JP2009211954A - 燃料電池システム - Google Patents

燃料電池システム Download PDF

Info

Publication number
JP2009211954A
JP2009211954A JP2008054087A JP2008054087A JP2009211954A JP 2009211954 A JP2009211954 A JP 2009211954A JP 2008054087 A JP2008054087 A JP 2008054087A JP 2008054087 A JP2008054087 A JP 2008054087A JP 2009211954 A JP2009211954 A JP 2009211954A
Authority
JP
Japan
Prior art keywords
fuel cell
pressure
gas
scavenging
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008054087A
Other languages
English (en)
Other versions
JP5199701B2 (ja
Inventor
Shinya Watanabe
真也 渡邉
Minoru Uoshima
稔 魚嶋
Nobutaka Nakajima
伸高 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2008054087A priority Critical patent/JP5199701B2/ja
Publication of JP2009211954A publication Critical patent/JP2009211954A/ja
Application granted granted Critical
Publication of JP5199701B2 publication Critical patent/JP5199701B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

【課題】燃料電池内の圧力を検出するための圧力センサに水分が付着しにくい燃料電池システムを提供する。
【解決手段】水素及び空気が供給されることで発電する燃料電池スタック10と、燃料電池スタック10に空気を供給するコンプレッサ31と、コンプレッサ31から燃料電池スタック10に向かう空気を加湿する加湿器32と、燃料電池スタック10に向かう空気が、加湿器32をバイパスする配管33a及び配管33bと、燃料電池スタック10における空気の圧力を検出するための圧力センサ34と、を備え、圧力センサ34は配管33bに設けられている燃料電池システム1である。
【選択図】図1

