JP2009254100A - 充電制御装置およびそれを備えた車両 - Google Patents

充電制御装置およびそれを備えた車両 Download PDF

Info

Publication number
JP2009254100A
JP2009254100A JP2008098126A JP2008098126A JP2009254100A JP 2009254100 A JP2009254100 A JP 2009254100A JP 2008098126 A JP2008098126 A JP 2008098126A JP 2008098126 A JP2008098126 A JP 2008098126A JP 2009254100 A JP2009254100 A JP 2009254100A
Authority
JP
Japan
Prior art keywords
winding
phase
multiphase winding
inverter
rotation angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008098126A
Other languages
English (en)
Inventor
Tetsuya Miura
徹也 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2008098126A priority Critical patent/JP2009254100A/ja
Publication of JP2009254100A publication Critical patent/JP2009254100A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

【課題】外部電源からの充電用にリアクトルを別途設けることなくインダクタンスを増加可能な充電制御装置およびそれを備えた車両を提供する。
【解決手段】ECU60は、商用電源90から蓄電装置Bの充電時、三相コイル12の各相コイルに流される電流を互いに不均等にするようにインバータ20を制御する。ここで、三相コイル12に発生するインダクタンスは、ロータの回転角θによって変化するところ、ECU60は、回転角θに拘わらず三相コイル12に生じるインダクタンスを一定にするように、レゾルバ94によって検出される回転角θに応じて各相間の電流の不均等量を決定する。
【選択図】図1

