JP2009254101A - 充電制御装置およびそれを備えた車両 - Google Patents

充電制御装置およびそれを備えた車両 Download PDF

Info

Publication number
JP2009254101A
JP2009254101A JP2008098130A JP2008098130A JP2009254101A JP 2009254101 A JP2009254101 A JP 2009254101A JP 2008098130 A JP2008098130 A JP 2008098130A JP 2008098130 A JP2008098130 A JP 2008098130A JP 2009254101 A JP2009254101 A JP 2009254101A
Authority
JP
Japan
Prior art keywords
phase
deviation
current
winding
rotation angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008098130A
Other languages
English (en)
Inventor
Tetsuya Miura
徹也 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2008098130A priority Critical patent/JP2009254101A/ja
Publication of JP2009254101A publication Critical patent/JP2009254101A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

【課題】モータ巻線を利用して商用電源から蓄電装置を充電する際にトルク振動の発生を抑制可能な充電制御装置およびそれを備えた車両を提供する。
【解決手段】商用電源90から蓄電装置Bの充電時に三相コイル12の各相コイルに流される電流に互いに所定の偏差を付与したときに、ロータの回転角θと充電電流とに基づきトルク振動の大きさを推定するトルク振動モデルを用いて、レゾルバ94によって検出される回転角θに基づいてトルク振動を最小にする偏差が決定される。そして、ECU60は、その決定された偏差を各相コイルに流される電流に付与するようにインバータ20を制御する。
【選択図】図1