Description

本発明は、燃料電池システムに関する。
近年、水素(燃料ガス、反応ガス)がアノードに、酸素を含む空気(酸化剤ガス、反応ガス)がカソードに、それぞれ供給されることで発電する固体高分子型燃料電池(Polymer Electrolyte Fuel Cell:PEFC)等の燃料電池の開発が盛んである。
このような燃料電池を好適に発電させるには、そのMEA(Membrane Electrode Assembly:膜電極接合体)を構成する電解質膜(固体高分子膜)を、適度な湿潤状態で維持することが要求される。そのため、例えば、燃料電池に向かう空気を加湿する加湿器を備える燃料電池システムが提案されている(特許文献1、2参照)。
また、燃料電池の発電状態を監視すること、例えば、燃料電池に供給されている空気の圧力を検出することも重要である。具体的には、燃料電池の空気入口近傍に圧力センサを設け、この圧力センサが検出する圧力に基づいて、燃料電池内における空気の圧力を推定している。
特開2007−317471号公報 特開2007−287540号公報
しかしながら、従来の燃料電池システムでは、圧力センサが、加湿器で加湿された多湿の空気に曝されるので、圧力センサに水蒸気が付着し、また、圧力センサで結露水が生成し、圧力を誤検出する虞があった。
そして、このように結露水が付着したまま、燃料電池システムが低温環境下(例えば氷点下未満)に曝されると、結露水が凍結し、次回のシステム起動時において、圧力センサによる圧力検出が不能になる虞があった。
そこで、本発明は、燃料電池内の圧力を検出するための圧力センサに水分が付着しにくい燃料電池システムを提供することを課題とする。
前記課題を解決するための手段として、本発明は、反応ガスが供給されることで発電する燃料電池と、前記燃料電池に反応ガスを供給する反応ガス供給手段と、前記反応ガス供給手段から前記燃料電池に向かう反応ガスを加湿する加湿器と、前記燃料電池に向かう反応ガスが、前記加湿器をバイパスするバイパスラインと、前記燃料電池における反応ガスの圧力を検出するための圧力センサと、を備え、前記圧力センサは前記バイパスラインに設けられていることを特徴とする燃料電池システムである。
このような燃料電池システムによれば、加湿器で加湿され、燃料電池に向かう反応ガスが、バイパスラインに流れ込みにくくなる。これにより、加湿された反応ガスに含まれる水蒸気(水分)が、圧力センサに付着しにくくなる。そのため、圧力センサにおいて、圧力を誤検出しにくくなる。また、その後、低温環境下に曝されても、圧力センサで凍結が発生しにくくなり、次回起動時において、圧力センサによる圧力検出が不能となることを防止できる。
また、前記燃料電池の発電時、前記バイパスラインには非加湿の反応ガスが下流に向かって流れ、前記加湿器で加湿され当該バイパスラインを逆流する加湿後の反応ガスを、下流に向かって押すように構成されていることを特徴とする燃料電池システムである。
このような燃料電池システムによれば、燃料電池の発電時、バイパスラインには非加湿の反応ガスが下流に向かって流れ、加湿器で加湿されバイパスラインを逆流する加湿後の反応ガスを、下流に向かって押す。これにより、加湿された反応ガスに含まれる水蒸気(水分)が、さらに、圧力センサに付着しにくくなる。
なお、バイパスラインを下流に向かって流れる非加湿の反応ガスの流量は、バイパスラインを逆流しようとする加湿された反応ガスが、圧力センサに到達しない程度に設定され、例えば、後記する実施形態のように微流量に設定される。
また、前記燃料電池に向かう反応ガスの流量が増加すると、前記バイパスラインを流れる非加湿の反応ガスの流量が増加するように制御する流量制御手段を備えることを特徴とする燃料電池システムである。
このような燃料電池システムによれば、燃料電池に向かう反応ガスの流量が増加すると、流量制御手段が、バイパスラインを流れる非加湿の反応ガスの流量が増加するように制御する。すなわち、バイパスラインを逆流しようとする加湿後の反応ガスの流量が増加しても、これに対応して、バイパスラインを流れる非加湿の反応ガスの流量が増加し、非加湿の反応ガスが、加湿後の反応ガスを押す。
これにより、加湿後の反応ガスの流量が増加しても、これに含まれる水蒸気(水分)が、圧力センサに付着することを防止できる。
また、前記燃料電池を掃気ガスで掃気する掃気手段を備え、掃気時において、前記掃気手段から前記燃料電池に向かう掃気ガスは、前記バイパスラインを通ることを特徴とする燃料電池システムである。
このような燃料電池システムによれば、燃料電池の掃気時において、掃気手段から前記燃料電池に向かう掃気ガスが、バイパスラインを通る。これにより、圧力センサにおいて、結露水が発生していたとしても、この結露水と、バイパスラインに滞留する水蒸気(水分)とは、バイパスラインを通る掃気ガスにより掃気される。
なお、掃気とは、水分等を掃気ガスによって、吹き飛ばしながら押し出すことであり、掃気ガスとしては、後記する実施形態のように、非加湿の空気の他、例えば、窒素等が使用される。
また、前記燃料電池に対する前記圧力センサの位置、前記バイパスラインの太さ、反応ガスの流量の少なくとも一つに基づいて、前記圧力センサが検出した実測圧力を補正し、前記燃料電池内の反応ガスの圧力を算出する算出手段を、備えることを特徴とする燃料電池システムである。
このような燃料電池システムによれば、算出手段により、燃料電池に対する圧力センサの位置、バイパスラインの太さ、反応ガスの流量の少なくとも一つに基づいて、圧力センサが検出した実測圧力を補正し、燃料電池内の反応ガスの圧力を算出(推定)することができる。
本発明によれば、燃料電池内の圧力を検出するための圧力センサに水分が付着しにくい燃料電池システムを提供することができる。
≪第1実施形態≫
本発明の第1実施形態について、図1から図8を参照して説明する。
≪燃料電池システムの構成≫
図1に示す第1実施形態に係る燃料電池システム1は、図示しない燃料電池自動車(移動体)に搭載されている。燃料電池システム1は、燃料電池スタック10と、燃料電池スタック10のアノードに対して水素(燃料ガス、反応ガス)を給排するアノード系と、燃料電池スタック10のカソードに対して酸素を含む空気(酸化剤ガス、反応ガス)を給排するカソード系と、掃気時にカソード系からアノード系に掃気ガスを導く掃気ガス系と、これらを電子制御するECU70(Electronic Control Unit、電子制御装置)と、を備えている。
<燃料電池スタック>