Description

この発明は、充電制御装置およびそれを備えた車両に関し、特に、車両に搭載された蓄電装置を商用電源から充電するための充電制御装置およびそれを備えた車両に関する。
特開2000−4505号公報(特許文献1)は、電気自動車に搭載されるバッテリを充電するバッテリ充電装置を開示する。このバッテリ充電装置においては、外部電源からの電力が車両走行用のモータの中性点に与えられ、モータの巻線を利用して電圧変換が行なわれる。ここで、モータの各相巻線に同電流および同位相の電流を流すとインダクタンスが不足するところ、このバッテリ充電装置においては、モータの中性点と外部電源との間にリアクトルが別途設けられ、モータの巻線のみでは不足するインダクタンスが補われる(特許文献1参照)。
特開2000−4505号公報
上記公報に開示されるバッテリ充電装置では、外部電源からの充電用に別途設けられるリアクトルを形成するに際し、ステータの外周に複数設けられた溝を巡るように巻線が配置され、ステータが磁心として利用される。これにより、小型軽量化やコスト低減を可能としている。しかしながら、外部電源からの充電用にリアクトルを別途設けている点で改善の余地がある。
そこで、この発明は、かかる課題を解決するためになされたものであり、その目的は、外部電源からの充電用にリアクトルを別途設けることなくインダクタンスを増加可能な充電制御装置およびそれを備えた車両を提供することである。
この発明によれば、充電制御装置は、車両に搭載された蓄電装置を商用電源から充電する充電制御装置であって、第1の交流回転電機と、第1のインバータと、接続装置と、制御装置と、第1の回転角センサとを備える。第1の交流回転電機は、星形結線された第1の多相巻線を固定子巻線として含む。第1のインバータは、第1の多相巻線に接続され、第1の交流回転電機と蓄電装置との間で電力変換を行なう。接続装置は、商用電源を第1の多相巻線の中性点に接続可能に構成される。制御装置は、商用電源から蓄電装置の充電時、接続装置によって中性点に与えられる商用電源からの電力を変換して蓄電装置を充電するように第1のインバータを制御する。第1の回転角センサは、第1の交流回転電機の回転子の回転角を検出する。そして、制御装置は、第1の多相巻線の各相巻線に流される電流を互いに不均等にするように第1のインバータを制御するとともに、回転子の回転角に拘わらず第1の多相巻線に生じるインダクタンスを一定にするように、第1の回転角センサによって検出される回転角に応じて各相間の電流の不均等量を決定する。
好ましくは、制御装置は、回転子の回転角に拘わらず第1の多相巻線に生じるインダクタンスを一定にするように、第1の回転角センサによって検出される回転角に応じて、各相間に与える電流オフセット量を決定する。
好ましくは、充電制御装置は、第2の交流回転電機と、第2のインバータと、第2の回転角センサとをさらに備える。第2の交流回転電機は、星形結線された第2の多相巻線を固定子巻線として含む。第2のインバータは、第2の多相巻線に接続され、第2の交流回転電機と蓄電装置との間で電力変換を行なう。第2の回転角センサは、第2の交流回転電機の回転子の回転角を検出する。接続装置は、商用電源を第1の多相巻線の中性点および第2の多相巻線の中性点に接続可能に構成される。制御装置は、商用電源から蓄電装置の充電時、接続装置によって第1の多相巻線の中性点および第2の多相巻線の中性点に与えられる商用電源からの電力を変換して蓄電装置を充電するように第1および第2のインバータを制御する。そして、制御装置は、さらに、第2の多相巻線の各相巻線に流される電流を互いに不均等にするように第2のインバータを制御するとともに、第2の交流回転電機の回転子の回転角に拘わらず第2の多相巻線に生じるインダクタンスを一定にするように、第2の回転角センサによって検出される回転角に応じて第2の多相巻線における各相間の電流の不均等量を決定する。
また、この発明によれば、充電制御装置は、車両に搭載された蓄電装置を商用電源から充電する充電制御装置であって、第1の交流回転電機と、第1のインバータと、接続装置と、制御装置とを備える。第1の交流回転電機は、星形結線された第1の多相巻線を固定子巻線として含む。第1のインバータは、第1の多相巻線に接続され、第1の交流回転電機と蓄電装置との間で電力変換を行なう。接続装置は、商用電源を第1の多相巻線の中性点に接続可能に構成される。制御装置は、商用電源から蓄電装置の充電時、接続装置によって中性点に与えられる商用電源からの電力を変換して蓄電装置を充電するように第1のインバータを制御する。そして、第1の多相巻線は、相数から決定される等間隔配置に対してずらされて配置される。制御装置は、第1の多相巻線の各相巻線に流される電流を互いに均等にするように第1のインバータを制御する。
好ましくは、第1の多相巻線は、集中巻によって形成される。
また、好ましくは、第1の多相巻線は、分布巻によって形成される。
好ましくは、充電制御装置は、第2の交流回転電機と、第2のインバータとをさらに備える。第2の交流回転電機は、星形結線された第2の多相巻線を固定子巻線として含む。第2のインバータは、第2の多相巻線に接続され、第2の交流回転電機と蓄電装置との間で電力変換を行なう。接続装置は、商用電源を第1の多相巻線の中性点および第2の多相巻線の中性点に接続可能に構成される。制御装置は、商用電源から蓄電装置の充電時、接続装置によって第1の多相巻線の中性点および第2の多相巻線の中性点に与えられる商用電源からの電力を変換して蓄電装置を充電するように第1および第2のインバータを制御する。そして、第2の多相巻線は、相数から決定される等間隔配置に対してずらされて配置される。制御装置は、さらに、第2の多相巻線の各相巻線に流される電流を互いに均等にするように第2のインバータを制御する。
また、この発明によれば、車両は、上述したいずれかの充電制御装置を備える。
この発明においては、商用電源から蓄電装置の充電時、商用電源からの電力が第1の交流回転電機の第1の多相巻線の中性点に与えられる。そして、第1の多相巻線の各相巻線に流される電流を互いに不均等にするように第1のインバータが制御されるので、充電時に第1の多相巻線に十分なインダクタンスが発生する。ここで、充電時に第1の多相巻線に発生するインダクタンスは、第1の交流回転電機の回転子の回転角によって変化するところ、この発明においては、回転子の回転角に拘わらず第1の多相巻線に生じるインダクタンスを一定にするように、第1の回転角センサによって検出される回転角に応じて各相間の電流の不均等量が決定されるので、第1の多相巻線に生じるインダクタンスが回転子の回転角に拘わらず安定化(一定化)される。
したがって、この発明によれば、外部電源からの充電用にリアクトルを別途設けることなくインダクタンスを増加することができ、かつ、第1の多相巻線により構成される充電用リアクトルのインダクタンスを安定化することができる。
また、この発明においては、商用電源から蓄電装置の充電時、商用電源からの電力が第1の交流回転電機の第1の多相巻線の中性点に与えられる。ここで、第1の多相巻線は、相数から決定される等間隔配置に対してずらされて配置されるので、第1の多相巻線の各相巻線に流される電流を互いに均等にしても、第1の多相巻線に十分なインダクタンスが発生する。
