JP2009238931A - 半導体発光素子およびそれを用いる照明装置ならびに半導体発光素子の製造方法 - Google Patents

半導体発光素子およびそれを用いる照明装置ならびに半導体発光素子の製造方法 Download PDF

Info

Publication number
JP2009238931A
JP2009238931A JP2008081564A JP2008081564A JP2009238931A JP 2009238931 A JP2009238931 A JP 2009238931A JP 2008081564 A JP2008081564 A JP 2008081564A JP 2008081564 A JP2008081564 A JP 2008081564A JP 2009238931 A JP2009238931 A JP 2009238931A
Authority
JP
Japan
Prior art keywords
layer
electrode
light
type
type semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008081564A
Other languages
English (en)
Inventor
Masaharu Yasuda
正治 安田
Hiroshi Fukushima
博司 福島
Tomoya Iwahashi
友也 岩橋
Kazuyuki Yamae
和幸 山江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Electric Works Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Electric Works Co Ltd filed Critical Panasonic Electric Works Co Ltd
Priority to JP2008081564A priority Critical patent/JP2009238931A/ja
Publication of JP2009238931A publication Critical patent/JP2009238931A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Led Devices (AREA)

Abstract

【課題】光取出し効率を向上するとともに、発光層への注入電流を大きくする。
【解決手段】透光性を有し、導電性基板或いは絶縁性の基板上に導電性のバッファ層を備えるなどしてn型電極2側となる基板11上に、n型半導体層12と発光層13とp型半導体層14とが順に積層され、p型半導体層14上にp型電極3が形成されて成る発光ダイオード1において、p型電極3を、p型半導体層14とオーミックコンタクト可能で電気伝導度が高い金属から成る第1の電極層15と、光を透過させるためにその第1の電極層15に形成された開口15aから前記第1の電極層15上に積層され、コンタクト抵抗は多少高くても、光を反射する材料から成る第2の電極層16と、前記第2の電極層16上に積層される多層反射膜層17とを備えて構成する。したがって、第2の電極層16によって反射率を高くし、第1の電極層15によって注入電流を大きくすることができる。
【選択図】図1