燃料電池スタック10は、複数(例えば200〜400枚)の固体高分子型の単セルが積層されることで構成されたスタックであり、複数の単セルは電気的に直列で接続されている。単セルは、MEA(Membrane Electrode Assembly:膜電極接合体)と、これを挟み2枚の導電性を有するアノードセパレータ及びカソードセパレータと、を備えている。
MEAは、1価の陽イオン交換膜(例えばパーフルオロスルホン酸型)からなる電解質膜(固体高分子膜)と、これを挟むアノード及びカソードとを備えている。アノード及びカソードは、カーボンペーパ等の導電性を有する多孔質体から主に構成されると共に、アノード及びカソードにおける電極反応を生じさせるための触媒(Pt、Ru等)を含んでいる。
アノードセパレータには、各MEAのアノードに対して水素を給排するため単セルの積層方向に延びる貫通孔(内部マニホールドと称される)や、単セルの面方向に延びる溝が形成されており、これら貫通孔及び溝がアノード流路11(燃料ガス流路)として機能している。
カソードセパレータには、各MEAのカソードに対して空気を給排するため単セルの積層方向に延びる貫通孔(内部マニホールドと称される)や、単セルの面方向に延びる溝が形成されており、これら貫通孔及び溝がカソード流路12(酸化剤ガス流路)として機能している。
そして、アノード流路11を介して各アノードに水素が供給されると、式(1)の電極反応が起こり、カソード流路12を介して各カソードに空気が供給されると、式(2)の電極反応が起こり、各単セルで電位差(OCV(Open Circuit Voltage)、開回路電圧)が発生するようになっている。次いで、燃料電池スタック10と走行モータ等の外部回路とが電気的に接続され、電流が取り出されると、燃料電池スタック10が発電するようになっている。
2H→4H+4e …(1)
+4H+4e→2HO …(2)
そして、このように発電すると、カソードで生成した水(水蒸気)の一部は、電解質膜を透過し、アノードに移動する。よって、カソードから排出されるカソードオフガス、アノードから排出されるアノードオフガスは、多湿となる。
<アノード系>
アノード系は、水素タンク21(燃料ガス供給手段)と、常閉型の遮断弁22と、温度センサ23とを備えている。
水素タンク21は、配管21a、遮断弁22、配管22aを順に介して、アノード流路11の入口に接続されている。配管22aには、水素を所定圧力に減圧する減圧弁(図示しない)が設けられており、この減圧弁には、カソード流路12に向かう空気の圧力が信号圧(パイロット圧)として入力され、前記空気の圧力とアノード流路11における水素の圧力とが等しくなるように制御する構成となっている。
そして、ECU70によって遮断弁22が開かれると、水素タンク21の水素が配管21a等を介してアノード流路11に供給されるようになっている。
アノード流路11の出口は、配管22bを介して、後記する希釈器37に接続されている。そして、アノード流路11(アノード)から排出された未反応の水素を含むアノードオフガスは、配管22bを介して希釈器37に排出されるようになっている。
温度センサ23は、配管22b内のガスの温度を、現在のシステム温度T1(又は燃料電池スタック10の温度)として検出し、ECU70に出力するようになっている。
ただし、温度センサ23の位置は、これに限定されず、例えば、後記する配管32bや、燃料電池スタック10から排出された冷媒が流れる配管(図示しない)に設けてもよい。また、温度センサ23を複数設けて、誤検出を防止してもよい。
<カソード系>
カソード系は、コンプレッサ31(酸化剤ガス(反応ガス)供給手段、掃気手段)と、加湿器32と、バイパス弁33(流量制御手段)と、圧力センサ34と、流量センサ35と、背圧弁36と、希釈器37とを備えている。
コンプレッサ31は、配管31a、加湿器32、配管32aを介して、カソード流路12の入口に接続されている。そして、コンプレッサ31は、ECU70の指令に従って作動すると、酸素を含む空気を取り込み、カソード流路12に供給するようになっている。また、コンプレッサ31は、燃料電池スタック10の掃気時には、これを掃気する掃気手段として機能するようになっている。
なお、コンプレッサ31は、燃料電池スタック10及び/又は燃料電池スタック10の発電電力を充放電する高圧バッテリ(図示しない)を電源として作動する。
カソード流路12の出口は、配管32b、加湿器32、配管36a、背圧弁36、配管36bを介して、希釈器37に接続されている。そして、カソード流路12(カソード)から排出された多湿のカソードオフガスは、配管32b等を介して、希釈器37に排出されるようになっている。
背圧弁36は、バタフライ弁等から構成された常開型の弁である。そして、背圧弁36は、アクセルペダル61の踏み込み量等の発電要求量に応じて、ECU70により、その開度が制御されるようになっている。ただし、背圧弁36は常閉型の弁でもよい。
<加湿器>
加湿器32は、コンプレッサ31からカソード流路12に向かう空気を加湿するため、カソード流路12に向かう空気と、多湿のカソードオフガスとを水分交換させる複数の中空糸膜32dを備えている。
また、コンプレッサ31からの空気が加湿器32をバイパスするように、配管31aは、配管33a、常閉型のバイパス弁33、配管33bを介して、配管32aに接続されている(図2、図3参照)。すなわち、配管33a、配管33bによって、非加湿の空気をバイパスさせるバイパスラインが構成されている。
<バイパス弁>
バイパス弁33は、配管33a及び配管33bから構成されるバイパスラインを流れる空気の流量を制御するものであり、第1実施形態では、バタフライ弁から構成されている。そして、バイパス弁33が、ECU70の指令に従って開かれると、コンプレッサ31からの空気(酸化剤ガス、掃気ガス)が、加湿器32をバイパスし、カソード流路12に向かうようになっている(図3参照)。
一方、システムの通常運転中、つまり、燃料電池スタック10の発電時は、カソード流路12に向かう空気を、加湿器32で加湿するべく、バイパス弁33は全閉位置に制御、つまり、閉じられる(図2参照)。
ただし、第1実施形態では、このようにバイパス弁33が全閉位置で制御されても、ストッパ(図示しない)等に当接し、完全に閉じない構成となっている(図2参照)。そして、加湿器32をバイパスする非加湿の空気が、配管33a及び配管33bを下流に向かって微量で流れ、加湿器32で加湿され、配管33bを逆流しようとする加湿後の空気を、下流に向かって押すように設計されている。
なお、バイパス弁33が、ステッピングモータやサーボモータで作動する電動弁であれば、開度を高精度で制御でき、前記ストッパを省略することもできる。