Description

この発明は、充電制御装置およびそれを備えた車両に関し、特に、車両に搭載された蓄電装置を商用電源から充電するための充電制御装置およびそれを備えた車両に関する。
特開平9−233709号公報(特許文献1)は、車両に搭載された蓄電装置を商用電源から充電する電気自動車用充電器を開示する。この充電器においては、整流器から出た整流電流がモータの中性点、三相コイルおよびインバータ上アームのフライホイールダイオードを順次介して流れ、バッテリが充電される。このとき、モータの三相コイルは、整流器の整流出力中のリップル成分を低減するリアクトル機能を果たすので、この充電器によれば、リップル成分低減用のリアクトルを省略することができる(特許文献1参照)。
特開平9−233709号公報 特開平8−126121号公報
モータの中性点から充電電力を入力してバッテリを充電する場合、トルクの発生を抑える観点からは、モータの各相コイルに均等に電流を流すのが望ましいと考えられる。しかしながら、充電電流を各相コイルに均等に流したとしても、モータが永久磁石界磁式であって、充電電流により発生する磁界がロータの磁極中心に対して非対称の場合、言い換えると、充電電流により発生する磁界に対してロータの磁極中心が非対称になる位置でロータが停止している場合、充電電流の周波数(商用電源周波数)に同期したトルク振動が発生する。そして、このトルク振動は、充電時の騒音やギヤ類の磨耗などを引き起こす。
それゆえに、この発明の目的は、モータ巻線を利用して商用電源から蓄電装置を充電する際にトルク振動の発生を抑制可能な充電制御装置およびそれを備えた車両を提供することである。
この発明によれば、充電制御装置は、車両に搭載された蓄電装置を商用電源から充電する充電制御装置であって、第1の交流回転電機と、第1のインバータと、接続装置と、制御装置と、第1の回転角センサとを備える。第1の交流回転電機は、界磁用の永久磁石を回転子に含み、星形結線された第1の多相巻線を固定子巻線として含む。第1のインバータは、第1の多相巻線に接続され、第1の交流回転電機と蓄電装置との間で電力変換を行なう。接続装置は、商用電源を第1の多相巻線の中性点に接続可能に構成される。制御装置は、商用電源から蓄電装置の充電時、接続装置によって中性点に与えられる商用電源からの電力を変換して蓄電装置を充電するように第1のインバータを制御する。第1の回転角センサは、第1の交流回転電機の回転子の回転角を検出する。ここで、制御装置は、中性点から第1の多相巻線の各相巻線に流される電流に互いに所定の偏差を付与したときに、回転子の回転角と商用電源からの充電電流とに基づき第1の交流回転電機のトルク振動の大きさを推定するトルク振動モデルを用いて、第1の回転角センサによって検出される回転角に基づいてトルク振動を最小にする偏差を決定する。そして、制御装置は、その決定された偏差を各相巻線に流される電流に付与するように第1のインバータを制御する。
好ましくは、所定の偏差は、各相巻線に流される電流の大きさに偏差を与えるための電流偏差と、各相巻線に流される電流の位相に偏差を与えるための位相偏差とを含む。
さらに好ましくは、制御装置は、トルク振動が零になる位相偏差を示す最適位相偏差をトルク振動モデルを用いて決定し、その決定された最適位相偏差を各相巻線に流される電流に付与するように第1のインバータを制御する。
さらに好ましくは、制御装置は、位相偏差を最適位相偏差としたときにトルク振動を最小にする電流偏差を示す最適電流偏差をトルク振動モデルを用いてさらに決定し、その決定された最適電流偏差および最適位相偏差を各相巻線に流される電流に付与するように第1のインバータを制御する。
好ましくは、第1の多相巻線は、集中巻によって形成される。
また、好ましくは、第1の多相巻線は、分布巻によって形成される。
好ましくは、充電制御装置は、第2の交流回転電機と、第2のインバータと、第2の回転角センサとをさらに備える。第2の交流回転電機は、界磁用の永久磁石を回転子に含み、星形結線された第2の多相巻線を固定子巻線として含む。第2のインバータは、第2の多相巻線に接続され、第2の交流回転電機と蓄電装置との間で電力変換を行なう。第2の回転角センサは、第2の交流回転電機の回転子の回転角を検出する。接続装置は、商用電源を第1の多相巻線の中性点および第2の多相巻線の中性点に接続可能に構成される。制御装置は、商用電源から蓄電装置の充電時、接続装置によって第1の多相巻線の中性点および第2の多相巻線の中性点に与えられる商用電源からの電力を変換して蓄電装置を充電するように第1および第2のインバータを制御する。制御装置は、さらに、中性点から第2の多相巻線の各相巻線に流される電流に互いに所定の偏差を付与したときに、第2の交流回転電機の回転子の回転角と商用電源からの充電電流とに基づき第2の交流回転電機のトルク振動の大きさを推定するトルク振動モデルを用いて、第2の回転角センサによって検出される回転角に基づいて第2の交流回転電機のトルク振動を最小にする偏差を決定する。そして、制御装置は、その決定された偏差を第2の多相巻線の各相巻線に流される電流に付与するように第2のインバータを制御する。
また、この発明によれば、車両は、上述したいずれかの充電制御装置を備える。
この発明においては、商用電源から蓄電装置の充電時、商用電源からの電力が第1の交流回転電機の第1の多相巻線の中性点に与えられる。ここで、中性点から第1の多相巻線の各相巻線に電流が均等に流れるように電流制御すると、商用電源の周波数に応じたトルク振動が発生し得るところ、この発明においては、中性点から第1の多相巻線の各相巻線に流される電流に互いに所定の偏差を付与したときに、回転子の回転角と商用電源からの充電電流とに基づき第1の交流回転電機のトルク振動の大きさを推定するトルク振動モデルを用いて、第1の回転角センサによって検出される回転角に基づいて第1の交流回転電機のトルク振動を最小にする偏差が決定される。そして、その決定された偏差を各相巻線に流される電流に付与するように第1のインバータが制御される。
したがって、この発明によれば、第1の交流回転電機の第1の多相巻線を利用して商用電源から蓄電装置を充電する際、商用電源の周波数に同期したトルク振動の発生を抑制することができる。
以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰返さない。
[実施の形態1]
図1は、この発明の実施の形態1による充電制御装置を搭載した車両の全体ブロック図である。図1を参照して、車両100は、蓄電装置Bと、インバータ20と、モータジェネレータMG1と、ECU(Electronic Control Unit)60とを備える。また、車両100は、正極線PLと、負極線NLと、コンデンサC1と、電圧センサ72と、電流センサ82と、レゾルバ94とをさらに備える。さらに、車両100は、整流回路40と、電力線ACL1,ACL2と、充電ポート50と、コンデンサC2と、電圧センサ74と、電流センサ86とをさらに備える。
蓄電装置Bの正極および負極は、それぞれ正極線PLおよび負極線NLに接続される。コンデンサC1は、正極線PLと負極線NLとの間に接続される。インバータ20は、U相アーム22、V相アーム24およびW相アーム26を含む。U相アーム22、V相アーム24およびW相アーム26は、正極線PLと負極線NLとの間に並列に接続される。U相アーム22は、直列に接続されたスイッチング素子Q11,Q12を含み、V相アーム24は、直列に接続されたスイッチング素子Q13,Q14を含み、W相アーム26は、直列に接続されたスイッチング素子Q15,Q16を含む。スイッチング素子Q11〜Q16には、ダイオードD11〜D16が逆並列に接続される。
