JP2009246144A - Electronic component-incorporating substrate and method of manufacturing the same, and semiconductor device using the same - Google Patents

Electronic component-incorporating substrate and method of manufacturing the same, and semiconductor device using the same Download PDF

Info

Publication number
JP2009246144A
JP2009246144A JP2008091101A JP2008091101A JP2009246144A JP 2009246144 A JP2009246144 A JP 2009246144A JP 2008091101 A JP2008091101 A JP 2008091101A JP 2008091101 A JP2008091101 A JP 2008091101A JP 2009246144 A JP2009246144 A JP 2009246144A
Authority
JP
Japan
Prior art keywords
layer
passive component
substrate
electronic component
wiring layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008091101A
Other languages
Japanese (ja)
Inventor
Eiji Kawamoto
英司 川本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2008091101A priority Critical patent/JP2009246144A/en
Publication of JP2009246144A publication Critical patent/JP2009246144A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Ceramic Capacitors (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To achieve an electronic component-incorporating substrate which maintains symmetry of the substrate even while incorporating a passive component while eliminating warpage, and to provide an electronic component-incorporating substrate that achieves stabilized connection reliability by connecting a passive component using a material accompanied by alloy formation. <P>SOLUTION: An electronic component-incorporating substrate incorporating a passive component in a resin substrate having a plurality of layers of wiring wherein the passive component is arranged in an insulating layer existing between a first wiring layer which is electrically connected with the passive component and a second wiring layer which is proximate to the first wiring layer, and the second wiring layer has an opening larger than the mounting area of the passive component. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、受動部品を内蔵する電子部品内蔵基板及びその製造方法と、電子部品内蔵基板を用いた半導体装置に関するものである。   The present invention relates to an electronic component built-in substrate incorporating a passive component, a manufacturing method thereof, and a semiconductor device using the electronic component built-in substrate.

近年、電子機器の高機能化に伴い、半導体素子駆動周波数の高機能化が進んでいる。この高周波化が進むと、電源から離れた回路でスイッチングを行うと電源配線のコイル成分や抵抗成分で一時的に電圧が下がるという現象が発生しやすくなり、半導体素子の誤動作を引き起こす原因となる。そこで、半導体素子が実装される基板上の電源ラインとグランドライン間にデカップリングコンデンサを配置することにより、安定した電源電圧を確保し、半導体素子の正常な動作を実現している。ところが、このデカップリングコンデンサの効果を最大限に発揮させるためには配線のコイル・抵抗成分の影響を受けないように、半導体素子にできるだけ近い位置に配置させなければならず、従来は半導体素子が実装された基板やそれが更に実装されるマザー基板にコンデンサを配置することで対応してきたが、機器の高性能化の進展により、たとえ半導体素子の周辺に配置したとしても、半導体素子とデカップリングコンデンサ間の配線の引き回しでさえ影響を及ぼす状態になってきた。   In recent years, with the increase in functionality of electronic devices, the performance of semiconductor element drive frequencies has been increased. As the frequency increases, switching in a circuit away from the power supply tends to cause a phenomenon that the voltage temporarily decreases due to the coil component or resistance component of the power supply wiring, which causes malfunction of the semiconductor element. Therefore, a decoupling capacitor is disposed between the power supply line and the ground line on the substrate on which the semiconductor element is mounted, thereby ensuring a stable power supply voltage and realizing a normal operation of the semiconductor element. However, in order to maximize the effect of this decoupling capacitor, it must be placed as close as possible to the semiconductor element so as not to be affected by the coil / resistance component of the wiring. Although it has been dealt with by placing capacitors on the mounted substrate and the mother substrate on which it is mounted, it has been decoupled from the semiconductor device even if it is placed around the semiconductor device due to the advancement of device performance. Even the routing of wiring between capacitors has been influential.

そこで、基板内にコンデンサ部品を埋設し、短配線を試みた電子部品内蔵基板が提案されている。   In view of this, an electronic component built-in substrate has been proposed in which capacitor components are embedded in the substrate and short wiring has been attempted.

以下、従来の電子部品内蔵基板について、図6を用いて説明する。図6は、従来の電子部品内蔵基板の断面図である。   Hereinafter, a conventional electronic component built-in substrate will be described with reference to FIG. FIG. 6 is a cross-sectional view of a conventional electronic component built-in substrate.

図6において、従来の電子部品内蔵基板1は、多層配線基板の任意の絶縁層4に電子部品2が内蔵され、内蔵された電子部品2は導電性接着剤3により配線層5に接続したり、超音波接続工法により直接配線層5に接続されている。   In FIG. 6, a conventional electronic component built-in substrate 1 has an electronic component 2 built in an arbitrary insulating layer 4 of a multilayer wiring board, and the built-in electronic component 2 is connected to the wiring layer 5 by a conductive adhesive 3. They are directly connected to the wiring layer 5 by an ultrasonic connection method.

なお、この技術の先行技術文献情報としては、例えば、特許文献1、特許文献2が知られている。
特開平11−220262号公報 特表2006−519486号公報
For example, Patent Document 1 and Patent Document 2 are known as prior art document information of this technology.
Japanese Patent Laid-Open No. 11-220262 JP-T-2006-519486

このような従来の電子部品内蔵基板の製造工程において、内蔵する電子部品がチップコンデンサやチップ抵抗のようなチップ型の受動部品の場合、受動部品を埋め込む層は受動部品の厚さに起因して厚くなるのであるが、受動部品を完全に埋め込むためには受動部品より更に厚い厚さが必要となり、その結果電子部品内蔵基板の厚さも厚くなるので、近年求められている薄型化に答えられなくなるという問題点も有していた。また、受動部品を内蔵する層を可能な限り薄くする目的で、近接する受動部品を実装していない配線層を受動部品に接近させると、受動部品と接近した配線層間で電気的結合を引き起こし、浮遊容量として電気特性を劣化させてしまうという問題を引き起こすため、受動部品を内蔵する層は薄くできない状態であった。   In the manufacturing process of such a conventional substrate with built-in electronic components, when the built-in electronic component is a chip-type passive component such as a chip capacitor or a chip resistor, the layer in which the passive component is embedded depends on the thickness of the passive component. Although it becomes thicker, a thicker thickness than the passive component is required to completely embed the passive component, and as a result, the thickness of the electronic component built-in substrate also increases, so it is impossible to respond to the thinning required in recent years. It also had the problem of. In addition, for the purpose of making the layer containing the passive component as thin as possible, if a wiring layer that does not mount a nearby passive component is brought close to the passive component, it causes electrical coupling between the passive component and the adjacent wiring layer, In order to cause the problem of deteriorating the electric characteristics as a stray capacitance, the layer containing the passive component cannot be thinned.

そこで、本発明は上記従来の問題を解決し、電気的特性に優れ、且つコスト・量産性に優れた電子部品内蔵基板とこれを用いた半導体装置を提供することを目的としている。   Accordingly, an object of the present invention is to solve the above-described conventional problems, and to provide an electronic component built-in substrate excellent in electrical characteristics and cost / mass productivity, and a semiconductor device using the same.