したがって、この発明によれば、外部電源からの充電用にリアクトルを別途設けることなくインダクタンスを増加することができる。また、第1の多相巻線の各相巻線に均等に電流を流せばよいので、充電時の制御を簡略化できる。
以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰返さない。
[実施の形態1]
図1は、この発明の実施の形態1による車両の全体ブロック図である。図1を参照して、この車両100は、蓄電装置Bと、インバータ20と、モータジェネレータMG1と、ECU(Electronic Control Unit)60とを備える。また、車両100は、正極線PLと、負極線NLと、コンデンサC1と、電圧センサ72と、電流センサ82と、レゾルバ94とをさらに備える。さらに、車両100は、整流回路40と、電力線ACL1,ACL2と、充電ポート50と、コンデンサC2と、電圧センサ74と、電流センサ86とをさらに備える。
蓄電装置Bの正極および負極は、それぞれ正極線PLおよび負極線NLに接続される。コンデンサC1は、正極線PLと負極線NLとの間に接続される。インバータ20は、U相アーム22、V相アーム24およびW相アーム26を含む。U相アーム22、V相アーム24およびW相アーム26は、正極線PLと負極線NLとの間に並列に接続される。U相アーム22は、直列に接続されたスイッチング素子Q11,Q12を含み、V相アーム24は、直列に接続されたスイッチング素子Q13,Q14を含み、W相アーム26は、直列に接続されたスイッチング素子Q15,Q16を含む。スイッチング素子Q11〜Q16には、ダイオードD11〜D16が逆並列に接続される。
なお、上記のスイッチング素子Q11〜Q16として、たとえばIGBT(Insulated Gate Bipolar Transistor)やパワーMOSFET(Metal Oxide Semiconductor Field-Effect Transistor)等を用いることができる。
モータジェネレータMG1は、三相交流回転電機であり、たとえば三相交流同期電動発電機から成る。モータジェネレータMG1は、三相コイル12をステータコイルとして含む。三相コイル12を形成するU相コイルU1、V相コイルV1およびW相コイルW1の一端は、互いに接続されて中性点N1を形成し、U相コイルU1、V相コイルV1およびW相コイルW1の他端は、インバータ20のU相アーム22、V相アーム24およびW相アーム26にそれぞれ接続される。そして、モータジェネレータMG1の回転軸は、図示されない車両の駆動軸に連結される。
整流回路40は、ダイオードD41,D42を含む。ダイオードD41のカソードは、正極線PLに接続され、ダイオードD41のアノードは、ダイオードD42のカソードに接続され、ダイオードD42のアノードは、負極線NLに接続される。そして、モータジェネレータMG1の中性点N1に電力線ACL1が接続され、整流回路40のダイオードD41,D42の接続点に電力線ACL2が接続される。
電力線ACL1は、中性点N1と充電ポート50との間に配設され、電力線ACL2は、整流回路40と充電ポート50との間に配設される。コンデンサC2は、電力線ACL1と電力線ACL2との間に配設される。
蓄電装置Bは、再充電可能な直流電源であり、たとえば、ニッケル水素やリチウムイオン等の二次電池から成る。なお、蓄電装置Bとして、大容量のキャパシタも採用可能である。コンデンサC1は、正極線PLと負極線NLとの間の電圧変動を平滑化する。電圧センサ72は、コンデンサC1の端子間電圧、すなわち負極線NLに対する正極線PLの電圧VDCを検出し、その検出値をECU60へ出力する。
インバータ20は、ECU60からの信号PWM1に基づいて、蓄電装置Bから受ける直流電圧を三相交流電圧に変換し、その変換した三相交流電圧をモータジェネレータMG1へ出力する。また、インバータ20は、車両の制動時、車両の駆動軸から回転力を受けてモータジェネレータMG1が発電した三相交流電圧をECU60からの信号PWM1に基づいて直流電圧に変換し、その変換した直流電圧を正極線PLへ出力する。
ここで、充電コネクタ92によって充電ポート50に接続される商用電源90から交流電力が入力されると、インバータ20は、後述の方法により、商用電源90から電力線ACL1を介して中性点N1に与えられる交流電力を直流電力に変換して正極線PLへ出力し、蓄電装置Bを充電する。
コンデンサC2は、充電ポート50に接続される商用電源90へのリップルの影響を抑制する。電圧センサ74は、電力線ACL1,ACL2間の電圧、すなわち商用電源90の電圧VACを検出し、その検出値をECU60へ出力する。電流センサ86は、電力線ACL1に流れる電流、すなわち商用電源90から供給される電流IACを検出し、その検出値をECU60へ出力する。なお、電流センサ86によって電力線ACL2に流れる電流を検出してもよい。
モータジェネレータMG1は、インバータ20によって力行駆動され、車両の駆動力を発生する。また、モータジェネレータMG1は、車両の制動時、インバータ20によって回生駆動され、駆動軸から受ける回転力を用いて発電した三相交流電圧をインバータ20へ出力する。
ここで、商用電源90から蓄電装置Bの充電時、モータジェネレータMG1の三相コイル12は、インバータ20のスイッチングにより発生するノイズが商用電源90へ流出するのを防止するためのリアクトルとして機能する。商用電源90から中性点N1に供給される電流を三相コイル12の各相コイルに均等に流すと、理論的には三相コイル12のインダクタンスは零となりリアクトルとして機能しないところ(実際には小さな漏れインダクタンスが発生する。)、この実施の形態1では、後述のように、各相コイルに流される電流を各相間で不均等にするように電流制御される。
電流センサ82は、モータジェネレータMG1の各相コイルに流れるモータ電流I1を検出し、その検出値をECU60へ出力する。レゾルバ94は、モータジェネレータMG1のロータの回転角θを検出し、その検出値をECU60へ出力する。
ECU60は、インバータ20を駆動するための信号PWM1を生成し、その生成した信号PWM1をインバータ20へ出力する。ここで、充電コネクタ92が充電ポート50に接続され、信号ACに基づいて商用電源90から蓄電装置Bの充電が要求されているとき、ECU60は、商用電源90から中性点N1に与えられる交流電力を直流電力に変換して蓄電装置Bを充電するようにインバータ20を制御する。この充電制御の詳細については、後ほど説明する。
なお、信号ACは、商用電源90から蓄電装置Bの充電を要求する信号であって、たとえば、充電コネクタ92と充電ポート50との接続が検知され、かつ、車両100において充電の準備が整うと、活性化される。
図2は、図1に示したECU60の機能ブロック図である。図2を参照して、ECU60は、電流指令生成部62と、インバータ制御部64とを含む。電流指令生成部62は、車両ECU(図示せず、以下同じ。)から受ける充電電力指令値PRおよび電圧センサ74からの電圧VACに基づいて、商用電源90から蓄電装置Bの充電時にモータジェネレータMG1のU相コイルU1、V相コイルV1およびW相コイルW1にそれぞれ流す電流の目標値を示す電流指令値IRu,IRv,IRwを生成する。