これにより、加湿後の空気に含まれる水蒸気が、圧力センサ34の後記する受圧部34a及びガス導入管34bに付着しにくく、そして、後記するガス導入口34cが、結露水によって塞がりにくくなっている。このため、圧力センサ34により、圧力を好適に検出可能となっている。
バイパス弁33が全閉位置で制御される場合において、バイパス弁33を通る非加湿の空気の流量、つまり、バイパス弁33の全閉位置は、例えば、燃料電池スタック10のアイドル時において、カソード流路12に向かう加湿後の空気の流量を基準として、事前試験やシミュレーション等により、配管32aと配管33bの合流点からの圧力センサ34の位置、配管33b(バイパスライン)の太さ(内径)に基づいて設定される(図4参照)。
詳細には、圧力センサ34が前記合流点に近くなり、また、配管33b(バイパスライン径)が太くなるほど、全閉位置においてバイパスすべき空気の量(基準バイパス流量)が多くなるように、バイパス弁33の全閉位置は、開方向にシフトされる。
一方、アクセルペダル61が踏み込まれ、発電要求量が増加すると、カソード流路12への空気の流量を増加させるべく、コンプレッサ31の回転速度が高められ、配管33bを逆流しようとする加湿後の空気の流量は増加する。これに対応して、バイパスする非加湿の空気の流量が増加するように、バイパス弁33の開度が制御される構成となっている。
<圧力センサ>
圧力センサ34は、燃料電池スタック10のカソード流路12における空気の圧力を、間接的に検出するための、例えば半導体圧力センサであり、空気の圧力を受ける受圧部34aと、受圧部34aに動圧が作用しないように、受圧部34aを囲み、空気を受圧部34aに導く筒状のガス導入管34bと、を備えている。そして、圧力センサ34は、バイパスラインを構成する配管33bに設けられており、配管33b内の圧力(実測圧力P1)をECU70に出力するようになっている。
これにより、圧力センサ34、つまり、受圧部34a及びガス導入管34bが、加湿器32で加湿された加湿後の空気に、曝されにくくなっている。したがって、加湿後の空気に含まれる水蒸気が、受圧部34a及びガス導入管34bに付着しにくくなっており、ガス導入管34bのガス導入口34cが、水蒸気が結露して生成する結露水によって塞がれにくく、圧力を好適に検出可能となっている。さらに、システム停止後、低温環境下に曝されたとしても、結露水の凍結によってガス導入口34cが塞がることはなく、その後の起動時において、圧力を好適に検出可能となっている。
<流量センサ>
流量センサ35は、コンプレッサ31からカソード流路12に向かう空気の体積流量Q1(L/s)を検出するセンサであり、配管31aに設けられている。そして、流量センサ35は、体積流量Q1を、ECU70に出力するようになっている。
<希釈器>
希釈器37は、アノードオフガスと、配管36bから導入されるカソードオフガスとを混合し、アノードオフガス中の水素を、カソードオフガス(希釈用ガス)で希釈する容器であり、その内部に希釈空間を備えている。そして、希釈器37から排出されるオフガス(希釈後のガス)は、配管37aを介して、車外に排出されるようになっている。
<掃気系>
掃気系は、燃料電池スタック10の掃気時に、コンプレッサ31からの掃気ガス(非加湿の空気)をアノード系に導く系であり、常閉型の掃気弁51を備えている。掃気弁51の上流は、配管51aを介して配管31aに接続されており、掃気弁51の下流は、配管51bを介して配管22aに接続されている。
そして、燃料電池スタック10を掃気する場合、例えばシステム停止時において、温度センサ23によって検出されるシステム温度T1が所定温度T0未満であり、燃料電池スタック10内が凍結する虞のある場合、ECU70はコンプレッサ31を作動すると共に、掃気弁51を開く設定となっている。
<アクセルペダル等>
アクセルペダル61は、走行要求に応じて、運転者が踏み込むペダルであり、運転席の足元に配置されている。そして、アクセルペダル61は、その踏み込み量(アクセル開度)を、ECU70に出力するようになっている。
IG62は、燃料電池自動車及び燃料電池システム1の起動スイッチであり、運転席周りに設けられている。また、IG62はECU70と接続されており、ECU70はIG62のON/OFF信号を検知するようになっている。
<ECU>
ECU70(制御手段)は、燃料電池システム1を電子制御する制御装置であり、CPU、ROM、RAM、各種インタフェイス、電子回路などを含んで構成されており、その内部に記憶されたプログラムに従って、各種機器を制御し、各種処理を実行するようになっている。
また、ECU70(算出手段)は、圧力センサ34が検出する空気の圧力(実測圧力P1)に基づいて、カソード流路12における空気の圧力(推定FC圧力P2)を算出(推定)する機能を備えている。
なお、ECU70による具体的制御内容は、以下のフローチャートを参照して詳細に説明する。
≪燃料電池システムの動作・効果≫
次に、燃料電池システムの動作・効果について、図面を参照して説明する
<燃料電池スタック発電時>
まず、燃料電池スタック10の通常発電時(システム通常運転時)の動作・効果について、図5から図7を参照して、説明する。
ステップS101において、ECU70は、アクセルペダル61から入力されるアクセルペダル61の踏み込み量(AP量)に基づいて、コンプレッサ31の回転速度と、背圧弁36の開度とを制御する。すなわち、アクセルペダル61の踏み込み量が大きくなると、燃料電池スタック10に対する発電要求量が大きくなり、これに対応して空気が供給されるように、コンプレッサ31の回転速度は高められ、背圧弁36の開度は閉方向に制御される。
ステップS102において、ECU70は、流量センサ35を介して検出される空気の体積流量Q1(L/s)と、図6のマップとに基づいて、加湿器32で加湿され、配管32bを逆流する空気が、圧力センサ34に到達しないように、バイパス弁33の開度を制御する。
すなわち、体積流量Q1が増加すると、配管32bを逆流する加湿後の空気の流量が増加するので、図6に示すように、加湿器32をバイパスする非加湿の空気の流量(バイパス流量)が増加するように、バイパス弁33の開度は開方向に制御される。
これにより、加湿後の空気が、圧力センサ34に到達しにくくなり、ガス導入管34b及びガス導入口34c周りに、加湿後の空気に含まれる水蒸気が付着することを防止できる。
なお、図6に示すマップは、事前試験等により求められ、ECU70に予め記憶されている。
ステップS103において、ECU70(算出手段)は、圧力センサ34が検出する配管33bにおける空気の圧力(実測圧力P1)と、図7のマップとに基づいて、カソード流路12における空気の圧力(推定FC圧力P2)を算出する。なお、図7のマップは、事前試験等により求められ、ECU70に予め記憶されている。