上記目的を達成するために本発明の電子部品内蔵基板は、複数層の配線を有する樹脂基板内に受動部品を内蔵してなる電子部品内蔵基板であって、前記受動部品は前記受動部品と電気的に接続される第1配線層と前記第1配線層に近接する第2配線層との間に存在する絶縁層内に配置され、前記第2配線層は少なくとも前記受動部品の実装面積より大きな面積の開口部を有する電子部品内蔵基板とするものである。   To achieve the above object, an electronic component built-in substrate according to the present invention is an electronic component built-in substrate in which a passive component is built in a resin substrate having a plurality of layers of wiring, and the passive component is electrically connected to the passive component and the electric component. Disposed in an insulating layer existing between the first wiring layer connected to the first wiring layer and the second wiring layer adjacent to the first wiring layer, and the second wiring layer is at least larger than the mounting area of the passive component An electronic component-embedded substrate having an opening having an area is provided.

上記構成により、第2配線層に受動部品の実装面積より大きな空間を形成することで、受動部品を絶縁層内に配置する際に、第2配線層を受動部品に接触しないので、第2配線層と受動部品間の電気的結合を引き起こさずに絶縁層の厚みを受動部品の厚みと略同等の厚みにまで薄くすることが可能となり、電気的特性に優れると共に厚みの薄い電子部品内蔵基板を実現することができる。   With the above configuration, by forming a space larger than the mounting area of the passive component in the second wiring layer, the second wiring layer is not in contact with the passive component when the passive component is disposed in the insulating layer. It is possible to reduce the thickness of the insulating layer to approximately the same thickness as that of the passive component without causing electrical coupling between the layer and the passive component. Can be realized.

(実施の形態1)
以下に、本発明の電子部品内蔵基板及びその製造方法とこれを用いた半導体装置の実施の形態について、図面を参照して説明する。
(Embodiment 1)
Embodiments of an electronic component built-in substrate, a method of manufacturing the same, and a semiconductor device using the same according to the present invention will be described below with reference to the drawings.

図1は本発明の実施の形態1による電子部品内蔵基板の断面図である。   FIG. 1 is a cross-sectional view of an electronic component built-in substrate according to Embodiment 1 of the present invention.

実施の形態1の電子部品内蔵基板100は、図1に示すように、第1配線層101に、チップコンデンサやチップ抵抗などの受動部品103が実装用材料105により電気的及び機械的に接続されており、第1配線層101と第2配線層102に挟まれた絶縁層106内に配置されている。ただし、受動部品103は第1配線層101と第2配線層102に対して、決して挟まれる位置には配置されていない。つまり、第1配線層101から見て受動部品103の上面部分の第2配線層102に相当する部分には、配線パターンは存在せず、絶縁層106のみが存在している構造となっている。このため、受動部品103を絶縁層106内に配置する際に、第2配線層102を受動部品103に接触させること無く、且つ、絶縁層106を介して第2配線層102と受動部品103が電気的に結合する設計外の浮遊容量を引き起こさずに絶縁層106の厚みを受動部品103の厚みと略同等の厚みにまで薄くすることが可能となり、電気的特性に優れると共に厚みの薄い電子部品内蔵基板を実現することができるのである。   In the electronic component built-in substrate 100 of the first embodiment, as shown in FIG. 1, a passive component 103 such as a chip capacitor or a chip resistor is electrically and mechanically connected to a first wiring layer 101 by a mounting material 105. And disposed in an insulating layer 106 sandwiched between the first wiring layer 101 and the second wiring layer 102. However, the passive component 103 is never arranged at a position sandwiched between the first wiring layer 101 and the second wiring layer 102. That is, the wiring pattern is not present in the portion corresponding to the second wiring layer 102 on the upper surface portion of the passive component 103 when viewed from the first wiring layer 101, and only the insulating layer 106 is present. . Therefore, when the passive component 103 is disposed in the insulating layer 106, the second wiring layer 102 and the passive component 103 are not brought into contact with the passive component 103 and the second wiring layer 102 and the passive component 103 are interposed via the insulating layer 106. It is possible to reduce the thickness of the insulating layer 106 to substantially the same thickness as that of the passive component 103 without causing stray capacitance that is not designed to be electrically coupled. Thus, the electronic component has excellent electrical characteristics and is thin. A built-in substrate can be realized.

なお、第1配線層101、第2配線層102は電気導電性を有する物質から成り、例えば、銅(Cu)箔や導電性樹脂組成物から成る。本発明においてはCu箔を所望の形状にパターニングして形成している。絶縁層106に用いる絶縁材料としては、ガラス織布に熱硬化性のエポキシ樹脂を含浸させたガラスエポキシプリプレグ、ガラス織布に熱硬化性のビスマレイミド・トリアジン樹脂を含浸させたBTレジンプリプレグ、アラミド不織布に熱硬化性のエポキシ樹脂を含浸させたアラミドプリプレグ等を使用することが可能であるが、織布または不織布に熱硬化性樹脂を含浸させた構造であれば、様々な材料を使用することが可能である。また、織布または不織布に熱硬化性樹脂を含浸させたプリプレグ材料以外にも、二酸化珪素やアルミナ等の無機フィラーと熱硬化性樹脂との混合物を用いる事も可能である。   The first wiring layer 101 and the second wiring layer 102 are made of a material having electrical conductivity, and are made of, for example, a copper (Cu) foil or a conductive resin composition. In the present invention, the Cu foil is formed by patterning into a desired shape. The insulating material used for the insulating layer 106 includes a glass epoxy prepreg in which a glass woven fabric is impregnated with a thermosetting epoxy resin, a BT resin prepreg in which a glass woven fabric is impregnated with a thermosetting bismaleimide / triazine resin, and an aramid. It is possible to use aramid prepreg with nonwoven fabric impregnated with thermosetting epoxy resin, but various materials should be used as long as it is a structure in which woven fabric or nonwoven fabric is impregnated with thermosetting resin. Is possible. In addition to a prepreg material obtained by impregnating a woven or non-woven fabric with a thermosetting resin, it is also possible to use a mixture of an inorganic filler such as silicon dioxide or alumina and a thermosetting resin.

