JP2009208994A - シリコン製造方法及びシリコン製造装置 - Google Patents

シリコン製造方法及びシリコン製造装置 Download PDF

Info

Publication number
JP2009208994A
JP2009208994A JP2008053552A JP2008053552A JP2009208994A JP 2009208994 A JP2009208994 A JP 2009208994A JP 2008053552 A JP2008053552 A JP 2008053552A JP 2008053552 A JP2008053552 A JP 2008053552A JP 2009208994 A JP2009208994 A JP 2009208994A
Authority
JP
Japan
Prior art keywords
molten metal
gas
nozzle
silicon
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008053552A
Other languages
English (en)
Inventor
Kunio Saegusa
邦夫 三枝
Hiroshi Okamoto
弘 岡本
Kazumasa Ueda
和正 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2008053552A priority Critical patent/JP2009208994A/ja
Publication of JP2009208994A publication Critical patent/JP2009208994A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】ハロゲン化シランの溶融金属による還元反応において、十分に高い反応率を示すシリコン製造方法及びシリコン製造装置を提供すること。
【解決手段】本発明に係るシリコンの製造方法は、下記式(1)で示されるハロゲン化シランと溶融金属とを接触させることにより、ハロゲン化シランを還元してシリコンを得るためのものであって、薄膜状の溶融金属に前記ハロゲン化シランを含有する原料ガスを吹き付ける吹付工程を備えることを特徴とする。
SiH4−n (1)
[式中、nは0〜3の整数;Xは、F、Cl、Br及びIからなる群より選択された原子をそれぞれ示す。nが0〜2のとき、Xは互いに同一でも異なっていてもよい。]
【選択図】図1

Description

本発明はシリコン製造方法及びシリコン製造装置に関する。
大気中の二酸化炭素の増加が主原因とされる地球温暖化問題がクローズアップされる中、太陽電池はクリーンなエネルギー源として注目を集め、近年、その普及が進んでいる。シリコン系太陽電池は信頼性や変換効率に優れるため、太陽光発電の8割程度を占めている。しかし、発電単価をさらに減少させるためには、低価格のシリコン原料を確保することが望まれている。
現在、高純度シリコンの製造方法として、主に、トリクロロシランを熱分解するシーメンス法が採用されている。しかしながら、この方法においては、電力原単位の削減に限界があるため、さらなるコストダウンは困難であると言われている。
熱分解に替わる方法として、溶融金属でハロゲン化シランを還元する技術が知られている。例えば、特許文献1〜3には、シリコンの塩素化合物を溶融アルミニウムで還元してシリコンを製造する方法が記載されている。
特開平2−64006号公報 特開2007−284259号公報 特開2007−77007号公報
溶融金属でハロゲン化シランを還元してシリコンを得る方法にあっては、高い反応速度を達成する観点から、溶融金属は、できるだけ比表面積の大きい形状とすることが好ましいと考えられる。
溶融金属の微小液滴を形成する方法としては、各種ガスのジェット流中に溶融金属を供給するガスアトマイズ法、高速で回転する金属体の端部をプラズマ等で加熱溶融し、遠心力による飛散と併せてガスを吹き付ける回転電極法等として知られているアトマイズ法などを例示できる。特許文献1には、還元反応が起きるハロゲン化シランガス雰囲気中に該溶融金属を噴霧する方法が記載されている。特許文献2には、流下する溶融金属に不活性ガスを吹き付ける方法が記載されている。