図7に示すように、圧力センサ34の位置が、カソード流路12の入口から遠くなると、圧力損失が大きくなるので、実測圧力P1に対して推定FC圧力P2が小さくなるように補正される。
また、配管33bの内径(バイパスライン径)が細くなると、圧力損失が大きくなるので、実測圧力P1に対して推定FC圧力P2が小さくなるように補正される。
さらに、流量センサ35が検出する体積流量Q1(L/s)が多くなると、圧力損失が大きくなるので、実測圧力P1に対して推定FC圧力P2が小さくなるように補正される。
このようにして、ECU70は、実測圧力P1を、圧力センサ34の位置、配管33bの内径、及び、体積流量Q1(L/s)に基づいて補正し、推定FC圧力P2を算出することができる。これにより、ECU70は、アクセルペダル61の踏み込み量(発電要求量)に対応した圧力で、カソード流路12に空気が供給されているか否か判定できる。
なお、圧力センサ34の位置、配管33bの太さ、及び、体積流量Q1(L/s)の全てではなく、少なくとも一つに基づいて補正する構成としてもよい。
その後、ECU70の処理は、リターンに進み、スタートに戻る。
<システム停止時>
次に、燃料電池システム1のシステム停止時における動作・効果について、図8を参照して説明する。なお、IG62がOFFされると、図8のフローチャートに示す各処理がスタートする。
ステップS201において、ECU70は、燃料電池スタック10の発電を停止させる。具体的には、ECU70は、燃料電池スタック10と外部負荷(走行モータ等)との電気的接続をON/OFFするコンタクタ(図示しない)をOFFし、遮断弁22を閉じる。
ステップS202において、ECU70は、燃料電池スタック10の掃気が必要であるか否か判定する。
具体的には、ECU70は、温度センサ23を介して検出されるシステム温度T1が、所定温度T0未満であるか否かを判定する。所定温度T0は、燃料電池スタック10内が、このままではこの後凍結する虞があると判断される温度であり、事前試験等により求められ、ECU70に予め記憶されている。
この他、天気予報や、カーナビゲーション等からの位置情報に基づいて、掃気が必要であるか否か、つまり、凍結する虞があるか否か判定する構成としてもよい。
システム温度T1が所定温度T0未満であり、掃気が必要であると判定した場合(S202・Yes)、ECU70の処理はステップS204に進む。一方、システム温度T1が所定温度T0未満でなく、掃気が必要でないと判定した場合(S202・No)、ECU70の処理はステップS203に進む。
ステップS203において、ECU70は、ステップS202の判定後、所定時間Δt1(例えば30分〜1時間)経過したか否かを判定する。
所定時間Δt1経過したと判定した場合(S203・Yes)、ECU70の処理はステップS202に進む。これにより、発電停止直後は、低温でなかったとしても(S202・No)、その後、所定時間Δt1経過毎(S203・Yes)、ステップS202で掃気が必要であるか判定されるので、凍結が防止される。
一方、所定時間Δt1経過していないと判定した場合(S203・No)、ECU70は、ステップS203の判定を繰り返す。
ステップS204において、ECU70は、燃料電池スタック10の掃気を開始する。
具体的には、ECU70は、コンプレッサ31を作動させ、又は、その回転速度を燃料電池スタック10の掃気用の回転速度に高めて、掃気弁51、及び、背圧弁36を開く。
そうすると、コンプレッサ31からの掃気ガス(非加湿の空気)が、アノード流路11及びカソード流路12に導入され、アノード流路11及びカソード流路12に残留するガス(水素、空気等)や、水分(水蒸気、結露水等)が、希釈器37に押し出され、燃料電池スタック10の掃気が開始される。
ただし、アノード流路11及びカソード流路12を並行して掃気する方式に限定されず、例えば、カソード流路12、アノード流路11の順で掃気する方式でもよい。
これに並行して、ステップS205において、ECU70は、バイパス弁33を開く。そうすると、バイパス弁33は全開位置に制御され(図3参照)、コンプレッサ31からの掃気ガス(非加湿の空気)が、圧力損失体である複数の中空糸膜32dを備える加湿器32をバイパスし、配管33a及び配管33bを流れる。これにより、掃気ガスが、ガス導入管34b及びガス導入口34c周りに付着している水分(結露水)や、配管33a及び配管33bに残留する水蒸気を、押し出す。
したがって、水分がガス導入口34cを塞ぎ、また、凍結した水分がガス導入口34cを塞ぐことを防止できる。その結果、その後の次回起動時において、圧力センサ34が凍結等によって圧力検出不能になることは防止される。
なお、所定時間の間、バイパス弁33を閉じたまま、加湿器32を掃気した後、バイパス弁33を開く構成としてもよい。
ステップS206において、ECU70は、燃料電池スタック10の掃気が完了したか否かを判定する。
具体的には、ECU70は、内蔵するクロックを利用して、ステップS204における燃料電池スタック10の開始からの経過時間Δt2が、所定時間Δt0経過したか否かを判定する。所定時間Δt0は、燃料電池スタック10の掃気が完了したと判断される時間であり、事前試験等により求められ、ECU70に予め記憶されている。
経過時間Δt2が、所定時間Δt0経過しており、燃料電池スタック10の掃気が完了したと判定した場合(S206・Yes)、ECU70は、コンプレッサ31を停止し、バイパス弁33、背圧弁36及び掃気弁51を閉じる。
その後、ECU70の処理は、ENDに進み、システム停止時の制御を終了する。
一方、所定時間Δt0経過しておらず、燃料電池スタック10の掃気は完了していない判定した場合(S206・No)、ECU70は、ステップS206の判定を繰り返す。
≪第2実施形態≫
次に、本発明の第2実施形態について、図9及び図10を参照して説明する。
第2実施形態に係る燃料電池システム2は、体積流量Q1を検出する流量センサ35(図1参照)に代えて、質量流量Q2(g/s)を検出する流量センサ38と、外気温度を検出する温度センサ39とを備えている。流量センサ38は、コンプレッサ31の吸気口よりも上流に設けられている。
そして、第2実施形態では、ECU70は、流量センサ38から入力される質量流量Q2(g/s)と、温度センサ39から入力される外気温度と、図10のマップとに基づいて、カソード流路12に向かう空気の体積流量Q1(L/s)を算出する。すなわち、外気温度が低くなると、空気が圧縮されやすくなるので、体積流量Q1が小さくなるように補正される。
