JP2009211051A - ポジ型レジスト材料並びにこれを用いたパターン形成方法 - Google Patents

ポジ型レジスト材料並びにこれを用いたパターン形成方法 Download PDF

Info

Publication number
JP2009211051A
JP2009211051A JP2009000566A JP2009000566A JP2009211051A JP 2009211051 A JP2009211051 A JP 2009211051A JP 2009000566 A JP2009000566 A JP 2009000566A JP 2009000566 A JP2009000566 A JP 2009000566A JP 2009211051 A JP2009211051 A JP 2009211051A
Authority
JP
Japan
Prior art keywords
group
carbon atoms
resist material
positive resist
hydrogen atom
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009000566A
Other languages
English (en)
Other versions
JP5054042B2 (ja
Inventor
Jun Hatakeyama
畠山  潤
Takanobu Takeda
隆信 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2009000566A priority Critical patent/JP5054042B2/ja
Publication of JP2009211051A publication Critical patent/JP2009211051A/ja
Application granted granted Critical
Publication of JP5054042B2 publication Critical patent/JP5054042B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • G03F7/0392Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition
    • G03F7/0397Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition the macromolecular compound having an alicyclic moiety in a side chain
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0045Photosensitive materials with organic non-macromolecular light-sensitive compounds not otherwise provided for, e.g. dissolution inhibitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S430/00Radiation imagery chemistry: process, composition, or product thereof
    • Y10S430/1053Imaging affecting physical property or radiation sensitive material, or producing nonplanar or printing surface - process, composition, or product: radiation sensitive composition or product or process of making binder containing
    • Y10S430/1055Radiation sensitive composition or product or process of making
    • Y10S430/106Binder containing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S430/00Radiation imagery chemistry: process, composition, or product thereof
    • Y10S430/1053Imaging affecting physical property or radiation sensitive material, or producing nonplanar or printing surface - process, composition, or product: radiation sensitive composition or product or process of making binder containing
    • Y10S430/1055Radiation sensitive composition or product or process of making
    • Y10S430/106Binder containing
    • Y10S430/108Polyolefin or halogen containing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S430/00Radiation imagery chemistry: process, composition, or product thereof
    • Y10S430/1053Imaging affecting physical property or radiation sensitive material, or producing nonplanar or printing surface - process, composition, or product: radiation sensitive composition or product or process of making binder containing
    • Y10S430/1055Radiation sensitive composition or product or process of making
    • Y10S430/114Initiator containing
    • Y10S430/115Cationic or anionic

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Materials For Photolithography (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

【課題】高感度および高解像度を有し、露光後のパターン形状が良好であり、更に優れたエッチング耐性を示すポジ型レジスト材料、特に化学増幅ポジ型レジスト材料のベース樹脂として好適な高分子化合物、これを用いたポジ型レジスト材料、及びパターン形成方法を提供する。
【解決手段】ベース樹脂として、少なくともフェノール性水酸基の水素原子が下記一般式(1)で示される酸不安定基によって置換されている高分子化合物を含むものであることを特徴とするポジ型レジスト材料。
【化85】
Figure 2009211051