Description

本発明は、半導体内で電子と正孔とを結合させて発光させる半導体発光素子およびそれを用いる照明装置ならびに半導体発光素子の製造方法に関し、詳しくは、赤色よりも短波長側に発光ピークを有する半導体発光素子の光取出し効率の向上のための手法に関する。
従来から、半導体発光素子からの光取り出し効率を向上する方策として、反射率の高い電極を形成する方法が用いられている。これは、半導体発光層にて発生する光は四方八方に向かう性質があるためである。たとえば、GaAs半導体の場合には、Auを電極材料に用いることで光取り出し効率を向上することができる。しかしながら、金属の反射率は波長に大きく依存し、前記赤色よりも短波長側に発光ピークを有する酸化物あるいは窒化物系化合物半導体発光素子などでは、そのような手法を用いることができない。そこで、たとえば特許文献1〜3が提案されている。
特許文献1は、多層反射膜層を有する酸化物半導体発光素子の一例であり、サファイア基板上に、多層反射膜、n型ZnOコンタクト層、n型Mg0.1Zn0.9Oクラッド層、ノンドープ量子井戸発光層、p型Mg0.1Zn0.9Oクラッド層およびp型ZnOコンタクト層を積層している。そして、前記多層反射膜層は、絶縁体酸化物LiGaO層と酸化物半導体ZnO層とを交互に積層することで構成されており、n型ZnOクラッド層とサファイア基板との間に形成されている。また、n型ZnOコンタクト層とp型ZnOコンタクト層とには、それぞれ電圧を印加する電極パッドを有する構成となっている。
同様に特許文献2も、nGaN基板上にバッファ層を形成した後、ブラッグ型半導体多層反射膜(以下反射膜という)を形成し、その上にn層、発光層およびp層を順次積層している。さらに特許文献3も、III−V族化合物半導体基板上に多層反射膜を配置し、さらにその上にIII−V族化合物半導体のpn接合を含む発光構造を載置している。
しかしながら、前記多層反射膜層は、入射角度によって反射率が異なり、入射角度が深くなる程、すなわち斜めに入射する程、透過して反射率が低くなるという問題がある。そこで、このような問題に対応することができる従来技術として、特許文献4では、p型オーミック電極(Rh)を開口を有するように形成し、その上に前記p型オーミック電極よりも反射率の高い金属電極(Al)を形成するとともに、前記開口からそれらの間に、AlとRhとの合金化を防止する透光絶縁膜を介在するとともに、その透光絶縁膜を電子ビーム蒸着またはスパッタなどの低温で形成することで、発光を均一に行えるようにした発光ダイオードの製造方法が示されている。
一方、本願発明者らが提案した特許文献5は、p型層上に、薄い金属から成る第1の透明導電膜およびITOなどによる第2の透明導電膜を形成し、その上に開口を有する前記多層反射膜層を形成し、前記開口部分から前記多層反射膜層上に金属反射膜を形成している。
特開2004−235532号公報 特開平9−45959号公報 特開平8−222761号公報 特開2008−16629号公報
したがって、上記特許文献4および特許文献5の従来技術では、金属から成る高反射率層を設けているので、光取出し効率は向上することができる。しかしながら、特許文献4ではp型オーミック電極の開口部分が透光絶縁膜となっており、発光層への注入電流が少ないという問題がある。また、特許文献5でも、第1の透明導電膜を透明にするためには薄く形成する必要があり、第2の透明導電膜も、導電膜と言うものの、電気伝導度が、たとえばITOで200Ω/cmと、金属の数Ω/cmと比べて飛躍的に悪く、発光層への注入電流が少ないという問題がある。
本発明の目的は、光取出し効率を向上することができるとともに、発光層への注入電流を大きくすることができる半導体発光素子およびそれを用いる照明装置ならびに半導体発光素子の製造方法を提供することである。
本発明の半導体発光素子は、n型電極側となり、透光性を有する基板上に、n型半導体層と発光層とp型半導体層とが順に積層され、前記p型半導体層上にp型電極が形成されて成る半導体発光素子において、前記p型半導体層上に積層され、該p型半導体層と導電性を有し、開口を有する第1の電極層と、前記開口から前記第1の電極層上に積層され、光を反射する材料から成る第2の電極層と、前記第2の電極層上に積層される多層反射膜層とを備えて構成されることを特徴とする。
また、本発明の半導体発光素子の製造方法は、n型電極側となり、透光性を有する基板上に、n型半導体層と発光層とp型半導体層とが順に積層され、前記p型半導体層上にp型電極が形成されて成る半導体発光素子の製造方法において、前記p型半導体層上に、該p型半導体層と導電性を有し、開口を有する第1の電極層を積層する工程と、前記開口から前記第1の電極層上に、光を反射する材料から成る第2の電極層を積層する工程と、前記第2の電極層上に多層反射膜層を積層する工程とを含むことを特徴とする。