ガスアトマイズ法によって形成される液滴の大きさは、一般に、該ガスアトマイズに使用されるガスの種類、流量、流速、及び、溶融金属の供給量の条件を変えることにより調整できることが知られている。十分に微細な液滴を形成し、溶融金属の比表面積を増大させる最も効果的な方法の一つは、アトマイズガスの流量を多くすることであると考えられる。
しかしながら、溶融金属の液滴が微細なものになるに従い、熱容量が小さくなりアトマイズガスによって冷却されやすくなる。その結果、ハロゲン化シランの還元反応が必ずしも十分に促進されないといった問題が生じることを本発明者は見出した。
他方、特許文献3には、溶融金属を液滴状とする代わりに薄膜状とし、ハロゲン化シラン雰囲気で薄膜状の溶融金属と反応させる場合が記載されているが、薄膜状の溶融金属にハロゲン化シランを含有するガスを、直接に吹き付けることによって溶融金属の温度低下を抑制し、ハロゲン化シランの還元反応を十分に促進させるといった技術の開示は未だなされていない。
本発明は、このような実情に鑑みてなされたものであり、ハロゲン化シランの溶融金属による還元反応において、十分に高い反応率を示すシリコン製造方法及びシリコン製造装置を提供することを目的とする。
本発明は、下記式(1)で示されるハロゲン化シランと溶融金属とを接触させることにより、ハロゲン化シランを還元してシリコンを得るシリコン製造方法において、薄膜状の溶融金属にハロゲン化シランを含有する原料ガスを吹き付ける吹付工程を備えることを特徴とするシリコン製造方法を提供する。
SiH4−n (1)
[式中、nは0〜3の整数;Xは、F、Cl、Br及びIからなる群より選択された原子をそれぞれ示す。nが0〜2のとき、Xは互いに同一でも異なっていてもよい。]
本発明に係るシリコン製造方法においては、薄膜状に流れる溶融金属に原料ガスを吹き付けることによって、原料ガスに含まれるハロゲン化シランと薄膜状の溶融金属とが接触し、ハロゲン化シランの還元反応が十分に進行する。かかる構成を採用することにより、溶融金属の温度低下を抑制できるとともに、ハロゲン化シランの還元反応が生じる反応場の温度低下も抑制できる。したがって、ハロゲン化シランの溶融金属による還元反応において、十分に高い反応率を達成できる。
原料ガスは、ハロゲン化シランの反応率の観点から、ハロゲン化シランの濃度が10モル%以上であることが好ましく、20モル%以上であることがより好ましく、50モル%以上であることが更に好ましい。原料ガスは、不活性ガスとハロゲン化シランとの混合ガスであってもよい。原料ガスとして、不活性ガスとハロゲン化シランとの混合ガスを使用すると、溶融金属の供給量速度を減じた場合にも還元反応の過度な進行を抑制し、シリコンを安定的に製造できるという利点がある。なお、原料ガスに含まれる不活性ガスとしては、アルゴン及び/又はヘリウムが好適であり、コストの点からするとアルゴンがより好適である。
また、原料ガスは、ハロゲン化シランのみからなるものであってもよい。薄膜状に流れる溶融金属にハロゲン化シランを吹き付け、溶融金属とハロゲン化シランとを接触させると、不活性ガスを含有する原料ガスを使用した場合と比較し、ハロゲン化シランの還元反応の極めて高い反応率が達成されるため、太陽電池原料に適したシリコンを効率的に製造できる。また、高い反応率を達成する観点から、溶融金属に吹き付ける原料ガスの単位時間当たりに供給される重量を、原料ガスが吹き付けられる溶融金属の単位時間当たりに供給される重量以上とすることが好ましい。
本発明において使用するハロゲン化シランは、テトラクロロシラン、トリクロロシラン、ジクロロシラン及びモノクロロシランからなる群より選択された1種を単独で又は2種以上を含むことが好ましい。特にハロゲン化シランがテトラクロロシランを含むことが好ましい。
本発明において使用するハロゲン化シランとしてテトラクロロシランを採用することで、反応場においてハロゲン化シランの還元反応がより一層効率的に進行し、高い反応率を達成できる。また、上述のシーメンス法においては、副生物としてテトラクロロシランが生じるため、このテトラクロロシランを原料の一部として有効利用することで、シリコンの製造コストを節減できる。また、テトラクロロシランは、可燃性を示さないものであるため、比較的安価な機器を使用して0.1MPa以上とすることが可能であり、製造コストを低減して大量のシリコンを製造することが可能となる。