【選択図】なし

Description

本発明は、ポジ型レジスト材料、特に化学増幅ポジ型レジスト材料のベース樹脂として好適な高分子化合物、これを用いたポジ型レジスト材料、及びパターン形成方法に関する。
LSIの高集積化と高速度化に伴い、パターンルールの微細化が急速に進んでいる。特にフラッシュメモリー市場の拡大と記憶容量の増大化が微細化を牽引している。微細化の細線はArFリソグラフィーによる65nmノードのデバイスの量産が行われており、次世代のArF液浸リソグラフィーによる45nmノードの量産準備が進行中である。次次世代の32nmノードとしては、水よりも高屈折率の液体と高屈折率レンズ、高屈折率レジストを組み合わせた超高NAレンズによる液浸リソグラフィー、波長13.5nmの真空紫外光(EUV)リソグラフィー、ArFリソグラフィーの2重露光(ダブルパターニングリソグラフィー)などが候補であり、検討が進められている。
EBやX線などの非常に短波長な高エネルギー線においてはレジストに用いられている炭化水素のような軽元素は吸収がほとんどなく、ポリヒドロキシスチレンベースのレジスト材料が検討されている。
EB用レジストは、実用的にはマスク描画用途に用いられてきた。近年、マスク製作技術が問題視されるようになってきた。露光に用いられる光がg線の時代から縮小投影露光装置が用いられており、その縮小倍率は1/5であったが、チップサイズの拡大と、投影レンズの大口径化と共に1/4倍率が用いられるようになってきたため、マスクの寸法ズレがウェハー上のパターンの寸法変化に与える影響が問題になっている。また、パターンの微細化と共に、マスクの寸法ズレの値よりもウェハー上の寸法ズレの方が大きくなってきていることが指摘されている。マスク寸法変化を分母、ウェハー上の寸法変化を分子として計算されたMask Error Enhancement Factor(MEEF)が求められている。45nm級のパターンでは、MEEFが4を超えることも珍しくない。縮小倍率が1/4でMEEFが4であれば、マスク制作に於いて実質等倍マスクと同等の精度が必要であることが言える。
マスク製作用露光装置は線幅の精度を上げるため、レーザービームによる露光装置から電子ビーム(EB)による露光装置が用いられてきた。更にEBの電子銃における加速電圧を上げることによってよりいっそうの微細化が可能になることから、10keVから30keV、最近は50keVが主流であり、100keVの検討も進められている。
ここで、加速電圧の上昇と共に、レジストの低感度化が問題になってきた。加速電圧が向上すると、レジスト膜内での前方散乱の影響が小さくなるため、電子描画エネルギーのコントラストが向上して解像度や寸法制御性が向上するが、レジスト膜内を素抜けの状態で電子が通過するため、レジストの感度が低下する。マスク露光機は直描の一筆書きで露光するため、レジストの感度低下は生産性の低下につながり好ましいことではない。高感度化の要求から、化学増幅型レジストが検討されている。
マスク製作用EBリソグラフィーのパターンの微細化と共に、高アスペクト比による現像時のパターン倒れ防止のためにレジストの薄膜化が進行している。光リソグラフィーの場合、レジストの薄膜化が解像力向上に大きく寄与している。これはCMPなどの導入により、デバイスの平坦化が進行したためである。マスク作製の場合、基板は平坦であり、加工すべき基板(例えばCr、MoSi、SiO2)の膜厚は遮光率や位相差制御のために決まってしまっている。薄膜化するためにはレジストのドライエッチング耐性を向上させる必要がある。
ここで、一般的にはレジストの炭素の密度とドライエッチング耐性について相関があるといわれている。吸収の影響を受けないEB描画においては、エッチング耐性に優れるノボラックポリマーをベースとしたレジストが開発されている。しかしながら、ノボラックポリマーは分子量と分散度制御が困難で、微細加工に適した材料ではないと考えられる。
また、F露光と並んで70nm、あるいはそれ以降の微細加工における露光方法として期待される波長5〜20nmの軟X線(EUV)露光において、炭素原子の吸収が少ないことが報告されている。炭素密度を上げることがドライエッチング耐性の向上だけでなく、軟X線波長領域における透過率向上にも効果的である(非特許文献1)。
N. Matsuzawa et. al. ; Jp. J. Appl. Phys. Vol.38 p7109−7113(1999)
本発明は上記事情に鑑みなされたもので、従来のポジ型レジスト材料を上回る高感度で高解像性を有し、露光後のパターン形状が良好であり、更に優れたエッチング耐性を示すポジ型レジスト材料、特に化学増幅ポジ型レジスト材料のベース樹脂として好適な高分子化合物、これを用いたポジ型レジスト材料、及びパターン形成方法を提供することを目的とする。
本発明は、上記課題を解決するためになされたもので、ベース樹脂として、少なくともフェノール性水酸基の水素原子が下記一般式(1)で示される酸不安定基によって置換されている高分子化合物を含むものであることを特徴とするポジ型レジスト材料を提供する。
Figure 2009211051
(式中、R、Rはそれぞれ独立して水素原子、炭素数1〜6の直鎖状、分岐状、環状のアルキル基のいずれかである。Rは1,2,3−インダニル基、1,2−アセナフテニル基、1,2−アセアントレニル基、4,5−アセフェナントレニル基から選ばれる基である。ここで前記1,2−とは1位−又は2位−又はこれらの混合物を示す。同様に、前記1,2,3−とは1位−又は2位−又は3位−又はこれらの混合物、前記4,5−は4位−又は5位−又はこれらの混合物を示す。)
このように、少なくともフェノール性水酸基の水素原子が上記一般式(1)で示される酸不安定基によって置換されている高分子化合物をベース樹脂として含むポジ型レジスト材料であれば、高感度で高解像性を有し、エッチング形状が良好で、優れたエッチング耐性を示すポジ型レジスト材料となる。
さらに、前記高分子化合物が、フェノール性水酸基の水素原子が下記一般式(2)で示される酸不安定基によって置換されているものであることが好ましい。
Figure 2009211051
(式中、R、Rは前述の通り、R、Rは水素原子またはRとRが結合して炭素数3又は7の芳香族基を表す。Rは水素原子、炭素数1〜30のアルキル基、一部または全てがハロゲン原子で置換されたアルキル基、アルコキシ基、アルカノイル基、アルコキシカルボニル基、炭素数6〜10のアリール基、ハロゲン原子のいずれかである。)
このように、前記高分子化合物が、フェノール性水酸基の水素原子が上記一般式(2)で示される酸不安定基によって置換されているものであれば、高感度で高解像性を有し、エッチング形状が良好で、優れたエッチング耐性を示すポジ型レジスト材料のベース樹脂として非常に好適なものとすることができる。
また、前記高分子化合物は、質量平均分子量が1,000〜500,000の範囲であって、少なくとも下記一般式(3)に示される前記酸不安定基で置換されたヒドロキシスチレンの繰り返し単位a1及び/又は前記酸不安定基で置換されたヒドロキシビニルナフタレンの繰り返し単位b1と、繰り返し単位a2及び/又は繰り返し単位b2を有するものであることが好ましい。
Figure 2009211051
(式中、R、Rはそれぞれ独立して水素原子又はメチル基を表し、R、Rは前述の通りである。R、Rは水素原子またはRとRが結合して炭素数3又は7の芳香族基を表す。Rは水素原子、炭素数1〜30のアルキル基、一部または全てがハロゲン原子で置換されたアルキル基、アルコキシ基、アルカノイル基、アルコキシカルボニル基、炭素数6〜10のアリール基、ハロゲン原子のいずれかである。m、nは1又は2である。0≦a1/(a1+b1+a2+b2)≦0.5、0≦b1/(a1+b1+a2+b2)≦0.5、0.05≦(a1+b1)/(a1+b1+a2+b2)≦0.5の範囲である。)
このように、本発明のポジ型レジスト材料において、質量平均分子量が1,000〜500,000の範囲であって、少なくとも上記一般式(3)に示される前記酸不安定基で置換されたヒドロキシスチレンの繰り返し単位a1及び/又は前記酸不安定基で置換されたヒドロキシビニルナフタレンの繰り返し単位b1と、繰り返し単位a2及び/又は繰り返し単位b2を有する高分子化合物をベース樹脂として用いれば、露光前後のアルカリ溶解速度コントラストが大幅に高く、高感度で高解像性を有し、露光後のパターン形状が良好であり、更に優れたエッチング耐性を示す、特に超LSI製造用あるいはフォトマスクの微細パターン形成材料として好適なポジ型レジスト材料が得られる。
また、前記高分子化合物は、質量平均分子量が1,000〜500,000の範囲であって、少なくとも下記一般式(4)で示される前記酸不安定基で置換されたヒドロキシスチレンの繰り返し単位a1’と繰り返し単位a2’を有しており、さらに下記一般式(4)で示されるc、d、e、f、gの繰り返し単位の内、1つ以上の繰り返し単位を有するものであってもよい。
Figure 2009211051
(式中、Rは水素原子又はメチル基を表し、R、Rは前述の通りである。R、Rは水素原子またはRとRが結合して炭素数3又は7の芳香族基を表す。R〜R13はそれぞれ独立して水素原子、炭素数1〜30のアルキル基、一部または全てがハロゲン原子で置換されたアルキル基、ヒドロキシ基、アルコキシ基、アルカノイル基、アルコキシカルボニル基、炭素数6〜10のアリール基、ハロゲン原子、1,1,1,3,3,3−ヘキサフルオロ−2−プロパノール基のいずれかである。Xはメチレン基、酸素原子、硫黄原子である。mは1又は2である。0<a1’/(a1’+a2’+c+d+e+f+g)≦0.5、0<a2’/(a1’+a2’+c+d+e+f+g)≦0.9、0≦c/(a1’+a2’+c+d+e+f+g)≦0.5、0≦d/(a1’+a2’+c+d+e+f+g)≦0.5、0≦e/(a1’+a2’+c+d+e+f+g)≦0.5、0≦f/(a1’+a2’+c+d+e+f+g)≦0.5、0≦g/(a1’+a2’+c+d+e+f+g)≦0.5、0.03≦(c+d+e+f+g)/(a1’+a2’+c+d+e+f+g)≦0.4の範囲である。)
このように、本発明のポジ型レジスト材料において、質量平均分子量が1,000〜500,000の範囲であって、少なくとも上記一般式(4)で示される前記酸不安定基で置換されたヒドロキシスチレンの繰り返し単位a1’と繰り返し単位a2’を有しており、さらに上記一般式(4)で示されるc、d、e、f、gの繰り返し単位の内、1つ以上の繰り返し単位を有する高分子化合物をベース樹脂として用いた場合においても、露光前後のアルカリ溶解速度コントラストが大幅に高く、高感度で高解像性を有し、露光後のパターン形状が良好であり、更に優れたエッチング耐性を示す、特に超LSI製造用あるいはフォトマスクの微細パターン形成材料として好適なポジ型レジスト材料を得ることができる。
また、本発明において、前記ポジ型レジスト材料が、更に、有機溶剤及び酸発生剤を含有する化学増幅ポジ型レジスト材料であることが好ましい。
このように、本発明におけるポジ型レジスト材料が、酸発生剤を含有する化学増幅型レジスト材料であれば、酸触媒反応により極めて高精度なパターンを得ることができる。また、有機溶剤を含有させることによって、例えば、レジスト材料の基板等への塗布性を向上させることができる。
また、更に、溶解阻止剤を含有するものであることが好ましい。
このように、本発明のポジ型レジスト材料に、更に、溶解阻止剤を含有させることで、露光部と未露光部との溶解速度の差を一層大きくすることができ、解像度を一層向上させることができる。
また、本発明における前記ポジ型レジスト材料は、更に、添加剤として塩基性化合物及び/又は界面活性剤を配合してなることが好ましい。
このように、本発明におけるポジ型レジスト材料に、更に、添加剤として塩基性化合物を配合することによって、例えばレジスト膜中での酸の拡散速度を抑制し、解像度を一層向上させることができるし、界面活性剤を配合することによってレジスト材料の塗布性を一層向上あるいは制御することができる。
このような本発明のポジ型レジスト材料は、少なくとも、該ポジ型レジスト材料を基板上に塗布する工程と、加熱処理後、高エネルギー線で露光する工程と、現像液を用いて現像する工程とを行うことによって、半導体基板やマスク基板等にパターンを形成する方法として用いることができる。
もちろん、露光後加熱処理を加えた後に現像してもよいし、エッチング工程、レジスト除去工程、洗浄工程等その他の各種の工程が行われてもよいことは言うまでもない。
本発明のポジ型レジスト材料は、高感度で高解像性を有し、露光後のパターン形状が良好で、その上特に酸拡散速度を抑制し、優れたエッチング耐性を示す。従って、特に超LSI製造用あるいはフォトマスクの微細パターン形成材料、EUV露光用のパターン形成材料として好適なポジ型レジスト材料、特には化学増幅ポジ型レジスト材料を得ることができる。
本発明者らは、近年要望される高感度及び高解像度、露光余裕度、小さい疎密寸法差、プロセス適応性を有し、エッチング形状が良好で、優れたエッチング耐性を示すポジ型レジスト材料を得るべく鋭意検討を重ねた結果、これには1,2,3−インダニル基、1,2−アセナフテニル基、1,2−アセアントレニル基、4,5−アセフェナントレニル基からなる構造を有する酸不安定基で置換されたフェノール性ヒドロキシ基を有する、特にはヒドロキシスチレン、ヒドロキシビニルナフタレンを前記酸不安定基で置換することにより得られるポリマーをポジ型レジスト材料、特に化学増幅ポジ型レジスト材料のベース樹脂として用いれば極めて有効であることを知見し、本発明を完成させたものである。
本発明者らは、まず、エッチング耐性を向上させるために、レジストの炭素の密度を上げることを考えた。ベンゼン環の炭素密度92%に対して、ナフタレン環は94%であり、ナフタレン環を含む材料はドライエッチング耐性の向上が期待される。もともとナフタレン環は光吸収が高いため従来それほど注目されていなかったが、吸収の影響がない極短波長露光において有望な材料であると考えられた。
更には、特許3865048号に示されるインデン共重合、特開2006−169302号公報に示されるアセナフチレン共重合は炭素密度が高いだけでなく、シクロオレフィン構造による剛直な主鎖構造によってエッチング耐性の向上が期待される。
また、特許3963625号に示されるバルキーなアセタールなどに示される環状構造を有するアセタール基によるエッチング耐性の向上も示されている。
そこで、本発明者らは、更に酸拡散を抑えて溶解コントラストとエッチング耐性を向上させるために前記酸不安定基で置換されたヒドロキシスチレン、ヒドロキシビニルナフタレンを含む高分子化合物をポジ型レジスト材料、特に化学増幅ポジ型レジスト材料のベース樹脂として用いることにより、露光前後のアルカリ溶解速度コントラストが大幅に高く、高感度で高解像性を有し、露光後のパターン形状が良好であり、更に優れたエッチング耐性を示す、特に超LSI製造用あるいはフォトマスクの微細パターン形成材料として好適なポジ型レジスト材料、特には化学増幅ポジ型レジスト材料が得られることを知見したものである。
本発明のポジ型レジスト材料は、特に、レジスト膜の溶解コントラストが高く、高感度で高解像性を有し、露光余裕度があり、プロセス適応性に優れ、露光後のパターン形状が良好で、特に密パターンと疎パターンとの寸法差が小さく、より優れたエッチング耐性を示すものとなる。従って、これらの優れた特性を有することから実用性が極めて高く、超LSI用レジスト材料マスクパターン形成材料として非常に有効である。
以下、本発明につき更に詳しく説明する。
本発明におけるポジ型レジスト材料は、ベース樹脂として、少なくともフェノール性水酸基の水素原子が下記一般式(1)で示される酸不安定基によって置換されている高分子化合物を含むことを特徴とするものである。
Figure 2009211051
(式中、R、Rはそれぞれ独立して水素原子、炭素数1〜6の直鎖状、分岐状、環状のアルキル基のいずれかである。Rは1,2,3−インダニル基、1,2−アセナフテニル基、1,2−アセアントレニル基、4,5−アセフェナントレニル基から選ばれる基である。ここで前記1,2−とは1位−又は2位−又はこれらの混合物を示す。同様に、前記1,2,3−とは1位−又は2位−又は3位−又はこれらの混合物、前記4,5−は4位−又は5位−又はこれらの混合物を示す。)
そして、前記高分子化合物は、フェノール性水酸基の水素原子が下記一般式(2)で示される酸不安定基によって置換されているものであることが好ましい。すなわち一般式(1)で示される酸不安定基は、下記一般式(2)で示すものとすることができる。
Figure 2009211051
(式中、R、Rは前述の通り、R、Rは水素原子またはRとRが結合して炭素数3又は7の芳香族基を表す。Rは水素原子、炭素数1〜30のアルキル基、一部または全てがハロゲン原子で置換されたアルキル基、アルコキシ基、アルカノイル基、アルコキシカルボニル基、炭素数6〜10のアリール基、ハロゲン原子のいずれかである。)
そして、本発明におけるレジスト材料は、下記一般式(3)に示されるように、ヒドロキシ基の水素原子が一般式(1)、(2)で示される前記酸不安定基によって置換されたヒドロキシスチレンの繰り返し単位a1および/又は一般式(1)、(2)で示される酸不安定基によって置換されたヒドロキシビニルナフタレンの繰り返し単位b1と、繰り返し単位a2及び/又は繰り返し単位b2を有する高分子化合物をベース樹脂として含むものであることが好ましい。この場合、質量平均分子量が1,000〜500,000の範囲である高分子化合物であることが好ましい。
Figure 2009211051
(式中、R、Rはそれぞれ独立して水素原子又はメチル基を表し、R、Rは前述の通りである。R、Rは水素原子またはRとRが結合して炭素数3又は7の芳香族基を表す。Rは水素原子、炭素数1〜30のアルキル基、一部または全てがハロゲン原子で置換されたアルキル基、アルコキシ基、アルカノイル基、アルコキシカルボニル基、炭素数6〜10のアリール基、ハロゲン原子のいずれかである。m、nは1又は2である。0≦a1/(a1+b1+a2+b2)≦0.5、0≦b1/(a1+b1+a2+b2)≦0.5、0.05≦(a1+b1)/(a1+b1+a2+b2)≦0.5の範囲である。)
また、本発明におけるレジスト材料に含まれる高分子化合物は、少なくとも下記一般式(4)で示されるように、一般式(1)、(2)で示される前記酸不安定基で置換されたヒドロキシスチレンの繰り返し単位a1’と、繰り返し単位a2’とを有し、インデン等c、アセナフチレンd、クロモンe、クマリンf、ノルボルナジエンgの繰り返し単位の内、1以上の繰り返し単位を有するものであってもよい。この場合、質量平均分子量が1,000〜500,000の範囲である高分子化合物であることが好ましい。
Figure 2009211051
(式中、Rは水素原子又はメチル基を表し、R、Rは前述の通りである。R、Rは水素原子またはRとRが結合して炭素数3又は7の芳香族基を表す。R〜R13はそれぞれ独立して水素原子、炭素数1〜30のアルキル基、一部または全てがハロゲン原子で置換されたアルキル基、ヒドロキシ基、アルコキシ基、アルカノイル基、アルコキシカルボニル基、炭素数6〜10のアリール基、ハロゲン原子、1,1,1,3,3,3−ヘキサフルオロ−2−プロパノール基のいずれかである。Xはメチレン基、酸素原子、硫黄原子である。mは1又は2である。0<a1’/(a1’+a2’+c+d+e+f+g)≦0.5、0<a2’/(a1’+a2’+c+d+e+f+g)≦0.9、0≦c/(a1’+a2’+c+d+e+f+g)≦0.5、0≦d/(a1’+a2’+c+d+e+f+g)≦0.5、0≦e/(a1’+a2’+c+d+e+f+g)≦0.5、0≦f/(a1’+a2’+c+d+e+f+g)≦0.5、0≦g/(a1’+a2’+c+d+e+f+g)≦0.5、0.03≦(c+d+e+f+g)/(a1’+a2’+c+d+e+f+g)≦0.4の範囲である。)
このように、本発明における高分子化合物は、前記酸不安定基を有する繰り返し単位として、a1、a1’に示されるようなヒドロキシ基の水素原子を前記酸不安定基で置換されたヒドロキシスチレンの繰り返し単位と、b1に示されるようなヒドロキシ基の水素原子を前記酸不安定基で置換されたヒドロキシビニルナフタレンの繰り返し単位のいずれか又は両方を有することが好ましいが、さらに、下記一般式(5)に示される酸不安定基で置換された(メタ)アクリル酸エステルの繰り返し単位h、一般式(1)、(2)で示される以外の酸不安定基R17で置換された繰り返し単位iを追加共重合することも出来る。
Figure 2009211051
(式中、R14、R16は水素原子又はメチル基を表し、R15は酸不安定基、R17は一般式(1)、(2)で示される以外の酸不安定基である。pは1又は2である。0≦(h+i)/(a1+a2+b1+b2+c+d+e+f+g+h+i)≦0.7の範囲である。)
また、上記繰り返し単位a1、a2、b1、b2、c、d、e、f、g、h、i以外に共重合出来る繰り返し単位としては、スチレン、ビニルナフタレン、ビニルアントラセン、ビニルピレン、インドール、ノルボルネン、トリシクロデセン、テトラシクロドデセン、メチレンインダン、ラクトンを有する(メタ)アクリレート類、(メタ)アクリル酸、3−ヒドロキシアダマンタン(メタ)アクリル酸エステル、無水マレイン酸、無水イタコン酸、マレイミド類、ビニルエーテル類などが挙げられる。また、重合性オレフィンを有するオニウム塩の酸発生剤を共重合することも出来る。特開平4−230645号公報、特開2005−84365号公報、特開2006−045311号公報には特定のスルホン酸が発生する重合性オレフィンを有するスルホニウム塩、ヨードニウム塩が提案されており、特開2006−178317号には、スルホン酸が主鎖に直結したスルホニウム塩が提案されている。
本発明では、例えば、下記一般式(6)で示されるスルホニウム塩を持つ繰り返し単位j1、j2、j3を共重合することができる。
Figure 2009211051
(式中、R20、R24、R28は水素原子又はメチル基、R21はフェニレン基、−O−R28’−、又は−C(=O)−Y−R28’−である。Yは酸素原子又はNH、R28’は炭素数1〜6の直鎖状、分岐状又は環状のアルキレン基、フェニレン基又はアルケニレン基であり、カルボニル基、エステル基、エーテル基又はヒドロキシ基を含んでいてもよい。R22、R23、R25、R26、R27、R29、R30、R31は同一又は異種の炭素数1〜12の直鎖状、分岐状又は環状のアルキル基であり、カルボニル基、エステル基又はエーテル基を含んでいてもよく、又は炭素数6〜12のアリール基、炭素数7〜20のアラルキル基又はチオフェニル基を表す。Zは単結合、メチレン基、エチレン基、フェニレン基、フッ素化されたフェニレン基、−O−R32’−、又は−C(=O)−Z−R32’−である。Zは酸素原子又はNH、R32’は炭素数1〜6の直鎖状、分岐状又は環状のアルキレン基、フェニレン基又はアルケニレン基であり、カルボニル基、エステル基、エーテル基又はヒドロキシ基を含んでいてもよい。Mは非求核性対向イオンを表す。)
の非求核性対向イオンとしては塩化物イオン、臭化物イオン等のハライドイオン、トリフレート、1,1,1−トリフルオロエタンスルホネート、ノナフルオロブタンスルホネート等のフルオロアルキルスルホネート、トシレート、ベンゼンスルホネート、4−フルオロベンゼンスルホネート、1,2,3,4,5−ペンタフルオロベンゼンスルホネート等のアリールスルホネート、メシレート、ブタンスルホネート等のアルキルスルホネート、ビス(トリフルオロメチルスルホニル)イミド、ビス(パーフルオロエチルスルホニル)イミド、ビス(パーフルオロブチルスルホニル)イミド等のイミド酸、トリス(トリフルオロメチルスルホニル)メチド、トリス(パーフルオロエチルスルホニル)メチドなどのメチド酸を挙げることができる。
酸発生剤を繰り返し単位として共重合する事によって、レジスト膜中の酸発生剤の分布が均一になり、現像後のレジストパターンのエッジラフネスが小さくなるメリットがある。
さらにポリマー主鎖にスルホ基が結合しているj2、j3は酸拡散距離が小さいことにより、微細パターンでの解像性が向上するメリットがある。
一般式(5)のR15、R17の酸不安定基は、種々選定されるが、同一でも異なっていてもよく、特に下記式(A−1)〜(A−3)で置換された基で示されるものが挙げられる。
Figure 2009211051
式(A−1)において、R310は炭素数4〜20、好ましくは4〜15の3級アルキル基、各アルキル基がそれぞれ炭素数1〜6のトリアルキルシリル基、炭素数4〜20のオキソアルキル基又は上記一般式(A−3)で示される基を示し、3級アルキル基として具体的には、tert−ブチル基、tert−アミル基、1,1−ジエチルプロピル基、1−エチルシクロペンチル基、1−ブチルシクロペンチル基、1−エチルシクロヘキシル基、1−ブチルシクロヘキシル基、1−エチル−2−シクロペンテニル基、1−エチル−2−シクロヘキセニル基、2−メチル−2−アダマンチル基等が挙げられ、トリアルキルシリル基として具体的には、トリメチルシリル基、トリエチルシリル基、ジメチル−tert−ブチルシリル基等が挙げられ、オキソアルキル基として具体的には、3−オキソシクロヘキシル基、4−メチル−2−オキソオキサン−4−イル基、5−メチル−2−オキソオキソラン−5−イル基等が挙げられる。aは0〜6の整数である。