上記の構成によれば、透光性を有し、導電性基板或いは絶縁性の基板上に導電性のバッファ層を備えるなどしてn型電極側となる基板上に、n型半導体層と発光層とp型半導体層とが順に積層され、前記p型半導体層上にp型電極が形成されて成る半導体発光素子において、前記p型電極を、前記p型半導体層と導電性を有し(オーミックコンタクト可能で電気伝導度が高い金属から成り)、前記発光層への注入電流が主に流れる第1の電極層と、光を透過させるためにその第1の電極層に形成された開口から前記第1の電極層上に積層され、コンタクト抵抗は多少高くても、光を反射する材料から成る第2の電極層と、前記第2の電極層上に積層される多層反射膜層とを備えて構成する。
したがって、多層反射膜層に対して入射角度が大きくなる光に対しても第2の電極層によって反射率を高くし、発光層で発生する光を効率良く外部に取出すことができる。また、第1の電極層によってp型半導体層へのコンタクト抵抗を低くし、該半導体発光素子の動作電圧を低くすることができるとともに、発光層への注入電流を大きくすることができる。
さらにまた、本発明の半導体発光素子では、前記第1の電極層は、前記p型半導体層上で30〜80%の面積を占めるメッシュ状に形成されていることを特徴とする。
上記の構成によれば、発光層への充分な注入電流を得るためには前記第1の電極層は或る程度の厚さになって光を吸収することになるが、前記p型半導体層上で前記30〜80%程度の面積でメッシュ状であれば、その吸収を抑えながら、前記コンタクト抵抗を下げることもできる。
また、本発明の半導体発光素子では、前記第2の電極層は、前記第1の電極層上で、5〜20Åの厚さに形成されることを特徴とする。
上記の構成によれば、前記第1の電極層の開口部分から該第1の電極層上の全面覆うように形成される第2の電極層の厚みを5〜20Åとすることで、前記開口部分からp型半導体層へ、および特に絶縁性の多層反射膜層の直下で、電流の拡散を充分に行うことができ、大きな電流によって該半導体発光素子を駆動する場合、特定の箇所に電流が集中することによって発生する発光層での発光ムラを抑えることができる。
さらにまた、本発明の半導体発光素子では、前記多層反射膜層は、前記p型半導体層上の15〜85%の面積を覆うように島状に形成されていることを特徴とする。
上記の構成によれば、p型電極の反射率を高くするとともに、多層反射膜層が絶縁性の材料から形成される場合でも、第2の電極層と該多層反射膜層上の電極材料との導通が確保できるので、動作電圧を低くできるとともに、注入電流を大きくすることができる。
また、本発明の半導体発光素子では、前記島状の多層反射膜層間から該多層反射膜層上は、金属材料によって覆われていることを特徴とする。
上記の構成によれば、p型半導体層上に島状に形成された多層反射膜層間から該多層反射膜層上を、金属材料で覆うことで、p型電極パットとの導電性を確保しつつ、多層反射膜層で反射させられなかった光を反射させることができる。
さらにまた、本発明の照明装置は、前記の半導体発光素子を用いることを特徴とする。
上記の構成によれば、半導体発光素子における発光層からの光取出し効率を向上することができるとともに、発光層への注入電流を大きくすることができるので、低消費電力で高輝度な照明装置を実現することができる。
本発明の半導体発光素子およびその製造方法は、以上のように、透光性を有し、導電性基板或いは絶縁性の基板上に導電性のバッファ層を備えるなどしてn型電極側となる基板上に、n型半導体層と発光層とp型半導体層とが順に積層され、前記p型半導体層上にp型電極が形成されて成る半導体発光素子において、前記p型電極を、前記p型半導体層と導電性を有し、前記発光層への注入電流が主に流れる第1の電極層と、光を透過させるためにその第1の電極層に形成された開口から前記第1の電極層上に積層され、コンタクト抵抗は多少高くても、光を反射する材料から成る第2の電極層と、前記第2の電極層上に積層される多層反射膜層とを備えて構成する。
それゆえ、多層反射膜層に対して入射角度が大きくなる光に対しても第2の電極層によって反射率を高くし、発光層で発生する光を効率良く外部に取出すことができる。また、第1の電極層によってp型半導体層へのコンタクト抵抗を低くし、該半導体発光素子の動作電圧を低くすることができるとともに、発光層への注入電流を大きくすることができる。
さらにまた、本発明の半導体発光素子は、以上のように、発光層への充分な注入電流を得るためには前記第1の電極層は或る程度の厚さになって光を吸収することになるが、前記p型半導体層上で30〜80%程度の面積でメッシュ状に形成する。
それゆえ、吸収を抑えながら、前記コンタクト抵抗を下げることもできる。
また、本発明の半導体発光素子は、以上のように、前記第1の電極層の開口部分から該第1の電極層上の全面覆うように形成される第2の電極層の厚みを5〜20Åとする。
