JP2008245408A - 電力システムおよび電動車両 - Google Patents

電力システムおよび電動車両 Download PDF

Info

Publication number
JP2008245408A
JP2008245408A JP2007081429A JP2007081429A JP2008245408A JP 2008245408 A JP2008245408 A JP 2008245408A JP 2007081429 A JP2007081429 A JP 2007081429A JP 2007081429 A JP2007081429 A JP 2007081429A JP 2008245408 A JP2008245408 A JP 2008245408A
Authority
JP
Japan
Prior art keywords
power
current
compensation
control device
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007081429A
Other languages
English (en)
Inventor
Koji Ito
耕巳 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2007081429A priority Critical patent/JP2008245408A/ja
Publication of JP2008245408A publication Critical patent/JP2008245408A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Inverter Devices (AREA)

Abstract

【課題】交流電源への高調波の影響を十分に抑制可能な電力システムを提供する。
【解決手段】高調波発生負荷20は、商用交流電源10からの受電に伴ない高調波を発生する。補償回路30は、商用交流電源10と高調波発生負荷20との間に設けられ、商用交流電源10から供給される交流電流Iacの一部を高調波発生負荷20とは異なる電力消費部40へ出力可能に構成される。制御装置50は、高調波の商用交流電源10への影響を防止するための補償電流Icompを電力消費部40へ流すように補償回路30を制御する。
【選択図】図1