式(A−2)において、R311、R32はそれぞれ独立して水素原子又は炭素数1〜18、好ましくは1〜10の直鎖状、分岐状又は環状のアルキル基のいずれかを示し、具体的にはメチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、sec−ブチル基、tert−ブチル基、シクロペンチル基、シクロヘキシル基、2−エチルヘキシル基、n−オクチル基等を例示できる。R33は炭素数1〜18、好ましくは1〜10の酸素原子等のヘテロ原子を有してもよい1価の炭化水素基を示し、直鎖状、分岐状もしくは環状のアルキル基、これらの水素原子の一部が水酸基、アルコキシ基、オキソ基、アミノ基、アルキルアミノ基等に置換されたものを挙げることができ、具体的には下記の置換アルキル基等が例示できる。
Figure 2009211051
また、R311とR32、R311とR33、R32とR33とは結合してこれらが結合する炭素原子と共に環を形成してもよく、環を形成する場合にはR311、R32、R33はそれぞれ炭素数1〜18、好ましくは1〜10の直鎖状又は分岐状のアルキレン基を示し、好ましくは環の炭素数は3〜10、特に4〜10である。
上記式(A−1)の酸不安定基としては、具体的にはtert−ブトキシカルボニル基、tert−ブトキシカルボニルメチル基、tert−アミロキシカルボニル基、tert−アミロキシカルボニルメチル基、1,1−ジエチルプロピルオキシカルボニル基、1,1−ジエチルプロピルオキシカルボニルメチル基、1−エチルシクロペンチルオキシカルボニル基、1−エチルシクロペンチルオキシカルボニルメチル基、1−エチル−2−シクロペンテニルオキシカルボニル基、1−エチル−2−シクロペンテニルオキシカルボニルメチル基、1−エトキシエトキシカルボニルメチル基、2−テトラヒドロピラニルオキシカルボニルメチル基、2−テトラヒドロフラニルオキシカルボニルメチル基等が例示できる。
更に、下記式(A−1)−1〜(A−1)−10で示される置換基を挙げることもできる。
Figure 2009211051
ここで、aは前述の通り、R37は互いに同一又は異種の炭素数1〜10の直鎖状、分岐状もしくは環状のアルキル基、又は炭素数6〜20のアリール基、R38は水素原子、又は炭素数1〜10の直鎖状、分岐状もしくは環状のアルキル基である。
また、R39は互いに同一又は異種の炭素数2〜10の直鎖状、分岐状もしくは環状のアルキル基、又は炭素数6〜20のアリール基である。
上記式(A−2)で示される酸不安定基のうち、直鎖状又は分岐状のものとしては、下記式(A−2)−1〜(A−2)−17のものを例示することができる。
Figure 2009211051
また、上記式(A−2)で示される酸不安定基のうち、環状のものとしては、テトラヒドロフラン−2−イル基、2−メチルテトラヒドロフラン−2−イル基、テトラヒドロピラン−2−イル基、2−メチルテトラヒドロピラン−2−イル基等が挙げられる。また、上記式(A−2)で示される酸不安定基のうち環を含むものとして、下記式(A−2)−18〜(A−2)−35も挙げられる。
Figure 2009211051
また、一般式(A−2a)あるいは(A−2b)で表される酸不安定基によってベース樹脂が分子間あるいは分子内架橋されていてもよい。
Figure 2009211051
上式中、R40、R41は水素原子又は炭素数1〜8の直鎖状、分岐状又は環状のアルキル基を示す。又は、R40とR41は結合してこれらが結合する炭素原子と共に環を形成してもよく、環を形成する場合にはR40、R41は炭素数1〜8の直鎖状又は分岐状のアルキレン基を示す。R42は炭素数1〜10の直鎖状、分岐状又は環状のアルキレン基、b11、d1は0又は1〜10、好ましくは0又は1〜5の整数、c1は1〜7の整数である。Aは、(c1+1)価の炭素数1〜50の脂肪族もしくは脂環式飽和炭化水素基、芳香族炭化水素基又はヘテロ環基を示し、これらの基はヘテロ原子を介在してもよく、又はその炭素原子に結合する水素原子の一部が水酸基、カルボキシル基、カルボニル基又はフッ素原子によって置換されていてもよい。Bは−CO−O−、−NHCO−O−又は−NHCONH−を示す。
この場合、好ましくは、Aは2〜4価の炭素数1〜20の直鎖状、分岐状又は環状のアルキレン基、アルキルトリイル基、アルキルテトライル基、炭素数6〜30のアリーレン基であり、これらの基はヘテロ原子を介在していてもよく、またその炭素原子に結合する水素原子の一部が水酸基、カルボキシル基、アシル基又はハロゲン原子によって置換されていてもよい。また、c1は好ましくは1〜3の整数である。
上記式(A−2a)、(A−2b)で示される架橋型アセタール基は、具体的には下記式(A−2)−37〜(A−2)−44のものが挙げられる。
Figure 2009211051
次に、上記式(A−3)においてR34、R35、R36は炭素数1〜20の直鎖状、分岐状もしくは環状のアルキル基等の1価炭化水素基であり、酸素、硫黄、窒素、フッ素などのヘテロ原子を含んでもよく、R34とR35、R34とR36、R35とR36とは互いに結合してこれらが結合する炭素原子と共に、炭素数3〜20の環を形成してもよい。
上記式(A−3)に示される3級アルキル基としては、tert−ブチル基、トリエチルカルビル基、1−エチルノルボニル基、1−メチルシクロヘキシル基、1−エチルシクロペンチル基、2−(2−メチル)アダマンチル基、2−(2−エチル)アダマンチル基、tert−アミル基等を挙げることができる。
また、3級アルキル基としては、下記式(A−3)−1〜(A−3)−18を具体的に挙げることもできる。
Figure 2009211051
上記式(A−3)−1〜(A−3)−18中、R43は同一又は異種の炭素数1〜8の直鎖状、分岐状又は環状のアルキル基、又は炭素数6〜20のフェニル基等のアリール基を示す。R44、R46は独立して水素原子、又は炭素数1〜20の直鎖状、分岐状又は環状のアルキル基を示す。R45は炭素数6〜20のフェニル基等のアリール基を示す。
更に、下記式(A−3)−19、(A−3)−20に示すように、2価以上のアルキレン基、アリーレン基であるR47を含んで、ポリマーの分子内あるいは分子間が架橋されていてもよい。
Figure 2009211051
上記式(A−3)−19、(A−3)−20中、R43は前述と同様、R47は炭素数1〜20の直鎖状、分岐状もしくは環状のアルキレン基、又はフェニレン基等のアリーレン基を示し、酸素原子や硫黄原子、窒素原子などのヘテロ原子を含んでいてもよい。e1は1〜3の整数である。
上記式(A−1)、(A−2)、(A−3)中のR300、R33、R36は、フェニル基、p−メチルフェニル基、p−エチルフェニル基、p−メトキシフェニル基等のアルコキシ置換フェニル基等の非置換又は置換アリール基、ベンジル基、フェネチル基等のアラルキル基等や、これらの基に酸素原子を有する、あるいは炭素原子に結合する水素原子が水酸基に置換されたり、2個の水素原子が酸素原子で置換されてカルボニル基を形成する下記式で示されるようなアルキル基、あるいはオキソアルキル基を挙げることができる。
Figure 2009211051
特に(A−3)の酸不安定基としては下記A−3−21に示されるエキソ体構造を有する(メタ)アクリル酸エステルの繰り返し単位が好ましく挙げられる。
Figure 2009211051
(式中、R14は前述の通り、Rc3は炭素数1〜8の直鎖状、分岐状又は環状のアルキル基又は炭素数6〜20の置換されていてもよいアリール基を示す。Rc4〜Rc9及びRc12、Rc13はそれぞれ独立に水素原子又は炭素数1〜15のヘテロ原子を含んでもよい1価の炭化水素基を示し、Rc10、Rc11は水素原子を示す。あるいは、Rc4とRc5、Rc6とRc8、Rc6とRc9、Rc7とRc9、Rc7とRc13、Rc8とRc12、Rc10とRc11又はRc11とRc12は互いに環を形成していてもよく、その場合には炭素数1〜15のヘテロ原子を含んでもよい2価の炭化水素基を示す。またRc4とRc13、Rc10とRc13又はRc6とRc8は隣接する炭素に結合するもの同士で何も介さずに結合し、二重結合を形成してもよい。Rc14は水素原子、炭素数1〜15の直鎖状、分岐状又は環状のアルキル基を示す。また、本式により、鏡像体も表す。)
ここで、一般式A−3−21に示すエキソ構造を有する繰り返し単位を得るためのエステル体のモノマーとしては特開2000−327633号公報に示されている。
具体的には下記に挙げることが出来るが、これらに限定されるものではない。
Figure 2009211051
また、(A−3)に示される酸不安定基としては、に示される酸不安定基としては、A−3−22に示されるフランジイル、テトラヒドロフランジイル又はオキサノルボルナンジイルを有する(メタ)アクリル酸エステルの酸不安定基を挙げることが出来る。
Figure 2009211051
(式中、R14は前述の通りである。Rc14、Rc15はそれぞれ独立に炭素数1〜10の直鎖状、分岐状又は環状の1価炭化水素基を示す。又は、Rc14、Rc15は互いに結合してこれらが結合する炭素原子と共に脂肪族炭化水素環を形成してもよい。Rc16はフランジイル、テトラヒドロフランジイル又はオキサノルボルナンジイルから選ばれる2価の基を示す。Rc17は水素原子又はヘテロ原子を含んでもよい炭素数1〜10の直鎖状、分岐状又は環状の1価炭化水素基を示す。)
フランジイル、テトラヒドロフランジイル又はオキサノルボルナンジイルを有する酸不安定基で置換された繰り返し単位を得るためのモノマーは下記に例示される。
Figure 2009211051
Figure 2009211051
本発明におけるポジ型レジスト材料のベース樹脂となる高分子化合物を合成するには、1つの方法としては、例えば、下記式Ma1で示される酸不安定基で置換されたヒドロキシスチレンと、下記式Mb1で示される酸不安定基で置換されたヒドロキシビニルナフタレンとその他のモノマーを、有機溶剤中、ラジカル重合開始剤を加え加熱重合を行い、共重合体の高分子化合物を得ることができる。
Figure 2009211051
(式中、R1、R、R〜R、m、n、Xは上記の通り。)
重合時に使用する有機溶剤としてはトルエン、ベンゼン、テトラヒドロフラン、ジエチルエーテル、ジオキサン等が例示できる。重合開始剤としては、2,2’−アゾビスイソブチロニトリル(AIBN)、2,2’−アゾビス(2,4−ジメチルバレロニトリル)、ジメチル2,2−アゾビス(2−メチルプロピオネート)、ベンゾイルパーオキシド、ラウロイルパーオキシド等が例示でき、好ましくは50〜80℃に加熱して重合できる。反応時間としては2〜100時間、好ましくは5〜20時間である。
ヒドロキシスチレン、ヒドロキシビニルナフタレンを重合し、重合後に上記一般式(1)、(2)で示される酸不安定基で置換することも出来る。
また、ヒドロキシスチレン、ヒドロキシビニルナフタレンの代わりにアセトキシスチレン、アセトキシビニルナフタレンを用い、重合後上記アルカリ加水分解によってアセトキシ基を脱保護してポリヒドロキシスチレン、ヒドロキシポリビニルナフタレンにする方法もある。
アルカリ加水分解時の塩基としては、アンモニア水、トリエチルアミン等が使用できる。また反応温度としては−20〜100℃、好ましくは0〜60℃であり、反応時間としては0.2〜100時間、好ましくは0.5〜20時間である。
得られた高分子化合物を単離後、フェノール性水酸基部分に対して酸不安定基を導入する場合、高分子化合物のフェノール性水酸基をアルケニルエーテル化合物VE1と酸触媒下反応させて、部分的にフェノール性水酸基がアルコキシアルキル基で保護された高分子化合物を得ることが可能である。ここで下記式VE1中、R、R、R〜Rは前述の通り、R3’はRからCHを差し引いたアルキル基である。
Figure 2009211051
この時、反応溶媒としては、ジメチルホルムアミド、ジメチルアセトアミド、テトラヒドロフラン、酢酸エチル等の非プロトン性極性溶媒が好ましく、単独でも2種以上混合して使用してもかまわない。触媒の酸としては、塩酸、硫酸、トリフルオロメタンスルホン酸、p−トルエンスルホン酸、メタンスルホン酸、p−トルエンスルホン酸ピリジニウム塩等が好ましく、その使用量は反応する高分子化合物のフェノール性水酸基の水素原子をその全水酸基の1モルに対して0.1〜10モル%であることが好ましい。反応温度としては−20〜100℃、好ましくは0〜60℃であり、反応時間としては0.2〜100時間、好ましくは0.5〜20時間である。
また、ハロゲン化アルキルエーテル化合物(上記HE1)を用いて、塩基の存在下、高分子化合物と反応させることにより、部分的にフェノール性水酸基がアルコキシアルキル基で保護された高分子化合物を得ることも可能である。上記式HE1中、R、R、R〜R、X1は塩素原子、臭素原子、ヨウ素原子から選ばれる。
この時、反応溶媒としては、アセトニトリル、アセトン、ジメチルホルムアミド、ジメチルアセトアミド、テトラヒドロフラン、ジメチルスルホキシド等の非プロトン性極性溶媒が好ましく、単独でも2種以上混合して使用してもかまわない。塩基としては、トリエチルアミン、ピリジン、ジイソプロピルアミン、炭酸カリウム等が好ましく、その使用量は反応する高分子化合物のフェノール性水酸基の水素原子をその全水酸基の1モルに対して10モル%以上であることが好ましい。反応温度としては−50〜100℃、好ましくは0〜60℃であり、反応時間としては0.5〜100時間、好ましくは1〜20時間である。
VE1の合成方法としては、例えば、インデン、アセナフチレン、アセアントリレン、アセフェナントリレンの2重結合に水を付加してヒドロキシ基化したヒドロキシインダン、ヒドロキシアセナフテン、ヒドロキシアセナテレン、ヒドロキシアセフェナントレンとし、これにアセチレンを付加して合成することが出来る。
HE1の合成方法としては、VE1で合成したビニルエーテルに、X1が塩素原子の場合は塩酸を付加することによって得ることが出来る。
但し、これらの合成手法に限定されるものではない。
本発明の高分子化合物は、それぞれ質量平均分子量が1,000〜500,000、好ましくは2,000〜30,000であればよい。質量平均分子量が1,000以上であればレジスト材料が耐熱性に優れるものとなり、500,000以下であればアルカリ溶解性が低下するのを防止し、パターン形成後に裾引き現象が生じる恐れが少ないため、このような範囲が好ましい。
更に、本発明の高分子化合物においては、多成分共重合体の分子量分布(Mw/Mn)は1.0〜2.0、特に1.0〜1.5と狭分散であることが好ましい。多成分共重合体の分子量分布(Mw/Mn)がこのような範囲であれば露光後、パターン上に異物が見られたり、パターンの形状が悪化したりする恐れが少なく、微細なパターン寸法に好適に用いられるレジスト材料を得ることができるため好ましい。
また、組成比率や分子量分布や分子量が異なる2つ以上のポリマーをブレンドすることも可能である。
本発明における高分子化合物は、ポジ型レジスト材料のベース樹脂として好適で、このような高分子化合物をベース樹脂とし、これに有機溶剤、酸発生剤、溶解阻止剤、塩基性化合物、界面活性剤等を目的に応じ適宜組み合わせて配合してポジ型レジスト材料を構成することによって、露光部では前記高分子化合物が触媒反応により現像液に対する溶解速度が加速されるので、極めて高感度のポジ型レジスト材料とすることができ、レジスト膜の溶解コントラスト及び解像性が高く、露光余裕度があり、プロセス適応性に優れ、露光後のパターン形状が良好でありながら、より優れたエッチング耐性を示し、特に酸拡散を抑制できることから粗密寸法差が小さく、これらのことから実用性が高く、超LSI用レジスト材料として非常に有効なものとすることができる。特に、酸発生剤を含有させ、酸触媒反応を利用した化学増幅ポジ型レジスト材料とすると、より高感度のものとすることができると共に、諸特性が一層優れたものとなり極めて有用なものとなる。
また、このようなポジ型レジスト材料に溶解阻止剤を配合することによって、露光部と未露光部との溶解速度の差を一層大きくすることができ解像度を一層向上させることができる。
更に、塩基性化合物を添加することによって、例えばレジスト膜中での酸の拡散速度を抑制し解像度を一層向上させることができるし、界面活性剤を添加することによってレジスト材料の塗布性を一層向上あるいは制御することができる。
本発明のポジ型レジスト材料には、このように有機溶剤、高エネルギー線に感応して酸を発生する化合物(酸発生剤)、必要に応じて溶解阻止剤、塩基性化合物、界面活性剤、その他の成分を含有することができるが、本発明のポジ型レジスト材料、特には化学増幅ポジ型レジスト材料に使用される有機溶剤としては、ベース樹脂、酸発生剤、その他の添加剤等が溶解可能な有機溶剤であればいずれでもよい。このような有機溶剤としては、例えば、シクロヘキサノン、メチル−2−n−アミルケトン等のケトン類、3−メトキシブタノール、3−メチル−3−メトキシブタノール、1−メトキシ−2−プロパノール、1−エトキシ−2−プロパノール等のアルコール類、プロピレングリコールモノメチルエーテル、エチレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル等のエーテル類、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、乳酸エチル、ピルビン酸エチル、酢酸ブチル、3−メトキシプロピオン酸メチル、3−エトキシプロピオン酸エチル、酢酸tert−ブチル、プロピオン酸tert−ブチル、プロピレングリコールモノtert−ブチルエーテルアセテート等のエステル類、γ−ブチルラクトン等のラクトン類が挙げられるが、これらに限定されるものではない。
これらの有機溶剤は、1種を単独で又は2種以上を混合して使用することができる。本発明では、これらの有機溶剤の中でもレジスト成分中の酸発生剤の溶解性が最も優れているジエチレングリコールジメチルエーテルや1−エトキシ−2−プロパノール、プロピレングリコールモノメチルエーテルアセテート及びその混合溶剤が好ましく使用される。
有機溶剤の使用量は、ベース樹脂100部(質量部、以下同様)に対して200〜1,000部、特に400〜800部が好適である。
本発明のポジ型レジスト材料に配合される酸発生剤としては、
(i)下記一般式(P1a−1)、(P1a−2)又は(P1b)のオニウム塩、
(ii)下記一般式(P2)のジアゾメタン誘導体、
(iii)下記一般式(P3)のグリオキシム誘導体、
(iv)下記一般式(P4)のビススルホン誘導体、
(v)下記一般式(P5)のN−ヒドロキシイミド化合物のスルホン酸エステル、
(vi)β−ケトスルホン酸誘導体、
(vii)ジスルホン誘導体、
(viii)ニトロベンジルスルホネート誘導体、
(ix)スルホン酸エステル誘導体
等が挙げられる。
Figure 2009211051
(式中、R101a、R101b、R101cはそれぞれ炭素数1〜12の直鎖状、分岐状又は環状のアルキル基、アルケニル基、オキソアルキル基又はオキソアルケニル基、炭素数6〜20のアリール基、又は炭素数7〜12のアラルキル基又はアリールオキソアルキル基を示し、これらの基の水素原子の一部又は全部がアルコキシ基等によって置換されていてもよい。また、R101bとR101cとは環を形成してもよく、環を形成する場合には、R101b、R101cはそれぞれ炭素数1〜6のアルキレン基を示す。Kは非求核性対向イオンを表す。)
上記R101a、R101b、R101cは互いに同一であっても異なっていてもよく、具体的にはアルキル基として、メチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、sec−ブチル基、tert−ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロプロピルメチル基、4−メチルシクロヘキシル基、シクロヘキシルメチル基、ノルボルニル基、アダマンチル基等が挙げられる。アルケニル基としては、ビニル基、アリル基、プロぺニル基、ブテニル基、ヘキセニル基、シクロヘキセニル基等が挙げられる。オキソアルキル基としては、2−オキソシクロペンチル基、2−オキソシクロヘキシル基等が挙げられ、2−オキソプロピル基、2−シクロペンチル−2−オキソエチル基、2−シクロヘキシル−2−オキソエチル基、2−(4−メチルシクロヘキシル)−2−オキソエチル基等を挙げることができる。アリール基としては、フェニル基、ナフチル基等や、p−メトキシフェニル基、m−メトキシフェニル基、o−メトキシフェニル基、エトキシフェニル基、p−tert−ブトキシフェニル基、m−tert−ブトキシフェニル基等のアルコキシフェニル基、2−メチルフェニル基、3−メチルフェニル基、4−メチルフェニル基、エチルフェニル基、4−tert−ブチルフェニル基、4−ブチルフェニル基、ジメチルフェニル基等のアルキルフェニル基、メチルナフチル基、エチルナフチル基等のアルキルナフチル基、メトキシナフチル基、エトキシナフチル基等のアルコキシナフチル基、ジメチルナフチル基、ジエチルナフチル基等のジアルキルナフチル基、ジメトキシナフチル基、ジエトキシナフチル基等のジアルコキシナフチル基等が挙げられる。アラルキル基としてはベンジル基、フェニルエチル基、フェネチル基等が挙げられる。アリールオキソアルキル基としては、2−フェニル−2−オキソエチル基、2−(1−ナフチル)−2−オキソエチル基、2−(2−ナフチル)−2−オキソエチル基等の2−アリール−2−オキソエチル基等が挙げられる。K-の非求核性対向イオンとしては塩化物イオン、臭化物イオン等のハライドイオン、トリフレート、1,1,1−トリフルオロエタンスルホネート、ノナフルオロブタンスルホネート等のフルオロアルキルスルホネート、トシレート、ベンゼンスルホネート、4−フルオロベンゼンスルホネート、1,2,3,4,5−ペンタフルオロベンゼンスルホネート等のアリールスルホネート、メシレート、ブタンスルホネート等のアルキルスルホネート、ビス(トリフルオロメチルスルホニル)イミド、ビス(パーフルオロエチルスルホニル)イミド、ビス(パーフルオロブチルスルホニル)イミド等のイミド酸、トリス(トリフルオロメチルスルホニル)メチド、トリス(パーフルオロエチルスルホニル)メチドなどのメチド酸、更には下記一般式K−2に示されるα位がフルオロ置換されたスルホネート、K−1に示される、α、β位がフルオロ置換されたスルホネートが挙げられる。
Figure 2009211051
一般式(K−1)中、R102は水素原子、炭素数1〜30の直鎖状、分岐状、環状のアルキル基、アシル基、炭素数2〜20のアルケニル基、炭素数6〜20のアリール基、アリーロキシ基であり、エーテル基、エステル基、カルボニル基、ラクトン環を有していても良い。一般式(K−2)中のR103は水素原子、炭素数1〜20の直鎖状、分岐状、環状のアルキル基、炭素数2〜20のアルケニル基、炭素数6〜20のアリール基であり、エーテル基、エステル基、カルボニル基、ラクトン環を有していても良い。
Figure 2009211051
(式中、R102a、R102bはそれぞれ炭素数1〜8の直鎖状、分岐状又は環状のアルキル基を示す。R103aは炭素数1〜10の直鎖状、分岐状又は環状のアルキレン基を示す。R104a、R104bはそれぞれ炭素数3〜7の2−オキソアルキル基を示す。Kは非求核性対向イオンを表す。)
上記R102a、R102bとして具体的には、メチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、sec−ブチル基、tert−ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、シクロペンチル基、シクロヘキシル基、シクロプロピルメチル基、4−メチルシクロヘキシル基、シクロヘキシルメチル基等が挙げられる。R103aとしては、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンチレン基、へキシレン基、へプチレン基、オクチレン基、ノニレン基、1,4−シクロへキシレン基、1,2−シクロへキシレン基、1,3−シクロペンチレン基、1,4−シクロオクチレン基、1,4−シクロヘキサンジメチレン基等が挙げられる。R104a、R104bとしては、2−オキソプロピル基、2−オキソシクロペンチル基、2−オキソシクロヘキシル基、2−オキソシクロヘプチル基等が挙げられる。Kは式(P1a−1)及び(P1a−2)で説明したものと同様のものを挙げることができる。
Figure 2009211051
(式中、R105、R106は炭素数1〜12の直鎖状、分岐状又は環状のアルキル基又はハロゲン化アルキル基、炭素数6〜20のアリール基又はハロゲン化アリール基、又は炭素数7〜12のアラルキル基を示す。)
105、R106のアルキル基としてはメチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、sec−ブチル基、tert−ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、アミル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、ノルボルニル基、アダマンチル基等が挙げられる。ハロゲン化アルキル基としてはトリフルオロメチル基、1,1,1−トリフルオロエチル基、1,1,1−トリクロロエチル基、ノナフルオロブチル基等が挙げられる。アリール基としてはフェニル基、p−メトキシフェニル基、m−メトキシフェニル基、o−メトキシフェニル基、エトキシフェニル基、p−tert−ブトキシフェニル基、m−tert−ブトキシフェニル基等のアルコキシフェニル基、2−メチルフェニル基、3−メチルフェニル基、4−メチルフェニル基、エチルフェニル基、4−tert−ブチルフェニル基、4−ブチルフェニル基、ジメチルフェニル基等のアルキルフェニル基が挙げられる。ハロゲン化アリール基としてはフルオロフェニル基、クロロフェニル基、1,2,3,4,5−ペンタフルオロフェニル基等が挙げられる。アラルキル基としてはベンジル基、フェネチル基等が挙げられる。