その他、外気圧を検出する圧力センサを設け、外気圧が低くなるほど体積流量Q1が大きくなるように補正される構成としてもよい。外気圧が低くなると、気体が膨張し、体積が増加するためである。
≪第3実施形態≫
次に、本発明の第3実施形態について、図11から図13を参照して説明する。
第3実施形態に係る燃料電池システム3は、バタフライ弁から構成されるバイパス弁33に代えて、ゲート弁から構成されるバイパス弁41を備え、さらに、バイパス弁41をバイパスする配管42aと、配管42aに設けられたオリフィス42とを備えている。
バイパス弁41は、ECU70からの指令に従って、流量が0となる全閉位置を含めて、その開度を制御自在に構成されている。そして、バイパス弁41は、燃料電池システム3のアイドル時に全閉位置で制御され(図12参照)、燃料電池スタック10の掃気時に全開位置に制御される(図13参照)。
また、バイパス弁41が全閉位置で制御されたとしても、コンプレッサ31からの非加湿の空気が、配管33a及びバイパス弁41をバイパスして配管33bに流れ込み、配管33bを下流に向かって微量で流れるように設計されている。そして、この下流に向かって流れる非加湿の空気は、配管33bを逆流しようとする加湿後の空気を押し出し、加湿後の空気に含まれる水蒸気が、圧力センサ34に到達しないように構成されており、水蒸気が圧力センサ34に付着することを防止している。
なお、バイパス弁41が全閉位置にある場合において、配管42a、配管33bを微量で流れる非加湿の空気の流量は、オリフィス42により制御されている。また、オリフィス42は、ECU70により制御される可変式のオリフィスでもよい。
≪第4実施形態≫
次に、本発明の第4実施形態について、図14を参照して説明する。
第4実施形態に係る燃料電池システム4は、加湿器32が、水素タンク21(反応ガス供給手段)からアノード流路11に供給される水素(反応ガス)を加湿する構成となっている。すなわち、配管22aの下流端は、加湿器32に接続されており、加湿器32で加湿された水素は、配管32aを介して、アノード流路11に供給されるようになっている。
また、アノード流路11から排出された多湿のアノードオフガスは、配管22bを介して、加湿器32に導入され、中空糸膜32dを介して、アノードに向かう水素を加湿した後、配管32cを介して、希釈器37に排出されるようになっている。
なお、カソード流路12の出口は、配管36aを介して、背圧弁36に接続されている。
さらに、水素タンク21からアノード流路11に向かう水素が加湿器32をバイパスするように、配管22aは、配管33a、バイパス弁33及び配管33bを介して、配管32aに接続されている。そして、圧力センサ34は、アノード流路11における水素の圧力を間接的に検出するために配管33bに設けられている。また、流量センサ35は配管22aに設けられており、アノード流路11に向かう水素の体積流量を検出するようになっている。
以上、本発明の一実施形態について説明したが、本発明は前記実施形態に限定されず、本発明の趣旨を逸脱しない範囲で、例えば次のように変更することができ、また、次の構成を適宜組合させてもよい。
前記した第1実施形態では、図5のステップS102において、体積流量Q1が多くなると、バイパス弁33を開方向に制御する構成としたが(図6参照)、次のような構成としてもよい。
すなわち、コンプレッサ31の回転速度と、背圧弁36の開度と、バイパス弁33の開度と、配管33bと配管32aとの差圧の関係に係るマップを事前試験等により求めておき、現在のコンプレッサ31の回転速度及び背圧弁36の開度と前記マップとに基づいて、配管33bと配管32aとの差圧が0となるように、バイパス弁33の開度を制御する構成としてもよい。
前記した第1実施形態では、バイパスラインを流れる非加湿の空気の流量を制御する流量制御手段が、その開度の大きさを自在に制御可能なバタフライ弁から構成されるバイパス弁33である場合を例示したが、その他に例えば、単に全閉位置又は全開位置のみで制御される開閉弁でもよい。
前記した第1実施形態では、アノード流路11から排出された未反応の水素を含むアノードオフガスが、そのまま、希釈器37に排出される燃料電池システム1に本発明を適用したが、水素の利用効率(燃費)を高めるべく、未反応の水素を含むアノードオフガスを、エゼクタ(図示しない)を介して、燃料電池スタック10の上流に戻し、アノード流路11に再供給する燃料電池システムに適用してもよい。
前記した第1実施形態では、燃料電池システム1が燃料電池自動車に搭載された場合を例示したが、その他に例えば、自動二輪車、列車、船舶に搭載された燃料電池システムでもよい。また、家庭用や業務用の据え置き型の燃料電池システムや、給湯システムに組み込まれた燃料電池システムでもよい。
第1実施形態に係る燃料電池システムの構成を示す図である。 第1実施形態に係る燃料電池スタックの発電時において、バイパス弁が全閉位置で制御されている状態を示す図である。 第1実施形態に係る燃料電池スタックの掃気時において、バイパス弁が全開位置で制御されている状態を示す図である。 圧力センサの位置及びバイパスライン径(太さ)と、バイパス弁の全閉位置(基準バイパス流量)との関係を示すグラフである。 第1実施形態に係る燃料電池システムにおいて、燃料電池スタックの通常発電時の動作を示すフローチャートである。 カソード流路に向かう空気の体積流量Q1と、バイパス弁の開度(加湿器をバイパスする空気のバイパス流量)との関係を示すマップである。 圧力センサが検出する実測圧力P1と、カソード流路における空気の圧力(推定FC圧力P2)との関係を示すマップである。 第1実施形態に係る燃料電池システムにおいて、システム停止時の動作を示すフローチャートである。 第2実施形態に係る燃料電池システムの構成を示す図である。 コンプレッサに吸気される空気の質量流量Q2と、カソード流路に向かう空気の体積流量Q1との関係を示すマップである。 第3実施形態に係る燃料電池システムの構成を示す図である。 第3実施形態に係る燃料電池スタックの発電時において、バイパス弁が全閉位置で制御されている状態を示す図である。 第3実施形態に係る燃料電池スタックの掃気時において、バイパス弁が全開位置で制御されている状態を示す図である。 第4実施形態に係る燃料電池システムの構成を示す図である。
符号の説明
1、2、3、4 燃料電池システム
10 燃料電池スタック(燃料電池)
21 水素タンク(反応ガス供給手段)
31 コンプレッサ(反応ガス供給手段、掃気手段)
32 加湿器
33、41 バイパス弁(流量制御手段)
33a、33b 配管(バイパスライン)
34 圧力センサ
35 流量センサ
42 オリフィス
70 ECU(制御手段、算出手段)