受動部品103はチップコンデンサやチップ抵抗のような所望の特性を予め形成され、外面に接続電極104を有するチップ型の電子部品である。実装用材料105としては、少なくとも2種類以上の金属元素が配合され、各金属同士による合金接続を伴って電気的及び機械的に接続できる材料であり、例えば錫(Sn)−銀(Ag)系、錫(Sn)−銀(Ag)−銅(Cu)系、錫(Sn)−亜鉛(Zn)系、金(Au)−亜鉛(Zn)系、錫(Sn)−アンチモン(Sb)系などの材料が使用可能であるが、これらの材料に限らず受動部品103を実装できる材料であるなら何れの材料も使用可能である。また、材料中の合金の融点が、接合後に高温側へシフトする融点変化型の材料組成であっても良い。   The passive component 103 is a chip-type electronic component that is formed in advance with desired characteristics such as a chip capacitor and a chip resistor and has a connection electrode 104 on the outer surface. The mounting material 105 is a material in which at least two kinds of metal elements are blended, and can be electrically and mechanically connected with an alloy connection between the metals, for example, tin (Sn) -silver (Ag) system. , Tin (Sn) -silver (Ag) -copper (Cu), tin (Sn) -zinc (Zn), gold (Au) -zinc (Zn), tin (Sn) -antimony (Sb), etc. However, the present invention is not limited to these materials, and any material can be used as long as it is a material capable of mounting the passive component 103. Further, the melting point of the alloy in the material may be a melting point change type material composition that shifts to a high temperature side after joining.

実装用材料105に合金接続可能な材料を用いている理由は、受動部品103を第1配線層101に安定して接続させるためである。つまり、近年、チップコンデンサやチップ抵抗のようなチップ型の電子部品の電極104は、環境問題への配慮から、最表面部にSnめっきが施されているものが主流となっているため、Ag粉を主成分とする導電性接着剤を実装用材料105に用いた場合、導電性接着剤による受動部品103の接続方式は、導電性接着剤中の熱硬化性樹脂の硬化収縮による圧接接続のみであるので、導電性接着剤中のAgと受動部品103の電極104のSnとが単に接触し合って電気的に接続されるものであるが、Snの融点である232℃を超えると簡単にAgはSn中に拡散され、導電性接着剤中のAgが消失し、接続信頼性を劣化させてしまう。また、比較的低融点金属であるSnが施された電極104を超音波を用いて直接第1配線層101に接続することも非常に難易度の高い技術である。   The reason why an alloy-connectable material is used for the mounting material 105 is to stably connect the passive component 103 to the first wiring layer 101. That is, in recent years, the electrode 104 of a chip-type electronic component such as a chip capacitor or a chip resistor is mainly made of Sn plating on the outermost surface in consideration of environmental problems. When a conductive adhesive mainly composed of powder is used for the mounting material 105, the connection method of the passive component 103 by the conductive adhesive is only a pressure contact connection by curing shrinkage of the thermosetting resin in the conductive adhesive. Therefore, Ag in the conductive adhesive and Sn of the electrode 104 of the passive component 103 are simply in contact with each other and are electrically connected to each other. However, when the melting point of Sn exceeds 232 ° C., it is easy. Ag is diffused into Sn, Ag in the conductive adhesive disappears, and connection reliability is deteriorated. It is also a very difficult technique to directly connect the electrode 104 on which Sn, which is a relatively low melting point metal, is directly connected to the first wiring layer 101 using ultrasonic waves.

しかしながら、これらの接続技術に対して、実装用材料105に電極104表面のSnと金属結合をともなって接続できる材料を選択することで、232℃を超える温度環境下にさらされても、導電性接着剤のような電極104側のSnへの拡散が起こることなく、接続信頼性を安定化することが可能となるものである。そして、この実装用材料105に少なくとも2種類以上の金属元素を配合することで、受動部品103を実装するために単一金属では実現不可能な実装用材料105の所望の融点を実現することができるものである。   However, for these connection technologies, by selecting a material that can be connected to the mounting material 105 with Sn on the surface of the electrode 104 and a metal bond, even if it is exposed to a temperature environment exceeding 232 ° C., it is conductive. It is possible to stabilize the connection reliability without causing diffusion to Sn on the electrode 104 side like an adhesive. Then, by blending at least two kinds of metal elements into the mounting material 105, it is possible to realize a desired melting point of the mounting material 105 that cannot be achieved with a single metal in order to mount the passive component 103. It can be done.

ただし、何れの材料であっても、第1配線層101に対して濡れ広がり性が悪い材料が必要である。第1配線層101上に受動部品103を実装するためには、実装用材料105が確実に第1配線層101上に止まっていなければ接続できないためである。なお、実装用材料105は、環境汚染物質である鉛(Pb)を含有しない材料であることが重要である。   However, any material is required to have poor wettability with respect to the first wiring layer 101. The reason for mounting the passive component 103 on the first wiring layer 101 is that the connection cannot be made unless the mounting material 105 is securely stopped on the first wiring layer 101. It is important that the mounting material 105 is a material that does not contain lead (Pb), which is an environmental pollutant.

この第1配線層101、絶縁層106及び第2配線層102で構成される2層配線板を中心材料として、さらに外側両面に絶縁層107及び表層配線層108、裏面配線層109を形成して多層化する。多層化する際には、スルーホール110により表層配線層108、第1配線層101、第2配線層102及び裏面配線層109を電気的に接続する。   Using the two-layer wiring board composed of the first wiring layer 101, the insulating layer 106, and the second wiring layer 102 as a central material, an insulating layer 107, a surface wiring layer 108, and a back wiring layer 109 are formed on both outer surfaces. Multi-layered. When the layers are formed, the surface wiring layer 108, the first wiring layer 101, the second wiring layer 102, and the back wiring layer 109 are electrically connected through the through holes 110.

なお、本実施の形態1では4層基板の例を示しているが、4層基板に固定されるものではなく、必要に応じて更なる偶数層の多層化が可能である。ただし、その際においても受動部品103を内蔵する2層配線板を中心材料として両面同時に配線層を形成している。外側に形成する絶縁層107に用いる絶縁材料は絶縁層106と同様に、ガラス織布に熱硬化性のエポキシ樹脂を含浸させたガラスエポキシプリプレグ、ガラス織布に熱硬化性のビスマレイミド・トリアジン樹脂を含浸させたBTレジンプリプレグ、アラミド不織布に熱硬化性のエポキシ樹脂を含浸させたアラミドプリプレグ等を使用することが可能であるが、織布または不織布に熱硬化性樹脂を含浸させた構造であれば、様々な材料を使用することが可能である。また、織布または不織布に熱硬化性樹脂を含浸させたプリプレグ材料以外にも、二酸化珪素やアルミナ等の無機フィラーと熱硬化性樹脂との混合物を用いる事も可能である。   Although the first embodiment shows an example of a four-layer substrate, it is not fixed to the four-layer substrate, and an even number of layers can be formed as required. However, even at that time, the wiring layers are formed simultaneously on both sides with a two-layer wiring board containing the passive component 103 as a central material. The insulating material used for the insulating layer 107 formed on the outside is a glass epoxy prepreg in which a glass woven fabric is impregnated with a thermosetting epoxy resin, and the glass woven fabric is a thermosetting bismaleimide / triazine resin, as with the insulating layer 106. It is possible to use a BT resin prepreg impregnated with an aramid prepreg, an aramid prepreg impregnated with a thermosetting epoxy resin in an aramid non-woven fabric, etc. Various materials can be used. In addition to a prepreg material obtained by impregnating a woven or non-woven fabric with a thermosetting resin, it is also possible to use a mixture of an inorganic filler such as silicon dioxide or alumina and a thermosetting resin.