Figure 2009211051
(式中、R107、R108、R109は炭素数1〜12の直鎖状、分岐状又は環状のアルキル基又はハロゲン化アルキル基、炭素数6〜20のアリール基又はハロゲン化アリール基、又は炭素数7〜12のアラルキル基を示す。R108、R109は互いに結合して環状構造を形成してもよく、環状構造を形成する場合、R108、R109はそれぞれ炭素数1〜6の直鎖状、分岐状のアルキレン基を示す。)
107、R108、R109のアルキル基、ハロゲン化アルキル基、アリール基、ハロゲン化アリール基、アラルキル基としては、R105、R106で説明したものと同様の基が挙げられる。なお、R108、R109のアルキレン基としてはメチレン基、エチレン基、プロピレン基、ブチレン基、ヘキシレン基等が挙げられる。
Figure 2009211051
(式中、R101a、R101bは上記と同様である。)
Figure 2009211051
(式中、R110は炭素数6〜10のアリーレン基、炭素数1〜6のアルキレン基又は炭素数2〜6のアルケニレン基を示し、これらの基の水素原子の一部又は全部は更に炭素数1〜4の直鎖状又は分岐状のアルキル基又はアルコキシ基、ニトロ基、アセチル基、又はフェニル基で置換されていてもよい。R111は炭素数1〜8の直鎖状、分岐状又は置換のアルキル基、アルケニル基又はアルコキシアルキル基、フェニル基、又はナフチル基を示し、これらの基の水素原子の一部又は全部は更に炭素数1〜4のアルキル基又はアルコキシ基;炭素数1〜4のアルキル基、アルコキシ基、ニトロ基又はアセチル基で置換されていてもよいフェニル基;炭素数3〜5のヘテロ芳香族基;又は塩素原子、フッ素原子で置換されていてもよい。)
ここで、R110のアリーレン基としては、1,2−フェニレン基、1,8−ナフチレン基等が、アルキレン基としては、メチレン基、エチレン基、トリメチレン基、テトラメチレン基、フェニルエチレン基、ノルボルナン−2,3−ジイル基等が、アルケニレン基としては、1,2−ビニレン基、1−フェニル−1,2−ビニレン基、5−ノルボルネン−2,3−ジイル基等が挙げられる。R111のアルキル基としては、R101a〜R101cと同様のものが、アルケニル基としては、ビニル基、1−プロペニル基、アリル基、1−ブテニル基、3−ブテニル基、イソプレニル基、1−ペンテニル基、3−ペンテニル基、4−ペンテニル基、ジメチルアリル基、1−ヘキセニル基、3−ヘキセニル基、5−ヘキセニル基、1−ヘプテニル基、3−ヘプテニル基、6−ヘプテニル基、7−オクテニル基等が、アルコキシアルキル基としては、メトキシメチル基、エトキシメチル基、プロポキシメチル基、ブトキシメチル基、ペンチロキシメチル基、ヘキシロキシメチル基、ヘプチロキシメチル基、メトキシエチル基、エトキシエチル基、プロポキシエチル基、ブトキシエチル基、ペンチロキシエチル基、ヘキシロキシエチル基、メトキシプロピル基、エトキシプロピル基、プロポキシプロピル基、ブトキシプロピル基、メトキシブチル基、エトキシブチル基、プロポキシブチル基、メトキシペンチル基、エトキシペンチル基、メトキシヘキシル基、メトキシヘプチル基等が挙げられる。
なお、更に置換されていてもよい炭素数1〜4のアルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、イソブチル基、tert−ブチル基等が、炭素数1〜4のアルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、n−ブトキシ基、イソブトキシ基、tert−ブトキシ基等が、炭素数1〜4のアルキル基、アルコキシ基、ニトロ基又はアセチル基で置換されていてもよいフェニル基としては、フェニル基、トリル基、p−tert−ブトキシフェニル基、p−アセチルフェニル基、p−ニトロフェニル基等が、炭素数3〜5のヘテロ芳香族基としては、ピリジル基、フリル基等が挙げられる。
オニウム塩としては、例えばトリフルオロメタンスルホン酸ジフェニルヨードニウム、トリフルオロメタンスルホン酸(p−tert−ブトキシフェニル)フェニルヨードニウム、p−トルエンスルホン酸ジフェニルヨードニウム、p−トルエンスルホン酸(p−tert−ブトキシフェニル)フェニルヨードニウム、トリフルオロメタンスルホン酸トリフェニルスルホニウム、トリフルオロメタンスルホン酸(p−tert−ブトキシフェニル)ジフェニルスルホニウム、トリフルオロメタンスルホン酸ビス(p−tert−ブトキシフェニル)フェニルスルホニウム、トリフルオロメタンスルホン酸トリス(p−tert−ブトキシフェニル)スルホニウム、p−トルエンスルホン酸トリフェニルスルホニウム、p−トルエンスルホン酸(p−tert−ブトキシフェニル)ジフェニルスルホニウム、p−トルエンスルホン酸ビス(p−tert−ブトキシフェニル)フェニルスルホニウム、p−トルエンスルホン酸トリス(p−tert−ブトキシフェニル)スルホニウム、ノナフルオロブタンスルホン酸トリフェニルスルホニウム、ブタンスルホン酸トリフェニルスルホニウム、トリフルオロメタンスルホン酸トリメチルスルホニウム、p−トルエンスルホン酸トリメチルスルホニウム、トリフルオロメタンスルホン酸シクロヘキシルメチル(2−オキソシクロヘキシル)スルホニウム、p−トルエンスルホン酸シクロヘキシルメチル(2−オキソシクロヘキシル)スルホニウム、トリフルオロメタンスルホン酸ジメチルフェニルスルホニウム、p−トルエンスルホン酸ジメチルフェニルスルホニウム、トリフルオロメタンスルホン酸ジシクロヘキシルフェニルスルホニウム、p−トルエンスルホン酸ジシクロヘキシルフェニルスルホニウム、トリフルオロメタンスルホン酸トリナフチルスルホニウム、トリフルオロメタンスルホン酸(2−ノルボニル)メチル(2−オキソシクロヘキシル)スルホニウム、エチレンビス[メチル(2−オキソシクロペンチル)スルホニウムトリフルオロメタンスルホナート]、1,2’−ナフチルカルボニルメチルテトラヒドロチオフェニウムトリフレート等のオニウム塩を挙げることができる。
ジアゾメタン誘導体としては、ビス(ベンゼンスルホニル)ジアゾメタン、ビス(p−トルエンスルホニル)ジアゾメタン、ビス(キシレンスルホニル)ジアゾメタン、ビス(シクロヘキシルスルホニル)ジアゾメタン、ビス(シクロペンチルスルホニル)ジアゾメタン、ビス(n−ブチルスルホニル)ジアゾメタン、ビス(イソブチルスルホニル)ジアゾメタン、ビス(sec−ブチルスルホニル)ジアゾメタン、ビス(n−プロピルスルホニル)ジアゾメタン、ビス(イソプロピルスルホニル)ジアゾメタン、ビス(tert−ブチルスルホニル)ジアゾメタン、ビス(n−アミルスルホニル)ジアゾメタン、ビス(イソアミルスルホニル)ジアゾメタン、ビス(sec−アミルスルホニル)ジアゾメタン、ビス(tert−アミルスルホニル)ジアゾメタン、1−シクロヘキシルスルホニル−1−(tert−ブチルスルホニル)ジアゾメタン、1−シクロヘキシルスルホニル−1−(tert−アミルスルホニル)ジアゾメタン、1−tert−アミルスルホニル−1−(tert−ブチルスルホニル)ジアゾメタン等のジアゾメタン誘導体を挙げることができる。
グリオキシム誘導体としては、ビス−O−(p−トルエンスルホニル)−α−ジメチルグリオキシム、ビス−O−(p−トルエンスルホニル)−α−ジフェニルグリオキシム、ビス−O−(p−トルエンスルホニル)−α−ジシクロヘキシルグリオキシム、ビス−O−(p−トルエンスルホニル)−2,3−ペンタンジオングリオキシム、ビス−O−(p−トルエンスルホニル)−2−メチル−3,4−ペンタンジオングリオキシム、ビス−O−(n−ブタンスルホニル)−α−ジメチルグリオキシム、ビス−O−(n−ブタンスルホニル)−α−ジフェニルグリオキシム、ビス−O−(n−ブタンスルホニル)−α−ジシクロヘキシルグリオキシム、ビス−O−(n−ブタンスルホニル)−2,3−ペンタンジオングリオキシム、ビス−O−(n−ブタンスルホニル)−2−メチル−3,4−ペンタンジオングリオキシム、ビス−O−(メタンスルホニル)−α−ジメチルグリオキシム、ビス−O−(トリフルオロメタンスルホニル)−α−ジメチルグリオキシム、ビス−O−(1,1,1−トリフルオロエタンスルホニル)−α−ジメチルグリオキシム、ビス−O−(tert−ブタンスルホニル)−α−ジメチルグリオキシム、ビス−O−(パーフルオロオクタンスルホニル)−α−ジメチルグリオキシム、ビス−O−(シクロヘキサンスルホニル)−α−ジメチルグリオキシム、ビス−O−(ベンゼンスルホニル)−α−ジメチルグリオキシム、ビス−O−(p−フルオロベンゼンスルホニル)−α−ジメチルグリオキシム、ビス−O−(p−tert−ブチルベンゼンスルホニル)−α−ジメチルグリオキシム、ビス−O−(キシレンスルホニル)−α−ジメチルグリオキシム、ビス−O−(カンファースルホニル)−α−ジメチルグリオキシム等のグリオキシム誘導体を挙げることができる。
ビススルホン誘導体としては、ビスナフチルスルホニルメタン、ビストリフルオロメチルスルホニルメタン、ビスメチルスルホニルメタン、ビスエチルスルホニルメタン、ビスプロピルスルホニルメタン、ビスイソプロピルスルホニルメタン、ビス−p−トルエンスルホニルメタン、ビスベンゼンスルホニルメタン等のビススルホン誘導体を挙げることができる。
β−ケトスルホン誘導体としては、2−シクロヘキシルカルボニル−2−(p−トルエンスルホニル)プロパン、2−イソプロピルカルボニル−2−(p−トルエンスルホニル)プロパン等のβ−ケトスルホン誘導体を挙げることができる。
ジスルホン誘導体としては、ジフェニルジスルホン誘導体、ジシクロヘキシルジスルホン誘導体等のジスルホン誘導体を挙げることができる。
ニトロベンジルスルホネート誘導体としては、p−トルエンスルホン酸2,6−ジニトロベンジル、p−トルエンスルホン酸2,4−ジニトロベンジル等のニトロベンジルスルホネート誘導体を挙げることができる。
スルホン酸エステル誘導体としては、1,2,3−トリス(メタンスルホニルオキシ)ベンゼン、1,2,3−トリス(トリフルオロメタンスルホニルオキシ)ベンゼン、1,2,3−トリス(p−トルエンスルホニルオキシ)ベンゼン等のスルホン酸エステル誘導体を挙げることができる。
また、N−ヒドロキシスクシンイミドメタンスルホン酸エステル、N−ヒドロキシスクシンイミドトリフルオロメタンスルホン酸エステル、N−ヒドロキシスクシンイミドエタンスルホン酸エステル、N−ヒドロキシスクシンイミド1−プロパンスルホン酸エステル、N−ヒドロキシスクシンイミド2−プロパンスルホン酸エステル、N−ヒドロキシスクシンイミド1−ペンタンスルホン酸エステル、N−ヒドロキシスクシンイミド1−オクタンスルホン酸エステル、N−ヒドロキシスクシンイミドp−トルエンスルホン酸エステル、N−ヒドロキシスクシンイミドp−メトキシベンゼンスルホン酸エステル、N−ヒドロキシスクシンイミド2−クロロエタンスルホン酸エステル、N−ヒドロキシスクシンイミドベンゼンスルホン酸エステル、N−ヒドロキシスクシンイミド−2,4,6−トリメチルベンゼンスルホン酸エステル、N−ヒドロキシスクシンイミド1−ナフタレンスルホン酸エステル、N−ヒドロキシスクシンイミド2−ナフタレンスルホン酸エステル、N−ヒドロキシ−2−フェニルスクシンイミドメタンスルホン酸エステル、N−ヒドロキシマレイミドメタンスルホン酸エステル、N−ヒドロキシマレイミドエタンスルホン酸エステル、N−ヒドロキシ−2−フェニルマレイミドメタンスルホン酸エステル、N−ヒドロキシグルタルイミドメタンスルホン酸エステル、N−ヒドロキシグルタルイミドベンゼンスルホン酸エステル、N−ヒドロキシフタルイミドメタンスルホン酸エステル、N−ヒドロキシフタルイミドベンゼンスルホン酸エステル、N−ヒドロキシフタルイミドトリフルオロメタンスルホン酸エステル、N−ヒドロキシフタルイミドp−トルエンスルホン酸エステル、N−ヒドロキシナフタルイミドメタンスルホン酸エステル、N−ヒドロキシナフタルイミドベンゼンスルホン酸エステル、N−ヒドロキシ−5−ノルボルネン−2,3−ジカルボキシイミドメタンスルホン酸エステル、N−ヒドロキシ−5−ノルボルネン−2,3−ジカルボキシイミドトリフルオロメタンスルホン酸エステル、N−ヒドロキシ−5−ノルボルネン−2,3−ジカルボキシイミドp−トルエンスルホン酸エステル等のN−ヒドロキシイミド化合物のスルホン酸エステル誘導体を挙げることができる。
特に、トリフルオロメタンスルホン酸トリフェニルスルホニウム、トリフルオロメタンスルホン酸(p−tert−ブトキシフェニル)ジフェニルスルホニウム、トリフルオロメタンスルホン酸トリス(p−tert−ブトキシフェニル)スルホニウム、p−トルエンスルホン酸トリフェニルスルホニウム、p−トルエンスルホン酸(p−tert−ブトキシフェニル)ジフェニルスルホニウム、p−トルエンスルホン酸トリス(p−tert−ブトキシフェニル)スルホニウム、トリフルオロメタンスルホン酸トリナフチルスルホニウム、トリフルオロメタンスルホン酸シクロヘキシルメチル(2−オキソシクロヘキシル)スルホニウム、トリフルオロメタンスルホン酸(2−ノルボニル)メチル(2−オキソシクロヘキシル)スルホニウム、1,2’−ナフチルカルボニルメチルテトラヒドロチオフェニウムトリフレート等のオニウム塩、ビス(ベンゼンスルホニル)ジアゾメタン、ビス(p−トルエンスルホニル)ジアゾメタン、ビス(シクロヘキシルスルホニル)ジアゾメタン、ビス(n−ブチルスルホニル)ジアゾメタン、ビス(イソブチルスルホニル)ジアゾメタン、ビス(sec−ブチルスルホニル)ジアゾメタン、ビス(n−プロピルスルホニル)ジアゾメタン、ビス(イソプロピルスルホニル)ジアゾメタン、ビス(tert−ブチルスルホニル)ジアゾメタン等のジアゾメタン誘導体、ビス−O−(p−トルエンスルホニル)−α−ジメチルグリオキシム、ビス−O−(n−ブタンスルホニル)−α−ジメチルグリオキシム等のグリオキシム誘導体、ビスナフチルスルホニルメタン等のビススルホン誘導体、N−ヒドロキシスクシンイミドメタンスルホン酸エステル、N−ヒドロキシスクシンイミドトリフルオロメタンスルホン酸エステル、N−ヒドロキシスクシンイミド1−プロパンスルホン酸エステル、N−ヒドロキシスクシンイミド2−プロパンスルホン酸エステル、N−ヒドロキシスクシンイミド1−ペンタンスルホン酸エステル、N−ヒドロキシスクシンイミドp−トルエンスルホン酸エステル、N−ヒドロキシナフタルイミドメタンスルホン酸エステル、N−ヒドロキシナフタルイミドベンゼンスルホン酸エステル等のN−ヒドロキシイミド化合物のスルホン酸エステル誘導体が好ましく用いられる。
更に、WO2004/074242 A2で示されるオキシムタイプの酸発生剤を添加することもできる。
なお、上記酸発生剤は1種を単独で又は2種以上を組み合わせて用いることができる。オニウム塩は矩形性向上効果に優れ、ジアゾメタン誘導体及びグリオキシム誘導体は定在波低減効果に優れるため、両者を組み合わせることによりプロファイルの微調整を行うことが可能である。
酸発生剤の添加量は、ベース樹脂100部に対して好ましくは0.1〜50部、より好ましくは0.5〜40部である。0.1部以上であれば露光時の酸発生量が十分であり、感度及び解像力に優れ、50部以下であればレジストの透過率が低下しないため、解像力が劣る恐れが少なく好ましい。
次に、本発明のポジ型レジスト材料、特には化学増幅ポジ型レジスト材料に配合される溶解阻止剤としては、質量平均分子量が100〜1,000、好ましくは150〜800で、かつ分子内にフェノール性水酸基を2つ以上有する化合物の該フェノール性水酸基の水素原子を酸不安定基により全体として平均0〜100モル%の割合で置換した化合物又は分子内にカルボキシ基を有する化合物の該カルボキシ基の水素原子を酸不安定基により全体として平均50〜100モル%の割合で置換した化合物が好ましい。
ここで、フェノール性水酸基の水素原子の酸不安定基による置換率は、平均でフェノール性水酸基全体の0モル%以上、好ましくは30モル%以上であり、その上限は100モル%、より好ましくは80モル%である。カルボキシ基の水素原子の酸不安定基による置換率は、平均でカルボキシ基全体の50モル%以上、好ましくは70モル%以上であり、その上限は100モル%とすることができる。
この場合、かかるフェノール性水酸基を2つ以上有する化合物又はカルボキシ基を有する化合物としては、下記式(D1)〜(D14)で示されるものが好ましい。
Figure 2009211051
但し、上記式中R201、R202はそれぞれ水素原子、又は炭素数1〜8の直鎖状又は分岐状のアルキル基又はアルケニル基を示す。R203は水素原子、又は炭素数1〜8の直鎖状又は分岐状のアルキル基又はアルケニル基、あるいは−(R207h1COOHを示す。R204は−(CHi1−(i1=2〜10)、炭素数6〜10のアリーレン基、カルボニル基、スルホニル基、酸素原子又は硫黄原子を示す。R205が炭素数1〜10のアルキレン基、炭素数6〜10のアリーレン基、カルボニル基、スルホニル基、酸素原子又は硫黄原子を示す。R206は水素原子、炭素数1〜8の直鎖状又は分岐状のアルキル基、アルケニル基又はそれぞれ水酸基で置換されたフェニル基又はナフチル基を示す。R207は炭素数1〜10の直鎖状又は分岐状のアルキレン基を示す。R208は水素原子又は水酸基を示す。jは0〜5の整数である。u、h1は0又は1である。s、t、s’、t’、s’’、t’’はそれぞれs+t=8、s’+t’=5、s’’+t’’=4を満足し、かつ各フェニル骨格中に少なくとも1つの水酸基を有するような数である。αは式(D8)、(D9)の化合物の質量平均分子量を100〜1,000とする数である。
溶解阻止剤の配合量は、ベース樹脂100部に対して0〜50部、好ましくは5〜50部、より好ましくは10〜30部であり、単独又は2種以上を混合して使用できる。配合量がベース樹脂100部に対して0部以上であれば解像性を向上することができ、50部以下であればパターンの膜減りが生じる恐れが少なく、解像度の低下を防止することができるので好ましい。
更に、本発明のポジ型レジスト材料には、塩基性化合物を配合することができる。
塩基性化合物としては、酸発生剤より発生する酸がレジスト膜中に拡散する際の拡散速度を抑制することができる化合物が適している。塩基性化合物の配合により、レジスト膜中での酸の拡散速度が抑制されて解像度が向上し、露光後の感度変化を抑制したり、基板や環境依存性を少なくし、露光余裕度やパターンプロファイル等を向上することができる。
このような塩基性化合物としては、第一級、第二級、第三級の脂肪族アミン類、混成アミン類、芳香族アミン類、複素環アミン類、カルボキシ基を有する含窒素化合物、スルホニル基を有する含窒素化合物、水酸基を有する含窒素化合物、ヒドロキシフェニル基を有する含窒素化合物、アルコール性含窒素化合物、アミド誘導体、イミド誘導体等が挙げられる。
具体的には、第一級の脂肪族アミン類として、アンモニア、メチルアミン、エチルアミン、n−プロピルアミン、イソプロピルアミン、n−ブチルアミン、イソブチルアミン、sec−ブチルアミン、tert−ブチルアミン、ペンチルアミン、tert−アミルアミン、シクロペンチルアミン、ヘキシルアミン、シクロヘキシルアミン、ヘプチルアミン、オクチルアミン、ノニルアミン、デシルアミン、ドデシルアミン、セチルアミン、メチレンジアミン、エチレンジアミン、テトラエチレンペンタミン等が例示され、第二級の脂肪族アミン類として、ジメチルアミン、ジエチルアミン、ジ−n−プロピルアミン、ジイソプロピルアミン、ジ−n−ブチルアミン、ジイソブチルアミン、ジ−sec−ブチルアミン、ジペンチルアミン、ジシクロペンチルアミン、ジヘキシルアミン、ジシクロヘキシルアミン、ジヘプチルアミン、ジオクチルアミン、ジノニルアミン、ジデシルアミン、ジドデシルアミン、ジセチルアミン、N,N−ジメチルメチレンジアミン、N,N−ジメチルエチレンジアミン、N,N−ジメチルテトラエチレンペンタミン等が例示され、第三級の脂肪族アミン類として、トリメチルアミン、トリエチルアミン、トリ−n−プロピルアミン、トリイソプロピルアミン、トリ−n−ブチルアミン、トリイソブチルアミン、トリ−sec−ブチルアミン、トリペンチルアミン、トリシクロペンチルアミン、トリヘキシルアミン、トリシクロヘキシルアミン、トリヘプチルアミン、トリオクチルアミン、トリノニルアミン、トリデシルアミン、トリドデシルアミン、トリセチルアミン、N,N,N’,N’−テトラメチルメチレンジアミン、N,N,N’,N’−テトラメチルエチレンジアミン、N,N,N’,N’−テトラメチルテトラエチレンペンタミン等が例示される。
また、混成アミン類としては、例えばジメチルエチルアミン、メチルエチルプロピルアミン、ベンジルアミン、フェネチルアミン、ベンジルジメチルアミン等が例示される。
芳香族アミン類及び複素環アミン類の具体例としては、アニリン誘導体(例えばアニリン、N−メチルアニリン、N−エチルアニリン、N−プロピルアニリン、N,N−ジメチルアニリン、2−メチルアニリン、3−メチルアニリン、4−メチルアニリン、エチルアニリン、プロピルアニリン、トリメチルアニリン、2−ニトロアニリン、3−ニトロアニリン、4−ニトロアニリン、2,4−ジニトロアニリン、2,6−ジニトロアニリン、3,5−ジニトロアニリン、N,N−ジメチルトルイジン等)、ジフェニル(p−トリル)アミン、メチルジフェニルアミン、トリフェニルアミン、フェニレンジアミン、ナフチルアミン、ジアミノナフタレン、ピロール誘導体(例えばピロール、2H−ピロール、1−メチルピロール、2,4−ジメチルピロール、2,5−ジメチルピロール、N−メチルピロール等)、オキサゾール誘導体(例えばオキサゾール、イソオキサゾール等)、チアゾール誘導体(例えばチアゾール、イソチアゾール等)、イミダゾール誘導体(例えばイミダゾール、4−メチルイミダゾール、4−メチル−2−フェニルイミダゾール等)、ピラゾール誘導体、フラザン誘導体、ピロリン誘導体(例えばピロリン、2−メチル−1−ピロリン等)、ピロリジン誘導体(例えばピロリジン、N−メチルピロリジン、ピロリジノン、N−メチルピロリドン等)、イミダゾリン誘導体、イミダゾリジン誘導体、ピリジン誘導体(例えばピリジン、メチルピリジン、エチルピリジン、プロピルピリジン、ブチルピリジン、4−(1−ブチルペンチル)ピリジン、ジメチルピリジン、トリメチルピリジン、トリエチルピリジン、フェニルピリジン、3−メチル−2−フェニルピリジン、4−tert−ブチルピリジン、ジフェニルピリジン、ベンジルピリジン、メトキシピリジン、ブトキシピリジン、ジメトキシピリジン、1−メチル−2−ピリジン、4−ピロリジノピリジン、1−メチル−4−フェニルピリジン、2−(1−エチルプロピル)ピリジン、アミノピリジン、ジメチルアミノピリジン等)、ピリダジン誘導体、ピリミジン誘導体、ピラジン誘導体、ピラゾリン誘導体、ピラゾリジン誘導体、ピペリジン誘導体、ピペラジン誘導体、モルホリン誘導体、インドール誘導体、イソインドール誘導体、1H−インダゾール誘導体、インドリン誘導体、キノリン誘導体(例えばキノリン、3−キノリンカルボニトリル等)、イソキノリン誘導体、シンノリン誘導体、キナゾリン誘導体、キノキサリン誘導体、フタラジン誘導体、プリン誘導体、プテリジン誘導体、カルバゾール誘導体、フェナントリジン誘導体、アクリジン誘導体、フェナジン誘導体、1,10−フェナントロリン誘導体、アデニン誘導体、アデノシン誘導体、グアニン誘導体、グアノシン誘導体、ウラシル誘導体、ウリジン誘導体等が例示される。
更に、カルボキシ基を有する含窒素化合物としては、例えばアミノ安息香酸、インドールカルボン酸、アミノ酸誘導体(例えばニコチン酸、アラニン、アルギニン、アスパラギン酸、グルタミン酸、グリシン、ヒスチジン、イソロイシン、グリシルロイシン、ロイシン、メチオニン、フェニルアラニン、スレオニン、リジン、3−アミノピラジン−2−カルボン酸、メトキシアラニン)等が例示され、スルホニル基を有する含窒素化合物として3−ピリジンスルホン酸、p−トルエンスルホン酸ピリジニウム等が例示され、水酸基を有する含窒素化合物、ヒドロキシフェニル基を有する含窒素化合物、アルコール性含窒素化合物としては、2−ヒドロキシピリジン、アミノクレゾール、2,4−キノリンジオール、3−インドールメタノールヒドレート、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、N−エチルジエタノールアミン、N,N−ジエチルエタノールアミン、トリイソプロパノールアミン、2,2’−イミノジエタノール、2−アミノエタノ−ル、3−アミノ−1−プロパノール、4−アミノ−1−ブタノール、4−(2−ヒドロキシエチル)モルホリン、2−(2−ヒドロキシエチル)ピリジン、1−(2−ヒドロキシエチル)ピペラジン、1−[2−(2−ヒドロキシエトキシ)エチル]ピペラジン、ピペリジンエタノール、1−(2−ヒドロキシエチル)ピロリジン、1−(2−ヒドロキシエチル)−2−ピロリジノン、3−ピペリジノ−1,2−プロパンジオール、3−ピロリジノ−1,2−プロパンジオール、8−ヒドロキシユロリジン、3−クイヌクリジノール、3−トロパノール、1−メチル−2−ピロリジンエタノール、1−アジリジンエタノール、N−(2−ヒドロキシエチル)フタルイミド、N−(2−ヒドロキシエチル)イソニコチンアミド等が例示される。アミド誘導体としては、ホルムアミド、N−メチルホルムアミド、N,N−ジメチルホルムアミド、アセトアミド、N−メチルアセトアミド、N,N−ジメチルアセトアミド、プロピオンアミド、ベンズアミド等が例示される。イミド誘導体としては、フタルイミド、サクシンイミド、マレイミド等が例示される。
更に下記一般式(B)−1で示される塩基性化合物から選ばれる1種または2種以上を添加することもできる。
N(X’)n1(Y’)3−n1 (B)−1