Description

この発明は、電力システムおよび電動車両に関し、特に、交流電源への高調波の影響を抑制可能な電力システムおよび電動車両に関する。
特開平10−201221号公報(特許文献1)は、電源高調波電流を低減可能なコンバータ装置を開示する。このコンバータ装置では、単相入力でコンデンサ平滑型の整流回路のR相およびT相の各々の入力にリアクトルが挿入される。このリアクトルにより、入力電流の導通幅が広げられ、電源高調波電流の低減が図られる(特許文献1参照)。
特開平10−201221号公報 特開平9−294374号公報
しかしながら、上記特開平10−201221号公報に開示されるコンバータ装置では、リアクトルのインダクタンスが小さいと電源高調波電流を十分に低減できない可能性がある。また、リアクトルにおいて発生する鉄損は効率の低下を招く。
そこで、この発明は、かかる問題点を解決するためになされたものであり、その目的は、交流電源への高調波の影響を十分に抑制可能な電力システムを提供することである。
また、この発明の別の目的は、交流電源への高調波の影響を十分に抑制し、かつ、効率的な電力システムを提供することである。
また、この発明の別の目的は、交流電源から車載の蓄電装置を充電する際に交流電源への高調波の影響を十分に抑制可能な電動車両を提供することである。
また、この発明の別の目的は、交流電源から車載の蓄電装置を充電する際に交流電源への高調波の影響を十分に抑制し、かつ、効率的な電動車両を提供することである。
この発明によれば、電力システムは、高調波発生負荷と、補償回路と、制御装置とを備える。高調波発生負荷は、交流電源からの受電に伴ない高調波を発生する。補償回路は、交流電源と高調波発生負荷との間に設けられ、交流電源から供給される電流の一部を高調波発生負荷とは異なる電力消費部へ出力可能に構成される。制御装置は、高調波の交流電源への影響を防止するための補償電流を電力消費部へ流すように補償回路を制御する。
好ましくは、制御装置は、高調波発生負荷へ供給される負荷電流と同等の振幅を有する正弦波電流から負荷電流を差引くことによって補償電流を算出する。
好ましくは、高調波発生負荷は、充電可能な蓄電装置と、電力変換部とを含む。電力変換部は、交流電源からの電力を直流電力に変換して蓄電装置を充電可能に構成される。制御装置は、蓄電装置の充電状態を示す状態量に基づいて補償電流を推定する。
好ましくは、電力システムは、交流電源からの電流を検出する電流センサをさらに備える。制御装置は、電流センサによって検出された検出電流と同等の振幅を有する正弦波電流から検出電流を差引くことによって補償電流を算出する。
好ましくは、電力消費部は、補償電流を受けて発熱する抵抗器を含む。
また、この発明によれば、電動車両は、充電可能な蓄電装置と、受電部と、電力変換部と、補償回路と、制御装置とを備える。受電部は、車両外部の交流電源から電力の供給を受ける。電力変換部は、受電部によって受電された電力を直流電力に変換して蓄電装置を充電可能に構成される。補償回路は、受電部と電力変換部との間に設けられ、受電部からの電流の一部を電力を消費可能に構成された電力消費部へ出力可能に構成される。制御装置は、電力変換部が発生する高調波の交流電源への影響を防止するための補償電流を電力消費部へ流すように補償回路を制御する。
好ましくは、制御装置は、電力変換部へ供給される充電電流と同等の振幅を有する正弦波電流から充電電流を差引くことによって補償電流を算出する。
好ましくは、制御装置は、蓄電装置の充電状態を示す状態量に基づいて補償電流を推定する。
好ましくは、電動車両は、受電部から入力される電流を検出する電流センサをさらに備える。制御装置は、電流センサによって検出された検出電流と同等の振幅を有する正弦波電流から検出電流を差引くことによって補償電流を算出する。
好ましくは、電力消費部は、補償電流を受けて発熱する抵抗器を含む。
この発明においては、補償回路は、交流電源と高調波発生負荷との間に設けられ、交流電源から供給される電流の一部を電力消費部へ出力する。ここで、補償回路は、高調波の交流電源への影響を防止するための補償電流を電力消費部へ流すので、交流電源からの電流を歪み(高調波)のない電流にすることができる。したがって、この発明によれば、交流電源への高調波の影響を十分に抑制することができる。
また、この発明においては、補償電流を受けた抵抗器が発熱する。したがって、この発明によれば、住宅内や、抵抗器を搭載する車両内において、抵抗器が発生した熱を有効利用することができる。
以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰返さない。
[実施の形態1]
図1は、この発明の実施の形態1による電力システムを機能的に示す全体ブロック図である。図1を参照して、電力システム100は、商用交流電源10と、高調波発生負荷20と、補償回路30と、電力消費部40と、制御装置50とを備える。
商用交流電源10は、系統商用電源であって、交流電流Iacを補償回路30へ供給する。高調波発生負荷20は、補償回路30を介して商用交流電源10から負荷電流Isを受ける。この高調波発生負荷20は、補償回路30を介して商用交流電源10からの受電に伴ない高調波を発生する。すなわち、負荷電流Isは、商用交流電源10からの受電に伴ない高調波発生負荷20が発生する高調波を含んだ電流である。
補償回路30は、商用交流電源10と高調波発生負荷20との間に設けられる。補償回路30は、制御装置50からの制御指令に基づいて、商用交流電源10から供給される交流電流Iacの一部を高調波発生負荷20とは異なる電力消費部40へ補償電流Icompとして出力する。
制御装置50は、高調波発生負荷20が発生する高調波の商用交流電源10への影響を防止するために、補償電流Icompを電力消費部40へ流すように補償回路30を制御する。より具体的には、上述のように高調波発生負荷20に供給される負荷電流Isは高調波を含むところ、制御装置50は、商用交流電源10から取得される交流電流Iacが高調波成分のない正弦波となるような補償電流Icompを算出する。そして、制御装置50は、その算出された補償電流Icompが商用交流電源10から電力消費部40へ流れるように補償回路30を制御する。
言い換えると、交流電流Iacは、補償回路30によって負荷電流Isと補償電流Icompとに分流されるところ、高調波を含む負荷電流Isと補償電流Icompとの和が正弦波となるように補償電流Icompが算出され、その算出された補償電流Icompが補償回路30から電力消費部40へ流される。
