒音がいっそう大きくなるおそれがある。
この点、特開2007−15653号公報や特開2007−23793号公報等に記載の構成においては、クランクシャフトの角加速度から振動発生状態を推定し、この推定された振動発生状態に応じて、前記エンジンを支持する能動型防振支持装置に備えられたアクチュエータの作動を制御している。しかしながら、振動発生状態(周波数帯域)によっては、この種の振動抑制手段によっても、振動・騒音が充分に抑制されないことがあり得る。
本発明は、このような課題に対処するためになされたものである。すなわち、本発明の目的は、休筒運転が行われる多気筒エンジンにおける振動・騒音をより効果的に抑制することにある。
<構成>
本発明の対象となる多気筒エンジンは、一部の気筒における燃焼が休止される休筒運転が可能に構成されている。かかる多気筒エンジンは、好適には、休止気筒における吸気弁及び排気弁が停止(閉弁状態に維持)されるように構成されている。また、この多気筒エンジンは、アクティブマウントを備え得る。このアクティブマウントは、当該多気筒エンジンの本体を弾性的に支持するとともに、運転中に発生する振動を打ち消すような振動を発生するように構成されている。
本発明の多気筒エンジンの特徴は、エンジン回転数が上昇した場合(例えば所定回転数を超えた場合)に、複数の稼働気筒における発生トルクの変動周期が長くなるように、各稼働気筒における燃焼条件(点火時期、燃料噴射条件、等)を調整する、燃焼条件調整部を備えたことにある。この燃焼条件調整部は、上述の制御を、複数の前記稼働気筒における点火間隔が不等間隔となる不等点火間隔運転中、前記休筒運転中、及び/又は前記不等点火間隔運転となる前記休筒運転である不等点火間隔休筒運転中に行うようになっている。
<作用・効果>
前記多気筒エンジンの運転に伴って、振動が発生する(この振動は、前記稼動気筒の数が少なくなったり、前記不等点火間隔運転状態となったりした際に、大きくなる傾向がある。)。この振動の周波数は、前記エンジン回転数が高くなると、高周波数側にシフトする。
この点、上述の構成を備えた本発明の多気筒エンジンにおいては、前記エンジン回転数が上昇した場合(例えば前記所定回転数を超えた場合)に、複数の前記稼働気筒における発生トルクの変動周期が長くなるように、各稼働気筒における前記燃焼条件が調整される。これにより、当該多気筒エンジンの運転に伴う振動の周波数の変動範囲が、従来よりも狭くされる。したがって、(例えば前記アクティブマウントを用いた)振動抑制対策が簡略且つ確実に実施され得るようになる。
このように、本発明によれば、運転時(特に前記稼動気筒の数が少なくなったり前記不等間隔点火が生じたりした際)の振動及びこれに起因する騒音が、効果的に抑制され得る。
以下、本発明の実施形態(本願の出願時点において取り敢えず出願人が最良と考えている実施形態)について図面を参照しつつ説明する。
なお、以下の実施形態に関する記載は、法令で要求されている明細書の記載要件(記述要件・実施可能要件)を満たすために、本発明の具体化の単なる一例を、可能な範囲で具体的に記述しているものにすぎない。よって、後述するように、本発明が、以下に説明する実施形態の具体的構成に何ら限定されるものではないことは、全く当然である。本実施形態に対して施され得る各種の変更(modification)は、当該実施形態の説明中に挿入されると、一貫した実施形態の説明の理解が妨げられるので、末尾にまとめて記載されている。
<実施形態のエンジンの概略構成>
図1は、本実施形態の4サイクルV型6気筒レシプロエンジン1(以下、「エンジン1」と略称する。)の概略構成図である。このエンジン1は、運転条件(運転者による操作状態)や運転状態(車速やエンジン回転数等の動作状態)に応じて稼働気筒数を変更可能に構成されている。
以下、図1を参照すると、このエンジン1は、エンジンブロック2(第一バンク2A及び第二バンク2Bを含む)と、バルブ休止設定部3と、バルブ駆動部4と、エンジンマウント5と、エンジン電子コントロールユニット6(以下、「ECU6」と略称する。)と、を備えている。
<<エンジンブロック>>
エンジン1の本体を構成するエンジンブロック2には、第一バンク2A及び第二バンク2Bが、側面視にてV型になるように設けられていて、各バンク2A、2Bには、シリンダ20が、それぞれ3つずつ設けられている。
車両の前方側に位置するフロントバンクとしての第一バンク2Aには、第一バンク気筒群20Aが設けられている。この第一バンク気筒群20Aには、シリンダ20A1(以下、「A1気筒」と略称する。)、シリンダ20A2(以下、「A2気筒」と略称する。)、及びシリンダ20A3(以下、「A3気筒」と略称する。)が含まれていて、これらA1ないしA3気筒は、互いに平行に配置されている。また、これらA1ないしA3気筒は、気筒配列方向(図中左右方向)に沿って一列に配置されている。
また、車両の後方側に位置するリヤバンクとしての第二バンク2Bには、第二バンク気筒群20Bが設けられている。この第二バンク気筒群20Bには、シリンダ20B1(以下、「B1気筒」と略称する。)、シリンダ20B2(以下、「B2気筒」と略称する。)、及びシリンダ20B3(以下、「B3気筒」と略称する。)が含まれていて、これらB1ないしB3気筒も、互いに平行、且つ上述の気筒配列方向に沿って一列に配置されている。