それゆえ、前記開口部分からp型半導体層へ、および特に絶縁性の多層反射膜層の直下で、電流の拡散を充分に行うことができ、大きな電流によって該半導体発光素子を駆動する場合、特定の箇所に電流が集中することによって発生する発光層での発光ムラを抑えることができる。
さらにまた、本発明の半導体発光素子は、以上のように、前記多層反射膜層を、前記p型半導体層上の15〜85%の面積を覆うように島状に形成する。
それゆえ、p型電極の反射率を高くするとともに、多層反射膜層が絶縁性の材料から形成される場合でも、第2の電極層と該多層反射膜層上の電極材料との導通が確保できるので、動作電圧を低くできるとともに、注入電流を大きくすることができる。
また、本発明の半導体発光素子は、以上のように、前記島状の多層反射膜層間から該多層反射膜層上を、金属材料によって覆う。
それゆえ、p型電極パットとの導電性を確保しつつ、多層反射膜層で反射させられなかった光を反射させることができる。
さらにまた、本発明の照明装置は、以上のように、前記の半導体発光素子を用いる。
それゆえ、半導体発光素子における発光層からの光取出し効率を向上することができるとともに、発光層への注入電流を大きくすることができるので、低消費電力で高輝度な照明装置を実現することができる。
[実施の形態1]
図1は本発明の実施の一形態に係る半導体発光素子である発光ダイオード1の構造を示す断面図であり、図2はその平面図であり、図2において、図1の切断面を参照符号I−Iで示す。この発光ダイオード1は、矩形の一角が切り欠かかれてn型電極2となり、残余の領域がp型電極3となり、基板11側を光取出し面とするフリップチップ実装可能な発光ダイオードである。
透光性を有する前記基板11上には、n型半導体層12、発光層13およびp型半導体層14が順次積層されている。n型電極側となる前記基板11は、導電性を有するGaN、ZnOおよびSiCなどから成り、或いは前記n型半導体層12がバッファ層として機能するので、絶縁性を有するサファイアなどであってもよい。前記n型半導体層12、発光層13およびp型半導体層14も、窒化物半導体、酸化物半導体および酸窒化物半導体のいずれであってもよい。前記発光層3をn型のInGaN、AlInGaN、AlGaNで形成する場合、その発光色は、InやAlの組成比を適宜調整したり、或いはSi、Ge、S等のn型不純物やZn、Mg等のp型不純物を適宜ドープしたりすることで、紫外〜青色の範囲で所望の色に調節可能である。
注目すべきは、本発明では、前記p型半導体層14の領域上に形成されるp型電極3は、前記p型半導体層とオーミックコンタクト可能で電気伝導度が高い金属から成り、前記発光層13への注入電流が主に流れる第1の電極層15と、光を透過させるためにその第1の電極層15に形成された開口15aから該第1の電極層15上に積層され、コンタクト抵抗は多少高くても、光を反射する材料から成る第2の電極層16と、前記第2の電極層上16に島状に積層される多層反射膜層17と、前記島状の多層反射膜層17間から該多層反射膜層17上を覆う金属層18とを備えて構成されることである。
前記第1の電極層15は、前記のようにp型半導体層14とオーミックコンタクト可能で電気伝導度が高いPtやRhまたはこれらの合金から成り、図3で示すようにメッシュ状に形成される。そして、該第1の電極層15の厚みを10Å以下とすれば、460nm程度で光吸収率を1%以下に抑えることができる。前記第2の電極層16は、前記のようにコンタクト抵抗は多少高くても、光を反射するように、AgまたはAg合金またはAlから成り、20Å程度の厚さに形成される。前記多層反射膜層17は、図4で示すように、p型半導体層14の30%を覆う前記島状に形成される。前記金属層18は、前記AgまたはAg合金またはAlから成り、反射材料となる。
こうして形成されたp型電極3上に、外部との電気接続を確保するためのボンディング用電極として、チタン層19と、ニッケル層20と、金層21とが順次積層されている。一方、上述の各層12〜21を積層した後、前記矩形の一角がエッチングによって切り欠かかれた後、チタン層22と、ニッケル層23と、金層24とが順次積層されて、前記n型電極2が形成される。なお、p型電極3を構成する材料の接続信頼性を向上させるために、島状の多層反射膜層17と金属層18との間に、薄いアルミナを挿入してもよい。
こうして完成した発光ダイオード1には、p型電極3にプラス電圧を、n型電極2にマイナス電圧を加えると、発光層13内で電子とホールとが結合して、青色若しくは紫外の光が発生し、光取り出し方向(基板11方向)とは反対側に向かった光は、多層反射膜層17や第2の電極層16および金属層18によって、前記光取り出し方向(基板11方向)へ反射され、該発光ダイオード1の外部へ放射される。