(式中、n1=1、2、3である。側鎖X’は同一でも異なっていても良く、下記一般式(X)−1〜(X)−3で表すことができる。側鎖Y’は同一または異種の、水素原子もしくは直鎖状、分岐状または環状の炭素数1〜20のアルキル基を示し、エーテル基もしくはヒドロキシル基を含んでもよい。また、X’同士が結合して環を形成しても良い。
Figure 2009211051
ここでR300、R302、R305はそれぞれ独立に、炭素数1〜4の直鎖状、分岐状のアルキレン基のいずれかであり、R301、R304はそれぞれ独立に水素原子、炭素数1〜20の直鎖状、分岐状、環状のアルキル基のいずれかであり、ヒドロキシ基、エーテル基、エステル基、ラクトン環を1あるいは複数含んでいても良い。R303は単結合、炭素数1〜4の直鎖状、分岐状のアルキレン基のいずれかであり、R306は炭素数1〜20の直鎖状、分岐状、環状のアルキル基のいずれかであり、ヒドロキシ基、エーテル、エステル基、ラクトン環を1あるいは複数含んでいても良い。
上記一般式(B)−1で表される化合物は具体的には下記に例示される。
トリス(2−メトキシメトキシエチル)アミン、トリス{2−(2−メトキシエトキシ)エチル}アミン、トリス{2−(2−メトキシエトキシメトキシ)エチル}アミン、トリス{2−(1−メトキシエトキシ)エチル}アミン、トリス{2−(1−エトキシエトキシ)エチル}アミン、トリス{2−(1−エトキシプロポキシ)エチル}アミン、トリス[2−{2−(2−ヒドロキシエトキシ)エトキシ}エチル]アミン、4,7,13,16,21,24−ヘキサオキサ−1,10−ジアザビシクロ[8.8.8]ヘキサコサン、4,7,13,18−テトラオキサ−1,10−ジアザビシクロ[8.5.5]エイコサン、1,4,10,13−テトラオキサ−7,16−ジアザビシクロオクタデカン、1−アザ−12−クラウン−4、1−アザ−15−クラウン−5、1−アザ−18−クラウン−6、トリス(2−ホルミルオキシエチル)アミン、トリス(2−アセトキシエチル)アミン、トリス(2−プロピオニルオキシエチル)アミン、トリス(2−ブチリルオキシエチル)アミン、トリス(2−イソブチリルオキシエチル)アミン、トリス(2−バレリルオキシエチル)アミン、トリス(2−ピバロイルオキシエチル)アミン、N,N−ビス(2−アセトキシエチル)2−(アセトキシアセトキシ)エチルアミン、トリス(2−メトキシカルボニルオキシエチル)アミン、トリス(2−tert−ブトキシカルボニルオキシエチル)アミン、トリス[2−(2−オキソプロポキシ)エチル]アミン、トリス[2−(メトキシカルボニルメチル)オキシエチル]アミン、トリス[2−(tert−ブトキシカルボニルメチルオキシ)エチル]アミン、トリス[2−(シクロヘキシルオキシカルボニルメチルオキシ)エチル]アミン、トリス(2−メトキシカルボニルエチル)アミン、トリス(2−エトキシカルボニルエチル)アミン、N,N−ビス(2−ヒドロキシエチル)2−(メトキシカルボニル)エチルアミン、N,N−ビス(2−アセトキシエチル)2−(メトキシカルボニル)エチルアミン、N,N−ビス(2−ヒドロキシエチル)2−(エトキシカルボニル)エチルアミン、N,N−ビス(2−アセトキシエチル)2−(エトキシカルボニル)エチルアミン、N,N−ビス(2−ヒドロキシエチル)2−(2−メトキシエトキシカルボニル)エチルアミン、N,N−ビス(2−アセトキシエチル)2−(2−メトキシエトキシカルボニル)エチルアミン、N,N−ビス(2−ヒドロキシエチル)2−(2−ヒドロキシエトキシカルボニル)エチルアミン、N,N−ビス(2−アセトキシエチル)2−(2−アセトキシエトキシカルボニル)エチルアミン、N,N−ビス(2−ヒドロキシエチル)2−[(メトキシカルボニル)メトキシカルボニル]エチルアミン、N,N−ビス(2−アセトキシエチル)2−[(メトキシカルボニル)メトキシカルボニル]エチルアミン、N,N−ビス(2−ヒドロキシエチル)2−(2−オキソプロポキシカルボニル)エチルアミン、N,N−ビス(2−アセトキシエチル)2−(2−オキソプロポキシカルボニル)エチルアミン、N,N−ビス(2−ヒドロキシエチル)2−(テトラヒドロフルフリルオキシカルボニル)エチルアミン、N,N−ビス(2−アセトキシエチル)2−(テトラヒドロフルフリルオキシカルボニル)エチルアミン、N,N−ビス(2−ヒドロキシエチル)2−[(2−オキソテトラヒドロフラン−3−イル)オキシカルボニル]エチルアミン、N,N−ビス(2−アセトキシエチル)2−[(2−オキソテトラヒドロフラン−3−イル)オキシカルボニル]エチルアミン、N,N−ビス(2−ヒドロキシエチル)2−(4−ヒドロキシブトキシカルボニル)エチルアミン、N,N−ビス(2−ホルミルオキシエチル)2−(4−ホルミルオキシブトキシカルボニル)エチルアミン、N,N−ビス(2−ホルミルオキシエチル)2−(2−ホルミルオキシエトキシカルボニル)エチルアミン、N,N−ビス(2−メトキシエチル)2−(メトキシカルボニル)エチルアミン、N−(2−ヒドロキシエチル)ビス[2−(メトキシカルボニル)エチル]アミン、N−(2−アセトキシエチル)ビス[2−(メトキシカルボニル)エチル]アミン、N−(2−ヒドロキシエチル)ビス[2−(エトキシカルボニル)エチル]アミン、N−(2−アセトキシエチル)ビス[2−(エトキシカルボニル)エチル]アミン、N−(3−ヒドロキシ−1−プロピル)ビス[2−(メトキシカルボニル)エチル]アミン、N−(3−アセトキシ−1−プロピル)ビス[2−(メトキシカルボニル)エチル]アミン、N−(2−メトキシエチル)ビス[2−(メトキシカルボニル)エチル]アミン、N−ブチルビス[2−(メトキシカルボニル)エチル]アミン、N−ブチルビス[2−(2−メトキシエトキシカルボニル)エチル]アミン、N−メチルビス(2−アセトキシエチル)アミン、N−エチルビス(2−アセトキシエチル)アミン、N−メチルビス(2−ピバロイルオキシエチル)アミン、N−エチルビス[2−(メトキシカルボニルオキシ)エチル]アミン、N−エチルビス[2−(tert−ブトキシカルボニルオキシ)エチル]アミン、トリス(メトキシカルボニルメチル)アミン、トリス(エトキシカルボニルメチル)アミン、N−ブチルビス(メトキシカルボニルメチル)アミン、N−ヘキシルビス(メトキシカルボニルメチル)アミン、β−(ジエチルアミノ)−δ−バレロラクトン等を例示できるが、これらに制限されない。
更に下記一般式(B)−2に示される環状構造を持つ塩基化合物の1種あるいは2種以上を添加することもできる。
Figure 2009211051
(式中、X’は前述の通り、R307は炭素数2〜20の直鎖状、分岐状のアルキレン基であり、カルボニル基、エーテル基、エステル基、スルフィドを1個あるいは複数個含んでいても良い。)
一般式(B)−2に示される環状構造を持つ塩基化合物は具体的には、1−[2−(メトキシメトキシ)エチル]ピロリジン、1−[2−(メトキシメトキシ)エチル]ピペリジン、4−[2−(メトキシメトキシ)エチル]モルホリン、1−[2−[(2−メトキシエトキシ)メトキシ]エチル]ピロリジン、1−[2−[(2−メトキシエトキシ)メトキシ]エチル]ピペリジン、4−[2−[(2−メトキシエトキシ)メトキシ]エチル]モルホリン、酢酸2−(1−ピロリジニル)エチル、酢酸2−ピペリジノエチル、酢酸2−モルホリノエチル、ギ酸2−(1−ピロリジニル)エチル、プロピオン酸2−ピペリジノエチル、アセトキシ酢酸2−モルホリノエチル、メトキシ酢酸2−(1−ピロリジニル)エチル、4−[2−(メトキシカルボニルオキシ)エチル]モルホリン、1−[2−(t−ブトキシカルボニルオキシ)エチル]ピペリジン、4−[2−(2−メトキシエトキシカルボニルオキシ)エチル]モルホリン、3−(1−ピロリジニル)プロピオン酸メチル、3−ピペリジノプロピオン酸メチル、3−モルホリノプロピオン酸メチル、3−(チオモルホリノ)プロピオン酸メチル、2−メチル−3−(1−ピロリジニル)プロピオン酸メチル、3−モルホリノプロピオン酸エチル、3−ピペリジノプロピオン酸メトキシカルボニルメチル、3−(1−ピロリジニル)プロピオン酸2−ヒドロキシエチル、3−モルホリノプロピオン酸2−アセトキシエチル、3−(1−ピロリジニル)プロピオン酸2−オキソテトラヒドロフラン−3−イル、3−モルホリノプロピオン酸テトラヒドロフルフリル、3−ピペリジノプロピオン酸グリシジル、3−モルホリノプロピオン酸2−メトキシエチル、3−(1−ピロリジニル)プロピオン酸2−(2−メトキシエトキシ)エチル、3−モルホリノプロピオン酸ブチル、3−ピペリジノプロピオン酸シクロヘキシル、α−(1−ピロリジニル)メチル−γ−ブチロラクトン、β−ピペリジノ−γ−ブチロラクトン、β−モルホリノ−δ−バレロラクトン、1−ピロリジニル酢酸メチル、ピペリジノ酢酸メチル、モルホリノ酢酸メチル、チオモルホリノ酢酸メチル、1−ピロリジニル酢酸エチル、モルホリノ酢酸2−メトキシエチル等を例示することができる。
また、更に、一般式(B)−3〜(B)−6で表されるシアノ基を含む塩基化合物を添加することができる。
Figure 2009211051
(式中、X’、R307、n1は前述の通り、R308、R309は同一又は異種の炭素数1〜4の直鎖状、分岐状のアルキレン基である。)
これらのシアノ基を含む塩基は、具体的には3−(ジエチルアミノ)プロピオノニトリル、N,N−ビス(2−ヒドロキシエチル)−3−アミノプロピオノニトリル、N,N−ビス(2−アセトキシエチル)−3−アミノプロピオノニトリル、N,N−ビス(2−ホルミルオキシエチル)−3−アミノプロピオノニトリル、N,N−ビス(2−メトキシエチル)−3−アミノプロピオノニトリル、N,N−ビス[2−(メトキシメトキシ)エチル]−3−アミノプロピオノニトリル、N−(2−シアノエチル)−N−(2−メトキシエチル)−3−アミノプロピオン酸メチル、N−(2−シアノエチル)−N−(2−ヒドロキシエチル)−3−アミノプロピオン酸メチル、N−(2−アセトキシエチル)−N−(2−シアノエチル)−3−アミノプロピオン酸メチル、N−(2−シアノエチル)−N−エチル−3−アミノプロピオノニトリル、N−(2−シアノエチル)−N−(2−ヒドロキシエチル)−3−アミノプロピオノニトリル、N−(2−アセトキシエチル)−N−(2−シアノエチル)−3−アミノプロピオノニトリル、N−(2−シアノエチル)−N−(2−ホルミルオキシエチル)−3−アミノプロピオノニトリル、N−(2−シアノエチル)−N−(2−メトキシエチル)−3−アミノプロピオノニトリル、N−(2−シアノエチル)−N−[2−(メトキシメトキシ)エチル]−3−アミノプロピオノニトリル、N−(2−シアノエチル)−N−(3−ヒドロキシ−1−プロピル)−3−アミノプロピオノニトリル、N−(3−アセトキシ−1−プロピル)−N−(2−シアノエチル)−3−アミノプロピオノニトリル、N−(2−シアノエチル)−N−(3−ホルミルオキシ−1−プロピル)−3−アミノプロピオノニトリル、N−(2−シアノエチル)−N−テトラヒドロフルフリル−3−アミノプロピオノニトリル、N,N−ビス(2−シアノエチル)−3−アミノプロピオノニトリル、ジエチルアミノアセトニトリル、N,N−ビス(2−ヒドロキシエチル)アミノアセトニトリル、N,N−ビス(2−アセトキシエチル)アミノアセトニトリル、N,N−ビス(2−ホルミルオキシエチル)アミノアセトニトリル、N,N−ビス(2−メトキシエチル)アミノアセトニトリル、N,N−ビス[2−(メトキシメトキシ)エチル]アミノアセトニトリル、N−シアノメチル−N−(2−メトキシエチル)−3−アミノプロピオン酸メチル、N−シアノメチル−N−(2−ヒドロキシエチル)−3−アミノプロピオン酸メチル、N−(2−アセトキシエチル)−N−シアノメチル−3−アミノプロピオン酸メチル、N−シアノメチル−N−(2−ヒドロキシエチル)アミノアセトニトリル、N−(2−アセトキシエチル)−N−(シアノメチル)アミノアセトニトリル、N−シアノメチル−N−(2−ホルミルオキシエチル)アミノアセトニトリル、N−シアノメチル−N−(2−メトキシエチル)アミノアセトニトリル、N−シアノメチル−N−[2−(メトキシメトキシ)エチル]アミノアセトニトリル、N−(シアノメチル)−N−(3−ヒドロキシ−1−プロピル)アミノアセトニトリル、N−(3−アセトキシ−1−プロピル)−N−(シアノメチル)アミノアセトニトリル、N−シアノメチル−N−(3−ホルミルオキシ−1−プロピル)アミノアセトニトリル、N,N−ビス(シアノメチル)アミノアセトニトリル、1−ピロリジンプロピオノニトリル、1−ピペリジンプロピオノニトリル、4−モルホリンプロピオノニトリル、1−ピロリジンアセトニトリル、1−ピペリジンアセトニトリル、4−モルホリンアセトニトリル、3−ジエチルアミノプロピオン酸シアノメチル、N,N−ビス(2−ヒドロキシエチル)−3−アミノプロピオン酸シアノメチル、N,N−ビス(2−アセトキシエチル)−3−アミノプロピオン酸シアノメチル、N,N−ビス(2−ホルミルオキシエチル)−3−アミノプロピオン酸シアノメチル、N,N−ビス(2−メトキシエチル)−3−アミノプロピオン酸シアノメチル、N,N−ビス[2−(メトキシメトキシ)エチル]−3−アミノプロピオン酸シアノメチル、3−ジエチルアミノプロピオン酸(2−シアノエチル)、N,N−ビス(2−ヒドロキシエチル)−3−アミノプロピオン酸(2−シアノエチル)、N,N−ビス(2−アセトキシエチル)−3−アミノプロピオン酸(2−シアノエチル)、N,N−ビス(2−ホルミルオキシエチル)−3−アミノプロピオン酸(2−シアノエチル)、N,N−ビス(2−メトキシエチル)−3−アミノプロピオン酸(2−シアノエチル)、N,N−ビス[2−(メトキシメトキシ)エチル]−3−アミノプロピオン酸(2−シアノエチル)、1−ピロリジンプロピオン酸シアノメチル、1−ピペリジンプロピオン酸シアノメチル、4−モルホリンプロピオン酸シアノメチル、1−ピロリジンプロピオン酸(2−シアノエチル)、1−ピペリジンプロピオン酸(2−シアノエチル)、4−モルホリンプロピオン酸(2−シアノエチル)等が例示される。
なお、本発明の塩基化合物の配合量はベース樹脂100部に対して0.001〜2部、特に0.01〜1部が好適である。配合量が0.001部以上であれば配合効果に優れ、2部以下であれば感度が低下する恐れが少なく好ましい。
本発明のポジ型レジスト材料に添加することができる、分子内に≡C−COOHで示される基を有する化合物としては、例えば下記I群及びII群から選ばれる1種又は2種以上の化合物を使用することができるが、これらに限定されるものではない。本成分の配合により、レジストのPED安定性が向上し、窒化膜基板上でのエッジラフネスが改善されるのである。
[I群]
下記一般式(A1)〜(A10)で示される化合物のフェノール性水酸基の水素原子の一部又は全部を−R401−COOH(R401は炭素数1〜10の直鎖状又は分岐状のアルキレン基)により置換してなり、かつ分子中のフェノール性水酸基(C)と≡C−COOHで示される基(D)とのモル比率がC/(C+D)=0.1〜1.0である化合物。
Figure 2009211051
(但し、式中R408は水素原子又はメチル基を示す。R402、R403はそれぞれ水素原子又は炭素数1〜8の直鎖状又は分岐状のアルキル基又はアルケニル基を示す。R404は水素原子又は炭素数1〜8の直鎖状又は分岐状のアルキル基又はアルケニル基、あるいは−(R409h”−COOR’基(R’は水素原子又は−R409−COOH)を示す。R405は−(CHi”−(i”=2〜10)、炭素数6〜10のアリーレン基、カルボニル基、スルホニル基、酸素原子又は硫黄原子を示す、R406は炭素数1〜10のアルキレン基、炭素数6〜10のアリーレン基、カルボニル基、スルホニル基、酸素原子又は硫黄原子を示す。R407は水素原子又は炭素数1〜8の直鎖状又は分岐状のアルキル基、アルケニル基、それぞれ水酸基で置換されたフェニル基又はナフチル基を示す。R409は炭素数1〜10の直鎖状又は分岐状のアルキル基又はアルケニル基又は−R411−COOH基を示す。R410は水素原子又は炭素数1〜8の直鎖状又は分岐状のアルキル基又はアルケニル基又は−R411−COOH基を示す。R411は炭素数1〜10の直鎖状又は分岐状のアルキレン基を示す。j’は0〜3、u’、h”は0又は1である。s1〜s4、t1〜t4はそれぞれs1+t1=8、s2+t2=5、s3+t3=4、s4+t4=6を満足し、かつ各フェニル骨格中に少なくとも1つの水酸基を有するような数である。κは式(A6)の化合物を質量平均分子量1,000〜5,000とする数である。λは式(A7)の化合物を質量平均分子量1,000〜10,000とする数である。)
[II群]
下記一般式(A11)〜(A15)で示される化合物。
Figure 2009211051
(R402、R403、R411は上記と同様の意味を示す。R412は水素原子又は水酸基を示す。s5、t5は、s5≧0、t5≧0で、s5+t5=5を満足する数である。h’は0又は1である。)
上記一般式(A1)〜(A15)で示される成分として、具体的には下記一般式(AI−1)〜(AI−14)及び(AII−1)〜(AII−10)で示される化合物を挙げることができるが、これらに限定されるものではない。
Figure 2009211051
(式中、R’’は水素原子又はCH2COOH基を示し、各化合物においてR’’の10〜100モル%はCH2COOH基である。α、κは上記と同様の意味を示す。)
Figure 2009211051
なお、上記分子内に≡C−COOHで示される基を有する化合物は、1種を単独で又は2種以上を組み合わせて用いることができる。
上記分子内に≡C−COOHで示される基を有する化合物の添加量は、ベース樹脂100部に対して0〜5部、好ましくは0.1〜5部、より好ましくは0.1〜3部、更に好ましくは0.1〜2部である。このような範囲であればレジスト材料の解像性が低下する恐れが少なく好適である。
また、本発明のポジ型レジスト材料には、下記一般式BP−(1)で示される酸不安定基で置換された複数のビスフェノール基を有する化合物からなる溶解制御剤を添加することができる。
Figure 2009211051
(式中、R501は同一又は異種の水素原子、炭素数1〜10の直鎖状、分岐状もしくは環状のアルキル基、炭素数6〜10のアリール基、炭素数2〜10のアルケニル基又はハロゲン原子であり、R502は同一又は異種の独立して水素原子又は酸不安定基であり、n2は2〜4の整数である。Z’は式中の炭素原子を合わせて炭素数5〜40の環状構造を有するアルキル基、有橋環式炭化水素基、又は縮合多環式炭化水素基であり、硫黄などのヘテロ原子を有していてもよい。)
上記一般式BP−(1)中の酸不安定基は、上述したものから選ばれるものを用いることができる。一般式BP−(1)で示される化合物は、具体的には下記に例示することができる。
Figure 2009211051
Figure 2009211051
Figure 2009211051
Figure 2009211051
Figure 2009211051
Figure 2009211051
また、本発明のポジ型レジスト材料には、特開11−322656号公報記載の酸不安定基で置換されたカリックスアレーン類、カリックスレゾルシノール類からなる溶解制御剤を添加することもできる。
本発明に添加される界面活性剤の例としては、特に限定されるものではないが、ポリオキシエチレンラウリルエーテル、ポリエチレンステアリルエーテル、ポリオキシエチレンセチルエーテル、ポリオキシエチレンオレインエーテル等のポリオキシエチレンアルキルエーテル類、ポリオキシエチレンオクチルフェノールエーテル、ポリオキシエチレンノニルフェノール等のポリオキシエチレンアルキルアリルエーテル類、ポリオキシエチレンポリオキシプロピレンブロックコポリマー類、ソルビタンモノラウレート、ソルビタンモノバルミテート、ソルビタンモノステアレート等のソルビタン脂肪酸エステル類、ポリオキシエチレンソルビタンモノラウレート、ポリオキシエチレンソルビタンモノバルミテート、ポリオキシエチレンソルビタンモノステアレート、ポリオキシエチレンソルビタントリオレエート、ポリオキシエチレンソルビタントリステアレート等のポリオキシエチレンソルビタン脂肪酸エステルのノニオン系界面活性剤、エフトップEF301、EF303、EF352(トーケムプトダクツ)、メガファックF171、F172、F173(大日本インキ化学工業)、フロラードFC430、FC431、FC−4430(住友スリーエム)、アサヒガードAG710、サーフロンS−381、S−382、SC101、SC102,SC103、SC104、SC105、SC106、サーフィノールE1004、KH−10、KH−20、KH−30、KH−40(旭硝子)等のフッ素系界面活性剤、オルガノシロキサンポリマーKP−341、X−70−092、X−70−093(信越化学工業)、アクリル酸系又はメタクリル酸系ポリフローNo.75,No.95(共栄社油脂化学工業)が挙げられ、中でもFC430、FC−4430、サーフロンS−381、サーフィノールE1004、KH−20、KH−30が好適である。これらは単独あるいは2種以上の組み合わせで用いることができる。
本発明のポジ型レジスト材料、特には化学増幅ポジ型レジスト材料中の界面活性剤の添加量としては、レジスト材料中のベース樹脂100部に対して2部以下、好ましくは1部以下である。
本発明のポジ型レジスト材料、例えば有機溶剤と、フェノール性水酸基の水素原子が上記一般式(1)で示される酸不安定基によって置換されている高分子化合物と、酸発生剤、塩基性化合物を含む化学増幅ポジ型レジスト材料を種々の集積回路製造に用いる場合は、特に限定されないが公知のリソグラフィー技術を適用することができる。
例えば、本発明のポジ型レジスト材料を、集積回路製造用の基板(Si,SiO2,SiN,SiON,TiN,WSi,BPSG,SOG,有機反射防止膜等)あるいはマスク回路製造用の基板(Cr、CrO、CrON、MoSi等)上にスピンコート、ロールコート、フローコート、ディップコート、スプレーコート、ドクターコート等の適当な塗布方法により膜厚が0.1〜2.0μmとなるように塗布する。これをホットプレート上で60〜150℃、10秒〜30分間、好ましくは80〜120℃、30秒〜20分間プリベークする。次いで、紫外線、遠紫外線、電子線、X線、エキシマレーザー、γ線、シンクロトロン放射線、真空紫外線(軟X線)等の高エネルギー線から選ばれる光源で目的とするパターンを所定のマスクを通じてもしくは直接露光を行う。露光量は1〜200mJ/cm程度、好ましくは10〜100mJ/cm、又は0.1〜100μC、好ましくは0.5〜50μC程度となるように露光することが好ましい。次に、ホットプレート上で60〜150℃、10秒〜30分間、好ましくは80〜120℃、30秒〜20分間ポストエクスポージャベーク(PEB)する。
更に、0.1〜5質量%、好ましくは2〜3質量%のテトラメチルアンモニウムヒドロキシド(TMAH)等のアルカリ水溶液の現像液を用い、3秒〜3分間、好ましくは5秒〜2分間、浸漬(dip)法、パドル(puddle)法、スプレー(spray)法等の常法により現像することにより、光を照射した部分は現像液に溶解し、露光されなかった部分は溶解せず、基板上に目的のポジ型のパターンが形成される。なお、本発明のレジスト材料は、特に高エネルギー線の中でも電子線、真空紫外線(軟X線)、X線、γ線、シンクロトロン放射線による微細パターニングに最適である。
以下、合成例、比較合成例及び実施例、比較例を示して本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。
[合成例1]
Lのフラスコに4−アセトキシスチレン8.1g、6−アセトキシ−2−ビニルナフタレン10.6g、溶媒としてテトラヒドロフランを40g添加した。この反応容器を窒素雰囲気下、−70℃まで冷却し、減圧脱気、窒素ブローを3回繰り返した。室温まで昇温後、重合開始剤としてAIBN(アゾビスイソブチロニトリル)を1.2g加え、60℃まで昇温後、15時間反応させた。この反応溶液をイソプロピルアルコール1L溶液中に沈殿させ、得られた白色固体をメタノール100mL、テトラヒドロフラン200mLに再度溶解し、トリエチルアミン10g、水10gを加え、70℃で5時間アセチル基の脱保護反応を行い、酢酸を用いて中和した。反応溶液を濃縮後、アセトン100mLに溶解し、上記と同様の沈殿、濾過、60℃で乾燥を行い、白色重合体を得た。
得られた重合体を13C,H−NMR、及び、GPC測定したところ、以下の分析結果となった。
共重合組成比(モル比)
4−ヒドロキシスチレン:6−ヒドロキシ−2−ビニルナフタレン=0.50:0.50
質量平均分子量(Mw)=8,900
分子量分布(Mw/Mn)=1.84
この高分子化合物を(ポリマー1)とする。
Figure 2009211051
[合成例2]
2Lのフラスコに4−アセトキシスチレン14.6g、インデン1.5g、溶媒としてテトラヒドロフランを40g添加した。この反応容器を窒素雰囲気下、−70℃まで冷却し、減圧脱気、窒素ブローを3回繰り返した。室温まで昇温後、重合開始剤としてAIBN(アゾビスイソブチロニトリル)を1.2g加え、60℃まで昇温後、15時間反応させた。この反応溶液をイソプロピルアルコール1L溶液中に沈殿させ、得られた白色固体をメタノール100mL、テトラヒドロフラン200mLに再度溶解し、トリエチルアミン10g、水10gを加え、70℃で5時間アセチル基の脱保護反応を行い、酢酸を用いて中和した。反応溶液を濃縮後、アセトン100mLに溶解し、上記と同様の沈殿、濾過、60℃で乾燥を行い、白色重合体を得た。
得られた重合体を13C,H−NMR、及び、GPC測定したところ、以下の分析結果となった。
共重合組成比(モル比)
4−ヒドロキシスチレン:インデン=0.90:0.10
質量平均分子量(Mw)=6,300
分子量分布(Mw/Mn)=1.68
この高分子化合物を(ポリマー2)とする。
Figure 2009211051
[合成例3]
2Lのフラスコに4−アセトキシスチレン14.6g、ベンゾフラン1.4g、溶媒としてテトラヒドロフランを40g添加した。この反応容器を窒素雰囲気下、−70℃まで冷却し、減圧脱気、窒素ブローを3回繰り返した。室温まで昇温後、重合開始剤としてAIBN(アゾビスイソブチロニトリル)を1.2g加え、60℃まで昇温後、15時間反応させた。この反応溶液をイソプロピルアルコール1L溶液中に沈殿させ、得られた白色固体をメタノール100mL、テトラヒドロフラン200mLに再度溶解し、トリエチルアミン10g、水10gを加え、70℃で5時間アセチル基の脱保護反応を行い、酢酸を用いて中和した。反応溶液を濃縮後、アセトン100mLに溶解し、上記と同様の沈殿、濾過、60℃で乾燥を行い、白色重合体を得た。
得られた重合体を13C,H−NMR、及び、GPC測定したところ、以下の分析結果となった。
共重合組成比(モル比)
4−ヒドロキシスチレン:ベンゾフラン=0.85:0.15
質量平均分子量(Mw)=6,100
分子量分布(Mw/Mn)=1.71
この高分子化合物を(ポリマー3)とする。
Figure 2009211051
[合成例4]
2Lのフラスコに4−アセトキシスチレン14.6g、ベンゾチオフェン2.0g、溶媒としてテトラヒドロフランを40g添加した。この反応容器を窒素雰囲気下、−70℃まで冷却し、減圧脱気、窒素ブローを3回繰り返した。室温まで昇温後、重合開始剤としてAIBN(アゾビスイソブチロニトリル)を1.2g加え、60℃まで昇温後、15時間反応させた。この反応溶液をイソプロピルアルコール1L溶液中に沈殿させ、得られた白色固体をメタノール100mL、テトラヒドロフラン200mLに再度溶解し、トリエチルアミン10g、水10gを加え、70℃で5時間アセチル基の脱保護反応を行い、酢酸を用いて中和した。反応溶液を濃縮後、アセトン100mLに溶解し、上記と同様の沈殿、濾過、60℃で乾燥を行い、白色重合体を得た。
得られた重合体を13C,H−NMR、及び、GPC測定したところ、以下の分析結果となった。
共重合組成比(モル比)
4−ヒドロキシスチレン:ベンゾチオフェン=0.87:0.13
質量平均分子量(Mw)=6,600
分子量分布(Mw/Mn)=1.64
この高分子化合物を(ポリマー4)とする。
Figure 2009211051
[合成例5]