各シリンダ20に対応するように、吸気バルブ21、排気バルブ22、インジェクタ23、及び点火プラグ24が、それぞれ設けられている。吸気バルブ21は、図示しない吸気ポートを開閉するように設けられている。A1気筒ないしB3気筒の吸気ポートは、吸気マニホールド25と接続されている。
本実施形態のエンジン1は、A1気筒−B1気筒−A2気筒−B2気筒−A3気筒−B3気筒の順に燃料噴射及び点火が行われる全筒運転モードの他に、後述するバルブ休止設定部3の動作により、上述の点火順序のうちのB1及びA3の2気筒が休止される4気筒運転モードと、第二バンク気筒群20Bが休止される3気筒運転モードと、が実行され得るように構成されている。
<<バルブ休止設定部>>
本実施形態におけるバルブ休止設定部3は、ECU6によって決定された運転気筒数に基づいて、休止気筒における吸気バルブ21及び排気バルブ22の動作を停止させる(常時閉弁させる)ように、以下のように構成されている。
各シリンダ20における吸気バルブ21に対応するように、吸気メインロッカーアーム31、吸気サブロッカーアーム32、及び吸気側連結切換部33が、それぞれ設けられている。これらは、吸気ロッカーシャフト34に装着されている。
吸気メインロッカーアーム31は、吸気ロッカーシャフト34によって揺動可能に支持されていて、吸気バルブ21を押下することで上述の吸気ポートを開放させるとともに、当該押下を解除することで当該吸気ポートを閉鎖させるように構成されている。吸気サブロッカーアーム32は、吸気ロッカーシャフト34によって揺動可能に支持されていて、後述する吸気カムシャフト41に設けられた図示しないカムの回転に基づいて揺動するように構成されている。
吸気側連結切換部33は、油圧の供給状態に応じて、休止気筒として設定され得るA3気筒及びB1ないしB3気筒に対応する吸気メインロッカーアーム31と吸気サブロッカーアーム32との連結と連結解除とを切り換えるように構成されている(一方、常時稼働されるA1気筒及びA2気筒における吸気メインロッカーアーム31と吸気サブロッカーアーム32とは常時連結されている。)。
すなわち、休止気筒として設定され得るA3気筒及びB1ないしB3気筒に対応して、それぞれ、吸気側連結切換部33A3、33B1、33B2、及び33B3が設けられている。吸気ロッカーシャフト34の内部には、各吸気側連結切換部33に油圧を供給するためのオイル通路が形成されている。
同様に、各シリンダ20における排気バルブ22に対応するように、排気メインロッカーアーム35、排気サブロッカーアーム36、及び排気側連結切換部37が、それぞれ設けられている。これらは、排気ロッカーシャフト38に装着されている。また、休止気筒として設定され得るA3気筒及びB1ないしB3気筒に対応して、それぞれ、排気側連結切換部37A3、37B1、37B2、及び37B3が設けられている。
吸気ロッカーシャフト34及び排気ロッカーシャフト38の内部に設けられた上述のオイル通路は、油圧制御部39と接続されている。油圧制御部39は、吸気側連結切換部33A3及び33B1ないし33B3、並びに排気側連結切換部37A3及び37B1ないし37B3に対する油圧の供給状態を制御するように構成されている。
上述のような、バルブ休止設定部3における各部の、より具体的な構成については、周知であるので(例えば、特開平5−248216号公報、特開2007−162606号公報、特開2007−162606号公報、等参照。)、本明細書ではその説明は省略されている。
<<バルブ駆動部>>
バルブ駆動部4は、稼働気筒における吸気バルブ21及び排気バルブ22を駆動する(開閉動作させる)ように構成されている。また、バルブ駆動部4は、吸気バルブ21の開閉時期を進角させたり遅角させたりできるように構成されている。
具体的には、バルブ駆動部4は、上述の吸気カムシャフト41の他に、バルブタイミングコントローラ42と、吸気タイミングギヤ43と、油圧制御部44と、オイル通路45と、排気カムシャフト46と、排気タイミングギヤ47と、を備えている。
吸気カムシャフト41の一端部は、バルブタイミングコントローラ42と接続されている。バルブタイミングコントローラ42は、吸気カムシャフト41の中心軸線と一致する中心軸線を有する円筒形状のハウジングを備えている。このバルブタイミングコントローラ42は、油圧の供給状態に応じて、上述のハウジングに対して吸気カムシャフト41を相対的に回転させることで、バルブタイミングを所定範囲内で連続的に変化させ得るように構成されている。バルブタイミングコントローラ42における上述のハウジングには、吸気タイミングギヤ43が固定されている。
一対のバルブタイミングコントローラ42は、油圧制御部44と、オイル通路45を介して接続されている。油圧制御部44は、ECU6によって決定されたバルブタイミングに基づいて、バルブタイミングコントローラ42に対する油圧供給状態を制御することで、吸気バルブ21の開閉時期を進角させたり遅角させたりするようになっている。このような、バルブタイミングコントローラ42及び油圧制御部44の、より具体的な構成については、周知であるので、本明細書ではその説明は省略されている。