なお、上記のスイッチング素子Q11〜Q16として、たとえばIGBT(Insulated Gate Bipolar Transistor)やパワーMOSFET(Metal Oxide Semiconductor Field-Effect Transistor)等を用いることができる。
モータジェネレータMG1は、界磁用の永久磁石をロータに含む三相交流回転電機であり、たとえば永久磁石がロータに埋設された三相交流同期モータから成る。モータジェネレータMG1は、三相コイル12をステータコイルとして含む。
三相コイル12は、ステータコアの内周面に形成されるティースに集中巻によって形成される。三相コイル12を形成するU相コイルU1、V相コイルV1およびW相コイルW1の一端は、互いに接続されて中性点N1を形成し、U相コイルU1、V相コイルV1およびW相コイルW1の他端は、インバータ20のU相アーム22、V相アーム24およびW相アーム26にそれぞれ接続される。そして、モータジェネレータMG1の回転軸は、図示されない車両の駆動軸に連結される。
整流回路40は、ダイオードD41,D42を含む。ダイオードD41のカソードは、正極線PLに接続され、ダイオードD41のアノードは、ダイオードD42のカソードに接続され、ダイオードD42のアノードは、負極線NLに接続される。そして、モータジェネレータMG1の中性点N1に電力線ACL1が接続され、整流回路40のダイオードD41,D42の接続点に電力線ACL2が接続される。
電力線ACL1は、中性点N1と充電ポート50との間に配設され、電力線ACL2は、整流回路40と充電ポート50との間に配設される。コンデンサC2は、電力線ACL1と電力線ACL2との間に配設される。
蓄電装置Bは、再充電可能な直流電源であり、たとえば、ニッケル水素やリチウムイオン等の二次電池から成る。なお、蓄電装置Bとして、大容量のキャパシタも採用可能である。コンデンサC1は、正極線PLと負極線NLとの間の電圧変動を平滑化する。電圧センサ72は、コンデンサC1の端子間電圧、すなわち負極線NLに対する正極線PLの電圧VDCを検出し、その検出値をECU60へ出力する。
インバータ20は、ECU60からの信号PWM1に基づいて、蓄電装置Bから受ける直流電圧を三相交流電圧に変換し、その変換した三相交流電圧をモータジェネレータMG1へ出力する。また、インバータ20は、車両の制動時、車両の駆動軸から回転力を受けてモータジェネレータMG1が発電した三相交流電圧をECU60からの信号PWM1に基づいて直流電圧に変換し、その変換した直流電圧を正極線PLへ出力する。
ここで、充電コネクタ92によって充電ポート50に接続される商用電源90から交流電力が入力されると、インバータ20は、後述の方法により、商用電源90から電力線ACL1を介して中性点N1に与えられる交流電力を直流電力に変換して正極線PLへ出力し、蓄電装置Bを充電する。
コンデンサC2は、商用電源90から蓄電装置Bの充電時、商用電源90へのリップルの影響を抑制する。電圧センサ74は、電力線ACL1,ACL2間の電圧、すなわち商用電源90の電圧VACを検出し、その検出値をECU60へ出力する。電流センサ86は、電力線ACL1に流れる電流、すなわち商用電源90から供給される電流IACを検出し、その検出値をECU60へ出力する。なお、電流センサ86によって電力線ACL2に流れる電流を検出してもよい。
モータジェネレータMG1は、車両の走行時、インバータ20によって力行駆動され、車両の駆動力を発生する。また、モータジェネレータMG1は、車両の制動時、インバータ20によって回生駆動され、駆動軸から受ける回転力を用いて発電した三相交流電圧をインバータ20へ出力する。さらに、商用電源90から蓄電装置Bの充電時、モータジェネレータMG1の三相コイル12は、インバータ20のスイッチングにより発生するノイズが商用電源90へ流出するのを防止するためのリアクトルとして機能する。
電流センサ82は、モータジェネレータMG1の各相コイルに流れるモータ電流I1を検出し、その検出値をECU60へ出力する。レゾルバ94は、モータジェネレータMG1のロータの回転角θを検出し、その検出値をECU60へ出力する。
ECU60は、車両の走行時、インバータ20によりモータジェネレータMG1を駆動するための信号PWM1を生成し、その生成した信号PWM1をインバータ20へ出力する。
また、商用電源90から蓄電装置Bの充電時、ECU60は、商用電源90から中性点N1に与えられる交流電力を直流電力に変換して蓄電装置Bへ出力するようにインバータ20を制御する。ここで、三相コイル12の各相コイルに均等に充電電流が流れると、上述したように商用電源90の周波数に同期したトルク振動が発生し得るところ、この実施の形態1では、ECU60は、後述の方法により、三相コイル12の各相コイルに流される電流に互いに所定の偏差を付与するようにインバータ20を制御することによってトルク振動を抑制する。
図2は、図1に示したECU60の機能ブロック図である。図2を参照して、ECU60は、電流指令生成部62と、インバータ制御部64とを含む。電流指令生成部62は、車両ECU(図示せず、以下同じ。)から受ける充電電力指令値PRおよび電圧センサ74からの電圧VACに基づいて、商用電源90から蓄電装置Bの充電時にモータジェネレータMG1のU相コイルU1、V相コイルV1およびW相コイルW1にそれぞれ流す電流の目標値を示す電流指令値IRu,IRv,IRwを生成する。
インバータ制御部64は、車両ECUから受けるモータジェネレータMG1のトルク指令値TR1、電流センサ82からのモータ電流I1、電圧センサ72からの電圧VDC、電流センサ86からの電流IAC、信号AC、レゾルバ94からの回転角θ、および電流指令生成部62からの電流指令値IRu,IRv,IRwに基づいて、インバータ20のスイッチング素子Q11〜Q16をオン/オフするための信号PWM1を生成し、その生成した信号PWM1をインバータ20へ出力する。
なお、信号ACは、商用電源90から蓄電装置Bの充電を要求する信号であって、たとえば、充電コネクタ92と充電ポート50との接続が検知され、かつ、車両100において充電の準備が整うと、活性化される。
図3は、図2に示した電流指令生成部62の機能ブロック図である。図3を参照して、電流指令生成部62は、実効値演算部110と、除算部112と、位相検出部114と、正弦波生成部116と、各相電流指令生成部118とを含む。実効値演算部110は、商用電源90の電圧を示す電圧VACのピーク電圧を検出し、その検出したピーク電圧に基づいて電圧VACの実効値を算出する。除算部112は、実効値演算部110からの電圧VACの実効値で充電電力指令値PRを除算し、その演算結果を入力電流指令値IRとして各相電流指令生成部118へ出力する。
位相検出部114は、電圧VACのゼロクロス点を検出し、その検出したゼロクロス点に基づいて電圧VACの位相を検出する。正弦波生成部116は、位相検出部114によって検出された電圧VACの位相に基づいて、電圧VACと同相の正弦波を生成する。正弦波生成部116は、たとえば、正弦波関数のテーブルを用いて、位相検出部114からの位相に基づいて電圧VACと同相の正弦波を生成することができる。