なお、積層後の基板の反りを防止するためには、各材料の線膨張係数に配慮することが非常に重要である。また、表層配線層108及び裏面配線層109においても第1配線層101、第2配線層102と同様に、電気導電性を有する物質から成り、例えば、Cu箔や導電性樹脂組成物から成る。本発明においてはCu箔を下地として、スルーホール110を形成する際に付着したCuめっき膜を下地Cu箔と同時にパターニングして所望の配線パターンを形成している。   In order to prevent warping of the substrate after lamination, it is very important to consider the linear expansion coefficient of each material. Similarly to the first wiring layer 101 and the second wiring layer 102, the surface wiring layer 108 and the back wiring layer 109 are made of a material having electrical conductivity, for example, a Cu foil or a conductive resin composition. In the present invention, a Cu wiring is used as a base, and a Cu plating film deposited when forming the through hole 110 is patterned simultaneously with the base Cu foil to form a desired wiring pattern.

表層配線層108、裏面配線層109上には、必要に応じてソルダーレジスト111を形成している。なお、ソルダーレジスト111を形成する場合には、スルーホール110の内部に空間が残らないように導電性材料や絶縁性材料で埋めることが重要である。本実施の形態1では、スルーホール110内をソルダーレジスト111で直接埋める構造としているが、ソルダーレジスト111に限定されるものではなく、低吸湿率、低線膨張係数材料であれば様々な材料を用いることが可能である。   A solder resist 111 is formed on the surface wiring layer 108 and the back wiring layer 109 as necessary. When forming the solder resist 111, it is important that the solder resist 111 is filled with a conductive material or an insulating material so that no space remains in the through hole 110. In the first embodiment, the through hole 110 is directly filled with the solder resist 111. However, the structure is not limited to the solder resist 111, and various materials can be used as long as the material has a low moisture absorption rate and a low linear expansion coefficient. It is possible to use.

次に本発明の電子部品内蔵基板の製造方法の実施の形態について、図面を参照して説明する。   Next, an embodiment of a method for manufacturing an electronic component built-in substrate according to the present invention will be described with reference to the drawings.

図2は、本発明の実施の形態1による電子部品内蔵基板の製造工程断面図である。   FIG. 2 is a manufacturing process sectional view of the electronic component built-in substrate according to the first embodiment of the present invention.

図2(a)に示すように、Cu箔201を準備する。Cu箔201は少なくとも片面側が適度に粗化されていることが望ましい。これは、以後の工程で絶縁層106を形成する絶縁材料112と接着する際に、絶縁材料112へのアンカー効果を発現させるためであり、全く粗化されていない光沢面と絶縁材料112との接着では、接着力がほとんど期待できないからである。   As shown in FIG. 2A, a Cu foil 201 is prepared. It is desirable that at least one side of the Cu foil 201 is appropriately roughened. This is to cause an anchor effect to the insulating material 112 when bonding to the insulating material 112 that forms the insulating layer 106 in the subsequent process. This is because almost no adhesive force can be expected in bonding.

次に、図2(b)に示すように、Cu箔201の粗化面上に、孔版印刷やディスペンサ等を用いて実装用材料105を所望の間隔で塗布する。なお、Cu箔201上に実装用材料105を塗布する工程において、Cu箔201単体では取り扱いが困難な場合には、Cu箔201の実装用材料105を塗布しない面側にフィルムや基板等の補強材料(図示せず)を接着剤等を用いて貼り付けて、Cu箔201の平面性を安定化させる。ただし、補強材料を貼り付ける場合においては、Cu箔201の補強材料を貼り付ける面は光沢性を有する表面状態であることが望ましい。なぜなら、補強材料は後の工程で取り外す必要があるが、この面が粗化されていると、補強材料の取り外しが困難になるからである。   Next, as shown in FIG. 2B, a mounting material 105 is applied on the roughened surface of the Cu foil 201 at a desired interval using stencil printing, a dispenser, or the like. In addition, in the process of applying the mounting material 105 on the Cu foil 201, if it is difficult to handle the Cu foil 201 alone, reinforcement of a film, a substrate, or the like on the surface of the Cu foil 201 on which the mounting material 105 is not applied. A material (not shown) is attached using an adhesive or the like to stabilize the planarity of the Cu foil 201. However, when a reinforcing material is pasted, the surface of the Cu foil 201 to which the reinforcing material is pasted is preferably a glossy surface state. This is because it is necessary to remove the reinforcing material in a later step, but if this surface is roughened, it is difficult to remove the reinforcing material.

次に、図2(c)に示すように、Cu箔201上の実装用材料105の所望の位置にチップコンデンサやチップ抵抗などの受動部品103を実装し、リフロー等の熱処理によりCu箔201、実装用材料105及び受動部品103の電極104を合金接続を伴って電気的及び機械的に接続する。この時、実装用材料105は図2(b)に示す塗布位置から濡れ広がらないようにしなければならない。   Next, as shown in FIG. 2C, a passive component 103 such as a chip capacitor or a chip resistor is mounted on a desired position of the mounting material 105 on the Cu foil 201, and the Cu foil 201, The mounting material 105 and the electrode 104 of the passive component 103 are electrically and mechanically connected together with an alloy connection. At this time, the mounting material 105 must be prevented from wetting and spreading from the application position shown in FIG.