Claims (5)

  1. 反応ガスが供給されることで発電する燃料電池と、
    前記燃料電池に反応ガスを供給する反応ガス供給手段と、
    前記反応ガス供給手段から前記燃料電池に向かう反応ガスを加湿する加湿器と、
    前記燃料電池に向かう反応ガスが、前記加湿器をバイパスするバイパスラインと、
    前記燃料電池における反応ガスの圧力を検出するための圧力センサと、
    を備え、
    前記圧力センサは前記バイパスラインに設けられている
    ことを特徴とする燃料電池システム。
  2. 前記燃料電池の発電時、前記バイパスラインには非加湿の反応ガスが下流に向かって流れ、前記加湿器で加湿され当該バイパスラインを逆流する加湿後の反応ガスを、下流に向かって押すように構成されている
    ことを特徴とする請求項1に記載の燃料電池システム。
  3. 前記燃料電池に向かう反応ガスの流量が増加すると、前記バイパスラインを流れる非加湿の反応ガスの流量が増加するように制御する流量制御手段を備える
    ことを特徴とする請求項1又は請求項2に記載の燃料電池システム。
  4. 前記燃料電池を掃気ガスで掃気する掃気手段を備え、
    掃気時において、前記掃気手段から前記燃料電池に向かう掃気ガスは、前記バイパスラインを通る
    ことを特徴とする請求項1から請求項3のいずれか1項に記載の燃料電池システム。
  5. 前記燃料電池に対する前記圧力センサの位置、前記バイパスラインの太さ、反応ガスの流量の少なくとも一つに基づいて、前記圧力センサが検出した実測圧力を補正し、前記燃料電池内の反応ガスの圧力を算出する算出手段を、備える
    ことを特徴とする請求項1から請求項4のいずれか1項に記載の燃料電池システム。
JP2008054087A 2008-03-04 2008-03-04 燃料電池システム Expired - Fee Related JP5199701B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008054087A JP5199701B2 (ja) 2008-03-04 2008-03-04 燃料電池システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008054087A JP5199701B2 (ja) 2008-03-04 2008-03-04 燃料電池システム