インバータ制御部64は、車両ECUから受けるモータジェネレータMG1のトルク指令値TR1、電流センサ82からのモータ電流I1、電圧センサ72からの電圧VDC、電流センサ86からの電流IAC、信号AC、レゾルバ94からの回転角θ1、および電流指令生成部62からの電流指令値IRu,IRv,IRwに基づいて、インバータ20のスイッチング素子Q11〜Q16をオン/オフするための信号PWM1を生成し、その生成した信号PWM1をインバータ20へ出力する。
図3は、図2に示した電流指令生成部62の機能ブロック図である。図3を参照して、電流指令生成部62は、実効値演算部110と、位相検出部112と、正弦波生成部114と、除算部116と、乗算部118と、各相電流指令生成部120とを含む。実効値演算部110は、商用電源90の電圧を示す電圧VACのピーク電圧を検出し、その検出したピーク電圧に基づいて電圧VACの実効値を算出する。位相検出部112は、電圧VACのゼロクロス点を検出し、その検出したゼロクロス点に基づいて電圧VACの位相を検出する。
正弦波生成部114は、位相検出部112によって検出された電圧VACの位相に基づいて、電圧VACと同相の正弦波を生成する。正弦波生成部114は、たとえば、正弦波関数のテーブルを用いて、位相検出部112からの位相に基づいて電圧VACと同相の正弦波を生成することができる。
除算部116は、実効値演算部110からの電圧VACの実効値で充電電力指令値PRを除算し、その演算結果を乗算部118へ出力する。乗算部118は、除算部116の演算結果に正弦波生成部114からの正弦波を乗算し、その演算結果を入力電流指令値IRとして各相電流指令生成部120へ出力する。なお、この入力電流指令値IRは、商用電源90から供給される電流IACの目標値に相当する。
各相電流指令生成部120は、入力電流指令値IRに基づいて各相毎の電流指令値IRu,IRv,IRwを生成する。具体的には、入力電流指令値IRを3等分して電流指令値IRu,IRv,IRwを生成すると、上述したように理論的には三相コイル12のインダクタンスが零となるところ、この実施の形態1では、各相コイルに流される電流を各相間で不均等にするように電流指令値IRu,IRv,IRwが生成される。以下、三相コイル12のインダクタンスを非零化する電流指令値IRu,IRv,IRwと、三相コイル12のインダクタンスが非零化されることについて説明する。
図4は、図1に示したモータジェネレータMG1のコイル配置を説明するための概念図である。なお、この図4では、発明の原理を説明するために、モータジェネレータMG1が2極モータの場合について示されているが、4極以上のモータについても本願発明は適用可能である。
図4を参照して、U相コイルU1、V相コイルV1およびW相コイルW1は、互いに電気的に120°ずらして配設される。U相コイル中心からのロータ122の回転角をθとし、ロータ122の磁極方向をd軸、その磁極方向に垂直な方向をq軸とする。端子130は、中性点N1に電気的に接続され、商用電源90から供給される電力を受ける。そして、端子130から入力される電流Iuvw−nは、U相電流Iu、V相電流IvおよびW相電流Iwに分配されて端子124,126,128からインバータ20のU相アーム22、V相アーム24およびW相アーム26へ出力される。
いま、商用電源90から蓄電装置Bの充電時におけるモータジェネレータMG1の電圧方程式は、次式によって表される。
Figure 2009254100
ここで、Luvw−nは三相コイル12のインダクタンスを示し、I,Iはそれぞれd軸電流およびq軸電流を示す。
この実施の形態1では、三相コイル12の各相コイルに流す電流を均等にせず、次式で示すようにオフセットが与えられる。
Figure 2009254100
ここで、ωは商用電源90の周波数であり、αは非零の値である。
式(7)〜(9)を式(5),(6)に代入すると次式が得られる。
Figure 2009254100
式(10),(11)を式(3),(4)に代入すると次式が得られる。
Figure 2009254100
式(12),(13)を式(2)に代入すると次式が得られる。
Figure 2009254100
ここで、コイルの抵抗R≪ωL,ωLであるので、Rを含む項は零で近似した。
したがって、式(14)を式(1)に代入すると、三相コイル12のインダクタンスは次式で表される。
Figure 2009254100
このように、三相コイル12の各相コイルに式(7)〜(9)で示される電流を流すことによって、三相コイル12のインダクタンスを非零とすることができる。
式(15)から判るように、三相コイル12のインダクタンスは、モータジェネレータMG1のロータの回転角θの関数となっているので、回転角θによって三相コイル12のインダクタンスが変化する。そこで、この実施の形態1では、回転角θに拘わらず三相コイル12のインダクタンスを一定にするために、電流オフセット量を決める値αを次式に示されるθの関数とする。
Figure 2009254100
ここで、Lcは非零の定数である。これにより、三相コイル12のインダクタンスを非零化し、かつ、モータジェネレータMG1のロータの回転角θに拘わらず三相コイル12のインダクタンスを一定にできる。
なお、電流指令値IRu,IRv,IRwの実際の生成方法は、式(7)〜(9)において、Iuvw−n・cos(ωt)を入力電流指令値IRに置換え、式(16)を用いて回転角θに基づいてαを算出すればよい。
図5は、図2に示したインバータ制御部64の機能ブロック図である。図5を参照して、インバータ制御部64は、相電圧演算部132と、減算部134,138,142と、電流制御部136,140,144と、加算部146と、PWM制御部148とを含む。
相電圧演算部132は、モータジェネレータMG1のトルク指令値TR1およびモータ電流I1ならびに電圧VDCに基づいて、モータジェネレータMG1の各相コイルに印加する電圧指令値を算出し、その算出した各相電圧指令値を加算部146へ出力する。
減算部134は、電流指令値IRuからU相電流I1(u)を減算して電流制御部136へ出力する。電流制御部136は、信号ACが活性化されているとき、電流指令値IRuとU相電流I1(u)との偏差に基づいて、U相電流I1(u)を電流指令値IRuに追従させるための電圧指令値を生成し、その生成した電圧指令値を加算部146へ出力する。
減算部138は、電流指令値IRvからV相電流I1(v)を減算して電流制御部140へ出力する。電流制御部140は、信号ACが活性化されているとき、電流指令値IRvとV相電流I1(v)との偏差に基づいて、V相電流I1(v)を電流指令値IRvに追従させるための電圧指令値を生成し、その生成した電圧指令値を加算部146へ出力する。
減算部142は、電流指令値IRwからW相電流I1(w)を減算して電流制御部144へ出力する。電流制御部144は、信号ACが活性化されているとき、電流指令値IRwとW相電流I1(w)との偏差に基づいて、W相電流I1(w)を電流指令値IRwに追従させるための電圧指令値を生成し、その生成した電圧指令値を加算部146へ出力する。
なお、信号ACが非活性化されているときは、電流制御部136,140,144は、電圧指令値を零で出力する。