図5および図6は、前記第1の電極層15および多層反射膜層17が前記p型半導体層14の表面積に占める割合をパラメータとして、該発光ダイオード1の動作電圧とp型電極3の吸収率(図5)および反射率(図6)とを計測した結果を示すグラフである。図5は、多層反射膜層17がp型半導体層14に占める割合を50%となるように形成した状態で、第1の電極層15であるPtメッシュ状電極がp型半導体層14に占める割合を変化させている。図6は、第1の電極層15としてPtメッシュ状電極がp型半導体層14の30%を覆うように形成した状態で、多層反射膜層17のp型半導体層14に占める割合を変化させている。Ptの厚みは前記10Åとしている。
図5から明らかなように、Ptメッシュ状電極がp型半導体層14の30%以上の領域を覆うように形成すると、動作電圧が3V以下と低く(コンタクト抵抗を抑え)なって発光効率が高くなり、Ptメッシュ状電極がp型半導体層14の80%以上となるとp型電極3全体での吸収率は4%以上となる。このため、前記メッシュ状の第1の電極層15がp型半導体層14上で占める面積を30〜80%とすることで、発光層13への充分な注入電流を得るために該第1の電極層15が或る程度の厚さになって光を吸収することになっても、その吸収を抑えながら、前記コンタクト抵抗を下げることもできる。
また、図6から明らかなように、前記多層反射膜層17をp型半導体層14の85%以上の領域を覆うように形成すると、動作電圧が4V以上となり、15%以下では、反射率が95%以下となり、共に発光効率が低下する。このため、前記多層反射膜層17がp型半導体層14上で占める面積を、15〜85%とすることで、p型電極3全体での反射率を高くすることができるとともに、該多層反射膜層17が絶縁性の材料から形成される場合でも、第2の電極層16と該多層反射膜層17上の電極材料(層18〜21)との導通が確保できるので、動作電圧を低くできるとともに、注入電流を大きくすることができる。
このように構成することで、発光層13からp型電極3に向かう全ての光に対して、該p型電極3への入射角度に依存することなく、該p型電極全体での反射率は第2の電極層16および多層反射膜層17によって、Agの反射率(λ=460nm、95%)を上回り、しかもp型半導体層14と電気伝導が良好な第1の電極層15を形成しているので、動作電圧は3.5V(I=40mA)を超えない。こうして、発光層13で発生する光を効率良く外部に取出すことができるとともに、発光層13への注入電流を大きくすることができ、低消費電力で高輝度な発光ダイオードを実現することができる。またこのような発光ダイオード1を照明装置に用いることで、低消費電力で高輝度な照明装置を実現することができる。
また、前記第1の電極層15の開口15a部分から該第1の電極層15上の全面覆うように形成される第2の電極層16の厚みを5〜20Åとすることで、前記開口15a部分からp型半導体層14へ、および特に絶縁性の多層反射膜層17の直下で、電流の拡散を充分に行うことができ、大きな電流によって該発光ダイオード1を駆動する場合、特定の箇所に電流が集中することによって発生する発光層13での発光ムラを抑えることができる。さらにまた、前記島状の多層反射膜層17間から該多層反射膜層17上をは、金属層18で覆うことで、p型電極パット(層19〜21)との導電性を確保しつつ、多層反射膜層17で反射させられなかった光を反射させることができる。
[実施の形態2]
図7は、本発明の実施の他の形態に係る半導体発光素子である発光ダイオード31の構造を示す断面図である。この発光ダイオード31は、前述の発光ダイオード1に類似し、対応する部分には同一の参照符号を付して示し、その説明を省略する。注目すべきは、この発光ダイオード31では、n型の導電性を有する基板30が用いられて、n型電極32が、前記基板30の各層12〜21が形成される面とは反対側の面に形成されることである。このように構成することで、該発光ダイオード31の厚み方向に電流を流すことができ、より均一かつ大きな電流を流すことができる。
本発明の実施の一形態に係る半導体発光素子である発光ダイオードの構造を示す断面図である。 図1の平面図である。 前記発光ダイオードにおける第1の電極層のレイアウトの一例を示す図である。 前記発光ダイオードにおける多層反射膜層のレイアウトの一例を示す図である。 前記第1の電極層がp型半導体層の表面積に占める割合をパラメータとして、該発光ダイオードの動作電圧とp型電極の反射率とを計測した結果を示すグラフである。 前記多層反射膜層がp型半導体層の表面積に占める割合をパラメータとして、該発光ダイオードの動作電圧とp型電極の反射率とを計測した結果を示すグラフである。 本発明の実施の他の形態に係る半導体発光素子である発光ダイオードの構造を示す断面図である。
符号の説明
1,31 発光ダイオード
2,32 n型電極
3 p型電極
11,30 基板
12 n型半導体層
13 発光層
14 p型半導体層
15 第1の電極層
15a 開口
16 第2の電極層
17 多層反射膜層
18 金属層
19,22 チタン層
20,23 ニッケル層
21,24 金層