本発明において、溶融金属がNa、K、Mg、Ca、Zn及びAlからなる群より選択された1種を単独で又は2種以上を含むことが好ましい。特に溶融金属がアルミニウムであることが好ましい。これにより、生成したシリコン粒子中やその表面に金属が残存しても、酸やアルカリによる溶解除去や偏析法によってこの金属を除去することが容易である。また、溶融金属として、アルミニウムとシリコンの合金を使用してもよい。
吹付工程において、溶融金属に向けて原料ガスを0.1〜15MPaの圧力で吐出させることが好ましい。原料ガスの圧力を適宜調整することで、溶融金属の供給量速度が変動した場合にもシリコンを安定的に製造できる。また、吹付工程において、薄膜状の溶融金属は上方向に向けて流出させてもよく、あるいは、下方向、水平方向又は斜め方向に向けて流出させてもよい。
吹付工程は、スリットを有する第1のノズルから溶融金属を流出させると共に、当該第1のノズルの近傍に設けられた第2のノズルから原料ガスを吐出させることによって、薄膜状の溶融金属に原料ガスを吹き付けるものであることが好ましい。このように、溶融金属流出用の第1のノズルから薄膜状に溶融金属を流出させることにより、反応器内に大量の溶融金属を安定的に供給できる。
また、吹付工程は、筒状の先端部を有する第3のノズルから溶融金属を流出させると共に、当該第3のノズルの外周に沿って設けられた開口を有する第4のノズルから原料ガスを吐出させることによって、第3のノズルの端面上に形成される薄膜状の溶融金属に原料ガスを吹き付けるものであってもよい。かかる構成を採用することにより、溶融金属の供給量速度を十分に増加させた場合であっても、十分安定的且つ効率的にハロゲン化シランの還元反応を進行させることができる。
本発明は、下記式(1)で示されるハロゲン化シランと溶融金属とを接触させることにより、ハロゲン化シランを還元してシリコンを製造するためのシリコン製造装置であって、薄膜状の溶融金属にハロゲン化シランを含有する原料ガスを吹き付け、ハロゲン化シランの還元反応を生じさせる反応器と、溶融金属を反応器に供給する溶融金属供給手段と、反応器にハロゲン化シランを含有する原料ガスを供給する原料ガス供給手段と、反応器内の固気混合流体を排出する排出手段と、備えることを特徴とするシリコン製造装置を提供する。
SiH4−n (1)
[式中、nは0〜3の整数;Xは、F、Cl、Br及びIからなる群より選択された原子をそれぞれ示す。nが0〜2のとき、Xは互いに同一でも異なっていてもよい。]
本発明に係るシリコン製造装置によれば、反応器内において薄膜状の溶融金属に原料ガスを吹き付けることによって両者が接触し、原料ガスに含まれるハロゲン化シランの還元反応が十分に進行する。かかる構成を採用することにより、溶融金属の温度低下を抑制できるとともに、ハロゲン化シランの還元反応が生じる反応場の温度低下も抑制できる。したがって、ハロゲン化シランの溶融金属による還元反応において、十分に高い反応率を達成できる。
本発明に係るシリコン製造装置は、排出手段によって反応器から排出された固気混合流体から、固形生成物、副生成物及び未反応物を回収する回収手段を更に備えることが好ましい。かかる構成を採用することにより、原料コスト及び排出ガスの除害に要するコストを節減できる。
本発明に係るシリコン製造装置は、溶融金属供給手段が反応器内に設けられ且つスリットを有する溶融金属流出用の第1のノズルを備えると共に、原料ガス供給手段が反応器内に設けられ且つ第1のノズルの近傍に設けられた原料ガス吐出用の第2のノズルを備えることが好ましい。
また、本発明に係るシリコン製造装置は、溶融金属供給手段が反応器内に設けられ且つ筒状の先端部を有する溶融金属流出用の第3のノズルを備えると共に、原料ガス供給手段が第3のノズルの外周に沿って設けられた開口を有する原料ガス吐出用の第4のノズルを備えるものであってもよい。