加算部146は、相電圧演算部132から出力されるU相の電圧指令値に電流制御部136からの出力を加算し、その演算結果をU相電圧指令値としてPWM制御部148へ出力する。また、加算部146は、相電圧演算部132から出力されるV相の電圧指令値に電流制御部140からの出力を加算し、その演算結果をV相電圧指令値としてPWM制御部148へ出力する。さらに、加算部146は、相電圧演算部132から出力されるW相の電圧指令値に電流制御部144からの出力を加算し、その演算結果をW相電圧指令値としてPWM制御部148へ出力する。
PWM制御部148は、加算部146からの各相電圧指令値に基づいて、実際にインバータ20のスイッチング素子Q11〜Q16をオン/オフするための信号PWM1を生成し、その生成した信号PWM1をインバータ20のスイッチング素子Q11〜Q16へ出力する。
以上のように、この実施の形態1においては、商用電源90から蓄電装置Bの充電時、三相コイル12の各相コイルに流される電流を互いに不均等にするようにインバータ20を制御するので、漏れインダクタンス以上の大きなインダクタンスが三相コイル12に発生する。ここで、三相コイル12に発生するインダクタンスは、モータジェネレータMG1のロータの回転角θによって変化するところ、この実施の形態1においては、回転角θに拘わらず三相コイル12に生じるインダクタンスを一定にするように回転角θに応じてオフセット値αが決定されるので、三相コイル12に生じるインダクタンスが回転角θに拘わらず安定化(一定化)される。したがって、この実施の形態1によれば、商用電源90からの充電用にリアクトルを別途設けることなくインダクタンスを増加することができ、かつ、三相コイル12により構成される充電用リアクトルのインダクタンスを安定化することができる。
[実施の形態2]
この実施の形態2では、三相コイル12の各相コイルの配置を120°均等配置から機械的にずらすことによって、三相コイル12のインダクタンスが非零化される。
図6は、実施の形態2におけるモータジェネレータMG1のコイル配置を説明するための概念図である。なお、この図6でも、発明の原理を説明するために、モータジェネレータMG1が2極モータの場合について示されているが、4極以上のモータについても適用可能である。
図6を参照して、U相コイルU1を基準として、V相コイルV1およびW相コイルW1の配置が120°からβだけずらされる。一例として、U相コイルU1の位置を電気角0°として、V相コイルV1が120°から+βだけずらされて配置され、W相コイルW1が240°から−βだけずらされて配置される。
このようなコイル配置にすると、三相コイル12の各相コイルに均等に電流を流しても、三相コイル12にインダクタンス(漏れインダクタンスを除く)が発生する。以下、これについて説明する。
上述のように、U相コイルU1の位置を電気角0°として、V相コイルV1が120°から+βだけずらされて配置され、W相コイルW1が240°から−βだけずらされて配置される場合、d軸電流Iおよびq軸電流Iは、次式によって表される。
Figure 2009254100
ここで、この実施の形態2では、次式に示すように、三相コイル12の各相コイルに均等に電流が流される。
Figure 2009254100
式(19)を式(17),(18)に代入すると次式が得られる。
Figure 2009254100
式(20),(21)を式(3),(4)に代入すると次式が得られる。
Figure 2009254100
式(22),(23)を式(2)に代入すると次式が得られる。
Figure 2009254100
ここで、コイルの抵抗R≪ωL,ωLであるので、Rを含む項は零で近似した。
したがって、式(24)を式(1)に代入すると、三相コイル12のインダクタンスは次式で表される。
Figure 2009254100
このように、三相コイル12の各相コイルの配置を120°均等配置から機械的にずらすことによって、三相コイル12に均等に電流を流しても三相コイル12のインダクタンスを非零にすることができる。
図7は、モータジェネレータMG1の三相コイル12が集中巻の場合のコイル配置を説明するための概念図である。図7を参照して、ステータコア152には、ティース154,156,158が設けられる。ここで、ティース154の中心軸とティース156の中心軸との内角、およびティース154の中心軸とティース158の中心軸との内角の各々が120°+βとなるようにティース154,156,158が設けられる。そして、ティース154,156,158にU相コイルU1、V相コイルV1およびW相コイルW1がそれぞれ巻回される。
図8は、モータジェネレータMG1の三相コイル12が分布巻の場合のコイル配置を説明するための概念図である。図8を参照して、分布巻の場合においても、点線で示されるU相コイル中心UとV相コイル中心Vとの内角、およびU相コイル中心UとW相コイル中心Wとの内角の各々が120°+βとなるように、ステータコア160の内周面にティースが形成される。そして、図に示されるようにU相コイルU1、V相コイルV1およびW相コイルW1が分布巻で巻回される。
再び図2を参照して、実施の形態2におけるECU60Aは、電流指令生成部62Aと、インバータ制御部64Aとを含む。
図9は、実施の形態2における電流指令生成部62Aの機能ブロック図である。図9を参照して、電流指令生成部62Aは、図3に示した実施の形態1における電流指令生成部62の構成において、各相電流指令生成部120を含まない構成から成る。すなわち、電流指令生成部62Aは、商用電源90から供給される電流IACの目標値に相当する入力電流指令値IRをインバータ制御部64Aへ出力する。
図10は、実施の形態2におけるインバータ制御部64Aの機能ブロック図である。図10を参照して、インバータ制御部64Aは、相電圧演算部132と、減算部162と、電流制御部164と、加算部146と、PWM制御部148とを含む。
減算部162は、入力電流指令値IRから電流IACを減算して電流制御部164へ出力する。電流制御部164は、信号ACが活性化されているとき、入力電流指令値IRと電流IACとの偏差に基づいて、電流IACを入力電流指令値IRに追従させるための電圧指令値を生成し、その生成した電圧指令値を加算部146へ出力する。そして、加算部146は、相電圧演算部132から出力される各相電圧指令に電流制御部164からの出力を一律に加算してPWM制御部148へ出力する。
なお、相電圧演算部132およびPWM制御部148については、図5で説明したとおりである。
以上のように、この実施の形態2においては、モータジェネレータMG1の三相コイル12は、120°均等配置に対してずらされて配置されるので、三相コイル12の各相コイルに均等に電流を流しても三相コイル12に十分なインダクタンスが発生する。したがって、この実施の形態2によれば、商用電源90からの充電用にリアクトルを別途設けることなくインダクタンスを増加することができる。また、三相コイル12の各相コイルに均等に電流を流せばよいので、充電時のインバータ制御を簡略化できる。
[実施の形態3]
この実施の形態3では、2つのモータジェネレータを用いて商用電源90から蓄電装置Bの充電を行なう構成が示される。