排気カムシャフト46の一端部には、排気タイミングギヤ47が固定されている。吸気タイミングギヤ43及び排気タイミングギヤ47は、図示しないクランクシャフトと、チェーン等の連結機構を介して連結されていて、当該クランクシャフトの回転と同期して回転駆動されるようになっている。
<<エンジンマウント>>
エンジンマウント5は、エンジンブロック2を支持するように設けられている。エンジンマウント5は、第一マウント51と、第二マウント52と、第三マウント53と、第四マウント54と、を備えている。
フロントマウントとしての第一マウント51と、リヤマウントとしての第二マウント52とは、気筒配列方向とほぼ直交するように、車両の前後方向に沿って配列されている。サイドマウントとしての第三マウント53と第四マウント54とは、気筒配列方向に沿って配列されている。
第一マウント51及び第二マウント52は、ゴム及び油圧による弾性支持・ダンパー部と電動アクチュエータとを備えた、いわゆるアクティブマウントであって、エンジンブロック2を弾性的に支持しつつ振動を受動的に吸収するとともに、エンジンブロック2にて運転中に発生する振動を能動的に打ち消すような振動(エンジンブロック2にて運転中に発生する振動と逆位相の振動)を発生するようになっている。
一方、第三マウント53及び第四マウント54は、いわゆる通常のエンジンマウントであって、エンジンブロック2を弾性的に支持するように構成されている。
<<<動作制御部>>>
本発明の燃焼条件調整部を構成するECU6は、インジェクタ23、点火プラグ24、油圧制御部39、油圧制御部44、第一マウント51、第二マウント52、等と電気的に接続されていて、これらの動作を制御するようになっている。
具体的には、ECU6は、エンジン1における各部を制御することで、(1)全筒運転モードにて、上述の順序で燃料噴射及び点火を行い、(2)上述の休筒運転モードにて、対応する休止気筒における燃料噴射及び点火を休止させるとともに、休止気筒に対応する吸気バルブ21及び排気バルブ22の動作を停止させるようになっている。
また、ECU6は、インジェクタ23、点火プラグ24、油圧制御部44等の動作を制御することで、運転条件・運転状態に応じて、点火時期、燃料噴射状態(噴射量・噴射時期)、吸気バルブ21の開閉タイミング、等を調整するようになっている。
さらに、ECU6は、図示しないクランクポジションセンサの出力に基づいて得られる、図示しないクランクシャフトの角加速度に基づいて、エンジンブロック2における振動発生状態を推定し、この推定結果に基づいて、第一マウント51及び第二マウント52の動作を制御するようになっている。
<実施形態の構成における動作の概要>
次に、本実施形態のエンジン1の動作の概要について説明する。
ECU6は、エンジン1の運転条件・運転状態に基づいて稼働気筒数を決定し、稼働気筒数に応じて油圧制御部39を制御することで休止気筒における吸気バルブ21及び排気バルブ22の動作を停止させるとともに稼働気筒におけるこれらの動作を許可する(動作停止を解除する)。
また、ECU6は、エンジン1の運転条件・運転状態、及びこれらに応じて設定された稼働気筒数に基づいて、インジェクタ23、点火プラグ24、バルブタイミングコントローラ42、等の各部の動作を制御する。さらに、ECU6は、エンジンブロック2における振動発生状態を推定し、この推定結果に基づいて第一マウント51及び第二マウント52の動作を制御する。
ここで、4気筒運転モードにおいては、稼働気筒の点火(爆発)間隔が等間隔とはならない。このような不等間隔爆発が生じる休筒運転モードにおいては、振動・騒音が発生しやすい。さらに、この運転モードにおいては、以下の理由により、稼働気筒間のトルク偏差(トルク変動)が生じる。
図2は、図1に示されている各気筒におけるトルク変動の様子を示すグラフである。この図2において、縦軸はトルク、横軸は時間を示すものとする。また、横軸における1〜6の数字は点火順序(1:A1気筒〜6:B3気筒)に対応するものとする。
休止気筒(2:B1,5:A3)の吸気行程における吸気動作がないため、その直後の点火時期の稼働気筒(3:A2,6:B3)の吸気行程においては、吸気管圧力(吸気マニホールド25内の圧力)が通常よりも高い。よって、当該稼働気筒にて、他の稼働気筒(1:A1,4:B2)よりも、吸気量が多くなり、図2における(i)にて棒グラフで示されているようにトルク発生量が大きくなる。このため、同図の(i)にて2点鎖線で示されているように、点火間隔3つ分を1周期として、正弦波状とは異なる複雑な波形のトルク変動、及びこのトルク変動に基づく振動が生じる。
このようなトルク変動に基づく振動の波形は、エンジン回転数が高くなると高周波化する。ここで、上述のようなアクティブマウントは、その機械的構成に応じて、逆位相の振動による振動打ち消しが可能な周波数帯域が或る程度の範囲に限られる。また、かかるアクティブマウントは、ゴムや油圧による弾性支持部を含んでいて、エンジンブロック2にて運転中に発生する振動の周波数が高くなりすぎると、アクティブマウントにおける逆位相の振動発生による、エンジン振動の打ち消しが、困難となる。