各相電流指令生成部118は、入力電流指令値IR、レゾルバ94からの回転角θの検出値、および正弦波生成部116からの正弦波に基づいて、三相コイル12に充電電流が流されるときにトルク振動を抑制するための各相の電流指令値IRu,IRv,IRwを次式によって算出する。
Figure 2009254101
ここで、電流偏差Ie(θ)および位相偏差φe(θ)は、三相コイル12に充電電流が流されるときにトルク振動を抑制するために、各相コイルに流される電流に互いに偏差を与えるためのパラメータである。また、sin(ωt)は、正弦波生成部116によって生成される、電圧VACと同相の正弦波である。
式(1)〜(3)に示される電流指令値IRu,IRv,IRwは、IRu+IRv+IRw=IR・sin(ωt)の関係を満たしており、この式(1)〜(3)によって、各相コイルに流される電流にトルク振動を抑制するための偏差を与えることができる。
以下、トルク振動を抑制するために付与される電流偏差Ie(θ)および位相偏差φe(θ)の決定方法について説明する。
図4は、図1に示したモータジェネレータMG1のコイル配置を説明するための概念図である。なお、この図4では、発明の原理を説明するために、モータジェネレータMG1が2極モータの場合について示されているが、4極以上のモータについても本願発明は適用可能である。
図4を参照して、U相コイルU1、V相コイルV1およびW相コイルW1は、互いに電気的に120°ずらして配設される。U相コイル中心からのロータ122の回転角をθとし、ロータ122の磁極方向をd軸、その磁極方向に垂直な方向をq軸とする。端子130は、中性点N1に電気的に接続され、商用電源90から供給される電力を受ける。そして、端子130から入力される電流Iuvw−nは、U相電流Iu、V相電流IvおよびW相電流Iwに分配されて端子124,126,128からインバータ20のU相アーム22、V相アーム24およびW相アーム26へ出力される。
図5は、ロータの回転角θが0°のときの磁界を示した図である。図5を参照して、ロータ122には、界磁を形成する永久磁石132N,132Sが円周方向に埋設されている。永久磁石132Nは、外周側がN極となるように配設され、永久磁石132Sは、外周側がS極となるように配設される。ステータコア134の内周面に形成されるティースには、図示されないU相コイル、V相コイルおよびW相コイルが集中巻で巻回される。
図5に示されるように、回転角θが0°のとき、モータ内に形成される磁界は、ロータの磁極に対して対称性がある。したがって、この場合は、商用電源90から三相コイル12の各相コイルに均等に充電電流を流しても、モータジェネレータMG1にトルク振動は発生しない。
図6は、ロータの回転角θ(電気角)が30°(π/6rad)のときの磁界を示した図である。図6を参照して、回転角θが30°のとき、モータ内に形成される磁界は、ロータの磁極に対して非対称となる。したがって、この場合は、商用電源90から三相コイル12の各相コイルに均等に充電電流を流すと、商用電源90の周波数に同期したトルク振動がモータジェネレータMG1に発生する。
そこで、この実施の形態1では、このような商用電源90の周波数に同期したトルク振動の発生を抑制するために、三相コイル12の各相コイルに通電する電流を均等とせず、式(1)〜(3)に示すように各相コイルに流される電流に互いに偏差を付与することとしたものである。
図7は、ロータの回転角θが0°のときの三相コイル12とロータとの配置関係を模式的に示した図である。図7を参照して、矢印は、ロータ−ステータ間に作用する磁力の方向を示す。ロータ−ステータ間に作用する力Fは、次式で表される。
Figure 2009254101
ここで、Iu,Iv,IWはそれぞれU相,V相,W相に流される電流を示し、Bは定数である。そして、トルク振動はこの力Fに比例する。すなわち、回転角θが0°のとき、トルク振動は(Iw−Iv)に比例する。
式(2),(3)のIRv,IRwをそれぞれ式(4)のIv,Iwに代入して整理すると、回転角θが0°のときのトルク振動の大きさは、次式のような特性を有することが分かる。
Figure 2009254101
図8は、ロータの回転角θ(電気角)が30°(π/6rad)のときの三相コイル12とロータとの配置関係を模式的に示した図である。図8を参照して、ロータ−ステータ間に作用する力Fは、次式で表される。
Figure 2009254101
式(6)に示されるように、回転角θが30°のときは、トルク振動は(−Iv)に比例する。式(2)のIRvを式(6)のIvに代入して整理すると、回転角θ(電気角)が30°のときのトルク振動の大きさは、次式のような特性を有することが分かる。
Figure 2009254101
図9〜図11は、それぞれロータの回転角θ(電気角)が0°,18°,30°(π/6rad)のときに三相コイル12の各相コイルに様々な電流偏差Ieおよび電流位相偏差φeを付与したときのモータジェネレータMG1のトルク振動を示した図である。
図9〜図11を参照して、トルク振動の振幅の大きさは回転角θおよび電流偏差Ieに依存し、トルク振動の中心値は回転角θに依存する。また、トルク振動の位相も回転角θに依存している。
式(5),(7)および図9〜図11から、トルク振動の大きさは、ロータの回転角θ(電気角)に対して次式のように表わすことができる。
Figure 2009254101
ここで、K1(θ),K2(θ)は、回転角θの関数である。
この式(8)は、式(5),(7)を包括したものとなっている。そして、回転角θが0°のとき、図9に示されるトルク振動は式(5)と一致しており、回転角θ(電気角)が30°のとき、図11に示されるトルク振動は式(7)と一致している。このことから、式(8)はトルク振動の大きさを表していることが分かる。
そして、この式(8)から、電流偏差Ieがある一定値以上であれば、トルク振動Tamp=0を満たす最適位相偏差φe*が存在することが分かる。したがって、式(8)より、トルク振動Tamp=0を満たす位相偏差φeを算出することによって、トルク振動を抑制可能な最適位相偏差φe*を決定することができる。
次に、図2に示したインバータ制御部64の構成について説明する。
図12は、図2に示したインバータ制御部64の機能ブロック図である。図12を参照して、インバータ制御部64は、相電圧演算部142と、減算部144,148,152と、電流制御部146,150,154と、加算部156と、PWM制御部158とを含む。
相電圧演算部142は、モータジェネレータMG1のトルク指令値TR1およびモータ電流I1ならびに電圧VDCに基づいて、モータジェネレータMG1の各相コイルに印加する電圧指令値を算出し、その算出した各相電圧指令値を加算部156へ出力する。
減算部144は、電流指令値IRuからU相電流I1(u)を減算して電流制御部146へ出力する。電流制御部146は、信号ACが活性化されているとき、電流指令値IRuとU相電流I1(u)との偏差に基づいて、U相電流I1(u)を電流指令値IRuに追従させるための電圧指令値を生成し、その生成した電圧指令値を加算部156へ出力する。
減算部148は、電流指令値IRvからV相電流I1(v)を減算して電流制御部150へ出力する。電流制御部150は、信号ACが活性化されているとき、電流指令値IRvとV相電流I1(v)との偏差に基づいて、V相電流I1(v)を電流指令値IRvに追従させるための電圧指令値を生成し、その生成した電圧指令値を加算部156へ出力する。