次に、図2(d)に示すように、受動部品103を実装したCu箔201上に、空間206を形成した絶縁材料112と空間212を形成したCu箔202を所定の位置に重ね合わせる。この時、絶縁材料112と受動部品103が必ず接触しないように、空間206は受動部品103を実装する面積より大きく形成することが重要である。なお、複数の受動部品103が隣接している場合には、空間206は隣接する全ての受動部品103を囲むように1つの大きな空間206としても良い。また、Cu箔202に形成する空間212も受動部品103に接することが無いように受動部品103を実装する面積より大きく形成することが重要である。そして、空間212は空間206と同様に、隣接する全ての受動部品103を囲むように1つの大きな空間212としても良い。また、絶縁材料112は、受動部品103を完全に埋め込むようにその厚さを設定するのであるが、受動部品103上に配置するCu箔202に空間212があるため、受動部品103とCu箔202を接触させること無く、Cu箔201に実装した受動部品103のCu箔201上からの高さと略同等の厚みに絶縁材料112を設定することが可能である。なお、絶縁材料112は厚さの厚い材料を1枚重ね合わせる形態も可能であるが、複数枚の材料を重ね合わせて所望の厚みを確保する方法を採用することも可能である。また、Cu箔202はCu箔201と同様に、少なくとも片面側が適度に粗化されており、粗化面側が絶縁材料112側に配置することが望ましい。これは、以後の工程で絶縁材料112と接着する際に、絶縁材料112へのアンカー効果を発現させるためであり、全く粗化されていない光沢面と絶縁材料112との接着では、接着力がほとんど期待できないからである。   Next, as shown in FIG. 2D, the insulating material 112 in which the space 206 is formed and the Cu foil 202 in which the space 212 is formed are superimposed on a predetermined position on the Cu foil 201 on which the passive component 103 is mounted. At this time, it is important that the space 206 is formed larger than the area where the passive component 103 is mounted so that the insulating material 112 and the passive component 103 do not come into contact with each other. When a plurality of passive components 103 are adjacent to each other, the space 206 may be one large space 206 so as to surround all the adjacent passive components 103. In addition, it is important that the space 212 formed in the Cu foil 202 is formed larger than the area where the passive component 103 is mounted so as not to contact the passive component 103. And the space 212 is good also as the one large space 212 so that all the adjacent passive components 103 may be enclosed similarly to the space 206. FIG. In addition, the thickness of the insulating material 112 is set so that the passive component 103 is completely embedded. However, since the Cu foil 202 disposed on the passive component 103 has a space 212, the passive component 103 and the Cu foil 202 are disposed. It is possible to set the insulating material 112 to a thickness substantially equal to the height of the passive component 103 mounted on the Cu foil 201 from above the Cu foil 201 without contacting them. Note that the insulating material 112 may be formed by stacking one thick material, but a method of securing a desired thickness by stacking a plurality of materials may be employed. Further, similarly to the Cu foil 201, at least one surface side of the Cu foil 202 is appropriately roughened, and the roughened surface side is desirably disposed on the insulating material 112 side. This is to cause an anchor effect to the insulating material 112 when it is bonded to the insulating material 112 in the subsequent process. In the bonding between the glossy surface that is not roughened and the insulating material 112, the adhesive force is low. Because it can hardly be expected.

次に、図2(e)に示すように、図2(d)で重ね合わせたものを熱盤プレス装置(図示せず)を用いて加熱しながら加圧して一体化させ、絶縁材料112を加熱加圧して形成した絶縁層106内に受動部品103を埋め込む。この時、一体化後に受動部品103が完全に絶縁層106内に埋め込まれるように絶縁層106の厚さを設定すると共に、熱盤プレス装置(図示せず)の圧力条件を設定しなければならない。また、受動部品103の周囲に気泡を発生することなく受動部品103を完全に絶縁層106で覆うことも重要である。なお、Cu箔201に補助材料(図示せず)を貼り付けている場合には、図2(c)に示す受動部品103実装後または図2(e)のCu箔201と絶縁層106の接着後に、補助材料(図示せず)をCu箔201から剥離する。   Next, as shown in FIG. 2 (e), the superposed material shown in FIG. 2 (d) is pressed and integrated with heating using a hot platen press device (not shown), and the insulating material 112 is integrated. The passive component 103 is embedded in the insulating layer 106 formed by heating and pressing. At this time, the thickness of the insulating layer 106 must be set so that the passive component 103 is completely embedded in the insulating layer 106 after integration, and the pressure condition of a hot platen press apparatus (not shown) must be set. . It is also important to completely cover the passive component 103 with the insulating layer 106 without generating bubbles around the passive component 103. In the case where an auxiliary material (not shown) is pasted on the Cu foil 201, after the passive component 103 shown in FIG. 2C is mounted or the Cu foil 201 and the insulating layer 106 shown in FIG. Later, an auxiliary material (not shown) is peeled from the Cu foil 201.

次に、図2(f)に示すように、Cu箔201及びCu箔202を所望の形状に加工して、第1配線層101及び第2配線層102を形成し2層配線板を作製する。なお、Cu箔201及びCu箔202に片面粗化箔を使用している場合には、第1配線層101及び第2配線層102の外側に面している面を粗化する等、後の絶縁材料113との接続を良好に行える状態に調整しておくことが重要である。   Next, as shown in FIG. 2 (f), the Cu foil 201 and the Cu foil 202 are processed into desired shapes to form the first wiring layer 101 and the second wiring layer 102, thereby producing a two-layer wiring board. . In addition, when the single-sided roughened foil is used for the Cu foil 201 and the Cu foil 202, the surfaces facing the outside of the first wiring layer 101 and the second wiring layer 102 are roughened, etc. It is important to adjust the connection to the insulating material 113 so that the connection with the insulating material 113 can be performed satisfactorily.

次に、図3(a)に示すように、図2(f)で作製した2層配線板を中心として、表裏面にそれぞれ絶縁材料113及びCu箔208を重ね合わせ、図3(b)に示すように、熱盤プレス装置(図示せず)を用いて加熱しながら加圧して一体化させる。なお、Cu箔208においても、Cu箔201、202と同様に、少なくとも片面側が適度に粗化されており、粗化面側が絶縁材料113側に配置することが望ましい。   Next, as shown in FIG. 3A, the insulating material 113 and the Cu foil 208 are superimposed on the front and back surfaces around the two-layer wiring board produced in FIG. As shown, it is pressed and integrated using a hot platen press (not shown) while heating. In the Cu foil 208 as well, like the Cu foils 201 and 202, it is desirable that at least one side is appropriately roughened and the roughened surface side is disposed on the insulating material 113 side.

次に、図3(c)に示すように、所望の位置に貫通孔210を形成し、図3(d)に示すように、めっき220を施し、スルーホール110により表裏面のCu箔208及び絶縁材料113を加熱加圧して形成した絶縁層107内に閉じ込められた第1配線層101及び第2配線層102を電気的に接続する。   Next, as shown in FIG. 3 (c), a through hole 210 is formed at a desired position, and as shown in FIG. 3 (d), plating 220 is applied. The first wiring layer 101 and the second wiring layer 102 confined in the insulating layer 107 formed by heating and pressing the insulating material 113 are electrically connected.

その後、図4(a)に示すように、表面にめっき220が形成されたCu箔208をめっき220と同時に所望の形状に加工して、表層配線層108と裏面配線層109を形成し、電子部品内蔵基板100を形成する。また、必要に応じて、図4(b)に示すように電子部品内蔵基板100の表裏面にソルダーレジスト111を形成しても良い。ただし、ソルダーレジスト111を形成する場合には、スルーホール110の内部に空間が残らないように導電性材料や絶縁性材料で埋めることが重要である。なお、スルーホール110内部に充填する材料は、表裏面に形成するソルダーレジスト111と同一材料でも構わない。   Thereafter, as shown in FIG. 4A, the Cu foil 208 having the plating 220 formed on the surface thereof is processed into a desired shape simultaneously with the plating 220 to form the surface wiring layer 108 and the back wiring layer 109, and the electron The component built-in substrate 100 is formed. Further, if necessary, a solder resist 111 may be formed on the front and back surfaces of the electronic component built-in substrate 100 as shown in FIG. However, when the solder resist 111 is formed, it is important that the solder resist 111 is filled with a conductive material or an insulating material so that no space remains in the through hole 110. Note that the material filled in the through hole 110 may be the same material as the solder resist 111 formed on the front and back surfaces.