そこで、不等間隔爆発が生じる休筒運転モードである4気筒運転モードにおいては、エンジン回転数が所定回転数(例えば当該エンジン1の上限回転数の約半分)に達した場合に、稼働気筒における発生トルクの変動周期が長くなるように、各稼働気筒における燃焼条件が、ECU6によって制御される。
具体的には、図2における(ii)に示されているように、A2気筒(図2における“3”)の発生トルクを抑制するとともに、B2気筒(図2における“4”)の発生トルクを増大させるように、燃焼条件が制御される。すると、同図に示されているように、点火間隔6つ分を1周期としたトルク変動、及びこのトルク変動に基づく振動が生じる。これにより、エンジン振動の周波数帯域が限定されるとともに、振動の高周波化が抑制される。したがって、アクティブマウントによる能動的な振動抑制が行われやすくなる。
なお、全筒運転モード及び3気筒運転モードにおいては、稼働気筒の点火(爆発)間隔が等間隔である。このような等間隔爆発においては、発生する振動の波形が正弦波に近い形状であり、振動自体も比較的小さい。このため、エンジン1の稼働可能なすべての回転数領域において、各マウント51ないし54による受動的及び能動的な振動吸収によって、振動・騒音抑制が良好に行われ得る。
<実施形態の構成における動作の具体例>
続いて、本実施形態のエンジン1の動作の具体例について、フローチャートを用いて説明する。なお、以下のフローチャートの説明、及び、当該フローチャートを示す図面においては、「ステップ」は“S”と略称されている。
図3は、図1に示されているECU6によって実行される点火時期決定ルーチン300の具体例を示すフローチャートである。ECU6は、このルーチン300を、クランク角が所定値(例えばBTDC90°CA)となる毎に、繰り返し実行する。
本ルーチンが実行されると、まず、S310にて、4気筒運転モードであるか否かが判定される。4気筒運転モードである場合(S310=Yes)、処理がS320に進行し、エンジン回転数が所定回転数Ne0を超えているか否かが判定される。エンジン回転数が所定回転数Ne0を超えている場合(S320=Yes)、処理がS330及びS340に進行し、今回の点火気筒がA2気筒又はB2気筒であるかが判定される。その後、S310ないしS340における処理の結果に対応して、以下の通りに点火時期φが決定され(S350ないしS370)、本ルーチンが一旦終了する。
・4気筒運転モード以外の等間隔爆発時においては(S310=No)、処理がS310からS350に進み、通常のマップφnと、エンジン回転数Neや負荷率KL等のパラメータと、に基づいて、点火時期φが決定される。
・4気筒運転モードであっても、エンジン回転数が所定回転数Ne0を超えていない場合(S320=Yes→S320=No)、処理がS320からS350に進み、通常のマップφnに基づいて、点火時期φが決定される。
・4気筒運転モードにおける高回転時であっても、A1気筒やB3気筒の点火時においては(S310=Yes→S320=Yes→S330=No)、処理がS330からS340に進み、通常のマップφnに基づいて、点火時期φが決定される。
・4気筒運転モードにおける高回転時であって、A2気筒の点火時においては(S310=Yes→S320=Yes→S330=Yes→S340=Yes)、処理がS340からS360に進み、通常よりも(可能な限り)トルクを抑制するため、通常よりも遅角寄りに作成されたマップφrに基づいて、点火時期φが決定される。
・4気筒運転モードにおける高回転時であって、B2気筒の点火時においては(S310=Yes→S320=Yes→S330=Yes→S340=No)、処理がS340からS370に進み、通常よりも(可能な限り)トルクを増大させるため、通常よりも進角寄りに作成されたマップφaに基づいて、点火時期φが決定される。
図4は、図1に示されているECU6によって実行される燃料噴射量決定ルーチン400の具体例を示すフローチャートである。ECU6は、このルーチン400を、クランク角が所定値となる毎に、繰り返し実行する。
本ルーチンが実行されると、まず、S410にて、4気筒運転モードであるか否かが判定される。4気筒運転モードである場合(S410=Yes)、処理がS420に進行し、エンジン回転数が所定回転数Ne0を超えているか否かが判定される。エンジン回転数が所定回転数Ne0を超えている場合(S420=Yes)、処理がS430及びS440に進行し、今回の点火気筒がA2気筒又はB2気筒であるかが判定される。その後、S410ないしS440における処理の結果に対応して、S450ないしS470にて基本燃料噴射量Fbaseが決定された後、空燃比センサ等の出力に応じた燃料噴射量補正が行われることで指令燃料噴射量Fiが算出され(S480)、本ルーチンが一旦終了する。
・4気筒運転モード以外の等間隔爆発時においては(S410=No)、処理がS410からS450に進み、通常のマップfnと、エンジン回転数Ne及びエアフローメータ出力に基づく吸入空気流量Gaと、に基づいて、基本燃料噴射量Fbaseが決定される。