Lのフラスコに4−アセトキシスチレン14.6g、アセナフチレン1.5g、溶媒としてテトラヒドロフランを40g添加した。この反応容器を窒素雰囲気下、−70℃まで冷却し、減圧脱気、窒素ブローを3回繰り返した。室温まで昇温後、重合開始剤としてAIBN(アゾビスイソブチロニトリル)を1.2g加え、60℃まで昇温後、15時間反応させた。この反応溶液をイソプロピルアルコール1L溶液中に沈殿させ、得られた白色固体をメタノール100mL、テトラヒドロフラン200mLに再度溶解し、トリエチルアミン10g、水10gを加え、70℃で5時間アセチル基の脱保護反応を行い、酢酸を用いて中和した。反応溶液を濃縮後、アセトン100mLに溶解し、上記と同様の沈殿、濾過、60℃で乾燥を行い、白色重合体を得た。
得られた重合体を13C,H−NMR、及び、GPC測定したところ、以下の分析結果となった。
共重合組成比(モル比)
4−ヒドロキシスチレン:アセナフチレン=0.90:0.10
質量平均分子量(Mw)=5,500
分子量分布(Mw/Mn)=1.58
この高分子化合物を(ポリマー5)とする。
Figure 2009211051
[合成例6]
2Lのフラスコに4−エトキシエトキシスチレン17.2g、クロモン2.2g、溶媒としてテトラヒドロフランを40g添加した。この反応容器を窒素雰囲気下、−70℃まで冷却し、減圧脱気、窒素ブローを3回繰り返した。室温まで昇温後、重合開始剤としてAIBN(アゾビスイソブチロニトリル)を1.2g加え、60℃まで昇温後、15時間反応させた。この反応溶液をイソプロピルアルコール1L溶液中に沈殿させ、得られた白色固体をメタノール100mL、テトラヒドロフラン200mLに再度溶解し、シュウ酸10g、水10gを加え、70℃1時間エトキシエトキシ基の脱保護反応を行い、炭酸水素ナトリウム50gを用いて中和した。反応溶液を濃縮後、アセトン100mLに溶解し、上記と同様の沈殿、濾過、60℃で乾燥を行い、白色重合体を得た。
得られた重合体を13C,H−NMR、及び、GPC測定したところ、以下の分析結果となった。
共重合組成比(モル比)
4−ヒドロキシスチレン:クロモン=0.83:0.17
質量平均分子量(Mw)=5,300
分子量分布(Mw/Mn)=1.52
この高分子化合物を(ポリマー6)とする。
Figure 2009211051
[合成例7]
2Lのフラスコに4−エトキシエトキシスチレン17.2g、クマリン2.2g、溶媒としてテトラヒドロフランを40g添加した。この反応容器を窒素雰囲気下、−70℃まで冷却し、減圧脱気、窒素ブローを3回繰り返した。室温まで昇温後、重合開始剤としてAIBN(アゾビスイソブチロニトリル)を1.2g加え、60℃まで昇温後、15時間反応させた。この反応溶液をイソプロピルアルコール1L溶液中に沈殿させ、得られた白色固体をメタノール100mL、テトラヒドロフラン200mLに再度溶解し、シュウ酸10g、水10gを加え、70℃1時間エトキシエトキシ基の脱保護反応を行い、炭酸水素ナトリウム50gを用いて中和した。反応溶液を濃縮後、アセトン100mLに溶解し、上記と同様の沈殿、濾過、60℃で乾燥を行い、白色重合体を得た。
得られた重合体を13C,H−NMR、及び、GPC測定したところ、以下の分析結果となった。
共重合組成比(モル比)
4−ヒドロキシスチレン:クマリン=0.83:0.17
質量平均分子量(Mw)=5,100
分子量分布(Mw/Mn)=1.54
この高分子化合物を(ポリマー7)とする。
Figure 2009211051
[合成例8]
2Lのフラスコに4−アセトキシスチレン13.0g、アセナフチレン1.5g、PAGモノマー1の6.5g、溶媒としてテトラヒドロフランを40g添加した。この反応容器を窒素雰囲気下、−70℃まで冷却し、減圧脱気、窒素ブローを3回繰り返した。室温まで昇温後、重合開始剤としてAIBN(アゾビスイソブチロニトリル)を1.2g加え、60℃まで昇温後、15時間反応させた。この反応溶液をイソプロピルアルコール1L溶液中に沈殿させ、得られた白色固体をメタノール100mL、テトラヒドロフラン200mLに再度溶解し、トリエチルアミン10g、水10gを加え、70℃で5時間アセチル基の脱保護反応を行い、酢酸を用いて中和した。反応溶液を濃縮後、アセトン100mLに溶解し、上記と同様の沈殿、濾過、60℃で乾燥を行い、白色重合体を得た。
得られた重合体を13C,H−NMR、及び、GPC測定したところ、以下の分析結果となった。
共重合組成比(モル比)
4−ヒドロキシスチレン:アセナフチレン:PAGモノマー1=0.80:0.10:0.10
質量平均分子量(Mw)=5,900
分子量分布(Mw/Mn)=1.67
この高分子化合物を(ポリマー8)とする。
Figure 2009211051
[合成例9]
2Lのフラスコに4−アセトキシスチレン13.0g、クロモン2.2g、PAGモノマー2の5.8g、溶媒としてテトラヒドロフランを40g添加した。この反応容器を窒素雰囲気下、−70℃まで冷却し、減圧脱気、窒素ブローを3回繰り返した。室温まで昇温後、重合開始剤としてAIBN(アゾビスイソブチロニトリル)を1.2g加え、60℃まで昇温後、15時間反応させた。この反応溶液をイソプロピルアルコール1L溶液中に沈殿させ、得られた白色固体をメタノール100mL、テトラヒドロフラン200mLに再度溶解し、トリエチルアミン10g、水10gを加え、70℃で5時間アセチル基の脱保護反応を行い、酢酸を用いて中和した。反応溶液を濃縮後、アセトン100mLに溶解し、上記と同様の沈殿、濾過、60℃で乾燥を行い、白色重合体を得た。
得られた重合体を13C,H−NMR、及び、GPC測定したところ、以下の分析結果となった。
共重合組成比(モル比)
4−ヒドロキシスチレン:クロモン:PAGモノマー2=0.73:0.17:0.10
質量平均分子量(Mw)=5,900
分子量分布(Mw/Mn)=1.56
この高分子化合物を(ポリマー9)とする。
Figure 2009211051
[合成例10]
2Lのフラスコに4−アセトキシスチレン13.0g、クロモン2.2g、PAGモノマー3の5.6g、溶媒としてテトラヒドロフランを40g添加した。この反応容器を窒素雰囲気下、−70℃まで冷却し、減圧脱気、窒素ブローを3回繰り返した。室温まで昇温後、重合開始剤としてAIBN(アゾビスイソブチロニトリル)を1.2g加え、60℃まで昇温後、15時間反応させた。この反応溶液をイソプロピルアルコール1L溶液中に沈殿させ、得られた白色固体をメタノール100mL、テトラヒドロフラン200mLに再度溶解し、トリエチルアミン10g、水10gを加え、70℃で5時間アセチル基の脱保護反応を行い、酢酸を用いて中和した。反応溶液を濃縮後、アセトン100mLに溶解し、上記と同様の沈殿、濾過、60℃で乾燥を行い、白色重合体を得た。
得られた重合体を13C,H−NMR、及び、GPC測定したところ、以下の分析結果となった。
共重合組成比(モル比)
4−ヒドロキシスチレン:クロモン:PAGモノマー3=0.73:0.17:0.10
質量平均分子量(Mw)=6,600
分子量分布(Mw/Mn)=1.81
この高分子化合物を(ポリマー10)とする。
Figure 2009211051
[合成例11]
2Lのフラスコにモノマー1を3.3g、4−アセトキシスチレン9.7g、2,5−ノルボルナジエン−2−カルボン酸エチルシクロペンチル2.3g、PAGモノマー3の5.6g、溶媒としてテトラヒドロフランを40g添加した。この反応容器を窒素雰囲気下、−70℃まで冷却し、減圧脱気、窒素ブローを3回繰り返した。室温まで昇温後、重合開始剤としてAIBN(アゾビスイソブチロニトリル)を1.2g加え、60℃まで昇温後、15時間反応させた。この反応溶液をイソプロピルアルコール1L溶液中に沈殿させ、得られた白色固体をメタノール100mL、テトラヒドロフラン200mLに再度溶解し、トリエチルアミン10g、水10gを加え、70℃で5時間アセチル基の脱保護反応を行い、酢酸を用いて中和した。 反応溶液を濃縮後、アセトン100mLに溶解し、上記と同様の沈殿、濾過、60℃で乾燥を行い、白色重合体を得た。
得られた重合体を13C,H−NMR、及び、GPC測定したところ、以下の分析結果となった。
共重合組成比(モル比)
モノマー1:4−ヒドロキシスチレン:2,5−ノルボルナジエン−2−カルボン酸エチルシクロペンチル:PAGモノマー3=0.10:0.70:0.10:0.10
質量平均分子量(Mw)=6,900
分子量分布(Mw/Mn)=1.84
この高分子化合物を(ポリマー11)とする。
Figure 2009211051
[合成例12]
2Lのフラスコにモノマー2を7.4g、4−アセトキシスチレン9.7g、クロモン2.2g、PAGモノマー3の5.6g、溶媒としてテトラヒドロフランを40g添加した。この反応容器を窒素雰囲気下、−70℃まで冷却し、減圧脱気、窒素ブローを3回繰り返した。室温まで昇温後、重合開始剤としてAIBN(アゾビスイソブチロニトリル)を1.2g加え、60℃まで昇温後、15時間反応させた。この反応溶液をイソプロピルアルコール1L溶液中に沈殿させ、得られた白色固体をメタノール100mL、テトラヒドロフラン200mLに再度溶解し、トリエチルアミン10g、水10gを加え、70℃で5時間アセチル基の脱保護反応を行い、酢酸を用いて中和した。反応溶液を濃縮後、アセトン100mLに溶解し、上記と同様の沈殿、濾過、60℃で乾燥を行い、白色重合体を得た。
得られた重合体を13C,H−NMR、及び、GPC測定したところ、以下の分析結果となった。
共重合組成比(モル比)
モノマー2:4−ヒドロキシスチレン:クロモン:PAGモノマー3=0.20:0.53:0.17:0.10
質量平均分子量(Mw)=6,600
分子量分布(Mw/Mn)=1.85
この高分子化合物を(ポリマー12)とする。
Figure 2009211051
[合成例13]
ポリマー1の4gをテトラヒドロフラン40mLに溶解し、メタンスルホン酸0.01g、1−ビニロキシ−インダン1.5gを加え、室温下1時間反応させ、アンモニア水(30%)0.25gを加え、反応を停止させ、この反応溶液を酢酸水1L中で晶出沈殿させ、更に2回の水洗を行い、得られた白色固体を濾過後、40℃で減圧乾燥し、白色重合体を得た。
得られた重合体を13C,H−NMR、及び、GPC測定したところ、以下の分析結果となった。
共重合組成比(モル比)
4−ヒドロキシスチレン:6−ヒドロキシ−2−ビニルナフタレン:4−(1−インダンオキシエトキシ)スチレン:6−(1−インダンオキシエトキシ)−2−ビニルナフタレン=0.40:0.43:0.10:0.07
質量平均分子量(Mw)=9,300
分子量分布(Mw/Mn)=1.84
この高分子化合物を(ポリマー13)とする。
Figure 2009211051
[合成例14]
ポリマー2の4gをテトラヒドロフラン40mLに溶解し、メタンスルホン酸0.01g、1−(ビニロキシ)−アセナフテン1.5gを加え、室温下1時間反応させ、アンモニア水(30%)0.25gを加え、反応を停止させ、この反応溶液を酢酸水1L中で晶出沈殿させ、更に2回の水洗を行い、得られた白色固体を濾過後、40℃で減圧乾燥し、白色重合体を得た。
得られた重合体を13C,H−NMR、及び、GPC測定したところ、以下の分析結果となった。
共重合組成比(モル比)
4−ヒドロキシスチレン:4−(1−アセナフテニルオキシエトキシ)スチレン:インデン=0.70:0.20:0.10
質量平均分子量(Mw)=6,400
分子量分布(Mw/Mn)=1.68
この高分子化合物を(ポリマー14)とする。
Figure 2009211051
[合成例15]
ポリマー3の4gをテトラヒドロフラン40mLに溶解し、メタンスルホン酸0.01g、2−(ビニロキシ)−アセナテレン1.5gを加え、室温下1時間反応させ、アンモニア水(30%)0.25gを加え、反応を停止させ、この反応溶液を酢酸水1L中で晶出沈殿させ、更に2回の水洗を行い、得られた白色固体を濾過後、40℃で減圧乾燥し、白色重合体を得た。
得られた重合体を13C,H−NMR、及び、GPC測定したところ、以下の分析結果となった。
共重合組成比(モル比)
4−ヒドロキシスチレン:4−(2−アセナテレニルオキシエトキシ)スチレン:ベンゾフラン=0.73:0.12:0.15
質量平均分子量(Mw)=6,200
分子量分布(Mw/Mn)=1.71
この高分子化合物を(ポリマー15)とする。
Figure 2009211051
[合成例16]
ポリマー4の4gをテトラヒドロフラン40mLに溶解し、メタンスルホン酸0.01g、2−(ビニロキシ)−アセナテレン1.5gを加え、室温下1時間反応させ、アンモニア水(30%)0.25gを加え、反応を停止させ、この反応溶液を酢酸水1L中で晶出沈殿させ、更に2回の水洗を行い、得られた白色固体を濾過後、40℃で減圧乾燥し、白色重合体を得た。
得られた重合体を13C,H−NMR、及び、GPC測定したところ、以下の分析結果となった。
共重合組成比(モル比)
4−ヒドロキシスチレン:4−(2−アセアントレニルオキシエトキシ)スチレン:ベンゾチオフェン=0.75:0.12:0.13
質量平均分子量(Mw)=6,700
分子量分布(Mw/Mn)=1.64
この高分子化合物を(ポリマー16)とする。
Figure 2009211051
[合成例17]
ポリマー5の4gをテトラヒドロフラン40mLに溶解し、メタンスルホン酸0.01g、1−(ビニロキシ)−アセナフチレン1.5gを加え、室温下1時間反応させ、アンモニア水(30%)0.25gを加え、反応を停止させ、この反応溶液を酢酸水1L中で晶出沈殿させ、更に2回の水洗を行い、得られた白色固体を濾過後、40℃で減圧乾燥し、白色重合体を得た。
得られた重合体を13C,H−NMR、及び、GPC測定したところ、以下の分析結果となった。
共重合組成比(モル比)
4−ヒドロキシスチレン:4−(1−アセナフテニルオキシエトキシ)スチレン:アセナフチレン=0.75:0.15:0.10
質量平均分子量(Mw)=5,700
分子量分布(Mw/Mn)=1.58
この高分子化合物を(ポリマー17)とする。
Figure 2009211051
[合成例18]
ポリマー6の4gをテトラヒドロフラン40mLに溶解し、メタンスルホン酸0.01g、4−(ビニロキシ)−アセフェナントレン1.5gを加え、室温下1時間反応させ、アンモニア水(30%)0.25gを加え、反応を停止させ、この反応溶液を酢酸水1L中で晶出沈殿させ、更に2回の水洗を行い、得られた白色固体を濾過後、40℃で減圧乾燥し、白色重合体を得た。
得られた重合体を13C,H−NMR、及び、GPC測定したところ、以下の分析結果となった。
共重合組成比(モル比)
4−ヒドロキシスチレン:4−(4−アセフェナントレニルオキシエトキシ)スチレン:クロモン=0.71:0.12:0.17
質量平均分子量(Mw)=5,700
分子量分布(Mw/Mn)=1.58
この高分子化合物を(ポリマー18)とする。
Figure 2009211051
[合成例19]
ポリマー7の4gをテトラヒドロフラン40mLに溶解し、メタンスルホン酸0.01g、4−(ビニロキシ)−アセフェナントレン1.5gを加え、室温下1時間反応させ、アンモニア水(30%)0.25gを加え、反応を停止させ、この反応溶液を酢酸水1L中で晶出沈殿させ、更に2回の水洗を行い、得られた白色固体を濾過後、40℃で減圧乾燥し、白色重合体を得た。
得られた重合体を13C,H−NMR、及び、GPC測定したところ、以下の分析結果となった。
共重合組成比(モル比)
4−ヒドロキシスチレン:4−(4−アセフェナントレニルオキシエトキシ)スチレン:クマリン=0.71:0.12:0.17
質量平均分子量(Mw)=5,200
分子量分布(Mw/Mn)=1.53
この高分子化合物を(ポリマー19)とする。
Figure 2009211051
[合成例20]
ポリマー8の4gをテトラヒドロフラン40mLに溶解し、メタンスルホン酸0.01g、1−(ビニロキシ)−アセナフテン1.5gを加え、室温下1時間反応させ、アンモニア水(30%)0.25gを加え、反応を停止させ、この反応溶液を酢酸水1L中で晶出沈殿させ、更に2回の水洗を行い、得られた白色固体を濾過後、40℃で減圧乾燥し、白色重合体を得た。
得られた重合体を13C,H−NMR、及び、GPC測定したところ、以下の分析結果となった。
共重合組成比(モル比)
4−ヒドロキシスチレン:4−(1−アセナフテニルオキシエトキシ)スチレン:アセナフチレン:PAGモノマー1=0.65:0.15:0.10:0.10
質量平均分子量(Mw)=6,100
分子量分布(Mw/Mn)=1.67
この高分子化合物を(ポリマー20)とする。
Figure 2009211051
[合成例21]
ポリマー9の4gをテトラヒドロフラン40mLに溶解し、メタンスルホン酸0.01g、1−(ビニロキシ)−アセナフテン1.5gを加え、室温下1時間反応させ、アンモニア水(30%)0.25gを加え、反応を停止させ、この反応溶液を酢酸水1L中で晶出沈殿させ、更に2回の水洗を行い、得られた白色固体を濾過後、40℃で減圧乾燥し、白色重合体を得た。
得られた重合体を13C,H−NMR、及び、GPC測定したところ、以下の分析結果となった。
共重合組成比(モル比)
4−ヒドロキシスチレン:4−(1−アセナフテニルオキシエトキシ)スチレン:クロモン:PAGモノマー2=0.58:0.15:0.17:0.10
質量平均分子量(Mw)=6,100
分子量分布(Mw/Mn)=1.58
この高分子化合物を(ポリマー21)とする。
Figure 2009211051
[合成例22]
ポリマー10の4gをテトラヒドロフラン40mLに溶解し、メタンスルホン酸0.01g、1−(ビニロキシ)−アセナフテン1.5gを加え、室温下1時間反応させ、アンモニア水(30%)0.25gを加え、反応を停止させ、この反応溶液を酢酸水1L中で晶出沈殿させ、更に2回の水洗を行い、得られた白色固体を濾過後、40℃で減圧乾燥し、白色重合体を得た。
得られた重合体を13C,H−NMR、及び、GPC測定したところ、以下の分析結果となった。
共重合組成比(モル比)
4−ヒドロキシスチレン:4−(1−アセナフテニルオキシエトキシ)スチレン:クロモン:PAGモノマー3=0.58:0.15:0.17:0.10
質量平均分子量(Mw)=6,800
分子量分布(Mw/Mn)=1.80
この高分子化合物を(ポリマー22)とする。
Figure 2009211051
[合成例23]
2Lのフラスコにモノマー1を3.3g、4−アセトキシスチレン9.7g、メタクリル酸−2−エチルアダマンチル1.3g、PAGモノマー3の5.6g、溶媒としてテトラヒドロフランを40g添加した。この反応容器を窒素雰囲気下、−70℃まで冷却し、減圧脱気、窒素ブローを3回繰り返した。室温まで昇温後、重合開始剤としてAIBN(アゾビスイソブチロニトリル)を1.2g加え、60℃まで昇温後、15時間反応させた。この反応溶液をイソプロピルアルコール1L溶液中に沈殿させ、得られた白色固体をメタノール100mL、テトラヒドロフラン200mLに再度溶解し、トリエチルアミン10g、水10gを加え、70℃で5時間アセチル基の脱保護反応を行い、酢酸を用いて中和した。反応溶液を濃縮後、アセトン100mLに溶解し、上記と同様の沈殿、濾過、60℃で乾燥を行い、白色重合体を得た。
得られた重合体を13C,H−NMR、及び、GPC測定したところ、以下の分析結果となった。
共重合組成比(モル比)
モノマー1:4−ヒドロキシスチレン:メタクリル酸−2−エチルアダマンチル:PAGモノマー3=0.10:0.70:0.10:0.10
質量平均分子量(Mw)=7,400
分子量分布(Mw/Mn)=1.88
この高分子化合物を(ポリマー23)とする。
Figure 2009211051
[合成例24]
2Lのフラスコに4−アセトキシスチレン13.0g、クロモン2.2g、PAGモノマー4の3.9g、溶媒としてテトラヒドロフランを40g添加した。この反応容器を窒素雰囲気下、−70℃まで冷却し、減圧脱気、窒素ブローを3回繰り返した。室温まで昇温後、重合開始剤としてAIBN(アゾビスイソブチロニトリル)を1.2g加え、60℃まで昇温後、15時間反応させた。この反応溶液をイソプロピルアルコール1L溶液中に沈殿させ、得られた白色固体をメタノール100mL、テトラヒドロフラン200mLに再度溶解し、トリエチルアミン10g、水10gを加え、70℃で5時間アセチル基の脱保護反応を行い、酢酸を用いて中和した。反応溶液を濃縮後、アセトン100mLに溶解し、上記と同様の沈殿、濾過、60℃で乾燥を行い、白色重合体を得た。
得られた重合体を13C,H−NMR、及び、GPC測定したところ、以下の分析結果となった。
共重合組成比(モル比)
4−ヒドロキシスチレン:クロモン:PAGモノマー4=0.73:0.17:0.10
質量平均分子量(Mw)=6,500
分子量分布(Mw/Mn)=1.88
この高分子化合物を(ポリマー24)とする。
Figure 2009211051
[合成例25]
ポリマー24の4gをテトラヒドロフラン40mLに溶解し、メタンスルホン酸0.01g、1−(ビニロキシ)−アセナフテン1.5gを加え、室温下1時間反応させ、アンモニア水(30%)0.25gを加え、反応を停止させ、この反応溶液を酢酸水1L中で晶出沈殿させ、更に2回の水洗を行い、得られた白色固体を濾過後、40℃で減圧乾燥し、白色重合体を得た。
得られた重合体を13C,H−NMR、及び、GPC測定したところ、以下の分析結果となった。
共重合組成比(モル比)
4−ヒドロキシスチレン:4−(1−アセナフテニルオキシエトキシ)スチレン:クロモン:PAGモノマー4=0.58:0.15:0.17:0.10
質量平均分子量(Mw)=6,700
分子量分布(Mw/Mn)=1.89
この高分子化合物を(ポリマー25)とする。
Figure 2009211051
[合成例26]
2Lのフラスコに4−アセトキシスチレン13.0g、クマリン2.2g、PAGモノマー5の4.0g、溶媒としてテトラヒドロフランを40g添加した。この反応容器を窒素雰囲気下、−70℃まで冷却し、減圧脱気、窒素ブローを3回繰り返した。室温まで昇温後、重合開始剤としてAIBN(アゾビスイソブチロニトリル)を1.2g加え、60℃まで昇温後、15時間反応させた。この反応溶液をイソプロピルアルコール1L溶液中に沈殿させ、得られた白色固体をメタノール100mL、テトラヒドロフラン200mLに再度溶解し、トリエチルアミン10g、水10gを加え、70℃で5時間アセチル基の脱保護反応を行い、酢酸を用いて中和した。反応溶液を濃縮後、アセトン100mLに溶解し、上記と同様の沈殿、濾過、60℃で乾燥を行い、白色重合体を得た。
得られた重合体を13C,H−NMR、及び、GPC測定したところ、以下の分析結果となった。
共重合組成比(モル比)
4−ヒドロキシスチレン:クマリン:PAGモノマー5=0.73:0.17:0.10
質量平均分子量(Mw)=6,600
分子量分布(Mw/Mn)=1.93
この高分子化合物を(ポリマー26)とする。
Figure 2009211051
[合成例27]
ポリマー26の4gをテトラヒドロフラン40mLに溶解し、メタンスルホン酸0.01g、1−(ビニロキシ)−アセナフテン1.5gを加え、室温下1時間反応させ、アンモニア水(30%)0.25gを加え、反応を停止させ、この反応溶液を酢酸水1L中で晶出沈殿させ、更に2回の水洗を行い、得られた白色固体を濾過後、40℃で減圧乾燥し、白色重合体を得た。
得られた重合体を13C,H−NMR、及び、GPC測定したところ、以下の分析結果となった。
共重合組成比(モル比)
4−ヒドロキシスチレン:4−(1−アセナフテニルオキシエトキシ)スチレン:クマリン:PAGモノマー5=0.58:0.15:0.17:0.10
質量平均分子量(Mw)=6,800
分子量分布(Mw/Mn)=1.93
この高分子化合物を(ポリマー27)とする。
Figure 2009211051
[比較合成例1]
上記合成例と同様の方法で下記の2成分ポリマーを合成した。
得られた重合体を13C,H−NMR、及び、GPC測定したところ、以下の分析結果となった。
共重合組成比(モル比)
ヒドロキシスチレン:メタクリル酸1−エチルシクロペンチルエステル=0.71:0.29
質量平均分子量(Mw)=16,100
分子量分布(Mw/Mn)=1.70
この高分子化合物を(比較ポリマー1)とする。
Figure 2009211051
[比較合成例2]
2Lのフラスコを用いて、ポリヒドロキシスチレン(Mw=11,000、Mw/Mn=1.08)40gをテトラヒドロフラン400mLに溶解し、メタンスルホン酸1.4g、エチルビニルエーテル12.3gを加え、室温下1時間反応し、アンモニア水(30%)2.5gを加え反応を停止させ、この反応溶液を酢酸水5Lを用いて晶出沈澱させ、更に2回の水洗を行い、得られた白色固体を濾過後、40℃で減圧乾燥し、白色重合体47gを得た。
得られた重合体を13C,H−NMR、及び、GPC測定したところ、以下の分析結果となった。
共重合組成比(モル比)
ヒドロキシスチレン:p−エトキシエトキシスチレン=0.64:0.36
質量平均分子量(Mw)=13,000
分子量分布(Mw/Mn)=1.10
この高分子化合物を(比較ポリマー2)とする。
Figure 2009211051
尚、上記で使用したPAGモノマー1−3及びモノマー1、2は以下に示されるものである。
Figure 2009211051
(実施例、比較例)
上記で合成した高分子化合物を用いて、表1に示される組成で溶解させた溶液を、0.2μmサイズのフィルターで濾過してポジ型レジスト材料(実施例1〜19、比較例1、2)を調製した。
Figure 2009211051
表1中の各組成は次の通りである。
ポリマー11〜23、25、27:合成例11〜23、25、27より
比較ポリマー1、2:比較合成例1、2より
有機溶剤:PGMEA(プロピレングリコールモノメチルエーテルアセテート)
EL(乳酸エチル)
酸発生剤:PAG1、PAG2(下記構造式参照)
塩基性化合物:Amine1、Amine2、Amine3(下記構造式参照)
溶解阻止剤:DRI1(下記構造式参照)
Figure 2009211051
(電子ビーム描画評価)
描画評価では、上記で調製したポジ型レジスト材料(実施例1〜19、比較例1、2)を直径6インチ(150mm)のSi基板上に、クリーントラックMark5(東京エレクトロン社製)を用いてスピンコートし、ホットプレート上で110℃で90秒間プリベークして100nmのレジスト膜を作製した。これに、日立製作所HL−800Dを用いてHV電圧50keVで真空チャンバー内描画を行った。
描画後直ちにクリーントラックMark5(東京エレクトロン社製)を用いてホットプレート上で100℃で90秒間ポストエクスポージャベーク(PEB)を行い、2.38質量%のTMAH水溶液で30秒間パドル現像を行い、ポジ型のパターンを得た。
得られたレジストパターンを次のように評価した。
100nmのラインアンドスペースを1:1で解像する露光量における、100nmLSのエッジラフネスをSEMで測定した。
レジスト組成とEB露光における感度、解像度の結果は表1に示す通りであった。
表1に示されるように、実施例1〜19のポジ型レジスト材料は、比較例1、2に比べて高解像力であることが確認できた。また、感度および露光後のパターン形状も良好であることがわかる。
(耐ドライエッチング性評価)
耐ドライエッチング性の試験では、上記合成した高分子化合物(ポリマー11〜23、25、27、比較ポリマー1、2)2gにPGMEA10gを溶解させて0.2μmサイズのフィルターで濾過したポリマー溶液をSi基板にスピンコートで製膜し、300nmの厚さの膜にし、以下のような条件で評価した。
CHF/CF系ガスでのエッチング試験
東京エレクトロン株式会社製ドライエッチング装置TE−8500Pを用い、エッチング前後のポリマー膜の膜厚差を求めた。
エッチング条件は下記に示す通りである。
チャンバー圧力 40.0Pa
RFパワー 1,000W
ギャップ 9mm
CHFガス流量 30ml/min
CFガス流量 30ml/min
Arガス流量 100ml/min
時間 60sec
この評価では、膜厚差の少ないもの、即ち減少量が少ないもののエッチング耐性があることを示している。
耐ドライエッチング性の結果を表2に示す。
Figure 2009211051
表2の結果より、本発明に係る高分子化合物(ポリマー11〜23、25、27)が、比較ポリマー1、2に比べて高いドライエッチング耐性を有することが確認された。
以上の結果より、本発明の高分子化合物をベース樹脂として含むポジ型レジスト材料は、十分な解像力と感度とラフネスを満たし、エッチング後の膜厚差が小さいことより、優れた耐ドライエッチング性を有していることがわかった。
尚、本発明は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。