以下、実施の形態1に示す電子部品内蔵基板およびその製造方法の特徴について説明する。   Hereinafter, the characteristics of the electronic component built-in substrate and the manufacturing method thereof shown in the first embodiment will be described.

本発明の電子部品内蔵基板およびその製造方法においては、第2配線層に受動部品の実装面積より大きな空間を形成することで、受動部品を絶縁層内に配置する際に、第2配線層を受動部品に接触させること無く、且つ、絶縁層を介した第2配線層と受動部品が電気的に結合する設計外の浮遊容量を引き起こさずに絶縁層の厚みを受動部品の厚みと略同等の厚みにまで薄くすることが可能であり、電気的特性に優れると共に厚みの薄い電子部品内蔵基板を実現することができる。また、Cu箔201を出発材料とすることにより、一般的なプリント配線板と略同等の製造工程で電子部品内蔵基板100を製造することができ、内蔵する受動部品103を電子部品内蔵基板100の積層方向に対して中央の絶縁層内に配置しているため、受動部品103を内蔵した電子部品内蔵基板100であっても基板の対称性が保たれ、反りの無い電子部品内蔵基板100を実現することができ、更には合金形成を伴う材料による受動部品103の接続により、安定した接続信頼性を実現することができるものである。   In the electronic component built-in substrate and the manufacturing method thereof according to the present invention, the second wiring layer is formed when the passive component is disposed in the insulating layer by forming a space larger than the mounting area of the passive component in the second wiring layer. The thickness of the insulating layer is approximately equal to the thickness of the passive component without causing contact with the passive component and without causing a stray capacitance outside the design where the second wiring layer and the passive component are electrically coupled via the insulating layer. It is possible to reduce the thickness to a thickness, and it is possible to realize an electronic component built-in substrate having excellent electrical characteristics and a small thickness. Further, by using the Cu foil 201 as a starting material, the electronic component built-in substrate 100 can be manufactured by a manufacturing process substantially equivalent to that of a general printed wiring board, and the built-in passive component 103 is replaced by the electronic component built-in substrate 100. Since it is arranged in the central insulating layer with respect to the stacking direction, even the electronic component built-in substrate 100 incorporating the passive component 103 maintains the symmetry of the substrate and realizes the electronic component built-in substrate 100 without warping. Furthermore, stable connection reliability can be realized by connecting the passive component 103 with a material accompanied by alloy formation.

(実施の形態2)
以下、本発明に係る実施の形態2について図を用いて説明する。図5は本発明の実施の形態2による半導体装置の断面図である。なお、特に説明しない限りは実施の形態1と同一の構造については、同一番号を付与して説明を省略する。
(Embodiment 2)
Hereinafter, Embodiment 2 according to the present invention will be described with reference to the drawings. FIG. 5 is a sectional view of a semiconductor device according to the second embodiment of the present invention. Unless otherwise described, the same structure as that of the first embodiment is given the same number and the description thereof is omitted.

実施の形態2における半導体装置200は、図5に示すように、実施の形態1で作製した電子部品内蔵基板100の表層配線層108上の所望の位置に半導体121を実装した後、封止樹脂123で半導体表面を覆っている。なお、本実施の形態2では、半導体121はバンプ122を介したフリップチップ実装構造を示しているが、半導体121の実装方法はフリップチップ実装に限定されるものではなく、ワイヤボンド方式やその他様々な接続方式を用いても良い。   As shown in FIG. 5, the semiconductor device 200 according to the second embodiment is formed by sealing the resin 121 after mounting the semiconductor 121 at a desired position on the surface wiring layer 108 of the electronic component built-in substrate 100 manufactured in the first embodiment. 123 covers the semiconductor surface. In the second embodiment, the semiconductor 121 shows a flip chip mounting structure with bumps 122 interposed. However, the mounting method of the semiconductor 121 is not limited to the flip chip mounting. A simple connection method may be used.

本実施の形態2に示す半導体装置200において重要なことは、電子部品内蔵基板100の受動部品103が接続されている第1配線層101が、半導体121を実装している表層配線層108を第1層として裏面配線層109までの全層数をn層とした時、第1層からn/2番目の層であるということである。図5では、4層基板であるため2番目の層が該当する。そして、n/2層は主にグランド配線パターンが形成された層であり、表層配線層108から(n/2+1)番目の層(図5では3番目の層)である第2配線層102は、主に電源ラインが形成された層として構成することである。   What is important in the semiconductor device 200 shown in the second embodiment is that the first wiring layer 101 to which the passive component 103 of the electronic component-embedded substrate 100 is connected is the first wiring layer 108 on which the semiconductor 121 is mounted. When the total number of layers up to the backside wiring layer 109 is n layers, it is the n / 2th layer from the first layer. In FIG. 5, the second layer corresponds to the four-layer substrate. The n / 2 layer is a layer on which a ground wiring pattern is mainly formed. The second wiring layer 102 which is the (n / 2 + 1) th layer (the third layer in FIG. 5) from the surface layer wiring layer 108 is It is mainly configured as a layer in which a power supply line is formed.

こうすることで、電子部品内蔵基板100の反りを防止しながら、半導体121に対して最も短配線で受動部品103を配置することが可能となり、受動部品103がチップコンデンサの場合には、半導体の高速スイッチング動作に対して配線長からくるコイル・抵抗成分を低減させ、更に、受動部品103と第2配線層102との不必要な電気的結合を回避することが可能となり、効果的なデカップリングコンデンサとして機能させることができ、半導体装置200としての機能を向上させることができる。   This makes it possible to arrange the passive component 103 with the shortest wiring with respect to the semiconductor 121 while preventing the warpage of the electronic component built-in substrate 100. When the passive component 103 is a chip capacitor, the semiconductor Effective decoupling can be achieved by reducing the coil and resistance components that come from the wiring length for high-speed switching operation, and avoiding unnecessary electrical coupling between the passive component 103 and the second wiring layer 102. It can function as a capacitor, and the function as the semiconductor device 200 can be improved.

なお、受動部品103を実装するn/2番目の層をグランド層、(n/2+1)番目の層を電源層としているのは、グランド層は電気的に安定した基準となる層であるため、不用意な断線部分を形成することは、電気特性の劣化を招くので、配線ターンの形成方法には特に注意を払う必要があるためで、それに対して、電源層については、近年の半導体は多機能化が進み、1つの半導体であっても異なる複数の駆動電圧を必要とするようになってきているため、複数の電源電圧に配慮した配線パターンが必要となっている。従って、第2配線層102のように受動部品103上の配線エリアを削除しても、削除部分を電源分割のための断線部として使用することで、電源特性の劣化を引き起こすことは無く、むしろ受動部品103と電源層である第2配線層102との不必要な電気的結合を回避できることができるため、その効果は絶大である。   The reason why the n / 2th layer on which the passive component 103 is mounted is the ground layer and the (n / 2 + 1) th layer is the power supply layer is that the ground layer is an electrically stable reference layer. The formation of an inadvertent disconnection part leads to deterioration of electrical characteristics. Therefore, it is necessary to pay particular attention to the method of forming the wiring turn. On the other hand, as for the power supply layer, there are many recent semiconductors. As functionalization progresses and even a single semiconductor requires a plurality of different drive voltages, a wiring pattern considering a plurality of power supply voltages is required. Therefore, even if the wiring area on the passive component 103 is deleted as in the second wiring layer 102, the deleted portion is used as a disconnection portion for power supply division, so that the power supply characteristics are not deteriorated. Since unnecessary electrical coupling between the passive component 103 and the second wiring layer 102 as a power supply layer can be avoided, the effect is great.