Claims (7)

  1. n型電極側となり、透光性を有する基板上に、n型半導体層と発光層とp型半導体層とが順に積層され、前記p型半導体層上にp型電極が形成されて成る半導体発光素子において、
    前記p型半導体層上に積層され、該p型半導体層と導電性を有し、開口を有する第1の電極層と、
    前記開口から前記第1の電極層上に積層され、光を反射する材料から成る第2の電極層と、
    前記第2の電極層上に積層される多層反射膜層とを備えて構成されることを特徴とする半導体発光素子。
  2. 前記第1の電極層は、前記p型半導体層上で30〜80%の面積を占めるメッシュ状に形成されていることを特徴とする請求項1記載の半導体発光素子。
  3. 前記第2の電極層は、前記第1の電極層上で、5〜20Åの厚さに形成されることを特徴とする請求項1または2記載の半導体発光素子。
  4. 前記多層反射膜層は、前記p型半導体層上の15〜85%の面積を覆うように島状に形成されていることを特徴とする請求項1〜3のいずれか1項に記載の半導体発光素子。
  5. 前記島状の多層反射膜層間から該多層反射膜層上は、金属材料によって覆われていることを特徴とする請求項1〜4のいずれか1項に記載の半導体発光素子。
  6. 前記請求項1〜5のいずれか1項に記載の半導体発光素子を用いることを特徴とする照明装置。
  7. n型電極側となり、透光性を有する基板上に、n型半導体層と発光層とp型半導体層とが順に積層され、前記p型半導体層上にp型電極が形成されて成る半導体発光素子の製造方法において、
    前記p型半導体層上に、該p型半導体層と導電性を有し、開口を有する第1の電極層を積層する工程と、
    前記開口から前記第1の電極層上に、光を反射する材料から成る第2の電極層を積層する工程と、
    前記第2の電極層上に多層反射膜層を積層する工程とを含むことを特徴とする半導体発光素子の製造方法。
JP2008081564A 2008-03-26 2008-03-26 半導体発光素子およびそれを用いる照明装置ならびに半導体発光素子の製造方法 Pending JP2009238931A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008081564A JP2009238931A (ja) 2008-03-26 2008-03-26 半導体発光素子およびそれを用いる照明装置ならびに半導体発光素子の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008081564A JP2009238931A (ja) 2008-03-26 2008-03-26 半導体発光素子およびそれを用いる照明装置ならびに半導体発光素子の製造方法