・4気筒運転モードであっても、エンジン回転数が所定回転数Ne0を超えていない場合(S420=Yes→S420=No)、処理がS420からS450に進み、通常のマップfnに基づいて、基本燃料噴射量Fbaseが決定される。
・4気筒運転モードにおける高回転時であっても、A1気筒やB3気筒の点火時においては(S410=Yes→S420=Yes→S430=No)、処理がS430からS440に進み、通常のマップfnに基づいて、基本燃料噴射量Fbaseが決定される。
・4気筒運転モードにおける高回転時であって、A2気筒の点火時においては(S410=Yes→S420=Yes→S430=Yes→S440=Yes)、処理がS440からS460に進み、通常よりも(可能な限り)トルクを抑制するため、通常よりも減量寄りに作成されたマップfdに基づいて、基本燃料噴射量Fbaseが決定される。
・4気筒運転モードにおける高回転時であって、B2気筒の点火時においては(S410=Yes→S420=Yes→S430=Yes→S440=No)、処理がS440からS470に進み、通常よりも(可能な限り)トルクを増大させるため、通常よりも増量寄りに作成されたマップfpに基づいて、基本燃料噴射量Fbaseが決定される。
<実施形態の構成による効果>
・本実施形態のエンジン1においては、不等間隔爆発が生じる休筒運転モードである4気筒運転モードにて、エンジン回転数が上昇した場合(所定回転数Ne0を超えた場合)に、複数の稼働気筒における発生トルクの変動周期が長くなるように、各稼働気筒における燃焼条件(点火時期、燃料噴射条件、等)が調整される。
これにより、エンジン1の運転に伴う振動の周波数の変動範囲が、従来よりも狭くされる。したがって、アクティブマウントを用いた振動抑制対策が、簡略且つ確実に実施され得るようになる。
・本実施形態のエンジン1においては、休止気筒に対応する吸気バルブ21及び排気バルブ22の動作が停止されることで、ポンピングロスが良好に軽減され得る。これにより、良好な燃費特性が得られる。
<変形例の例示列挙>
なお、上述の実施形態は、上述した通り、出願人が取り敢えず本願の出願時点において最良であると考えた本発明の代表的な実施形態を単に例示したものにすぎない。よって、本発明はもとより上述の実施形態に何ら限定されるものではない。したがって、本発明の本質的部分を変更しない範囲内において、上述の実施形態に対して種々の変形が施され得ることは、当然である。
以下、代表的な変形例について、幾つか例示する。もっとも、言うまでもなく、変形例とて、以下に列挙されたもの限定されるものではない。また、複数の実施形態や変形例の、全部又は一部が、技術的に矛盾しない範囲内において、適宜、互いに複合的に適用され得る。
本発明(特に、本発明の課題を解決するための手段を構成する各構成要素における、作用的・機能的に表現されているもの)は、上述の実施形態や、下記変形例の記載に基づいて限定解釈されてはならない。このような限定解釈は、(先願主義の下で出願を急ぐ)出願人の利益を不当に害する反面、模倣者を不当に利するものであって、許されない。
(1)本発明の適用対象である多気筒エンジンの機械的構成には、特に制限はない。
・本発明は、ガソリンエンジン、ディーゼルエンジン、メタノールエンジン、バイオエタノールエンジン、その他任意のタイプのエンジンに適用可能である。ディーゼルエンジンの場合、パイロット噴射の量や時期に対しても、本発明が適用され得る。
気筒数や気筒配列(直列、V型、水平対向)も、特に限定はない。すなわち、例えば、V5エンジン、V6エンジン、V8エンジン、V12エンジン、L4エンジン、L5エンジン、L6エンジン、さらにはV型エンジンを2つ組み合わせたW型エンジン等に対して、本発明は好適に適用され得る。
燃料噴射方式(直噴、ポート噴射、及び両者を備えたデュアルインジェクション)も、特に限定はない。また、インジェクタによる燃料噴射ではなくキャブレターによる燃料供給が行われるようなエンジン1に対しても、本発明は好適に適用され得る。
・上述の実施形態におけるV型6気筒のエンジン1は、全筒運転モード、4気筒運転モード、及び3気筒運転モードの他に、2気筒運転モードが可能な構成であってもよい。
この場合、例えば、図5に示されているように、A1気筒やA2気筒に対応する吸気メインロッカーアーム31と吸気サブロッカーアーム32との連結と連結解除とを切り換えるための吸気側連結切換部33A1及び/又は33A2、並びに、これらの気筒に対応する排気メインロッカーアーム35と排気サブロッカーアーム36との連結と連結解除とを切り換えるための排気側連結切換部37A1及び/又は37A2が設けられ得る。
この2気筒運転モードにおいては、4気筒運転モードにおける休止気筒が稼働気筒として設定される(すなわち2気筒運転モードと4気筒運転モードとで休止気筒及び稼働気筒が入れ替えられ)ことが好適である。これにより、燃焼に供される気筒の偏りが、可及的に抑制される。したがって、良好なヒートマネージメントが行われ得る。また、2気筒運転モードにおける等間隔爆発が実現されることで、当該運転モードにおける振動や騒音の発生が、良好に抑制され得る。