Publications (2)

Publication Number Publication Date
JP2009211954A true JP2009211954A (ja) 2009-09-17
JP5199701B2 JP5199701B2 (ja) 2013-05-15

Family

ID=41184905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008054087A Expired - Fee Related JP5199701B2 (ja) 2008-03-04 2008-03-04 燃料電池システム

Country Status (1)

Country Link
JP (1) JP5199701B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010040513A1 (de) * 2008-10-08 2010-04-15 Daimler Ag Brennstoffzelleneinrichtung mit zumindest einer brennstoffzelle und verfahren zum betreiben einer brennstoffzelleneinrichtung

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005276547A (ja) * 2004-03-24 2005-10-06 Honda Motor Co Ltd 燃料電池の停止装置及び停止方法
JP2006155945A (ja) * 2004-11-25 2006-06-15 Honda Motor Co Ltd 燃料電池システム
JP2006269337A (ja) * 2005-03-25 2006-10-05 Nissan Motor Co Ltd 燃料電池システム
JP2007141812A (ja) * 2005-10-21 2007-06-07 Honda Motor Co Ltd 燃料電池システム及び該システムにおける掃気処理方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005276547A (ja) * 2004-03-24 2005-10-06 Honda Motor Co Ltd 燃料電池の停止装置及び停止方法
JP2006155945A (ja) * 2004-11-25 2006-06-15 Honda Motor Co Ltd 燃料電池システム
JP2006269337A (ja) * 2005-03-25 2006-10-05 Nissan Motor Co Ltd 燃料電池システム
JP2007141812A (ja) * 2005-10-21 2007-06-07 Honda Motor Co Ltd 燃料電池システム及び該システムにおける掃気処理方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010040513A1 (de) * 2008-10-08 2010-04-15 Daimler Ag Brennstoffzelleneinrichtung mit zumindest einer brennstoffzelle und verfahren zum betreiben einer brennstoffzelleneinrichtung

Also Published As

Publication number Publication date
JP5199701B2 (ja) 2013-05-15

Similar Documents

Publication Publication Date Title
US8173316B2 (en) Fuel cell system
JP5155734B2 (ja) 燃料電池システム及びその運転方法
JP5351651B2 (ja) 燃料電池システム
WO2007020768A1 (ja) 燃料電池システム及び発電制御装置
US11462754B2 (en) Fuel cell vehicle and method of setting stop time scavenging period of the vehicle
JP4612584B2 (ja) 燃料電池システム
JP2007052937A (ja) 燃料電池システム及びその運転方法
US20130034787A1 (en) Fuel cell system
CN102403518A (zh) 利用由氢气分压力差产生的电池压力的氢气浓度传感器
JP5342265B2 (ja) 燃料電池システム
JP2010003527A (ja) 高圧ガス供給システム
JP5411443B2 (ja) 燃料電池システム
JP5108345B2 (ja) 燃料電池システム
JP4950866B2 (ja) 燃料電池システム
JP2010244778A (ja) 燃料電池システム
JP5314332B2 (ja) 燃料電池システム及びその運転方法
JP5231847B2 (ja) 燃料電池システム及びその運転方法
JP5091903B2 (ja) 燃料電池システム
JP5199701B2 (ja) 燃料電池システム
JP5097016B2 (ja) 燃料電池システム及び遮断弁の開閉状態判定方法
US8192878B2 (en) Method and algorithm to detect frozen anode pressure sensor
JP2013246935A (ja) 燃料電池システム
JP4956481B2 (ja) 燃料電池システム及び燃料電池システムの制御方法
JP5319160B2 (ja) 燃料電池システム
JP5161650B2 (ja) 燃料電池システム及び燃料電池システムの制御方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130208

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160215

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5199701

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees