JP2009249201A - 窒化アルミニウム単結晶の製造装置 - Google Patents

窒化アルミニウム単結晶の製造装置 Download PDF

Info

Publication number
JP2009249201A
JP2009249201A JP2008096231A JP2008096231A JP2009249201A JP 2009249201 A JP2009249201 A JP 2009249201A JP 2008096231 A JP2008096231 A JP 2008096231A JP 2008096231 A JP2008096231 A JP 2008096231A JP 2009249201 A JP2009249201 A JP 2009249201A
Authority
JP
Japan
Prior art keywords
reaction chamber
aluminum nitride
single crystal
raw material
nitride single
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008096231A
Other languages
English (en)
Inventor
Hiroyuki Kamata
弘之 鎌田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2008096231A priority Critical patent/JP2009249201A/ja
Publication of JP2009249201A publication Critical patent/JP2009249201A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

【課題】原料ガスの反応室内壁への凝着を抑え、原料を効果的に結晶成長させることが可能な窒化アルミニウム単結晶の製造装置を提供する。
【解決手段】上部に開口部を有し、内部空間3aの底面側に原料22を収納する反応室3と、該開口部を塞ぐサセプタ4とからなる加熱炉本体、及び内部空間3aへ外部からプロセスガスを導入するガス供給手段5、を少なくとも備えた窒化アルミニウム単結晶の製造装置9であって、反応室3はカーボンコンポジットからなる。前記カーボンコンポジットをなす炭素繊維の長手方向が、重力方向に対して垂直に配されることにより、反応室3内部から反応室3外部への潜熱の放散が遅くなり、反応室3内壁への原料の付着を低減することができる。
【選択図】図1

Description

本発明は窒化アルミニウム単結晶の製造装置に係り、より詳しくは原料の反応室内壁への付着を抑制し、結晶成長速度の向上を図った窒化アルミニウム単結晶の製造装置に関する。
窒化アルミニウム(AlN)系半導体は、深紫外のレーザーダイオードや高耐圧、高周波の電子デバイスとして期待されている。この半導体を育成する基板としては窒化アルミニウム単結晶が最適であることから、AlN単結晶の作製方法の開発が進められている。
AlN単結晶の特徴としては、熱伝導率が290Wm−1−1と非常に高いことが挙げられ、デバイス作動時に発生する熱を放散する上で大変有利である。
窒化アルミニウム単結晶の作製方法としては、溶液法ではフラックス法が、気相法では有機金属気相成長法(Metalorganic Vapor Phase Epitaxy,MOVPE)、水素化物気相堆積法(Hydride Vapor Phase Epitaxy,HVPE)、昇華法(改良レイリー法)などが挙げられる。この中でも昇華法は、特許文献1や特許文献2に記載のあるように、一般的に成長速度が大きいため、バルク結晶の作製に対して有力な方法である。この昇華法とは、原料である窒化アルミニウムを昇華させ、それを昇華温度より低い温度域で再凝縮させ、単結晶を作製する方法である。
昇華法では、結晶の育成室である反応室やるつぼ、種子基板を担持するサセプタやフタの材料として、通常、黒鉛が用いられている。
しかしながら、このように反応室とサセプタが同素材であると、熱伝導率が同じであるため、サセプタとともに反応室内壁にも多くの原料ガスが凝着してしまう。したがって、原料ガスが結晶成長に寄与する割合が減少してしまう。また、原料ガスが被付着物へと凝縮する際に潜熱が発生するが、被付着物の熱伝導率が高いほど潜熱の放散が速やかに進行するため付着量が多くなる。特に、同等の熱伝導を有する二つの被付着物が同じ温度に制御されていれば、付着温度は同等になるため、上記の現象が引き起こされる。
特開平10−53495号公報 特表2002−527343号公報
本発明は、上記事情に鑑みてなされたものであって、原料ガスの反応室内壁への凝着を抑え、原料を効果的に結晶成長させることが可能な窒化アルミニウム単結晶の製造装置を提供することを目的とする。
本発明の請求項1に記載の単結晶の製造装置は、上部に開口部を有し、内部空間の底面側に原料を収納する反応室と、該開口部を塞ぐサセプタとからなる加熱炉本体、及び前記内部空間へ外部からプロセスガスを導入するガス供給手段、を少なくとも備えた窒化アルミニウム単結晶の製造装置であって、前記反応室はカーボンコンポジットからなることを特徴とする。
本発明の請求項2に記載の単結晶の製造装置は、請求項1において、前記カーボンコンポジットをなす炭素繊維の長手方向は、重力方向に対して垂直に配されていることを特徴とする。
本発明によれば、反応室を構成するカーボンコンポジットは黒鉛よりも熱伝導が低いため、原料ガスが反応室内壁に凝縮する際に生じる潜熱の放散速度が遅くなる。そのため、従来のように黒鉛からなる反応室よりも反応室内壁での窒化アルミニウムの付着量を減らすことができる。ゆえに、原料ガスの結晶成長への寄与度が大きくなり、結晶の成長速度の向上を図ることができる。
以下、本発明を、図面を参照して詳細に説明するが、本発明はこれに限定されるものではなく、本発明の主旨を逸脱しない範囲において種々の変更が可能である。
図1は、本発明の単結晶の製造装置9を模式的に示した図である。
本発明の単結晶の製造装置9は、上部に開口部を有し、内部空間3aの底面側に原料22を収納する反応室3と、該開口部を塞ぐサセプタ4とからなる加熱炉本体、及び内部空間3aへ外部からプロセスガスを導入するガス供給手段5、から概略構成されている。
また、サセプタ4は黒鉛からなり、反応室3はカーボンコンポジットから構成されている。
以下、それぞれについて詳細に説明する。
反応室3は上部に開口部を有し、この開口部を塞ぐようにサセプタ4が配された析出部と、下部に窒化アルミニウム単結晶の原料22が配された昇華部とからなる。本発明において、反応室3はカーボンコンポジットからなるものである。
カーボンコンポジットは、炭素繊維を高温で焼き固めて一体化したものであり、物性に異方性を有している。そのため、炭素繊維の長手方向と垂直方向とでは熱伝導に差異があり、長手方向のほうが垂直方向と比較し、熱伝導度は小さくなっている。本発明においては、カーボンコンポジットの長手方向、すなわち熱伝導度の小さい方向は、重力方向に垂直(反応室3の長手方向に対して垂直)に配されている。ゆえに、従来の黒鉛からなる反応室や、カーボンコンポジットの長手方向を反応室の長手方向に配したものと比較し、本発明の反応室3における熱伝導度は小さくなる。したがって、反応室3内部から反応室3外部への潜熱の放散が遅くなるため、反応室3内壁への原料の付着を低減することができる。そのため、原料ガスの結晶成長への寄与度が大きくなり、結晶の成長速度の向上を図ることが可能となる。
原料22としては、粉末状やペレット状、多結晶体を破砕した破片などの窒化アルミニウム用いることができる。