減算部152は、電流指令値IRwからW相電流I1(w)を減算して電流制御部154へ出力する。電流制御部154は、信号ACが活性化されているとき、電流指令値IRwとW相電流I1(w)との偏差に基づいて、W相電流I1(w)を電流指令値IRwに追従させるための電圧指令値を生成し、その生成した電圧指令値を加算部156へ出力する。
なお、信号ACが非活性化されているときは、電流制御部146,150,154は、電圧指令値を零で出力する。
加算部156は、相電圧演算部142から出力されるU相の電圧指令値に電流制御部146からの出力を加算し、その演算結果をU相電圧指令値としてPWM制御部158へ出力する。また、加算部156は、相電圧演算部142から出力されるV相の電圧指令値に電流制御部150からの出力を加算し、その演算結果をV相電圧指令値としてPWM制御部158へ出力する。さらに、加算部156は、相電圧演算部142から出力されるW相の電圧指令値に電流制御部154からの出力を加算し、その演算結果をW相電圧指令値としてPWM制御部158へ出力する。
PWM制御部158は、加算部156からの各相電圧指令値に基づいて、実際にインバータ20のスイッチング素子Q11〜Q16をオン/オフするための信号PWM1を生成し、その生成した信号PWM1をインバータ20のスイッチング素子Q11〜Q16へ出力する。
以上のように、この実施の形態1においては、商用電源90から蓄電装置Bの充電時に三相コイル12の各相コイルに流される電流に互いに所定の偏差を付与したときに、ロータの回転角θと充電電流とに基づきトルク振動の大きさを推定するトルク振動モデル(式(8))を用いて、レゾルバ94によって検出される回転角θに基づいてトルク振動を最小にする偏差が決定される。そして、その決定された偏差を各相コイルに流される電流に付与するようにインバータ20が制御される。したがって、この実施の形態1によれば、モータジェネレータMG1の三相コイル12を利用して商用電源90から蓄電装置Bを充電する際、商用電源90の周波数に同期したトルク振動の発生を抑制することができる。
[変形例]
実施の形態1では、電流偏差Ieは任意とし、設定された電流偏差Ieに対して最適位相偏差φeを決定するものとしたが、電流偏差Ieが大きいとモータコイルに大電流が流れるので、モータコイルが充電時に過熱するおそれがある。そこで、この変形例では、電流偏差Ieが最小化される。
一例として、ロータの回転角θが0°<θ≦30°のとき、式(8)から位相偏差φe=90°−θでトルク振動Tampは極大となる(図9〜図11参照)。したがって、トルク振動Tamp=0を実現可能な最小の電流偏差Ieすなわち最適電流偏差Ie*は、式(8)において、位相偏差φeを90°−θとしたときにトルク振動Tamp=0とすることによって次式のように算出される。
Figure 2009254101
以上のように、この変形例によれば、式(1)〜(3)において、位相偏差φeを最適位相偏差φe*=90°−θとし、電流偏差Ieを式(9)で示される最適電流偏差Ie*とすることによって、各相間に付与する電流偏差を最小とし、かつ、トルク振動を抑制することができる。
[実施の形態2]
実施の形態1およびその変形例では、モータジェネレータMG1の三相コイル12は集中巻によって形成されるものとしたが、この実施の形態2では、モータジェネレータMG1の三相コイル12が分布巻によって形成される場合が示される。
図13は、モータジェネレータMG1の三相コイル12が分布巻の場合においてロータの回転角θが0°のときの磁界を示した図である。図13を参照して、ロータ122には、界磁を形成する永久磁石132が円周方向に埋設されている。ステータコア134の内周面に形成されるティースには、図示されないU相コイル、V相コイルおよびW相コイルが分布巻で巻回される。
図13に示されるように、分布巻の場合においても、回転角θが0°のとき、モータ内に形成される磁界はロータの磁極に対して対称性がある。したがって、この場合は、商用電源90から三相コイル12の各相コイルに均等に充電電流を流しても、モータジェネレータMG1にトルク振動は発生しない。
図14は、モータジェネレータMG1の三相コイル12が分布巻の場合においてロータの回転角θ(電気角)が30°のときの磁界を示した図である。図14を参照して、分布巻の場合においても、回転角θが30°のとき、モータ内に形成される磁界はロータの磁極に対して非対称となる。したがって、この場合は、商用電源90から三相コイル12の各相コイルに均等に充電電流を流すと、商用電源90の周波数に同期したトルク振動がモータジェネレータMG1に発生する。
そこで、この実施の形態2においても、このような商用電源90の周波数に同期したトルク振動の発生を抑制するために、三相コイル12の各相コイルに通電する電流を均等とせず、式(1)〜(3)に示すように各相コイルに流される電流に互いに所定の偏差が付与される。
図15は、ロータの回転角θが0°のときの三相コイル12とロータとの配置関係を模式的に示した図である。図15を参照して、矢印は、ロータ−ステータ間に作用する磁力の方向を示す。ロータ−ステータ間に作用する力Fは、次式で表される。
Figure 2009254101
したがって、回転角θが0°のときのトルク振動の大きさは、集中巻の場合と同様に次式のような特性を有することが分かる。
Figure 2009254101
図16は、ロータの回転角θ(電気角)が30°のときの三相コイル12とロータとの配置関係を模式的に示した図である。図16を参照して、ロータ−ステータ間に作用する力Fは、次式で表される。
Figure 2009254101
式(12)に示されるように、回転角θが30°のときは、トルク振動は(Iu+Iw−Iv)に比例する。式(1)〜(3)のIRu,IRv,IRwをそれぞれ式(12)のIu,Iv,Iwに代入して整理すると、回転角θが30°のときのトルク振動の大きさは、次式のような特性を有することが分かる。
Figure 2009254101
したがって、式(11),(13)から、トルク振動の大きさは、ロータの回転角θ(電気角)に対して次式のように表わすことができる。
Figure 2009254101
ここで、K3(θ),K4(θ)は、回転角θの関数である。
この式(14)は、集中巻の場合の式(8)と同様である。したがって、分布巻の場合においても、実施の形態1およびその変形例における集中巻の場合と同様に、回転角θに基づいて最適位相偏差φeおよび最適電流偏差Ieを決定することができる。
以上のように、この実施の形態2においても、実施の形態1と同様の効果を得ることができる。
[実施の形態3]
この実施の形態3では、2つのモータジェネレータを用いて商用電源90から蓄電装置Bの充電を行なう構成が示される。
図17は、実施の形態3による充電制御装置を搭載した車両の全体ブロック図である。図17を参照して、車両100Aは、図1に示した車両100の構成において、インバータ30と、モータジェネレータMG2と、電流センサ84と、レゾルバ96とをさらに備える。また、車両100Aは、整流回路40を備えず、ECU60に代えてECU60Aを備える。