図11は、実施の形態3による車両の全体ブロック図である。図11を参照して、車両100Bは、図1に示した車両100の構成において、インバータ30と、モータジェネレータMG2と、電流センサ84と、レゾルバ96とをさらに備える。また、車両100Bは、整流回路40を備えず、ECU60(60A)に代えてECU60Bを備える。
インバータ30は、U相アーム32、V相アーム34およびW相アーム36を含む。U相アーム32、V相アーム34およびW相アーム36は、正極線PLと負極線NLとの間に並列に接続される。U相アーム32は、直列に接続されたスイッチング素子Q21,Q22を含み、V相アーム34は、直列に接続されたスイッチング素子Q23,Q24を含み、W相アーム36は、直列に接続されたスイッチング素子Q25,Q26を含む。スイッチング素子Q21〜Q26には、ダイオードD21〜D26が逆並列に接続される。
モータジェネレータMG2も、三相交流回転電機であり、たとえば三相交流同期電動発電機から成る。モータジェネレータMG2は、三相コイル14をステータコイルとして含む。三相コイル14を形成するU相コイルU2、V相コイルV2およびW相コイルW2の一端は、互いに接続されて中性点N2を形成し、U相コイルU2、V相コイルV2およびW相コイルW2の他端は、インバータ30のU相アーム32、V相アーム34およびW相アーム36にそれぞれ接続される。そして、中性点N2と充電ポート50との間に電力線ACL2が配設される。
インバータ30は、ECU60からの信号PWM2に基づいて、蓄電装置Bから受ける直流電圧を三相交流電圧に変換し、その変換した三相交流電圧をモータジェネレータMG2へ出力する。ここで、充電コネクタ92によって充電ポート50に接続される商用電源90から交流電力が入力されると、インバータ30は、商用電源90から電力線ACL2を介して中性点N2に与えられる交流電力を直流電力に変換して正極線PLへ出力し、蓄電装置Bを充電する。
モータジェネレータMG2は、インバータ30によって駆動される。そして、モータジェネレータMG1と同様に、商用電源90から蓄電装置Bの充電時、モータジェネレータMG2の三相コイル14は、インバータ30のスイッチングにより発生するノイズが商用電源90へ流出するのを防止するためのリアクトルとして機能する。充電時に三相コイル14をリアクトルとして機能させるために、実施の形態1のように、三相コイル14の各相コイルに流される電流を各相間で不均等にするように電流制御してもよいし、実施の形態2のように、三相コイル14の各相コイルの配置を120°均等配置から機械的にずらしてもよい。
電流センサ84は、モータジェネレータMG2の各相コイルに流れるモータ電流I2を検出し、その検出値をECU60Bへ出力する。レゾルバ96は、モータジェネレータMG2のロータの回転角θ2を検出し、その検出値をECU60Bへ出力する。
そして、ECU60Bは、充電コネクタ92が充電ポート50に接続され、信号ACに基づいて商用電源90から蓄電装置Bの充電が要求されているとき、実施の形態1または実施の形態2で説明した手法に従ってインバータ20を制御するとともに、インバータ30についても、実施の形態1または実施の形態2で説明した手法に従って、商用電源90から中性点N2に与えられる交流電力を直流電力に変換して蓄電装置Bを充電するようにインバータ30を制御する。
以上のように、この実施の形態3によっても、上記の実施の形態1や実施の形態2と同様の効果が得られる。
なお、上記の各実施の形態においては、モータジェネレータMG1(MG2)は、三相交流回転電機としたが、この発明は、三相以外の多相交流回転電機についても容易に拡張して適用することができる。
また、上記の各実施の形態において、蓄電装置Bとインバータ20(30)との間に、インバータ20(30)の入力電圧を蓄電装置Bの電圧以上に調整可能な昇圧コンバータを設けてもよい。
なお、上記において、モータジェネレータMG1は、この発明における「第1の交流回転電機」の一実施例に対応し、三相コイル12は、この発明における「第1の多相巻線」の一実施例に対応する。また、インバータ20は、この発明における「第1のインバータ」の一実施例に対応し、電力線ACL1,ACL2および充電ポート50は、この発明における「接続装置」の一実施例を形成する。さらに、ECU60,60A,60Bは、この発明における「制御装置」の一実施例に対応し、レゾルバ94は、この発明における「第1の回転角センサ」の一実施例に対応する。
また、さらに、モータジェネレータMG2は、この発明における「第2の交流回転電機」の一実施例に対応し、三相コイル14は、この発明における「第2の多相巻線」の一実施例に対応する。また、さらに、インバータ30は、この発明における「第2のインバータ」の一実施例に対応し、レゾルバ96は、この発明における「第2の回転角センサ」の一実施例に対応する。
今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施の形態の説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
この発明の実施の形態1による車両の全体ブロック図である。 図1に示すECUの機能ブロック図である。 図2に示す電流指令生成部の機能ブロック図である。 図1に示すモータジェネレータのコイル配置を説明するための概念図である。 図2に示すインバータ制御部の機能ブロック図である。 実施の形態2におけるモータジェネレータのコイル配置を説明するための概念図である。 モータジェネレータの三相コイルが集中巻の場合のコイル配置を説明するための概念図である。 モータジェネレータの三相コイルが分布巻の場合のコイル配置を説明するための概念図である。 実施の形態2における電流指令生成部の機能ブロック図である。 実施の形態2におけるインバータ制御部の機能ブロック図である。 実施の形態3による車両の全体ブロック図である。
符号の説明
12,14 三相コイル、20,30 インバータ、22,32 U相アーム、24,34 V相アーム、26,36 W相アーム、40 整流回路、50 充電ポート、60,60A,60B ECU、62,62A 電流指令生成部、64,64A インバータ制御部、72,74 電圧センサ、82,84,86 電流センサ、90 商用電源、92 充電コネクタ、94,96 レゾルバ、100,100A,100B 車両、110 実効値演算部、112 位相検出部、114 正弦波生成部、116 除算部、118 乗算部、120 各相電流指令生成部、122 ロータ、124,126,128,130 端子、132 相電圧演算部、134,138,142,162 減算部、136,140,144,164 電流制御部、146 加算部、148 PWM制御部、152,160 ステータコア、154,156,158 ティース、B 蓄電装置、C1,C2 コンデンサ、PL 正極線、NL 負極線、Q11〜Q16,Q21〜Q26 スイッチング素子、D11〜D16,D21〜D26,D41,D42 ダイオード、U1,U2 U相コイル、V1,V2 V相コイル、W1,W2 W相コイル、MG1,MG2 モータジェネレータ、N1,N2 中性点、ACL1,ACL2 電力線。