サセプタ4は黒鉛からなり、反応室3の開口部を塞ぐように設けられている。サセプタ4が原料と対向する面には、種子基板11が配されている。また、このサセプタ4の種子基板11が配される面と種子基板11の被堆積面11aとは水平となるように配されている。
種子基板11は、炭化ケイ素(SiC)やサファイア、製造するべき単結晶(化合物半導体結晶)などからなる基板であり、結晶方位が既知であり、所望の結晶方位が得られるようにサセプタに取り付けられる。
ガス供給手段5は、チャンバー1外から反応室3内に例えば窒素ガス等を導入するもので、従来公知のものを用いることができる。また、ガス供給手段5の反応室3内における導入部5aは、反応室3内に配された原料22に対向した位置からガスが排出されるよう、設けられている。
また、加熱炉本体に沿って、加熱炉本体内に配された原料22やサセプタ4、種子基板11を加熱する加熱手段7が設けられている。このような加熱手段7としては、特に限定されるものではなく、従来公知のものを用いることができる。
チャンバー1は、加熱炉本体3,4と、加熱手段7とをその内部に備え、真空ポンプ6と共に所定の真空度にすることができるものである。この真空ポンプ6は、チャンバー1に配されており、チャンバー1内を所定の圧力(例えば10Torr〜760Torr)とするものである。真空ポンプ1としては、所定の圧力とすることができれば特に限定されるものではなく、従来公知のものを用いることができる。また、反応管の支持手段2は、加熱炉本体3,4を所定の位置に載置するもので、特に限定されるものではない。
次に、本発明の製造装置9を用いた窒化アルミニウム単結晶の製造方法について説明する。
まず、窒化アルミニウムの粉末や焼結体などの原料22を反応室3下部にセットし、種子基板11をサセプタ4に配して加熱炉本体を密閉する。
次いで、真空ポンプ6により真空排気した後、ガス供給手段5により窒素ガス等のプロセスガスを加熱炉本体内に導入する。チャンバー1内圧力は例えば10Torr以上760Torr以下、窒素ガス流量は、例えば50sccm以上5000sccm以下である。
そして、原料22が配された反応室3の下部(昇華部)の方が、種子基板4が配されたサセプタ4(析出部)よりも高温となるように加熱手段7により加熱炉本体内の原料22やサセプタ4、種子基板11を加熱する。例えば昇華部の温度は、1800℃以上2400℃以下、析出部の温度は、1700℃以上2300℃以下である。
加熱で昇華させて分解気化された原料22は、窒素ガス雰囲気下で種子基板11上に結晶成長されることで、図2に示すような、種子基板11の被堆積面11aに、窒化アルミニウム単結晶12が成長した窒化アルミニウム単結晶基板10が得られる。
その後、この窒化アルミニウム単結晶12を所定の厚さで切り出して研磨することで、作製された窒化アルミニウム単結晶を、AlN系の発光デバイスや電子デバイスに適用することが出来る。
<実施例1>
反応室を構成するカーボンコンポジットとして、表1に示すように、反応室の横方向(炭素繊維の長手方向)における熱伝導度が4Wm−1−1、反応室の長手方向における熱伝導度が30Wm−1−1のカーボンコンポジットを用い、図1に示すような窒化アルミニウム単結晶の製造装置を作製した。これを実施例1とした。なお、等方性黒鉛からなるサセプタの熱伝導度は120Wm−1−1であった。
<実施例2>
実施例1において、表1に示すように、反応室の横方向における熱伝導度が8Wm−1−1、反応室の長手方向における熱伝導度が20Wm−1−1のカーボンコンポジットを用いたこと以外は実施例1と同様に作製し、これを実施例2とした。
Figure 2009249201
<比較例>
比較例として、黒鉛からなる反応室を用いて、図1に示すような窒化アルミニウム単結晶の製造装置を作製し、これを比較例とした。
上記実施例1〜2、及び比較例の窒化アルミニウム単結晶の製造装置を用いて、表2に示す条件1〜3で窒化アルミニウム単結晶を作製した。その結果を表3に示す。なお、原料としては粉末状の窒化アルミニウムを用い、種子基板としては、6HポリタイプのSiC単結晶基板を用いた。
Figure 2009249201
Figure 2009249201
表3より、カーボンコンポジットからなる反応室を備えた実施例1及び実施例2では、黒鉛からなる反応室を備えた比較例のものよりも、反応室内壁での窒化アルミニウム原料の付着量が減り、窒化アルミニウムの結晶長が長くなっていた。したがって、実施例において、昇華した原料ガスの結晶成長への寄与を大きくすることが可能となることが確認された。
本発明は、青色および紫外発光ダイオード(LED)向け基板や、レーザーダイオード(LD)用基板、パワーデバイス用基板などの製造装置に適用することができる。
本発明の窒化アルミニウム単結晶の製造装置を模式的に示した断面図である。 本発明の製造装置で得られる窒化アルミニウム単結晶基板を模式的に示した図である。
符号の説明
1 チャンバー、2 支持手段、3 反応室、4 サセプタ、5 ガス供給手段、6 真空ポンプ、7 加熱手段、9 窒化アルミニウム単結晶の製造装置、10 窒化アルミニウム単結晶基板、11 種子基板、12 窒化アルミニウム単結晶、22 原料。