・排気カムシャフト46の側にも、バルブタイミングコントローラ42が設けられていてもよい。すなわち、排気バルブ22のバルブタイミングも連続的に可変になっていてもよい。
・第一マウント51及び第二マウント52に代えて、あるいはこれらとともに、第三マウント53及び第四マウント54がアクティブマウントであってもよい。あるいは、第一マウント51と第二マウント52とのうちのいずれか一方と、第三マウント53と第四マウント54とのうちのいずれか一方とが、アクティブマウントであってもよい。
また、エンジン1は、車両に対して縦置きでも横置きでもよい。この場合、第一マウント51及び第二マウント52がサイドマウントとなり、第三マウント53及び第四マウント54がフロントマウント及びリヤマウントとなる。
(2)本発明は、上述の具体例(実施例)のような制御態様に限定されない。
・調整され得る燃焼条件としては、点火時期や燃料噴射量の他に、燃料噴射時期、バルブタイミング、バルブリフト、等が挙げられる。これらの各要素の調整は、単独で、あるいは複合して行われ得る。
すなわち、例えば、第一の具体例(実施例1)と、第二の具体例(実施例2)とは、同時に適用されてもよいし、一方のみが適用されてもよい。具体的には、稼働気筒間の吸気量の差が大きい場合は、点火時期調整(実施例1)だけでは燃費が悪化するので、これと併せて燃料噴射調整(実施例2)が実行され得る。また、点火時期調整(実施例1)と燃料噴射調整(実施例2)との併用や両者の間の切り換えは、各気筒における筒内吸入空気量Mcの計算値に基づいて、ECU6によって適宜行われ得る。
・上述の第二の具体例(実施例2)において、基本燃料噴射量Fbaseではなく、これに対する補正値の調整によって、トルク均一化のための制御が行われてもよい。
・上述の具体例(実施例)においては、稼働気筒のうちの特定の気筒(A2及びB2)のみについて燃焼条件の調整が行われていた。かかる具体例によれば、振動・騒音の抑制が、簡略な処理で行われ得る。
もっとも、本発明はこれに限定されるものではない。例えば、すべての稼働気筒における燃焼条件が適宜制御されることで、図6に示されているような点火間隔9つ分を1周期とする波形等、任意の態様の振動(トルク変動)が実現され得る。このような処理においても、各気筒における燃焼条件の調整が周期的に行われるため、処理がそれほど複雑化しない。
・4気筒運転モード以外の運転モードにおいても、休筒運転時及び/又は不等点火間隔(不等間隔爆発)運転中にエンジン回転数が上昇した場合に、発生トルクの変動周期が長くなるような燃焼条件の調整が行われ得る。例えば、2気筒運転モード(等間隔爆発を伴うものと不等間隔爆発を伴うものとを含む)にも、本発明は適用され得る。
あるいは、特開2007−162607号公報に記載のように、全筒運転時に不等間隔爆発となり、休筒(4気筒)運転時に等間隔爆発となる場合がある。この場合も、エンジン回転数に応じて、全筒運転時における各気筒の燃焼条件が適宜調整されることで、発生振動の周波数帯域が限定されるとともに、アクティブマウントによる能動的な振動抑制が行われにくい高周波振動の発生が抑制される。これにより、アクティブマウントによる振動抑制が効果的に行われるようになる。
・エンジン1の装置構成(吸気マニホールド25の構造)によっては、上述の実施形態における具体例の説明とは異なり、休止気筒の直後の点火気筒ではなく、当該休止気筒と同バンクに属し当該気筒の休止の直後に吸気行程を迎える稼働気筒にて、吸気量が増加することがあり得る。すなわち、エンジン1の装置構成に応じて、トルク変動の態様が変化し得る。よって、エンジン1の装置構成及びトルク変動の態様に応じて、トルク制御が適宜行われればよい。
・点火気筒の順序は、上述の実施形態のものから適宜変更され得る。具体的には、A1気筒−B1気筒−A2気筒−B3気筒−A3気筒−B2気筒の順に点火順序が設定され得る。
(3)その他、特段に言及されていない変形例についても、本発明の本質的部分を変更しない範囲内において、本発明の範囲内に含まれることは当然である。
また、本発明の課題を解決するための手段を構成する各要素における、作用・機能的に表現されている要素は、上述の実施形態や変形例にて開示されている具体的構造の他、当該作用・機能を実現可能ないかなる構造をも含む。
本実施形態の4サイクルV型6気筒レシプロエンジンの概略構成図である。 図1に示されている各気筒におけるトルク変動の様子を示すグラフである。 図1に示されているECUによって実行される点火時期決定ルーチンの具体例を示すフローチャートである。 図1に示されているECUによって実行される燃料噴射量決定ルーチンの具体例を示すフローチャートである。 図1に示されているエンジン1の一変形例の構成を示す概略図である。 図1又は図5に示されている各気筒におけるトルク変動の様子を示すグラフである。
符号の説明
1 … エンジン
2 … エンジンブロック
20 … シリンダ 21 … 吸気バルブ
22 … 排気バルブ 23 … インジェクタ
24 … 点火プラグ 25 … 吸気マニホールド
3 … バルブ休止設定部
31 … 吸気メインロッカーアーム 32 … 吸気サブロッカーアーム
33 … 吸気側連結切換部 34 … 吸気ロッカーシャフト