Claims (8)

  1. 車両に搭載された蓄電装置を商用電源から充電する充電制御装置であって、
    星形結線された第1の多相巻線を固定子巻線として含む第1の交流回転電機と、
    前記第1の多相巻線に接続され、前記第1の交流回転電機と前記蓄電装置との間で電力変換を行なう第1のインバータと、
    前記商用電源を前記第1の多相巻線の中性点に接続可能に構成された接続装置と、
    前記商用電源から前記蓄電装置の充電時、前記接続装置によって前記中性点に与えられる前記商用電源からの電力を変換して前記蓄電装置を充電するように前記第1のインバータを制御する制御装置と、
    前記第1の交流回転電機の回転子の回転角を検出する第1の回転角センサとを備え、
    前記制御装置は、前記第1の多相巻線の各相巻線に流される電流を互いに不均等にするように前記第1のインバータを制御するとともに、前記回転子の回転角に拘わらず前記第1の多相巻線に生じるインダクタンスを一定にするように、前記第1の回転角センサによって検出される回転角に応じて各相間の電流の不均等量を決定する、充電制御装置。
  2. 前記制御装置は、前記回転子の回転角に拘わらず前記第1の多相巻線に生じるインダクタンスを一定にするように、前記第1の回転角センサによって検出される回転角に応じて、各相間に与える電流オフセット量を決定する、請求項1に記載の充電制御装置。
  3. 星形結線された第2の多相巻線を固定子巻線として含む第2の交流回転電機と、
    前記第2の多相巻線に接続され、前記第2の交流回転電機と前記蓄電装置との間で電力変換を行なう第2のインバータと、
    前記第2の交流回転電機の回転子の回転角を検出する第2の回転角センサとをさらに備え、
    前記接続装置は、前記商用電源を前記第1の多相巻線の中性点および前記第2の多相巻線の中性点に接続可能に構成され、
    前記制御装置は、前記商用電源から前記蓄電装置の充電時、前記接続装置によって前記第1の多相巻線の中性点および前記第2の多相巻線の中性点に与えられる前記商用電源からの電力を変換して前記蓄電装置を充電するように前記第1および第2のインバータを制御し、
    前記制御装置は、さらに、前記第2の多相巻線の各相巻線に流される電流を互いに不均等にするように前記第2のインバータを制御するとともに、前記第2の交流回転電機の回転子の回転角に拘わらず前記第2の多相巻線に生じるインダクタンスを一定にするように、前記第2の回転角センサによって検出される回転角に応じて前記第2の多相巻線における各相間の電流の不均等量を決定する、請求項1または請求項2に記載の充電制御装置。
  4. 車両に搭載された蓄電装置を商用電源から充電する充電制御装置であって、
    星形結線された第1の多相巻線を固定子巻線として含む第1の交流回転電機と、
    前記第1の多相巻線に接続され、前記第1の交流回転電機と前記蓄電装置との間で電力変換を行なう第1のインバータと、
    前記商用電源を前記第1の多相巻線の中性点に接続可能に構成された接続装置と、
    前記商用電源から前記蓄電装置の充電時、前記接続装置によって前記中性点に与えられる前記商用電源からの電力を変換して前記蓄電装置を充電するように前記第1のインバータを制御する制御装置とを備え、
    前記第1の多相巻線は、相数から決定される等間隔配置に対してずらされて配置され、
    前記制御装置は、前記第1の多相巻線の各相巻線に流される電流を互いに均等にするように前記第1のインバータを制御する、充電制御装置。
  5. 前記第1の多相巻線は、集中巻によって形成される、請求項4の記載の充電制御装置。
  6. 前記第1の多相巻線は、分布巻によって形成される、請求項4の記載の充電制御装置。
  7. 星形結線された第2の多相巻線を固定子巻線として含む第2の交流回転電機と、
    前記第2の多相巻線に接続され、前記第2の交流回転電機と前記蓄電装置との間で電力変換を行なう第2のインバータとをさらに備え、
    前記接続装置は、前記商用電源を前記第1の多相巻線の中性点および前記第2の多相巻線の中性点に接続可能に構成され、
    前記制御装置は、前記商用電源から前記蓄電装置の充電時、前記接続装置によって前記第1の多相巻線の中性点および前記第2の多相巻線の中性点に与えられる前記商用電源からの電力を変換して前記蓄電装置を充電するように前記第1および第2のインバータを制御し、
    前記第2の多相巻線は、相数から決定される等間隔配置に対してずらされて配置され、
    前記制御装置は、さらに、前記第2の多相巻線の各相巻線に流される電流を互いに均等にするように前記第2のインバータを制御する、請求項4から請求項6のいずれか1項に記載の充電制御装置。
  8. 請求項1から請求項7のいずれか1項に記載の充電制御装置を備える車両。
JP2008098126A 2008-04-04 2008-04-04 充電制御装置およびそれを備えた車両 Withdrawn JP2009254100A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008098126A JP2009254100A (ja) 2008-04-04 2008-04-04 充電制御装置およびそれを備えた車両

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008098126A JP2009254100A (ja) 2008-04-04 2008-04-04 充電制御装置およびそれを備えた車両

Publications (1)

Publication Number Publication Date
JP2009254100A true JP2009254100A (ja) 2009-10-29

Family

ID=41314237

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008098126A Withdrawn JP2009254100A (ja) 2008-04-04 2008-04-04 充電制御装置およびそれを備えた車両

Country Status (1)

Country Link
JP (1) JP2009254100A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018150511A1 (ja) * 2017-02-16 2018-08-23 三菱電機株式会社 回転電機の制御装置、回転電機、および回転電機の制御方法
CN111823893A (zh) * 2019-04-22 2020-10-27 现代自动车株式会社 用于环保车辆的充电系统以及使用该系统的充电控制方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018150511A1 (ja) * 2017-02-16 2018-08-23 三菱電機株式会社 回転電機の制御装置、回転電機、および回転電機の制御方法
JPWO2018150511A1 (ja) * 2017-02-16 2019-06-27 三菱電機株式会社 回転電機の制御装置、回転電機、および回転電機の制御方法
US10944347B2 (en) 2017-02-16 2021-03-09 Mitsubishi Electric Corporation Rotary electrical machine control device, rotary electrical machine, and rotary electrical machine control method
CN111823893A (zh) * 2019-04-22 2020-10-27 现代自动车株式会社 用于环保车辆的充电系统以及使用该系统的充电控制方法

Similar Documents

Publication Publication Date Title
JP4752352B2 (ja) 交流電圧出力装置およびそれを備えたハイブリッド自動車
JP4491434B2 (ja) 電力制御装置およびそれを備えた車両
JP5558176B2 (ja) 電動機駆動装置およびそれを搭載する車両
JP4742781B2 (ja) 交流電圧出力装置およびそれを備えたハイブリッド自動車
US7701156B2 (en) Electric motor drive control system and control method thereof
US8143861B2 (en) Charge control device and vehicle using the same
JP4760465B2 (ja) 電力変換装置
US10099563B2 (en) Power supply device for vehicle and method for controlling the same
JP2010051092A (ja) 充電システムおよびそれを備えた車両
US8680801B2 (en) Rotating electrical machine system
JP2012196095A (ja) 回転電機システム
JP5659945B2 (ja) 回転電機の制御装置
JP2017158233A (ja) 電力変換装置
JP2009254101A (ja) 充電制御装置およびそれを備えた車両
JP2021035202A (ja) 電源装置
WO2019102539A1 (ja) 回転電機制御装置及び電動車両
JP2009296843A (ja) 充電制御装置およびそれを備えた車両
JP2009254100A (ja) 充電制御装置およびそれを備えた車両
CN113162481A (zh) 旋转电机装置的控制装置
JP5412930B2 (ja) 回転電機制御システム
JP7192291B2 (ja) 回転電機制御システム
JP2007068363A (ja) 交流電圧発生装置および動力出力装置
JP2015082853A (ja) モータ制御システム
Hijikata et al. Wide range operation by low-voltage inverter-fed MATRIX motor with single-layer distributed winding for automobile traction motor
JP6405960B2 (ja) スイッチトリラクタンスモータの制御装置

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110607