図2は、商用交流電源10からの交流電流Iacと高調波発生負荷20へ供給される負荷電流Isと電力消費部40へ流される補償電流Icompとの関係を示した図である。図2を参照して、上述のように、負荷電流Isは、高調波発生負荷20が発生する高調波を含んでおり、正弦波に対して歪んだ波形となっている。そして、補償電流Icompは、斜線部で示される。すなわち、負荷電流Isと補償電流Icompとの和が商用交流電源10から供給される交流電流Iacであるところ、制御装置50は、交流電流Iacが歪みのない正弦波となるように、負荷電流Isに基づいて補償電流Icompを算出する。
これにより、商用交流電源10から取得される交流電流Iacを歪みのない正弦波とすることができ、高調波発生負荷20が発生する高調波の商用交流電源10への影響が抑制される。
図3は、図1に示した電力システム100の構成をより詳細に示した図である。図3を参照して、電力システム100は、電圧センサ12と、モデム55とをさらに備える。図1に示した高調波発生負荷20および電力消費部40は、それぞれ電動車両20Aおよび抵抗器40Aから成る。
電圧センサ12は、R相線RLとS相線SLとの間の電圧Vacを検出し、その検出値を制御装置50へ出力する。電動車両20Aは、商用交流電源10から車両駆動用の蓄電装置(図示せず)を充電可能に構成される。電動車両20Aは、蓄電装置を充電する際の電力変換に伴ない高調波を発生する。なお、電動車両20Aの構成については、後ほど説明する。
補償回路30は、R相アーム32と、S相アーム34とを含む。R相アーム32は、npn型トランジスタQ11,Q12と、npn型トランジスタQ11,Q12にそれぞれ逆並列に接続されるダイオードD11,D12とを含む。npn型トランジスタQ11は、抵抗器40Aに接続される電力線L2とR相線RLとの間に接続される。npn型トランジスタQ12は、R相線RLと抵抗器40Aに接続される電力線L1との間に接続される。S相アーム34は、npn型トランジスタQ21,Q22と、npn型トランジスタQ21,Q22にそれぞれ逆並列に接続されるダイオードD21,D22とを含む。npn型トランジスタQ21は、電力線L2とS相線SLとの間に接続される。npn型トランジスタQ22は、S相線SLと電力線L1との間に接続される。
そして、npn型トランジスタQ11,Q12,Q21,Q22は、制御装置50からの駆動信号に基づいてスイッチング動作を行ない、電力線L1,L2を介して抵抗器40Aへ補償電流Icompが流される。
モデム55は、R相線RLおよびS相線SLを介して電動車両20Aと通信可能に構成される(以下、このような電力線を介しての通信を「PLC(Power Line Communications)通信」とも称する。)。
制御装置50は、電圧センサ12から電圧Vacの検出値を受ける。また、制御装置50は、電動車両20Aに搭載された蓄電装置の充電状態(以下「SOC(State of Charge)」とも称する。)をモデム55を介して電動車両20Aから受信する。そして、制御装置50は、後述する方法により、電動車両20Aに搭載された蓄電装置のSOCおよび電圧Vacに基づいて補償電流Icompを算出し、その算出した補償電流Icompを抵抗器40Aへ流すように補償回路30をPWM(Pulse Width Modulation)制御する。
なお、商用交流電源10および電動車両20A以外の各機器は、たとえば住宅内に配設される。そして、商用交流電源10から電動車両20Aの充電時に補償回路30から補償電流Icompを受ける抵抗器40Aは、たとえばヒータから成り、住宅内の温水器や暖房設備などの熱源として有効利用される。
図4は、図3に示した補償回路30のスイッチング状態を説明するための図である。図3,図4を参照して、電圧Vac>0のとき、npn型トランジスタQ11,Q22はオフ状態に制御され、npn型トランジスタQ12,Q21がPWM制御される。これにより、R相線RLからnpn型トランジスタQ12、電力線L1、抵抗器40A、電力線L2およびnpn型トランジスタQ21を順次介してS相線SLへ補償電流Icompが流される。
一方、電圧Vac<0のとき、npn型トランジスタQ12,Q21はオフ状態に制御され、npn型トランジスタQ11,Q22がPWM制御される。これにより、S相線SLからnpn型トランジスタQ22、電力線L1、抵抗器40A、電力線L2およびnpn型トランジスタQ11を順次介してR相線RLへ補償電流Icompが流される。
図5は、図3に示した電動車両20Aのパワートレーン構成を示した図である。図5を参照して、電動車両20Aは、蓄電装置Bと、駆動装置110と、モータジェネレータMGと、車輪120とを含む。また、電動車両20Aは、受電部140と、整流部130と、コンデンサCと、モデム150と、電子制御装置(以下「ECU(Electronic Control Unit)」とも称する。)160と、電圧センサ162と、電流センサ164とを含む。
蓄電装置Bは、正母線PLに正極端子が接続され、負母線NLに負極端子が接続される。蓄電装置Bは、充電可能な車両駆動用の直流電源であり、たとえば、ニッケル水素やリチウムイオン等の二次電池から成る。なお、蓄電装置Bとして、大容量のキャパシタを用いてもよい。
電圧センサ162は、蓄電装置Bの出力電圧Vbを検出し、その検出値をECU160へ出力する。電流センサ164は、蓄電装置Bの充放電電流Ibを検出し、その検出値をECU160へ出力する。
駆動装置110は、正母線PLおよび負母線NLを介して蓄電装置Bから直流電力を受け、ECU160からの制御信号に基づいてモータジェネレータMGを駆動する。駆動装置110は、たとえばインバータや、蓄電装置Bからの直流電圧を昇圧してインバータへ供給する昇圧コンバータなどを含む。モータジェネレータMGは、車両駆動用の回転電機であり、たとえば三相交流回転電機から成る。モータジェネレータMGは、駆動装置110によって駆動され、ロータの回転軸に機械的に連結された車輪120へ駆動トルクを出力する。
受電部140は、車両外部の商用交流電源10(図3)から蓄電装置Bの充電時、商用交流電源10から供給される電力を受電する。受電部140は、たとえば充電プラグやコネクタなどから成る。
整流部130は、ダイオードD31,D32,D41,D42を含む。ダイオードD31は、受電部140に接続される電力線L3にアノードが接続され、正母線PLにカソードが接続される。ダイオードD32は、負母線NLにアノードが接続され、電力線L3にカソードが接続される。ダイオードD41は、受電部140に接続される電力線L4にアノードが接続され、正母線PLにカソードが接続される。ダイオードD42は、負母線NLにアノードが接続され、電力線L4にカソードが接続される。そして、整流部130は、受電部140から入力される交流電力を整流して正母線PLおよび負母線NLへ出力する。