本発明に係るシリコン製造装置は、反応器内にハロゲン化シランを供給するためのハロゲン化シラン供給手段を更に備えたものであってもよい。ハロゲン化シラン供給手段のノズルを反応器内に設けることで、反応器内のハロゲン化シランの分圧をより一層高いものとすることができる。
反応器内に溶融金属を供給するための溶融金属供給手段のノズル(第1又は第3のノズル)は、当該反応装置内の底部に設けられ、溶融金属を水平方向に流出させるものであってもよい。
本発明によれば、ハロゲン化シランの溶融金属による還元反応において、十分に高い反応率を示すシリコン製造方法及びシリコン製造装置が提供される。
以下、本発明の好適な実施形態について詳細に説明する。
(第1実施形態)
第1実施形態に係るシリコン製造方法は、ハロゲン化シランとしてテトラクロロシランを使用し、溶融金属として溶融アルミニウムを使用してシリコンを製造するものである。
本実施形態に係る方法は、テトラクロロシランと溶融アルミニウムとを接触させることにより、テトラクロロシランを還元してシリコンを製造するためのものであって、薄膜状の溶融アルミニウムにテトラクロロシランを含有する原料ガスを吹き付ける吹付工程を備える。テトラクロロシランと薄膜状の溶融アルミニウムとが接触することにより、下記式(A)で表される反応が進行し、シリコンが製造される。
3SiCl+4Al → 3Si+4AlCl (A)
図1及び図2を参照しながら、本実施形態に係る製造方法に好適な反応装置10の構成及びその運転条件について詳細に説明する。図1は、本実施形態に係る反応装置の構成を示す概略構成図である。図2は、反応装置10の吹付機構を拡大して示す図である。なお、反応装置10の吹付機構は、後述する溶融金属収容部1のノズル1a及び原料ガス吐出部2で構成される。
図1に示す反応装置10は、溶融金属収容部(溶融金属供給手段)1、原料ガス吐出部(原料ガス供給手段)2、反応器3、固気分離器(回収手段)5,6及びこれらを接続する配管(以下、場合により「ライン」という。)等を備える。
溶融金属収容部1は、溶融アルミニウムを収容するためのものであり、密閉容器15内に設けられている。溶融金属収容部1の周囲にはヒータ11が設けられ、収容する溶融アルミニウムの温度を調整できるようになっている。図2に示すように、溶融金属収容部1の底部には反応器3内にまで延在するノズル(第1のノズル)1aが設けられている。ノズル1aは、スリット状の開口を有し、この開口から薄膜状の溶融アルミニウムF1が流下する。アルミニウムの溶融体を溶融金属収容部1に収容させておくと、ノズル1aから反応器3内に溶融アルミニウムを安定的に流出させることができ、安定的且つ連続的にシリコン粒子を製造できるという利点がある。また、溶融金属収容部1を収容する密閉容器15内を不活性ガス等で加圧してもよい。これにより溶融アルミニウムをより一層安定的に流下させることができる。
薄膜状の溶融アルミニウムF1は、高い反応率を達成する観点から、厚さが通常1000μm以下、好ましくは900μm、より好ましくは700μm以下である。
ノズル1aから流下させる溶融アルミニウムは、純度が99.9質量%以上であることが好ましく、99.99質量%以上であることがより好ましく、99.995質量%以上であることが更に好ましい。純度の高い溶融アルミニウムを使用することで、純度の高いシリコン粒子を得ることができる。なお、ここでいう溶融アルミニウムの純度とは、原料アルミニウムのグロー放電質量分析法によって測定された元素のうち、Fe、Cu、Ga、Ti、Ni、Na、Mg及びZnの含有量(質量%)の合計を100質量%から差し引いた値を意味する。
なお、太陽電池のシリコン原料として好適なシリコンを得る観点から、原料アルミニウムに含まれるホウ素B、リンP及び酸素Oの含有量の合計が1質量ppm以下であることが好ましい。このような高純度アルミニウムは、電解還元によって一般的に製造されるアルミニウムを偏析凝固法や三層電解法などによって精製することで得ることができる。
溶融金属収容部1内の温度を溶融金属の融点以上に保持し、溶融金属が凝固しないように溶融金属を保温する(保温工程)。溶融金属収容部1の温度は、溶融させる金属の融点に応じて適宜設定すればよいが、本実施形態のように還元性金属としてアルミニウム(融点:660℃)を使用する場合には、通常700〜1300℃、好ましくは700〜1200℃、更に好ましくは700〜1000℃である。ノズル1aの温度は700〜1000℃程度とすることが好ましい。
原料ガス吐出部2は、図2に示すように、ラインL1を通じて供給される原料ガスを、薄膜状の溶融アルミニウムF1に向けて吐出するためのものである。原料ガス吐出部2のノズル(第2のノズル)2aから原料ガスG1を吐出させ、薄膜状の溶融アルミニウムF1に向けて原料ガスG1を吹き付ける(吹付工程)。図2に示すように、薄膜状の溶融アルミニウムF1の両側から原料ガスG1を吹き付けることによって、原料ガスG1に含まれるテトラクロロシランと溶融アルミニウムとが接触し、上記化学式(A)の反応が効率的に進行する。また、ラインL1を通じて供給される原料ガスを、薄膜状の溶融アルミニウムF1を板状の装置(図示しない)で受け止め、その表面に片側からから原料ガスG1を吹き付ける(吹付工程)を構成してもよい。前記板状の装置には、補助的に保温装置を付与してもよい。
図1に示す角度α(溶融アルミニウムF1の流出方向と原料流体G1の吐出方向とのなす角度)は、0°よりも大きく且つ90°以下であることが好ましく、0〜55°であることがより好ましく、0〜40°であることが更に好ましい。角度αが90°を超えると、ノズル1aから反応器3内への薄膜状の溶融アルミニウムF1の供給が原料ガスG1によって阻害されやすくなる。
ノズル2aから吐出させる原料ガスG1は、高い反応率を達成する観点から、流速が50〜1000m/秒であることが好ましい。
本実施形態において、ノズル2aから吐出する原料ガスは、テトラクロロシランと不活性ガスとの混合ガスである。原料ガスに含まれる不活性ガスとしては、アルゴン及び/又はヘリウムが好適であり、コストの点からするとアルゴンがより好適である。
原料ガス中のテトラクロロシランの濃度は10モル%以上であることが好ましく、20モル%以上であることがより好ましく、50モル%以上であることが更に好ましい。テトラクロロシランの濃度が10モル%未満であると、上記式(A)の反応が十分に進行しない傾向がある。上記式(A)の反応においては、アルミニウム1モルあたり95kJの反応熱が発生する。原料流体に不活性ガスを所定量配合することで、発生する反応熱を制御することができ、反応熱による反応器3の損傷を十分に防止できる。なお、不活性ガスに加えて、上記反応に寄与しない水素などを原料流体に添加してもよい。また、装置の損傷を防止するために、断熱性能を有する内筒を設置してもよい。
原料ガスの調製に使用するテトラクロロシランは、高純度のシリコン粒子を得る観点から、その純度が99.99質量%以上であることが好ましく、99.999質量%以上であることがより好ましく、99.9999質量%以上であることが更に好ましい。
原料ガスの調製に使用する不活性ガスは、高純度のシリコン粒子を得る観点から、その純度が99.9体積%以上であることが好ましく、99.99体積%以上であることがより好ましく、99.999体積%以上であることが更に好ましく、99.9995体積%以上であることが特に好ましい。
薄膜状の溶融アルミニウムF1に吹き付ける原料ガスは、0.1〜15MPaの圧力で吐出されることが好ましく、1〜10MPaの圧力で吐出されることがより好ましく、2〜10MPaの圧力で吐出されることが更に好ましい。原料ガスの吐出される圧力が0.1MPa未満であると、上記式(A)で表される反応の進行が不十分となる傾向がある。他方、15MPaを超える圧力で原料ガスを吐出するには、耐圧性の高い各種装置を使用する必要があり、コストが増大する傾向がある。
薄膜状の溶融アルミニウムF1に吹き付ける原料ガスは、予め加熱されてもよい。加熱された原料ガスの温度は200〜1200℃であることが好ましく、200〜1000℃であることがより好ましい。加熱された原料ガスの温度を高くすることで、テトラクロロシランの還元反応がより一層進行しやすくなる。原料ガスを加熱する方法としては、特に制限はなく、例えば、高周波加熱、抵抗加熱、ランプ加熱などを用いた方法が挙げられる。あるいは、テトラクロロシランの温度以上に加熱したガス(アルゴン、ヘリウム及び水素からなる群より選ばれた少なくとも1種又は2種以上)と、テトラクロロシランとを混合させることによって、高温の原料ガスを得てもよい。かかる方法によれば、テトラクロロシランによる高温腐食に耐性を有する高価な耐食性材料を多用する必要がないという利点がある。