本発明における電子部品内蔵基板とこれを用いた半導体装置、およびその製造方法は、低コストで量産性に優れるため、実用化しやすく、半導体の駆動周波数の高周波化に対応できる半導体装置として有用である。   The electronic component built-in substrate, the semiconductor device using the same, and the method for manufacturing the same according to the present invention are easy to put into practical use because of low cost and excellent mass productivity, and are useful as a semiconductor device that can cope with a higher driving frequency of the semiconductor. .

本発明の実施の形態1における電子部品内蔵基板の断面図Sectional drawing of the electronic component built-in substrate in Embodiment 1 of this invention (a)〜(f)本発明の実施の形態1における電子部品内蔵基板の製造工程断面図(A)-(f) Manufacturing process sectional drawing of the electronic component built-in board | substrate in Embodiment 1 of this invention. (a)〜(d)本発明の実施の形態1における電子部品内蔵基板の製造工程断面図(A)-(d) Manufacturing process sectional drawing of the electronic component built-in board | substrate in Embodiment 1 of this invention. (a)、(b)本発明の実施の形態1における電子部品内蔵基板の製造工程断面図(A), (b) Manufacturing process sectional drawing of the electronic component built-in board in Embodiment 1 of this invention 本発明の実施の形態2における半導体装置の断面図Sectional drawing of the semiconductor device in Embodiment 2 of this invention 従来の電子部品内蔵基板の断面図Sectional view of a conventional electronic component built-in substrate

符号の説明Explanation of symbols

100 電子部品内蔵基板
101 第1配線層
102 第2配線層
103 受動部品
104 電極
105 実装用材料
106 絶縁層
107 絶縁層
108 表層配線層
109 裏面配線層
110 スルーホール
111 ソルダーレジスト
112 絶縁材料
113 絶縁材料
121 半導体
122 バンプ
123 封止樹脂
200 半導体装置
201 銅箔
202 銅箔
206 空間
208 銅箔
210 貫通孔
212 空間
220 めっき
DESCRIPTION OF SYMBOLS 100 Electronic component built-in board 101 1st wiring layer 102 2nd wiring layer 103 Passive component 104 Electrode 105 Mounting material 106 Insulating layer 107 Insulating layer 108 Surface layer wiring layer 109 Back surface wiring layer 110 Through-hole 111 Solder resist 112 Insulating material 113 Insulating material 121 Semiconductor 122 Bump 123 Sealing Resin 200 Semiconductor Device 201 Copper Foil 202 Copper Foil 206 Space 208 Copper Foil 210 Through Hole 212 Space 220 Plating

Claims (17)

複数層の配線を有する樹脂基板内に受動部品を内蔵してなる電子部品内蔵基板であって、前記受動部品は前記受動部品と電気的に接続される第1配線層と前記第1配線層に近接する第2配線層との間に存在する絶縁層内に配置され、前記第2配線層は少なくとも前記受動部品の実装面積より大きな面積の開口部を有する電子部品内蔵基板。 An electronic component built-in substrate in which a passive component is built in a resin substrate having a plurality of layers of wiring, wherein the passive component is electrically connected to the first wiring layer and the first wiring layer electrically connected to the passive component. An electronic component built-in substrate disposed in an insulating layer existing between adjacent second wiring layers, wherein the second wiring layer has an opening having an area larger than at least a mounting area of the passive component. 前記絶縁層は前記電子部品内蔵基板の前記複数層の中央の層に配置されている請求項1に記載の電子部品内蔵基板。 The electronic component built-in substrate according to claim 1, wherein the insulating layer is disposed in a central layer of the plurality of layers of the electronic component built-in substrate. 前記受動部品は少なくとも2種類以上の金属材料が合金を形成して電気的及び機械的に接続する材料を用いて前記第1配線層に接続されている請求項1または2に記載の電子部品内蔵基板。 3. The electronic component built-in according to claim 1, wherein the passive component is connected to the first wiring layer using a material in which at least two kinds of metal materials form an alloy and are electrically and mechanically connected. substrate. 前記絶縁層の厚さは前記受動部品の厚さより厚い請求項1〜3のいずれか1つに記載の電子部品内蔵基板。 The electronic component built-in substrate according to claim 1, wherein a thickness of the insulating layer is larger than a thickness of the passive component. 前記受動部品がチップコンデンサである請求項1〜4のいずれか1つに記載の電子部品内蔵基板。 The electronic component built-in substrate according to claim 1, wherein the passive component is a chip capacitor. 前記受動部品がチップコンデンサとチップ抵抗である請求項1〜4のいずれか1つに記載の電子部品内蔵基板。 The electronic component built-in substrate according to claim 1, wherein the passive components are a chip capacitor and a chip resistor. 請求項1〜6のいずれか1つに記載の受動部品を内蔵してなる電子部品内蔵基板の表層配線層に半導体を実装した半導体装置。 The semiconductor device which mounted the semiconductor in the surface wiring layer of the electronic component built-in board | substrate which incorporates the passive component as described in any one of Claims 1-6. 前記複数層の配線はn層の偶数層からなり、前記半導体を実装する前記表層配線層を第1層として前記n層まで各々の層を順番付けしたときn/2番目の層に前記受動部品が配置されている請求項7に記載の半導体装置。 The plurality of wiring layers are composed of an even number of n layers. When the surface layer wiring layer for mounting the semiconductor is used as a first layer and the layers are ordered up to the n layer, the passive component is placed on the n / 2th layer. The semiconductor device according to claim 7, wherein: 前記受動部品がチップコンデンサである請求項7または請求項8に記載の半導体装置。 The semiconductor device according to claim 7, wherein the passive component is a chip capacitor. 前記受動部品がチップコンデンサとチップ抵抗である請求項7または請求項8に記載の半導体装置。 9. The semiconductor device according to claim 7, wherein the passive components are a chip capacitor and a chip resistor. 前記第1配線層が主に電気的接地層が形成された層である請求項7〜10のいずれか1つに記載の半導体装置。 The semiconductor device according to claim 7, wherein the first wiring layer is a layer in which an electrical ground layer is mainly formed. 前記第2配線層が主に電源ラインが形成された層である請求項7〜11のいずれか1つに記載の半導体装置。 The semiconductor device according to claim 7, wherein the second wiring layer is a layer in which a power supply line is mainly formed. 銅箔上に受動部品実装用材料を塗布する工程と、
前記受動部品実装用材料上に受動部品を実装する工程と、
前記受動部品を実装済みの前記銅箔上に前記受動部品より大きな空間を有する絶縁材料を重ねる工程と、
前記絶縁材料上に前記受動部品より大きな空間を有する第2の銅箔を重ねる工程と、
前記銅箔及び前記絶縁材料及び前記第2の銅箔を加熱しながら加圧して一体化させた後、前記銅箔を所望の第1配線層に加工するとともに前記第2の銅箔を所望の第2配線層に加工して2層配線板を形成する工程と、前記2層配線板を中心部に配置して多層配線層を形成する工程とを備えた電子部品内蔵基板の製造方法。
Applying a passive component mounting material on the copper foil;
Mounting a passive component on the passive component mounting material;
Stacking an insulating material having a larger space than the passive component on the copper foil on which the passive component is already mounted;
Stacking a second copper foil having a space larger than the passive component on the insulating material;
After the copper foil, the insulating material and the second copper foil are pressed and integrated while being heated, the copper foil is processed into a desired first wiring layer and the second copper foil is A method of manufacturing an electronic component built-in substrate comprising: a step of forming a two-layer wiring board by processing into a second wiring layer; and a step of forming a multilayer wiring layer by disposing the two-layer wiring board in a central portion.
前記多層配線層はスルーホール接続により電気的に接続されている請求項13に記載の電子部品内蔵基板の製造方法。 The method for manufacturing a substrate with built-in electronic components according to claim 13, wherein the multilayer wiring layers are electrically connected by through-hole connection. 前記受動部品実装用材料は少なくとも2種類以上の金属材料が合金を形成して電気的及び機械的に接続する材料である請求項13または請求項14に記載の電子部品内蔵基板の製造方法。 The method for manufacturing an electronic component-embedded substrate according to claim 13 or 14, wherein the passive component mounting material is a material in which at least two kinds of metal materials are electrically and mechanically connected by forming an alloy. 前記受動部品がチップコンデンサである請求項15に記載の電子部品内蔵基板の製造方法。 16. The method of manufacturing an electronic component built-in substrate according to claim 15, wherein the passive component is a chip capacitor. 前記受動部品がチップコンデンサとチップ抵抗である請求項15に記載の電子部品内蔵基板の製造方法。 The method for manufacturing a substrate with built-in electronic components according to claim 15, wherein the passive components are a chip capacitor and a chip resistor.
JP2008091101A 2008-03-31 2008-03-31 Electronic component-incorporating substrate and method of manufacturing the same, and semiconductor device using the same Pending JP2009246144A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008091101A JP2009246144A (en) 2008-03-31 2008-03-31 Electronic component-incorporating substrate and method of manufacturing the same, and semiconductor device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008091101A JP2009246144A (en) 2008-03-31 2008-03-31 Electronic component-incorporating substrate and method of manufacturing the same, and semiconductor device using the same