コンデンサCは、正母線PLと負母線NLとの間に接続され、正母線PLと負母線NLとの間の電圧変動成分を低減する。モデム150は、電力線L3,L4を介して、PLC通信によって制御装置50(図3)と通信可能に構成される。
ECU160は、車両の走行時、モータジェネレータMGを駆動するための制御信号を生成し、その生成した制御信号を駆動装置110へ出力する。また、ECU160は、電圧センサ162からの出力電圧Vbおよび電流センサ164からの充放電電流Ibに基づいて蓄電装置BのSOCを算出する。なお、SOCの算出手法については、種々の公知の手法を用いることができる。また、ECU160は、商用交流電源10から蓄電装置Bの充電時、算出した蓄電装置BのSOCをモデム150を介して制御装置50へ出力する。
この電動車両20Aにおいては、受電部140から入力される商用交流電源10からの交流電力を整流部130により整流して蓄電装置Bを充電することができる。ここで、受電部140から入力される交流電力の電圧の絶対値が正母線PLの電圧レベルを超えたときに受電部140から蓄電装置Bへ充電電流が流れるので、受電部140から入力される充電電流(図1,2に示した負荷電流Isに相当し、以下では充電電流Isとも称する。)は、正弦波にならずに尖塔化する。すなわち、車両外部から受電部140に供給される充電電流Isは高調波を含む。
図6は、図3に示した制御装置50における補償電流Icompの算出の考え方を説明するための図である。図6を参照して、蓄電装置BのSOCに応じて充電電流Isが変化する。この理由は、蓄電装置BのSOCに応じて蓄電装置Bの出力電圧Vbが変化するところ、電動車両20Aにおける整流部130の入力電圧である商用交流電源10の交流電圧と、整流部130の出力電圧である蓄電装置Bの出力電圧Vbとの電圧差に応じて、整流部130を介して流れる充電電流Isが決まるからである。
そして、上述のように、補償電流Icompは、充電電流Isと同等の振幅を有する正弦波電流と、充電電流Isとの差から成る。そこで、蓄電装置BのSOCに基づいて充電電流Isを推定し、充電電流Isと同等の振幅を有する正弦波電流からその推定した充電電流Isを差引くことによって補償電流Icompを算出することができる。実際には、この実施の形態1では、蓄電装置BのSOCに応じて補償電流Icompの波形を予め求めてマップ化あるいはモデル化しておくことで、蓄電装置BのSOCに基づいて補償電流Icompが算出される。なお、上記の考え方に沿って、蓄電装置BのSOCに応じて充電電流Isを算出し、その算出した充電電流Isから補償電流Icompを算出してもよい。
図7は、図3に示した制御装置50の制御構造を説明するためのフローチャートである。なお、このフローチャートは、商用交流電源10から電動車両20Aの蓄電装置Bの充電中、一定時間ごとまたは所定の条件成立時にメインルーチンから呼出されて実行される。
図3,図7を参照して、制御装置50は、電圧センサ12から電圧Vacの検出値を取得する(ステップS10)。次いで、制御装置50は、モデム55を介して電動車両20Aから蓄電装置B(図5)のSOCを受信する(ステップS20)。
そして、制御装置50は、蓄電装置BのSOCと補償電流Icompとの関係を示す予め設定されたマップまたはモデル式を用いて、ステップS20において受信した蓄電装置BのSOCに基づいて補償電流Icompを算出する(ステップS30)。なお、制御装置50は、電圧Vacのゼロクロス点を検出し、補償電流Icompを商用交流電源10と同期させる。
次いで、制御装置50は、算出された補償電流Icompが抵抗器40Aへ流れるように補償回路30をPWM制御する(ステップS40)。より具体的には、制御装置50は、電圧Vac>0のとき、npn型トランジスタQ12,Q21をスイッチング制御するとともにnpn型トランジスタQ11,Q22をオフ状態とし、電圧Vac<0のとき、npn型トランジスタQ11,Q22をスイッチング制御するとともにnpn型トランジスタQ12,Q21をオフ状態とする。
以上のように、この実施の形態1においては、商用交流電源10と電動車両20Aとの間に補償回路30が設けられる。そして、補償回路30は、電動車両20Aの充電時に発生する高調波の商用交流電源10への影響を防止するための補償電流Icompを抵抗器40Aへ流すので、商用交流電源10からの交流電流Iacを歪み(高調波)のない電流にすることができる。したがって、この実施の形態1によれば、商用交流電源10への高調波の影響を十分に抑制することができる。
また、この実施の形態1においては、補償電流Icompを受けた抵抗器40Aが発熱する。したがって、この発明によれば、住宅内の温水器や暖房設備などにおいて、抵抗器40Aが発生した熱を有効利用することができる。
[実施の形態2]
図8は、実施の形態2による電力システムの全体ブロック図である。図8を参照して、電力システム100Aは、図3に示した実施の形態1による電力システム100の構成において、モデム55を備えず、電流センサ14をさらに備え、制御装置50に代えて制御装置50Aを備える。
電流センサ14は、商用交流電源10から供給される交流電流Iacを検出し、その検出値を制御装置50Aへ出力する。制御装置50Aは、後述する方法により、電流センサ14からの電流Iacの検出値および電圧センサ12からの電圧Vacの検出値に基づいて補償電流Icompを算出し、その算出した補償電流Icompを抵抗器40Aへ流すように補償回路30をPWM制御する。
なお、電力システム100Aのその他の構成は、図3に示した電力システム100と同じである。
図9は、図8に示した制御装置50Aの制御構造を説明するためのフローチャートである。なお、このフローチャートも、商用交流電源10から電動車両20Aの蓄電装置Bの充電中、一定時間ごとまたは所定の条件成立時にメインルーチンから呼出されて実行される。
図8,図9を参照して、制御装置50Aは、電圧センサ12から電圧Vacの検出値を取得し、電流センサ14から交流電流Iacの検出値を取得する(ステップS110)。次いで、制御装置50Aは、交流電流Iacに基づいて参照正弦波電流を生成する(ステップS120)。具体的には、制御装置50Aは、交流電流Iacのピーク値と同等の振幅を有し、かつ、商用交流電源10と同期した参照正弦波電流を生成する。
次いで、制御装置50Aは、その生成した参照正弦波電流から交流電流Iacを差引くことによって補償電流Icompを算出する(ステップS130)。なお、制御装置50Aは、電圧Vacのゼロクロス点を検出し、参照正弦波電流および補償電流Icompを商用交流電源10と同期させる。
そして、制御装置50Aは、算出された補償電流Icompが抵抗器40Aへ流れるように補償回路30をPWM制御する(ステップS140)。