インバータ30は、U相アーム32、V相アーム34およびW相アーム36を含む。U相アーム32、V相アーム34およびW相アーム36は、正極線PLと負極線NLとの間に並列に接続される。U相アーム32は、直列に接続されたスイッチング素子Q21,Q22を含み、V相アーム34は、直列に接続されたスイッチング素子Q23,Q24を含み、W相アーム36は、直列に接続されたスイッチング素子Q25,Q26を含む。スイッチング素子Q21〜Q26には、ダイオードD21〜D26が逆並列に接続される。
モータジェネレータMG2も、界磁用の永久磁石をロータに含む三相交流回転電機であり、たとえば永久磁石がロータに埋設された三相交流同期モータから成る。モータジェネレータMG2は、三相コイル14をステータコイルとして含む。
三相コイル14は、集中巻によって形成されても、分布巻によって形成されてもよい。そして、三相コイル14を形成するU相コイルU2、V相コイルV2およびW相コイルW2の一端は、互いに接続されて中性点N2を形成し、U相コイルU2、V相コイルV2およびW相コイルW2の他端は、インバータ30のU相アーム32、V相アーム34およびW相アーム36にそれぞれ接続される。そして、中性点N2と充電ポート50との間に電力線ACL2が配設される。
インバータ30は、ECU60Aからの信号PWM2に基づいて、蓄電装置Bから受ける直流電圧を三相交流電圧に変換し、その変換した三相交流電圧をモータジェネレータMG2へ出力する。ここで、充電コネクタ92によって充電ポート50に接続される商用電源90から交流電力が入力されると、インバータ30は、インバータ20と同様に、商用電源90から電力線ACL2を介して中性点N2に与えられる交流電力を直流電力に変換して正極線PLへ出力し、蓄電装置Bを充電する。
モータジェネレータMG2は、インバータ30によって駆動される。そして、モータジェネレータMG1と同様に、商用電源90から蓄電装置Bの充電時、モータジェネレータMG2の三相コイル14は、インバータ30のスイッチングにより発生するノイズが商用電源90へ流出するのを防止するためのリアクトルとして機能する。
電流センサ84は、モータジェネレータMG2の各相コイルに流れるモータ電流I2を検出し、その検出値をECU60Aへ出力する。レゾルバ96は、モータジェネレータMG2のロータの回転角θ2を検出し、その検出値をECU60Aへ出力する。
そして、ECU60Aは、商用電源90から蓄電装置Bの充電時、実施の形態1、その変形例、または実施の形態2で説明した手法に従ってインバータ20を制御するとともに、インバータ30についても、実施の形態1、その変形例、または実施の形態2で説明した手法に従って、商用電源90から中性点N2に与えられる交流電力を直流電力に変換して蓄電装置Bを充電するようにインバータ30を制御する。
以上のような構成から成る実施の形態3によっても、上記の実施の形態1、その変形例、または実施の形態2と同様の効果が得られる。
なお、上記の各実施の形態においては、モータジェネレータMG1(MG2)は、三相交流回転電機としたが、この発明は、三相以外の多相交流回転電機についても容易に拡張して適用することができる。
また、上記の各実施の形態において、蓄電装置Bとインバータ20(30)との間に、インバータ20(30)の入力電圧を蓄電装置Bの電圧以上に調整可能な昇圧コンバータを設けてもよい。
なお、上記において、モータジェネレータMG1は、この発明における「第1の交流回転電機」の一実施例に対応し、三相コイル12は、この発明における「第1の多相巻線」の一実施例に対応する。また、インバータ20は、この発明における「第1のインバータ」の一実施例に対応し、電力線ACL1,ACL2および充電ポート50は、この発明における「接続装置」の一実施例を形成する。さらに、ECU60,60Aは、この発明における「制御装置」の一実施例に対応し、レゾルバ94は、この発明における「第1の回転角センサ」の一実施例に対応する。
また、さらに、モータジェネレータMG2は、この発明における「第2の交流回転電機」の一実施例に対応し、三相コイル14は、この発明における「第2の多相巻線」の一実施例に対応する。また、さらに、インバータ30は、この発明における「第2のインバータ」の一実施例に対応し、レゾルバ96は、この発明における「第2の回転角センサ」の一実施例に対応する。
今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施の形態の説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
この発明の実施の形態1による充電制御装置を搭載した車両の全体ブロック図である。 図1に示すECUの機能ブロック図である。 図2に示す電流指令生成部の機能ブロック図である。 図1に示すモータジェネレータのコイル配置を説明するための概念図である。 ロータの回転角が0°のときの磁界を示した図である。 ロータの回転角(電気角)が30°のときの磁界を示した図である。 ロータの回転角が0°のときの三相コイルとロータとの配置関係を模式的に示した図である。 ロータの回転角(電気角)が30°のときの三相コイルとロータとの配置関係を模式的に示した図である。 ロータの回転角が0°のときに三相コイルの各相コイルに様々な電流偏差および電流位相偏差を付与したときのモータジェネレータのトルク振動を示した図である。 ロータの回転角(電気角)が18°のときに三相コイルの各相コイルに様々な電流偏差および電流位相偏差を付与したときのモータジェネレータのトルク振動を示した図である。 ロータの回転角(電気角)が30°のときに三相コイルの各相コイルに様々な電流偏差および電流位相偏差を付与したときのモータジェネレータのトルク振動を示した図である。 図2に示すインバータ制御部の機能ブロック図である。 モータジェネレータの三相コイルが分布巻の場合においてロータの回転角が0°のときの磁界を示した図である。 モータジェネレータの三相コイルが分布巻の場合においてロータの回転角(電気角)が30°のときの磁界を示した図である。 ロータの回転角が0°のときの三相コイルとロータとの配置関係を模式的に示した図である。 ロータの回転角(電気角)が30°のときの三相コイルとロータとの配置関係を模式的に示した図である。 実施の形態3による充電制御装置を搭載した車両の全体ブロック図である。
符号の説明
12,14 三相コイル、20,30 インバータ、22,32 U相アーム、24,34 V相アーム、26,36 W相アーム、40 整流回路、50 充電ポート、60,60A ECU、62,62A 電流指令生成部、64,64A インバータ制御部、72,74 電圧センサ、82,84,86 電流センサ、90 商用電源、92 充電コネクタ、94,96 レゾルバ、100,100A 車両、110 実効値演算部、112 除算部、114 位相検出部、116 正弦波生成部、118 各相電流指令生成部、122 ロータ、124,126,128,130 端子、132,132N,132S 永久磁石、134 ステータコア、142 相電圧演算部、144,148,152 減算部、146,150,154 電流制御部、156 加算部、158 PWM制御部、B 蓄電装置、C1,C2 コンデンサ、PL 正極線、NL 負極線、Q11〜Q16,Q21〜Q26 スイッチング素子、D11〜D16,D21〜D26,D41,D42 ダイオード、U1,U2 U相コイル、V1,V2 V相コイル、W1,W2 W相コイル、MG1,MG2 モータジェネレータ、N1,N2 中性点、ACL1,ACL2 電力線。