Claims (8)

  1. ベース樹脂として、少なくともフェノール性水酸基の水素原子が下記一般式(1)で示される酸不安定基によって置換されている高分子化合物を含むものであることを特徴とするポジ型レジスト材料。
    Figure 2009211051
    (式中、R、Rはそれぞれ独立して水素原子、炭素数1〜6の直鎖状、分岐状、環状のアルキル基のいずれかである。Rは1,2,3−インダニル基、1,2−アセナフテニル基、1,2−アセアントレニル基、4,5−アセフェナントレニル基から選ばれる基である。ここで前記1,2−とは1位−又は2位−又はこれらの混合物を示す。同様に、前記1,2,3−とは1位−又は2位−又は3位−又はこれらの混合物、前記4,5−は4位−又は5位−又はこれらの混合物を示す。)
  2. 前記高分子化合物が、フェノール性水酸基の水素原子が下記一般式(2)で示される酸不安定基によって置換されているものであることを特徴とする請求項1に記載のポジ型レジスト材料。
    Figure 2009211051
    (式中、R、Rは前述の通り、R、Rは水素原子またはRとRが結合して炭素数3又は7の芳香族基を表す。Rは水素原子、炭素数1〜30のアルキル基、一部または全てがハロゲン原子で置換されたアルキル基、アルコキシ基、アルカノイル基、アルコキシカルボニル基、炭素数6〜10のアリール基、ハロゲン原子のいずれかである。)
  3. 前記高分子化合物は、質量平均分子量が1,000〜500,000の範囲であって、少なくとも下記一般式(3)に示される前記酸不安定基で置換されたヒドロキシスチレンの繰り返し単位a1及び/又は前記酸不安定基で置換されたヒドロキシビニルナフタレンの繰り返し単位b1と、繰り返し単位a2及び/又は繰り返し単位b2を有するものであることを特徴とする請求項1又は請求項2に記載のポジ型レジスト材料。
    Figure 2009211051
    (式中、R、Rはそれぞれ独立して水素原子又はメチル基を表し、R、Rは前述の通りである。R、Rは水素原子またはRとRが結合して炭素数3又は7の芳香族基を表す。Rは水素原子、炭素数1〜30のアルキル基、一部または全てがハロゲン原子で置換されたアルキル基、アルコキシ基、アルカノイル基、アルコキシカルボニル基、炭素数6〜10のアリール基、ハロゲン原子のいずれかである。m、nは1又は2である。0≦a1/(a1+b1+a2+b2)≦0.5、0≦b1/(a1+b1+a2+b2)≦0.5、0.05≦(a1+b1)/(a1+b1+a2+b2)≦0.5の範囲である。)
  4. 前記高分子化合物は、質量平均分子量が1,000〜500,000の範囲であって、少なくとも下記一般式(4)で示される前記酸不安定基で置換されたヒドロキシスチレンの繰り返し単位a1’と繰り返し単位a2’を有しており、さらに下記一般式(4)で示されるc、d、e、f、gの繰り返し単位の内、1つ以上の繰り返し単位を有するものであることを特徴とする請求項1又は請求項2に記載のポジ型レジスト材料。
    Figure 2009211051
    (式中、Rは水素原子又はメチル基を表し、R、Rは前述の通りである。R、Rは水素原子またはRとRが結合して炭素数3又は7の芳香族基を表す。R〜R13はそれぞれ独立して水素原子、炭素数1〜30のアルキル基、一部または全てがハロゲン原子で置換されたアルキル基、ヒドロキシ基、アルコキシ基、アルカノイル基、アルコキシカルボニル基、炭素数6〜10のアリール基、ハロゲン原子、1,1,1,3,3,3−ヘキサフルオロ−2−プロパノール基のいずれかである。Xはメチレン基、酸素原子、硫黄原子である。mは1又は2である。0<a1’/(a1’+a2’+c+d+e+f+g)≦0.5、0<a2’/(a1’+a2’+c+d+e+f+g)≦0.9、0≦c/(a1’+a2’+c+d+e+f+g)≦0.5、0≦d/(a1’+a2’+c+d+e+f+g)≦0.5、0≦e/(a1’+a2’+c+d+e+f+g)≦0.5、0≦f/(a1’+a2’+c+d+e+f+g)≦0.5、0≦g/(a1’+a2’+c+d+e+f+g)≦0.5、0.03≦(c+d+e+f+g)/(a1’+a2’+c+d+e+f+g)≦0.4の範囲である。)
  5. 前記ポジ型レジスト材料が、更に、有機溶剤及び酸発生剤を含有する化学増幅ポジ型レジスト材料であることを特徴とする請求項1から請求項4のいずれか一項に記載のポジ型レジスト材料。
  6. 更に、溶解阻止剤を含有するものであることを特徴とする請求項1から請求項5のいずれか一項に記載のポジ型レジスト材料。
  7. 更に、添加剤として塩基性化合物及び/又は界面活性剤を配合してなることを特徴とする請求項1から請求項6のいずれか一項に記載のポジ型レジスト材料。
  8. 少なくとも、請求項1乃至請求項7のいずれか1項に記載のポジ型レジスト材料を基板上に塗布する工程と、加熱処理後、高エネルギー線で露光する工程と、現像液を用いて現像する工程とを含むことを特徴とするパターン形成方法。
JP2009000566A 2008-02-08 2009-01-06 ポジ型レジスト材料並びにこれを用いたパターン形成方法 Active JP5054042B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009000566A JP5054042B2 (ja) 2008-02-08 2009-01-06 ポジ型レジスト材料並びにこれを用いたパターン形成方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008029530 2008-02-08
JP2008029530 2008-02-08
JP2009000566A JP5054042B2 (ja) 2008-02-08 2009-01-06 ポジ型レジスト材料並びにこれを用いたパターン形成方法