以上のように、この実施の形態2においては、電流センサ14からの検出値を用いて補償電流Icompを算出するので、補償電流Icompの推定精度が高い。したがって、この実施の形態2によれば、商用交流電源10への高調波の影響を確実に抑制することができる。
[実施の形態3]
上記の実施の形態1,2では、補償回路や電力消費部(抵抗器)は、電動車両の外部に配設されるものとしたが、この実施の形態3では、全て電動車両に搭載される。
図10は、実施の形態3における電動車両のパワートレーン構成を示した図である。図10を参照して、この電動車両20Bは、図5に示した実施の形態1における電動車両20Aの構成において、電圧センサ166と、補償回路30と、抵抗器40Aとをさらに備え、ECU160に代えてECU160Aをさらに備える。
電圧センサ166は、電力線L3と電力線L4との間の電圧Vacを検出し、その検出値をECU160Aへ出力する。補償回路30のnpn型トランジスタQ11は、電力線L2と電力線L3との間に接続され、npn型トランジスタQ12は、電力線L3と電力線L1との間に接続される。また、npn型トランジスタQ21は、電力線L2と電力線L4との間に接続され、npn型トランジスタQ22は、電力線L4と電力線L1との間に接続される。
ECU160Aは、電圧センサ162からの出力電圧Vbおよび電流センサ164からの充放電電流Ibに基づいて蓄電装置BのSOCを算出し、その算出した蓄電装置BのSOCおよび電圧センサ166からの電圧Vacに基づいて補償電流Icompを算出する。そして、ECU160Aは、その算出した補償電流Icompを抵抗器40Aへ流すように補償回路30をPWM制御する。なお、補償電流Icompの具体的な算出方法は、実施の形態1の制御装置50において実行される算出方法と同様である。
なお、ECU160Aのその他の機能は、実施の形態1におけるECU160と同じである。また、電動車両20Bのその他の構成は、実施の形態1における電動車両20Aと同じである。
商用交流電源10から蓄電装置Bの充電時に補償回路30から補償電流Icompを受ける抵抗器40Aは、たとえばヒータから成り、蓄電装置Bを暖機する熱源として有効利用される。また、電動車両20Bがエンジンを動力源として搭載したハイブリッド自動車の場合には、エンジンを暖機する熱源として抵抗器40Aを有効利用することもできる。
以上のように、この実施の形態3によれば、補償回路30や抵抗器40Aは電動車両20Bに搭載されるので、充電プラグやコネクタなどから成る受電部140を商用交流電源10に直接接続しても、商用交流電源10への高調波の影響を十分に抑制することができる。
また、この実施の形態3においては、補償電流Icompを受けて発熱する抵抗器40Aによって、蓄電装置Bやエンジン(ハイブリッド自動車)などを暖機することができる。したがって、この実施の形態2によれば、蓄電装置Bの充電直後に車両を利用する場合に蓄電装置Bやエンジンの出力を直ちに確保することが可能となり、かつ、補償電流Icompも有効利用することができる。
[実施の形態4]
図11は、実施の形態4における電動車両のパワートレーン構成を示した図である。図11を参照して、この電動車両20Cは、図10に示した実施の形態3における電動車両20Bの構成において、電流センサ168をさらに備え、ECU160Aに代えてECU160Bを備える。
電流センサ168は、受電部140から入力される交流電流Iacを検出し、その検出値をECU160Bへ出力する。ECU160Bは、電流センサ168からの電流Iacおよび電圧センサ166からの電圧Vacに基づいて補償電流Icompを算出し、その算出した補償電流Icompを抵抗器40Aへ流すように補償回路30をPWM制御する。なお、補償電流Icompの具体的な算出方法は、図8に示した実施の形態2における制御装置50Aにおいて実行される算出方法と同様である。
なお、ECU160Bのその他の機能は、実施の形態3におけるECU160Aと同じである。また、電動車両20Cのその他の構成は、実施の形態3における電動車両20Bと同じである。
以上のように、この実施の形態4によれば、実施の形態3と同様の効果に加えて、実施の形態2における効果も得られる。
[実施の形態5]
実施の形態5では、図5に示した実施の形態1における電動車両20Aに代えて、以下に説明する電動車両20Dが用いられる。
図12は、実施の形態5における電動車両20Dのパワートレーン構成を示した図である。図12を参照して、この電動車両20Dは、蓄電装置Bと、コンデンサC1と、インバータ110−1,110−2と、モータジェネレータMG1,MG2と、受電部140と、モデム150と、ECU160Cと、電圧センサ162と、電流センサ164とを備える。
インバータ110−1,110−2は、正母線PLおよび負母線NLに互いに並列接続され、それぞれモータジェネレータMG1,MG2に対応して設けられる。インバータ110−1は、npn型トランジスタQ61〜Q66と、npn型トランジスタQ61〜Q66にそれぞれ逆並列に接続されるダイオードD61〜D66とを含む。インバータ110−2は、npn型トランジスタQ71〜Q76と、npn型トランジスタQ71〜Q76にそれぞれ逆並列に接続されるダイオードD71〜D76とを含む。
モータジェネレータMG1,MG2の各々は、三相交流回転電機であって、Y結線(星形結線)された三相コイルをステータコイルとして含む。そして、モータジェネレータMG1の三相コイルの中性点N1に電力線L3が接続され、モータジェネレータMG2の三相コイルの中性点N2に電力線L4が接続される。
ECU160Cは、車両の走行時、モータジェネレータMG1,MG2を駆動するための制御信号を生成し、その生成した制御信号を駆動装置110−1,110−2へ出力する。また、ECU160Cは、車両外部の商用交流電源10から蓄電装置Bの充電時、蓄電装置BのSOCを算出してモデム150を介して制御装置50(図3)へ出力する。
この実施の形態5では、車両外部の商用交流電源10から蓄電装置Bの充電時、商用交流電源10から供給される交流電力をモータジェネレータMG1,MG2の中性点N1,N2に与え、インバータ110−1のダイオードD61〜D66およびインバータ110−2のダイオードD71〜D76を、入力された交流電力を整流して蓄電装置Bへ出力する整流部として用いる。
以上のように、この実施の形態5によれば、商用交流電源10から蓄電装置Bの充電を行なうための専用の整流部を設ける必要がないので、低コスト化を図ることができる。
なお、特に図示しないが、実施の形態3と同様に、補償回路30および抵抗器40Aを上記の電動車両20Dに搭載してもよい。