Claims (2)

  1. 上部に開口部を有し、内部空間の底面側に原料を収納する反応室と、該開口部を塞ぐサセプタとからなる加熱炉本体、
    及び前記内部空間へ外部からプロセスガスを導入するガス供給手段、を少なくとも備えた窒化アルミニウム単結晶の製造装置であって、
    前記反応室はカーボンコンポジットからなることを特徴とする窒化アルミニウム単結晶の製造装置。
  2. 前記カーボンコンポジットをなす炭素繊維の長手方向は、重力方向に対して垂直に配されていることを特徴とする請求項1に記載の窒化アルミニウム単結晶の製造装置。
JP2008096231A 2008-04-02 2008-04-02 窒化アルミニウム単結晶の製造装置 Pending JP2009249201A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008096231A JP2009249201A (ja) 2008-04-02 2008-04-02 窒化アルミニウム単結晶の製造装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008096231A JP2009249201A (ja) 2008-04-02 2008-04-02 窒化アルミニウム単結晶の製造装置

Publications (1)

Publication Number Publication Date
JP2009249201A true JP2009249201A (ja) 2009-10-29

Family

ID=41310248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008096231A Pending JP2009249201A (ja) 2008-04-02 2008-04-02 窒化アルミニウム単結晶の製造装置

Country Status (1)

Country Link
JP (1) JP2009249201A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013141283A1 (ja) * 2012-03-23 2013-09-26 東洋紡株式会社 真空蒸着装置
JP2016094668A (ja) * 2015-12-04 2016-05-26 東洋紡株式会社 真空蒸着装置を用いる蒸着フィルムの製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013141283A1 (ja) * 2012-03-23 2013-09-26 東洋紡株式会社 真空蒸着装置
JP2013199676A (ja) * 2012-03-23 2013-10-03 Toyobo Co Ltd 真空蒸着装置
JP2016094668A (ja) * 2015-12-04 2016-05-26 東洋紡株式会社 真空蒸着装置を用いる蒸着フィルムの製造方法

Similar Documents

Publication Publication Date Title
JP6830658B2 (ja) 窒化物半導体基板の製造方法及び製造装置
US7524376B2 (en) Method and apparatus for aluminum nitride monocrystal boule growth
US7638346B2 (en) Nitride semiconductor heterostructures and related methods
JP4563230B2 (ja) AlGaN基板の製造方法
US8545629B2 (en) Method and apparatus for producing large, single-crystals of aluminum nitride
US7776153B2 (en) Method and apparatus for producing large, single-crystals of aluminum nitride
JP5186733B2 (ja) AlN結晶の成長方法
WO2006110512A1 (en) Seeded growth process for preparing aluminum nitride single crystals
JP4428105B2 (ja) 化合物膜の製造方法および化合物半導体素子の製造方法
JP5317117B2 (ja) 窒化物単結晶の製造装置
JP2011246749A (ja) アルミニウム系iii族窒化物製造装置、およびアルミニウム系iii族窒化物の製造方法
JP2009249202A (ja) 窒化アルミニウム単結晶の製造方法
EP2784191A1 (en) Low carbon group-III nitride crystals
JP2009249201A (ja) 窒化アルミニウム単結晶の製造装置
JP2009221041A (ja) 結晶成長方法、結晶成長装置およびこれらによって製造された結晶薄膜を有する半導体デバイス
JP4850807B2 (ja) 炭化珪素単結晶育成用坩堝、及びこれを用いた炭化珪素単結晶の製造方法
JP4595592B2 (ja) 単結晶成長方法
JP2007145679A (ja) 窒化アルミニウム単結晶の製造装置及びその製造方法
JP2008230868A (ja) 窒化ガリウム結晶の成長方法および窒化ガリウム結晶基板
JP5252495B2 (ja) 窒化アルミニウム単結晶の製造方法
JP2014172797A (ja) 窒化ガリウム(GaN)自立基板の製造方法及び製造装置
JP2013237600A (ja) 窒化アルミニウム結晶の成長方法
JP2009221056A (ja) 結晶成長方法、結晶成長装置、および半導体デバイス
JP5182758B2 (ja) 窒化物単結晶の製造方法および製造装置
JP2009249199A (ja) 窒化アルミニウム単結晶の製造装置

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101028

A711 Notification of change in applicant

Effective date: 20101028

Free format text: JAPANESE INTERMEDIATE CODE: A711

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20101028