Publications (2)

Publication Number Publication Date
JP2009211051A true JP2009211051A (ja) 2009-09-17
JP5054042B2 JP5054042B2 (ja) 2012-10-24

Family

ID=40939168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009000566A Active JP5054042B2 (ja) 2008-02-08 2009-01-06 ポジ型レジスト材料並びにこれを用いたパターン形成方法

Country Status (2)

Country Link
US (1) US7923195B2 (ja)
JP (1) JP5054042B2 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010085971A (ja) * 2008-09-05 2010-04-15 Fujifilm Corp ポジ型レジスト組成物、該組成物を用いたパターン形成方法及び該組成物に用いられる樹脂
WO2011093520A1 (en) * 2010-01-29 2011-08-04 Fujifilm Corporation Actinic ray-sensitive or radiation-sensitive resin composition, resist film using the composition and pattern forming method
JP2011158891A (ja) * 2010-01-08 2011-08-18 Shin-Etsu Chemical Co Ltd ポジ型レジスト材料並びにこれを用いたパターン形成方法
WO2012053527A1 (ja) * 2010-10-22 2012-04-26 Jsr株式会社 パターン形成方法及び感放射線性組成物
JP2013029564A (ja) * 2011-07-27 2013-02-07 Shin Etsu Chem Co Ltd ポジ型レジスト材料並びにこれを用いたパターン形成方法
US8795954B2 (en) 2010-10-15 2014-08-05 Jsr Corporation Resist pattern-forming method, and radiation-sensitive resin composition
US9164387B2 (en) 2010-10-04 2015-10-20 Jsr Corporation Pattern-forming method, and radiation-sensitive resin composition
JP2017008181A (ja) * 2015-06-19 2017-01-12 信越化学工業株式会社 高分子化合物、化学増幅ポジ型レジスト材料及びパターン形成方法
JPWO2014133048A1 (ja) * 2013-02-27 2017-02-02 Jsr株式会社 感放射線性樹脂組成物、レジストパターン形成方法及び重合体

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5237173B2 (ja) * 2008-06-03 2013-07-17 信越化学工業株式会社 重合性化合物、高分子化合物及びポジ型レジスト材料並びにこれを用いたパターン形成方法
JP5572345B2 (ja) * 2009-08-24 2014-08-13 東京応化工業株式会社 ポジ型レジスト組成物、レジストパターン形成方法
US8592129B2 (en) * 2009-08-31 2013-11-26 Sumitomo Chemical Company, Limited Resin, resist composition and method for producing resist pattern
JP5806854B2 (ja) * 2011-05-12 2015-11-10 富士フイルム株式会社 ポジ型レジスト組成物、それを用いたレジスト膜、レジスト塗布マスクブランクス、レジストパターン形成方法及びエッチング処理を行う方法、並びに、高分子化合物
JP5793489B2 (ja) * 2011-11-30 2015-10-14 富士フイルム株式会社 感活性光線性又は感放射線性組成物、それを用いたレジスト膜、パターン形成方法、及び電子デバイスの製造方法
JP6090585B2 (ja) * 2013-12-18 2017-03-08 信越化学工業株式会社 スルホニウム塩、レジスト組成物及びレジストパターン形成方法
US20220269172A1 (en) * 2021-02-22 2022-08-25 Jsr Corporation Radiation-sensitive resin composition, method of forming resist pattern, and polymer
JP2022145559A (ja) * 2021-03-17 2022-10-04 信越化学工業株式会社 化学増幅ポジ型レジスト組成物及びレジストパターン形成方法
JP7540986B2 (ja) * 2021-10-08 2024-08-27 信越化学工業株式会社 有機膜形成材料、パターン形成方法ならびに化合物

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005274878A (ja) * 2004-03-24 2005-10-06 Fuji Photo Film Co Ltd 電子線、x線又はeuv光用ポジ型レジスト組成物及びそれを用いたパターン形成方法
JP2007254495A (ja) * 2006-03-20 2007-10-04 Shin Etsu Chem Co Ltd 高分子化合物及びポジ型レジスト材料並びにこれを用いたパターン形成方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0473547A1 (de) 1990-08-27 1992-03-04 Ciba-Geigy Ag Olefinisch ungesättigte Oniumsalze
JPH11322656A (ja) 1998-05-11 1999-11-24 Jsr Corp 新規なカリックスアレーン誘導体およびカリックスレゾルシナレーン誘導体、ならびに感光性組成物
JP3963625B2 (ja) 1999-02-24 2007-08-22 富士フイルム株式会社 ポジ型フォトレジスト組成物
JP3944669B2 (ja) 1999-05-19 2007-07-11 信越化学工業株式会社 エステル化合物
EP1595182B1 (en) 2003-02-19 2015-09-30 Basf Se Halogenated oxime derivatives and the use thereof as latent acids
JP4244755B2 (ja) 2003-09-09 2009-03-25 Jsr株式会社 感放射線性樹脂組成物
JP4794835B2 (ja) 2004-08-03 2011-10-19 東京応化工業株式会社 高分子化合物、酸発生剤、ポジ型レジスト組成物、およびレジストパターン形成方法
JP4642452B2 (ja) 2004-12-14 2011-03-02 信越化学工業株式会社 ポジ型レジスト材料及びこれを用いたパターン形成方法
JP4425776B2 (ja) 2004-12-24 2010-03-03 信越化学工業株式会社 レジスト材料及びこれを用いたパターン形成方法
JP4359629B2 (ja) * 2007-05-02 2009-11-04 信越化学工業株式会社 化学増幅型レジスト組成物の製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005274878A (ja) * 2004-03-24 2005-10-06 Fuji Photo Film Co Ltd 電子線、x線又はeuv光用ポジ型レジスト組成物及びそれを用いたパターン形成方法
JP2007254495A (ja) * 2006-03-20 2007-10-04 Shin Etsu Chem Co Ltd 高分子化合物及びポジ型レジスト材料並びにこれを用いたパターン形成方法

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9217919B2 (en) 2008-09-05 2015-12-22 Fujifilm Corporation Photosensitive composition, pattern-forming method using the composition, and resin used in the composition
JP2010085971A (ja) * 2008-09-05 2010-04-15 Fujifilm Corp ポジ型レジスト組成物、該組成物を用いたパターン形成方法及び該組成物に用いられる樹脂
JP2011158891A (ja) * 2010-01-08 2011-08-18 Shin-Etsu Chemical Co Ltd ポジ型レジスト材料並びにこれを用いたパターン形成方法
US8735048B2 (en) 2010-01-29 2014-05-27 Fujifilm Corporation Actinic ray-sensitive or radiation-sensitive resin composition, resist film using the composition and pattern forming method
WO2011093520A1 (en) * 2010-01-29 2011-08-04 Fujifilm Corporation Actinic ray-sensitive or radiation-sensitive resin composition, resist film using the composition and pattern forming method
JP2011175230A (ja) * 2010-01-29 2011-09-08 Fujifilm Corp 感活性光線性又は感放射線性樹脂組成物、これを用いたレジスト膜、及び、パターン形成方法
US9164387B2 (en) 2010-10-04 2015-10-20 Jsr Corporation Pattern-forming method, and radiation-sensitive resin composition
US8795954B2 (en) 2010-10-15 2014-08-05 Jsr Corporation Resist pattern-forming method, and radiation-sensitive resin composition
US9170488B2 (en) 2010-10-15 2015-10-27 Jsr Corporation Resist pattern-forming method, and radiation-sensitive resin composition
JPWO2012053527A1 (ja) * 2010-10-22 2014-02-24 Jsr株式会社 パターン形成方法及び感放射線性組成物
US9034559B2 (en) 2010-10-22 2015-05-19 Jsr Corporation Pattern-forming method, and radiation-sensitive composition
WO2012053527A1 (ja) * 2010-10-22 2012-04-26 Jsr株式会社 パターン形成方法及び感放射線性組成物
US9335630B2 (en) 2010-10-22 2016-05-10 Jsr Corporation Pattern-forming method, and radiation-sensitive composition
KR101907705B1 (ko) * 2010-10-22 2018-10-12 제이에스알 가부시끼가이샤 패턴 형성 방법 및 감방사선성 조성물
JP2013029564A (ja) * 2011-07-27 2013-02-07 Shin Etsu Chem Co Ltd ポジ型レジスト材料並びにこれを用いたパターン形成方法
JPWO2014133048A1 (ja) * 2013-02-27 2017-02-02 Jsr株式会社 感放射線性樹脂組成物、レジストパターン形成方法及び重合体
JP2017008181A (ja) * 2015-06-19 2017-01-12 信越化学工業株式会社 高分子化合物、化学増幅ポジ型レジスト材料及びパターン形成方法

Also Published As

Publication number Publication date
JP5054042B2 (ja) 2012-10-24
US7923195B2 (en) 2011-04-12
US20090202947A1 (en) 2009-08-13

Similar Documents

Publication Publication Date Title
JP5237173B2 (ja) 重合性化合物、高分子化合物及びポジ型レジスト材料並びにこれを用いたパターン形成方法
JP5054042B2 (ja) ポジ型レジスト材料並びにこれを用いたパターン形成方法
JP4025162B2 (ja) 高分子化合物及びポジ型レジスト材料並びにこれを用いたパターン形成方法
JP5054041B2 (ja) ポジ型レジスト材料並びにこれを用いたパターン形成方法
JP4642452B2 (ja) ポジ型レジスト材料及びこれを用いたパターン形成方法
JP4697443B2 (ja) ポジ型レジスト材料並びにこれを用いたパターン形成方法
JP4662049B2 (ja) ポジ型レジスト材料並びにこれを用いたパターン形成方法
JP4434985B2 (ja) レジスト材料並びにこれを用いたパターン形成方法
JP4539847B2 (ja) ポジ型レジスト材料並びにこれを用いたパターン形成方法
JP4636276B2 (ja) ポジ型レジスト材料並びにこれを用いたパターン形成方法
JP5398966B2 (ja) 高分子化合物及びポジ型レジスト材料並びにこれを用いたパターン形成方法
JP5223168B2 (ja) 化学増幅ポジ型レジスト材料並びにこれを用いたパターン形成方法
JP4666177B2 (ja) 高分子化合物、化学増幅ポジ型レジスト材料及びパターン形成方法
JP5029839B2 (ja) ポジ型レジスト材料並びにこれを用いたパターン形成方法
JP4822020B2 (ja) ポジ型レジスト材料及びこれを用いたパターン形成方法
JP5019075B2 (ja) ポジ型レジスト材料及びこれを用いたパターン形成方法
KR20080009647A (ko) 고분자 화합물 및 포지티브형 레지스트 재료 및 이것을이용한 패턴 형성 방법
JP4305637B2 (ja) 高分子化合物及びポジ型レジスト材料並びにこれを用いたパターン形成方法
JP5067523B2 (ja) 化学増幅ポジ型レジスト材料並びにこれを用いたパターン形成方法
JP5182468B2 (ja) 高分子化合物及びポジ型レジスト材料並びにこれを用いたパターン形成方法
JP4302585B2 (ja) 重合性化合物、高分子化合物及びポジ型レジスト材料並びにこれを用いたパターン形成方法
JP5051387B2 (ja) ポジ型レジスト材料並びにこれを用いたパターン形成方法
JP4769410B2 (ja) 高分子化合物及びポジ型レジスト材料並びにこれを用いたパターン形成方法
JP4247164B2 (ja) 高分子化合物及びポジ型レジスト材料並びにこれを用いたパターン形成方法
JP4241535B2 (ja) 高分子化合物及びポジ型レジスト材料並びにこれを用いたパターン形成方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120704

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120710

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120726

R150 Certificate of patent or registration of utility model

Ref document number: 5054042

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150803

Year of fee payment: 3