Claims (8)

  1. 車両に搭載された蓄電装置を商用電源から充電する充電制御装置であって、
    界磁用の永久磁石を回転子に含み、星形結線された第1の多相巻線を固定子巻線として含む第1の交流回転電機と、
    前記第1の多相巻線に接続され、前記第1の交流回転電機と前記蓄電装置との間で電力変換を行なう第1のインバータと、
    前記商用電源を前記第1の多相巻線の中性点に接続可能に構成された接続装置と、
    前記商用電源から前記蓄電装置の充電時、前記接続装置によって前記中性点に与えられる前記商用電源からの電力を変換して前記蓄電装置を充電するように前記第1のインバータを制御する制御装置と、
    前記第1の交流回転電機の回転子の回転角を検出する第1の回転角センサとを備え、
    前記制御装置は、前記中性点から前記第1の多相巻線の各相巻線に流される電流に互いに所定の偏差を付与したときに、前記回転子の回転角と前記商用電源からの充電電流とに基づき前記第1の交流回転電機のトルク振動の大きさを推定するトルク振動モデルを用いて、前記第1の回転角センサによって検出される回転角に基づいて前記トルク振動を最小にする前記偏差を決定し、その決定された偏差を前記各相巻線に流される電流に付与するように前記第1のインバータを制御する、充電制御装置。
  2. 前記所定の偏差は、前記各相巻線に流される電流の大きさに偏差を与えるための電流偏差と、前記各相巻線に流される電流の位相に偏差を与えるための位相偏差とを含む、請求項1に記載の充電制御装置。
  3. 前記制御装置は、前記トルク振動が零になる位相偏差を示す最適位相偏差を前記トルク振動モデルを用いて決定し、その決定された最適位相偏差を前記各相巻線に流される電流に付与するように前記第1のインバータを制御する、請求項2に記載の充電制御装置。
  4. 前記制御装置は、前記位相偏差を前記最適位相偏差としたときに前記トルク振動を最小にする電流偏差を示す最適電流偏差を前記トルク振動モデルを用いてさらに決定し、その決定された最適電流偏差および前記最適位相偏差を前記各相巻線に流される電流に付与するように前記第1のインバータを制御する、請求項3に記載の充電制御装置。
  5. 前記第1の多相巻線は、集中巻によって形成される、請求項1から請求項4のいずれか1項に記載の充電制御装置。
  6. 前記第1の多相巻線は、分布巻によって形成される、請求項1から請求項4のいずれか1項に記載の充電制御装置。
  7. 界磁用の永久磁石を回転子に含み、星形結線された第2の多相巻線を固定子巻線として含む第2の交流回転電機と、
    前記第2の多相巻線に接続され、前記第2の交流回転電機と前記蓄電装置との間で電力変換を行なう第2のインバータと、
    前記第2の交流回転電機の回転子の回転角を検出する第2の回転角センサとをさらに備え、
    前記接続装置は、前記商用電源を前記第1の多相巻線の中性点および前記第2の多相巻線の中性点に接続可能に構成され、
    前記制御装置は、前記商用電源から前記蓄電装置の充電時、前記接続装置によって前記第1の多相巻線の中性点および前記第2の多相巻線の中性点に与えられる前記商用電源からの電力を変換して前記蓄電装置を充電するように前記第1および第2のインバータを制御し、
    前記制御装置は、さらに、前記中性点から前記第2の多相巻線の各相巻線に流される電流に互いに所定の偏差を付与したときに、前記第2の交流回転電機の回転子の回転角と前記商用電源からの充電電流とに基づき前記第2の交流回転電機のトルク振動の大きさを推定するトルク振動モデルを用いて、前記第2の回転角センサによって検出される回転角に基づいて前記第2の交流回転電機のトルク振動を最小にする前記偏差を決定し、その決定された偏差を前記第2の多相巻線の各相巻線に流される電流に付与するように前記第2のインバータを制御する、請求項1から請求項6のいずれか1項に記載の充電制御装置。
  8. 請求項1から請求項7のいずれか1項に記載の充電制御装置を備える車両。
JP2008098130A 2008-04-04 2008-04-04 充電制御装置およびそれを備えた車両 Withdrawn JP2009254101A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008098130A JP2009254101A (ja) 2008-04-04 2008-04-04 充電制御装置およびそれを備えた車両