Publications (1)

Publication Number Publication Date
JP2009246144A true JP2009246144A (en) 2009-10-22

Family

ID=41307710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008091101A Pending JP2009246144A (en) 2008-03-31 2008-03-31 Electronic component-incorporating substrate and method of manufacturing the same, and semiconductor device using the same

Country Status (1)

Country Link
JP (1) JP2009246144A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9066422B2 (en) 2010-01-08 2015-06-23 Dai Nippon Printing Co., Ltd. Electronic component
JP2019195108A (en) * 2019-08-06 2019-11-07 大日本印刷株式会社 Multilayer wiring structure and semiconductor device using multilayer wiring structure
CN111149199A (en) * 2017-10-11 2020-05-12 索尼半导体解决方案公司 Semiconductor device and method for manufacturing the same
JP2021061446A (en) * 2019-08-06 2021-04-15 大日本印刷株式会社 Multilayer wiring structure and semiconductor device including multilayer wiring structure

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9066422B2 (en) 2010-01-08 2015-06-23 Dai Nippon Printing Co., Ltd. Electronic component
TWI500365B (en) * 2010-01-08 2015-09-11 Dainippon Printing Co Ltd Electronic Parts
CN111149199A (en) * 2017-10-11 2020-05-12 索尼半导体解决方案公司 Semiconductor device and method for manufacturing the same
JP2019195108A (en) * 2019-08-06 2019-11-07 大日本印刷株式会社 Multilayer wiring structure and semiconductor device using multilayer wiring structure
JP2021061446A (en) * 2019-08-06 2021-04-15 大日本印刷株式会社 Multilayer wiring structure and semiconductor device including multilayer wiring structure
JP7390323B2 (en) 2019-08-06 2023-12-01 大日本印刷株式会社 Multilayer wiring structure and semiconductor device using multilayer wiring structure

Similar Documents

Publication Publication Date Title
JP3709882B2 (en) Circuit module and manufacturing method thereof
JP2790122B2 (en) Laminated circuit board
JP3910387B2 (en) Semiconductor package, manufacturing method thereof, and semiconductor device
KR100832653B1 (en) Printed circuit board with embedded components and method for manufacturing the same
JP5427305B1 (en) Component-embedded substrate, manufacturing method thereof, and mounting body
JP2010205772A (en) Integrated circuit mounted board, printed wiring board and method of manufacturing the integrated circuit mounted board
WO2007126090A1 (en) Circuit board, electronic device and method for manufacturing circuit board
TW200812462A (en) Multilayered printed wiring board and method for manufacturing the same
KR20080035974A (en) Multilayer wiring substrate mounted with electronic component and method for manufacturing the same
JP2011060875A (en) Electronic component built-in substrate and method of manufacturing the same, and semiconductor device using the substrate
JP3691995B2 (en) Semiconductor package, manufacturing method thereof, and semiconductor device
JP5462450B2 (en) Component built-in printed wiring board and method for manufacturing component built-in printed wiring board
WO2010067508A1 (en) Multilayer substrate and method for manufacturing same
JP2009246144A (en) Electronic component-incorporating substrate and method of manufacturing the same, and semiconductor device using the same
JP2009135391A (en) Electronic device and method of manufacturing the same
JP2003124380A (en) Module with incorporated electronic component and production method therefor
JP2008182039A (en) Multilayer wiring board and its manufacturing method
JP2017143096A (en) Wiring board, semiconductor device and wiring board manufacturing method
JP5491991B2 (en) Multilayer wiring board and manufacturing method thereof
JP2009246145A (en) Substrate with built-in electronic component and method of manufacturing the same, and semiconductor device using the same
JP2005045228A (en) Circuit board with built-in electronic component and its manufacturing method
JP4622449B2 (en) Electronic component built-in substrate and manufacturing method thereof
JP4814129B2 (en) Wiring board with built-in components, Wiring board built-in components
JP5913535B1 (en) Component built-in substrate and manufacturing method thereof
US11540396B2 (en) Circuit board structure and manufacturing method thereof