Publications (1)

Publication Number Publication Date
JP2009238931A true JP2009238931A (ja) 2009-10-15

Family

ID=41252549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008081564A Pending JP2009238931A (ja) 2008-03-26 2008-03-26 半導体発光素子およびそれを用いる照明装置ならびに半導体発光素子の製造方法

Country Status (1)

Country Link
JP (1) JP2009238931A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013004546A (ja) * 2011-06-10 2013-01-07 Showa Denko Kk 半導体発光素子及び半導体発光装置
JP2017092477A (ja) * 2015-11-13 2017-05-25 晶元光電股▲ふん▼有限公司 発光デバイス
CN107437551A (zh) * 2016-05-25 2017-12-05 群创光电股份有限公司 显示装置及其制造方法
CN108400214A (zh) * 2013-10-11 2018-08-14 世迈克琉明有限公司 半导体发光元件

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04340288A (ja) * 1991-01-28 1992-11-26 Nippon Telegr & Teleph Corp <Ntt> 面形発光素子
JP2004071655A (ja) * 2002-08-01 2004-03-04 Nichia Chem Ind Ltd 発光素子
JP2005116794A (ja) * 2003-10-08 2005-04-28 Mitsubishi Cable Ind Ltd 窒化物半導体発光素子
JP2006054420A (ja) * 2004-08-11 2006-02-23 Samsung Electro Mech Co Ltd 窒化物半導体発光素子及びその製造方法、並びに窒化物半導体発光素子を備えたフリップチップ構造の発光装置
WO2007105626A1 (ja) * 2006-03-10 2007-09-20 Matsushita Electric Works, Ltd. 発光素子
JP2007258276A (ja) * 2006-03-20 2007-10-04 Matsushita Electric Works Ltd 半導体発光素子

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04340288A (ja) * 1991-01-28 1992-11-26 Nippon Telegr & Teleph Corp <Ntt> 面形発光素子
JP2004071655A (ja) * 2002-08-01 2004-03-04 Nichia Chem Ind Ltd 発光素子
JP2005116794A (ja) * 2003-10-08 2005-04-28 Mitsubishi Cable Ind Ltd 窒化物半導体発光素子
JP2006054420A (ja) * 2004-08-11 2006-02-23 Samsung Electro Mech Co Ltd 窒化物半導体発光素子及びその製造方法、並びに窒化物半導体発光素子を備えたフリップチップ構造の発光装置
WO2007105626A1 (ja) * 2006-03-10 2007-09-20 Matsushita Electric Works, Ltd. 発光素子
JP2007258276A (ja) * 2006-03-20 2007-10-04 Matsushita Electric Works Ltd 半導体発光素子

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013004546A (ja) * 2011-06-10 2013-01-07 Showa Denko Kk 半導体発光素子及び半導体発光装置
CN108400214A (zh) * 2013-10-11 2018-08-14 世迈克琉明有限公司 半导体发光元件
JP2017092477A (ja) * 2015-11-13 2017-05-25 晶元光電股▲ふん▼有限公司 発光デバイス
CN107437551A (zh) * 2016-05-25 2017-12-05 群创光电股份有限公司 显示装置及其制造方法
CN107437551B (zh) * 2016-05-25 2020-03-24 群创光电股份有限公司 显示装置及其制造方法

Similar Documents

Publication Publication Date Title
US10243109B2 (en) Light-emitting diode with improved light extraction efficiency
TWI555231B (zh) 半導體發光元件
JP4644193B2 (ja) 半導体発光素子
US7863599B2 (en) Light emitting diode
JP5582054B2 (ja) 半導体発光素子
KR100887139B1 (ko) 질화물 반도체 발광소자 및 제조방법
JP5048960B2 (ja) 半導体発光素子
JP5012187B2 (ja) 発光装置
JP5494005B2 (ja) 半導体発光素子
JP6485019B2 (ja) 半導体発光素子
JP4875361B2 (ja) 3族窒化物発光素子
JP2009043934A (ja) フリップチップ型発光素子
TW201448263A (zh) 透明發光二極體
JP2005045038A (ja) 窒化物半導体発光素子
JP2012146926A (ja) 発光素子、発光素子ユニットおよび発光素子パッケージ
JP2006210730A (ja) 発光素子
JP6149878B2 (ja) 発光素子
JP2010272592A (ja) 半導体発光素子
TW201505211A (zh) 發光元件
JP2012124429A (ja) 発光素子、発光素子ユニット、発光素子パッケージおよび発光素子の製造方法
JP2009238931A (ja) 半導体発光素子およびそれを用いる照明装置ならびに半導体発光素子の製造方法
JP2006229187A (ja) 反射電極及びそれを備える化合物半導体の発光素子
JP2005302803A (ja) 窒化物半導体発光素子およびその製造方法
JP2006237467A (ja) 半導体発光素子及びその製造方法
TW201442275A (zh) 發光二極體裝置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101022

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120515

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120516

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120713

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130108