[実施の形態6]
上記の各実施の形態では、商用交流電源10は単相交流電源としたが、この実施の形態6では、商用交流電源が三相交流電源である場合に対応可能な構成が示される。
図13は、実施の形態6による電力システムの全体ブロック図である。図13を参照して、電力システム100Bは、商用交流電源10Aと、電動車両20Eと、補償回路30Aと、抵抗器40Aと、制御装置50Bと、モデム55と、電圧センサ12A,12Bとを備える。
商用交流電源10Aは、三相交流電源であって、三相交流電流を補償回路30Aへ供給する。電圧センサ12Aは、R相線RLとS相線SLとの間の電圧Vac1を検出し、その検出値を制御装置50Bへ出力する。電圧センサ12Bは、S相線SLとT相線TLとの間の電圧Vac2を検出し、その検出値を制御装置50Bへ出力する。電動車両20Eは、商用交流電源10Aから車両駆動用の蓄電装置(図示せず)を充電可能に構成される。なお、電動車両20Eの構成については、後ほど説明する。
補償回路30Aは、図3に示した補償回路30の構成において、T相アーム36をさらに含む。T相アーム36は、npn型トランジスタQ31,Q32と、npn型トランジスタQ31,Q32にそれぞれ逆並列に接続されるダイオードD31,D32とを含む。npn型トランジスタQ31は、電力線L2とT相線TLとの間に接続される。npn型トランジスタQ32は、T相線TLと電力線L1との間に接続される。
そして、補償回路30Aのnpn型トランジスタQ11,Q12,Q21,Q22,Q31,Q32は、制御装置50Bからの駆動信号に基づいてスイッチング動作を行ない、電力線L1,L2を介して抵抗器40Aへ補償電流Icompが流される。
制御装置50Bは、電圧センサ12A,12Bからそれぞれ電圧Vac1,Vac2の検出値を受ける。また、制御装置50Bは、電動車両20Eに搭載された蓄電装置(図示せず)のSOCをモデム55を介して電動車両20Eから受信する。そして、制御装置50Bは、受信した蓄電装置のSOCおよび電圧Vac1,Vac2に基づいて補償電流Icompを算出し、その算出した補償電流Icompを抵抗器40Aへ流すように補償回路30AをPWM制御する。
図14は、図13に示した電動車両20Eのパワートレーン構成を示した図である。図14を参照して、電動車両20Eは、図5に示した実施の形態1における電動車両20Aの構成において、受電部140および整流部130に代えてそれぞれ受電部140Aおよび整流部130Aを含む。
受電部140Aは、車両外部の商用交流電源10A(図3)から蓄電装置Bの充電時、商用交流電源10Aから供給される三相電力を受電する。整流部130Aは、図5に示した実施の形態1における整流部130の構成において、ダイオードD51,D52をさらに含む。ダイオードD51は、受電部140Aに接続される電力線L5にアノードが接続され、正母線PLにカソードが接続される。ダイオードD52は、負母線NLにアノードが接続され、電力線L5にカソードが接続される。
なお、電動車両20Eのその他の構成は、実施の形態1における電動車両20Aと同じである。
以上のように、この実施の形態6によれば、商用交流電源が三相交流電源である場合にも、商用交流電源への高調波の影響を十分に抑制することができる。
なお、特に図示しないが、実施の形態3と同様に、補償回路30Aおよび抵抗器40Aを上記の電動車両20Eに搭載してもよい。
なお、上記の実施の形態1,2,5,6においては、車両外部の制御装置と電動車両との間の通信をPLC通信で実現する構成について説明したが、制御装置と電動車両との間の通信は、このような通信方法に限られることはない。たとえば、通信ケーブルを別途設けてもよいし、無線LANなどを用いてもよい。
また、上記の各実施の形態における電動車両は、上述した構成を備えていればどのような形態の車両であってもよく、たとえば、電気自動車や、エンジンを搭載したハイブリッド自動車、直流電源として燃料電池をさらに搭載した燃料電池車などを含む。
なお、上記において、電動車両20A〜20Eは、この発明における「高調波発生負荷」に対応し、整流部130,130Aは、この発明における「電力変換部」に対応する。また、実施の形態5におけるインバータ110−1,110−2も、この発明における「電力変換部」に対応する。
今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施の形態の説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
この発明の実施の形態1による電力システムを機能的に示す全体ブロック図である。 商用交流電源からの交流電流と高調波発生負荷へ供給される負荷電流と電力消費部へ流される補償電流との関係を示した図である。 図1に示す電力システムの構成をより詳細に示した図である。 図3に示す補償回路のスイッチング状態を説明するための図である。 図3に示す電動車両のパワートレーン構成を示した図である。 図3に示す制御装置における補償電流の算出の考え方を説明するための図である。 図3に示す制御装置の制御構造を説明するためのフローチャートである。 実施の形態2による電力システムの全体ブロック図である。 図8に示す制御装置の制御構造を説明するためのフローチャートである。 実施の形態3における電動車両のパワートレーン構成を示した図である。 実施の形態4における電動車両のパワートレーン構成を示した図である。 実施の形態5における電動車両のパワートレーン構成を示した図である。 実施の形態6による電力システムの全体ブロック図である。 図13に示す電動車両のパワートレーン構成を示した図である。
符号の説明
10,10A 商用交流電源、12,12A,12B,162,166 電圧センサ、14,164,168 電流センサ、20 高調波発生負荷、20A〜20E 電動車両、30,30A 補償回路、32 R相アーム、34 S相アーム、36 T相アーム、40 電力消費部、40A 抵抗器、50,50A,50B 制御装置、55,150 モデム、100,100A,100B 電力システム、110 駆動装置、110−1,110−2 インバータ、120 車輪、130,130A 整流部、140,140A 受電部、160,160A〜160C ECU、RL R相線、SL S相線、TL T相線、Q11〜Q13,Q21〜Q23,Q61〜Q66,Q71〜Q76 npn型トランジスタ、D11〜D13,D21〜D23,D31,D32,D41,D42,D51,D52,D61〜D66,D71〜D76 ダイオード、L1〜L5 電力線、B 蓄電装置、C,C1 コンデンサ、PL 正母線、NL 負母線、MG,MG1,MG2 モータジェネレータ。