35 … 排気メインロッカーアーム 36 … 排気サブロッカーアーム
37 … 排気側連結切換部 38 … 排気ロッカーシャフト
39 … 油圧制御部
4 … バルブ駆動部
41 … 吸気カムシャフト 46 … 排気カムシャフト
5 … エンジンマウント
51 … 第一マウント 52 … 第二マウント
53 … 第三マウント 54 … 第四マウント
6 … ECU

Claims (7)

  1. 一部の気筒における燃焼が休止される休筒運転が可能な、多気筒エンジンにおいて、
    複数の稼働気筒における点火間隔が不等間隔となる前記休筒運転である不等点火間隔休筒運転中にエンジン回転数が上昇した場合に、複数の前記稼働気筒における発生トルクの変動周期が長くなるように、各稼働気筒における燃焼条件を調整する、燃焼条件調整部を備えたことを特徴とする、多気筒エンジン。
  2. 一部の気筒における燃焼が休止される休筒運転が可能な、多気筒エンジンにおいて、
    複数の稼働気筒における点火間隔が不等間隔となる不等点火間隔運転中にエンジン回転数が上昇した場合に、複数の前記稼働気筒における発生トルクの変動周期が長くなるように、各稼働気筒における燃焼条件を調整する、燃焼条件調整部を備えたことを特徴とする、多気筒エンジン。
  3. 一部の気筒における燃焼が休止される休筒運転が可能な、多気筒エンジンにおいて、
    前記休筒運転中にエンジン回転数が上昇した場合に、複数の稼働気筒における発生トルクの変動周期が長くなるように、各稼働気筒における燃焼条件を調整する、燃焼条件調整部を備えたことを特徴とする、多気筒エンジン。
  4. 請求項1ないし請求項3のうちのいずれか1項に記載の、多気筒エンジンであって、
    前記燃焼条件調整部は、前記エンジン回転数が所定回転数を超えた場合に、前記変動周期が長くなるように、各稼働気筒における燃焼条件を調整することを特徴とする、多気筒エンジン。
  5. 請求項1ないし請求項4のうちのいずれか1項に記載の、多気筒エンジンであって、
    前記燃焼条件調整部は、前記燃焼条件としての点火時期を調整することを特徴とする、多気筒エンジン。
  6. 請求項1ないし請求項5のうちのいずれか1項に記載の、多気筒エンジンにおいて、
    前記燃焼条件調整部は、前記燃焼条件としての燃料噴射条件を調整することを特徴とする、多気筒エンジン。
  7. 請求項1ないし請求項6のうちのいずれか1項に記載の、多気筒エンジンにおいて、
    当該多気筒エンジンの本体を弾性的に支持するとともに、運転中に発生する振動を打ち消すような振動を発生する、アクティブマウントをさらに備えたことを特徴とする、多気筒エンジン。
JP2008106344A 2008-04-16 2008-04-16 多気筒エンジン Pending JP2009257169A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008106344A JP2009257169A (ja) 2008-04-16 2008-04-16 多気筒エンジン

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008106344A JP2009257169A (ja) 2008-04-16 2008-04-16 多気筒エンジン

Publications (1)

Publication Number Publication Date
JP2009257169A true JP2009257169A (ja) 2009-11-05

Family

ID=41384897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008106344A Pending JP2009257169A (ja) 2008-04-16 2008-04-16 多気筒エンジン

Country Status (1)

Country Link
JP (1) JP2009257169A (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150100221A1 (en) * 2013-10-09 2015-04-09 Tula Technology Inc. Noise/vibration reduction control
CN105818677A (zh) * 2015-01-27 2016-08-03 马自达汽车株式会社 四轮驱动车的控制装置
CN105818678A (zh) * 2015-01-27 2016-08-03 马自达汽车株式会社 四轮驱动车的控制装置
JP2017198089A (ja) * 2016-04-25 2017-11-02 三菱自動車工業株式会社 内燃機関の燃料噴射装置
US10400691B2 (en) 2013-10-09 2019-09-03 Tula Technology, Inc. Noise/vibration reduction control
US10493836B2 (en) 2018-02-12 2019-12-03 Tula Technology, Inc. Noise/vibration control using variable spring absorber
JP2023148892A (ja) * 2022-03-30 2023-10-13 本田技研工業株式会社 スロットル制御システム

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150100221A1 (en) * 2013-10-09 2015-04-09 Tula Technology Inc. Noise/vibration reduction control
US10400691B2 (en) 2013-10-09 2019-09-03 Tula Technology, Inc. Noise/vibration reduction control
US10634076B2 (en) 2013-10-09 2020-04-28 Tula Technology, Inc. Noise/vibration reduction control
CN105818677A (zh) * 2015-01-27 2016-08-03 马自达汽车株式会社 四轮驱动车的控制装置
CN105818678A (zh) * 2015-01-27 2016-08-03 马自达汽车株式会社 四轮驱动车的控制装置
US10023197B2 (en) 2015-01-27 2018-07-17 Mazda Motor Corporation Control device for four-wheel drive vehicle
CN105818677B (zh) * 2015-01-27 2018-08-28 马自达汽车株式会社 四轮驱动车的控制装置
CN105818678B (zh) * 2015-01-27 2018-11-09 马自达汽车株式会社 四轮驱动车的控制装置
JP2017198089A (ja) * 2016-04-25 2017-11-02 三菱自動車工業株式会社 内燃機関の燃料噴射装置
US10493836B2 (en) 2018-02-12 2019-12-03 Tula Technology, Inc. Noise/vibration control using variable spring absorber
JP2023148892A (ja) * 2022-03-30 2023-10-13 本田技研工業株式会社 スロットル制御システム
JP7431882B2 (ja) 2022-03-30 2024-02-15 本田技研工業株式会社 スロットル制御システム

Similar Documents

Publication Publication Date Title
JP5007825B2 (ja) 多気筒エンジン
JP4780351B2 (ja) 多気筒エンジン
RU2705493C9 (ru) Способ и система избирательной деактивации цилиндров
JP4502036B2 (ja) エンジン制御装置
US9874166B2 (en) Method for controlling vibrations during transitions in a variable displacement engine
US8015960B2 (en) Vibration-damping control apparatus and method for internal combustion engine
JP2009257169A (ja) 多気筒エンジン
RU2701426C2 (ru) Способ и система регулирования переходов между режимами двигателя с отключаемыми цилиндрами (варианты)
US9109507B2 (en) Engine assembly with variable valve displacement on one cylinder bank and method of controlling same
JP6123759B2 (ja) エンジンの制御装置
JPWO2010073411A1 (ja) 内燃機関の制御装置
JP2010174789A (ja) 多気筒内燃機関の運転制御装置
JP2007009779A (ja) 内燃機関の制御装置
JP2016050510A (ja) エンジンの制御装置
JP5962171B2 (ja) 車両の内燃機関の燃焼状態制御装置
JP2011236871A (ja) 内燃機関の制御装置
JP4985814B2 (ja) 多気筒エンジン
JP4221001B2 (ja) 内燃機関の制御装置
JP2016017505A (ja) 内燃機関の制御装置
JP6156224B2 (ja) エンジンの制御装置
JP2014224494A (ja) 内燃機関の制御装置および制御方法
JP5151866B2 (ja) エンジンの排気制御装置
JP2010084532A (ja) エンジンのバルブタイミング可変装置
JP2016151230A (ja) エンジンの制御装置
JP5589612B2 (ja) 火花点火式エンジンの制御装置