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008098130A JP2009254101A (ja) 2008-04-04 2008-04-04 充電制御装置およびそれを備えた車両

Publications (1)

Publication Number Publication Date
JP2009254101A true JP2009254101A (ja) 2009-10-29

Family

ID=41314238

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008098130A Withdrawn JP2009254101A (ja) 2008-04-04 2008-04-04 充電制御装置およびそれを備えた車両

Country Status (1)

Country Link
JP (1) JP2009254101A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013143799A (ja) * 2012-01-10 2013-07-22 Nissan Motor Co Ltd 充電装置
KR20140137421A (ko) * 2012-03-09 2014-12-02 발레오 시스템므 드 꽁트롤르 모뙤르 전기 회로의 적어도 하나의 커패시터를 방전하기 위한 방법
KR20190058015A (ko) * 2017-11-21 2019-05-29 현대자동차주식회사 자동차의 급속 충전시 모터 진동 제어 방법
CN111355414A (zh) * 2018-12-21 2020-06-30 比亚迪股份有限公司 车辆、电机驱动装置、控制方法及可读存储介质
CN111355432A (zh) * 2018-12-21 2020-06-30 比亚迪股份有限公司 电机驱动装置、控制方法、车辆及可读存储介质

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013143799A (ja) * 2012-01-10 2013-07-22 Nissan Motor Co Ltd 充電装置
KR20140137421A (ko) * 2012-03-09 2014-12-02 발레오 시스템므 드 꽁트롤르 모뙤르 전기 회로의 적어도 하나의 커패시터를 방전하기 위한 방법
JP2015516791A (ja) * 2012-03-09 2015-06-11 ヴァレオ システム ドゥ コントロール モトゥール 電気回路の少なくとも1つのキャパシタを放電する方法
KR102202513B1 (ko) * 2012-03-09 2021-01-12 발레오 시스템므 드 꽁트롤르 모뙤르 전기 회로의 적어도 하나의 커패시터를 방전하기 위한 방법
KR20190058015A (ko) * 2017-11-21 2019-05-29 현대자동차주식회사 자동차의 급속 충전시 모터 진동 제어 방법
KR102440512B1 (ko) * 2017-11-21 2022-09-06 현대자동차주식회사 자동차의 급속 충전시 모터 진동 제어 방법
CN111355414A (zh) * 2018-12-21 2020-06-30 比亚迪股份有限公司 车辆、电机驱动装置、控制方法及可读存储介质
CN111355432A (zh) * 2018-12-21 2020-06-30 比亚迪股份有限公司 电机驱动装置、控制方法、车辆及可读存储介质
CN111355432B (zh) * 2018-12-21 2023-12-12 比亚迪股份有限公司 电机驱动装置、控制方法、车辆及可读存储介质
CN111355414B (zh) * 2018-12-21 2024-05-07 比亚迪股份有限公司 车辆、电机驱动装置、控制方法及可读存储介质

Similar Documents

Publication Publication Date Title
JP4742781B2 (ja) 交流電圧出力装置およびそれを備えたハイブリッド自動車
JP4752352B2 (ja) 交流電圧出力装置およびそれを備えたハイブリッド自動車
JP5652659B2 (ja) 電動機制御装置
US8143861B2 (en) Charge control device and vehicle using the same
US7891451B2 (en) Power controller and vehicle equipped with power controller
JP5558176B2 (ja) 電動機駆動装置およびそれを搭載する車両
US20090237021A1 (en) Apparatus for carrying out improved control of rotary machine
JP2007325351A (ja) 電動機駆動制御システム
JP2010051092A (ja) 充電システムおよびそれを備えた車両
JP2012196095A (ja) 回転電機システム
JP2012205326A (ja) 回転電機システム
JP2009254101A (ja) 充電制御装置およびそれを備えた車両
JP5534323B2 (ja) 電動機制御装置
JP2009296843A (ja) 充電制御装置およびそれを備えた車両
JP6075161B2 (ja) スイッチトリラクタンスモータの制御装置
JP2013102636A (ja) 交流電動機の制御装置
JP2009254100A (ja) 充電制御装置およびそれを備えた車両
JP7192291B2 (ja) 回転電機制御システム
JP2021168568A (ja) モータ駆動システム
JP2009284630A (ja) 充電制御装置およびそれを備えた車両
JP2019161748A (ja) インバータの制御方法及びインバータ制御装置
Hwang et al. Phase Current Equalization Method of IPMSM-based On-board Boost Converter for Electric Vehicles
JP5412930B2 (ja) 回転電機制御システム
JP2010268627A (ja) 車両のモータ制御システム
JP2008245408A (ja) 電力システムおよび電動車両

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110607