Claims (10)

  1. 交流電源からの受電に伴ない高調波を発生する高調波発生負荷と、
    前記交流電源と前記高調波発生負荷との間に設けられ、前記交流電源から供給される電流の一部を前記高調波発生負荷とは異なる電力消費部へ出力可能に構成された補償回路と、
    前記高調波の前記交流電源への影響を防止するための補償電流を前記電力消費部へ流すように前記補償回路を制御する制御装置とを備える電力システム。
  2. 前記制御装置は、前記高調波発生負荷へ供給される負荷電流と同等の振幅を有する正弦波電流から前記負荷電流を差引くことによって前記補償電流を算出する、請求項1に記載の電力システム。
  3. 前記高調波発生負荷は、
    充電可能な蓄電装置と、
    前記交流電源からの電力を直流電力に変換して前記蓄電装置を充電可能に構成された電力変換部とを含み、
    前記制御装置は、前記蓄電装置の充電状態を示す状態量に基づいて前記補償電流を推定する、請求項1に記載の電力システム。
  4. 前記交流電源からの電流を検出する電流センサをさらに備え、
    前記制御装置は、前記電流センサによって検出された検出電流と同等の振幅を有する正弦波電流から前記検出電流を差引くことによって前記補償電流を算出する、請求項1に記載の電力システム。
  5. 前記電力消費部は、前記補償電流を受けて発熱する抵抗器を含む、請求項1から請求項4のいずれか1項に記載の電力システム。
  6. 充電可能な蓄電装置と、
    車両外部の交流電源から電力の供給を受ける受電部と、
    前記受電部によって受電された電力を直流電力に変換して前記蓄電装置を充電可能に構成された電力変換部と、
    電力を消費可能に構成された電力消費部と、
    前記受電部と前記電力変換部との間に設けられ、前記受電部からの電流の一部を前記電力消費部へ出力可能に構成された補償回路と、
    前記電力変換部が発生する高調波の前記交流電源への影響を防止するための補償電流を前記電力消費部へ流すように前記補償回路を制御する制御装置とを備える電動車両。
  7. 前記制御装置は、前記電力変換部へ供給される充電電流と同等の振幅を有する正弦波電流から前記充電電流を差引くことによって前記補償電流を算出する、請求項6に記載の電動車両。
  8. 前記制御装置は、前記蓄電装置の充電状態を示す状態量に基づいて前記補償電流を推定する、請求項6に記載の電動車両。
  9. 前記受電部から入力される電流を検出する電流センサをさらに備え、
    前記制御装置は、前記電流センサによって検出された検出電流と同等の振幅を有する正弦波電流から前記検出電流を差引くことによって前記補償電流を算出する、請求項6に記載の電動車両。
  10. 前記電力消費部は、前記補償電流を受けて発熱する抵抗器を含む、請求項6から請求項9のいずれか1項に記載の電動車両。
JP2007081429A 2007-03-27 2007-03-27 電力システムおよび電動車両 Withdrawn JP2008245408A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007081429A JP2008245408A (ja) 2007-03-27 2007-03-27 電力システムおよび電動車両

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007081429A JP2008245408A (ja) 2007-03-27 2007-03-27 電力システムおよび電動車両

Publications (1)

Publication Number Publication Date
JP2008245408A true JP2008245408A (ja) 2008-10-09

Family

ID=39916078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007081429A Withdrawn JP2008245408A (ja) 2007-03-27 2007-03-27 電力システムおよび電動車両

Country Status (1)

Country Link
JP (1) JP2008245408A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011016466A1 (ja) * 2009-08-06 2011-02-10 住友電気工業株式会社 電力線通信装置、通信機能付き電源回路、電気機器及び制御監視システム
JP2014204523A (ja) * 2013-04-03 2014-10-27 三菱電機株式会社 インバータ装置、インバータ装置のためのデータ通信装置およびインバータ装置のためのデータ通信方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011016466A1 (ja) * 2009-08-06 2011-02-10 住友電気工業株式会社 電力線通信装置、通信機能付き電源回路、電気機器及び制御監視システム
JP2011040829A (ja) * 2009-08-06 2011-02-24 Sumitomo Electric Ind Ltd 電力線通信装置、通信機能付き電源回路、電気機器及び制御監視システム
US9136911B2 (en) 2009-08-06 2015-09-15 Sumitomo Electric Industries, Ltd. Power line communication device, power supply circuit with communication function, electric appliance, and control and monitoring system
JP2014204523A (ja) * 2013-04-03 2014-10-27 三菱電機株式会社 インバータ装置、インバータ装置のためのデータ通信装置およびインバータ装置のためのデータ通信方法

Similar Documents

Publication Publication Date Title
US7891451B2 (en) Power controller and vehicle equipped with power controller
US7859201B2 (en) Charge control apparatus, electrically powered vehicle and electric storage charge control method
JP5556677B2 (ja) バッテリ充電回路
JP5104723B2 (ja) 電動機制御装置,駆動装置およびハイブリッド駆動装置
Hsu et al. On an electric scooter with G2V/V2H/V2G and energy harvesting functions
JP4978429B2 (ja) 電動機制御装置,電気自動車およびハイブリッド電気自動車
US11799292B2 (en) On-board bidirectional AC fast charger for electric vehicles
JP6092556B2 (ja) 電力供給システム、ならびにそれに用いられる車両および管理装置
JP5691925B2 (ja) 充電システムおよびそれを搭載する車両、ならびに充電装置の制御方法
WO2012005607A2 (en) Inductive power transfer system
KR20080070869A (ko) 충전장치, 전동차량 및 충전시스템
JP2008046751A (ja) 太陽光発電システム、車両、太陽光発電システムの制御方法、およびその制御方法をコンピュータに実行させるためのプログラムを記録したコンピュータ読取可能な記録媒体
JP2019140774A (ja) 車両および蓄電装置の充電方法
JP2009060759A (ja) 電源システムおよびその充電制御方法
JP2012135141A (ja) モータ駆動システム
JP2013236490A (ja) 電気自動車の直流充電方法
JP5724830B2 (ja) 電源システム
JP2009254101A (ja) 充電制御装置およびそれを備えた車両
JP2008245408A (ja) 電力システムおよび電動車両
JP5772357B2 (ja) 充電システムおよびそれを搭載する車両、ならびに充電装置の制御方法
WO2012073350A1 (ja) 車両の電源システム
JP2009296843A (ja) 充電制御装置およびそれを備えた車両
JP7302558B2 (ja) 充電装置および充電装置の制御方法
Karike et al. AC-DC UPF charging circuit for two-wheeler electric vehicle application
US20240186914A1 (en) Device for creating a dc voltage bus for a polyphase electrical system, motor vehicle and renewable energy generator comprising such a device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100601