なお、原料ガスは、上記ノズル2a(第2のノズル)又は後述するノズル22a(第4のノズル)から吐出される以前の段階にあっては、温度条件及び圧力条件に応じて液体や超臨界流体であってもよい。
上記のように加熱された原料ガスを溶融アルミニウムに吹き付けることで、溶融アルミニウムの温度低下を抑制し、薄膜状の溶融アルミニウムF1の温度を凝固点よりも高い温度に保持できる。溶融アルミニウムF1の温度が局所的に凝固点以下になると、安定した薄膜状の溶融アルミニウムF1の供給が阻害されるおそれがある。
反応器3は、図1に示すように、鉛直方向に延びる円筒部3aを備えており、この円筒部3a内に上記式(A)で表される反応が進行する反応場が形成される。すなわち、ノズル2aから原料ガスを吐出することにより、原料ガスG1に含まれるテトラクロロシランと薄膜状の溶融アルミニウムF1とが接触し、上記化学式(A)の反応が進行する。
上記式(A)の通り、当該反応におけるテトラクロロシランのモル数と溶融アルミニウムのモル数の化学量論比は、3:4であるが、生産性などの観点から、反応場に供給する単位時間あたりのテトラクロロシランのモル数Mと溶融アルミニウムの供給モル数Mの比(M/M)は、0.75〜20であることが好ましく、0.75〜10であることがより好ましく、0.75〜7.5であることが更に好ましい。M/Mの値が0.75未満であると、反応の進行が不十分となる傾向があり、他方、20を越えると、反応に寄与しないテトラクロロシランの量が増大する傾向がある。
円筒部3aの周囲にはヒータ13が設けられ、反応場の温度を調整できるようになっている。加熱方式としては、特に制限はなく、例えば、高周波加熱、抵抗加熱、ランプ加熱などを用いた直接的な方法の他に、予め温度調節されたガス等の流体を用いる方式も用いることができる。反応場の温度は、通常、300〜1200℃(好ましくは500〜1000℃)となるように調整する。また、反応場の圧力は、通常、1気圧以上となるように調整する。なお、反応器3内における反応を中断又は停止した際、反応器3の壁面に副生物や未反応物が凝固着すると、装置材料の応力腐食割れ等が生じるおそれがある。その防止策として、ヒータ13又は外部ジャケット(図示しない)を使用し保温ガスなどを利用し、反応の中断時や停止時にも反応器3内の温度を所定の温度に保持してもよい。
円筒部3a内に形成される反応場の酸素濃度は、酸化物の生成を十分に抑制する観点から、なるべく低い値に維持することが好ましい。具体的には、反応を開始する前の反応場の酸素濃度は、1体積%以下であることが好ましく、0.1体積%以下であることがより好ましく、100体積ppm以下であることが更に好ましく、10体積ppm以下であることが特に好ましい。反応を開始する前の反応場の酸素濃度を下げる方法として、溶融アルミニウムを所定時間噴霧し、アルミニウムの液滴に反応場の酸素を吸着させるという手法が挙げられる。なお、反応を開始する前の反応場は、露点が−20℃以下であることが好ましく、−40℃以下であることがより好ましく、−70℃以下であることが更に好ましい。
また、反応場の酸素濃度は、反応中においても、酸化物の生成を十分に抑制する観点から、なるべく低い値に維持することが好ましい。具体的には、反応中の反応場の酸素濃度は、1体積%以下であることが好ましく、0.1体積%以下であることがより好ましく、100体積ppm以下であることが更に好ましく、10体積ppm以下であることが特に好ましい。このような条件下でシリコンを生成することで、シリコン酸化物の被膜生成を十分に抑制できる。その結果、シリコンの精製工程を簡略化でき、太陽電池原料に適したシリコンの製造コストを節減できる。
反応器3は、その下部に下方に行くに従って内径が小さくなると共に下端にシリコン粒子を排出するためのシリコン粒子排出口3cを有する縮径部3bを備える。この縮径部3bの鉛直方向の略中間の位置には、反応によって生じたAlCl(気体)、未反応のSiCl(気体)及び微粒のシリコン粒子を排出するための固気混合流体排出口(排出手段)3dが設けられている。
反応器3の下部に設けられた縮径部3bは、第1段目の固気分離器(回収手段)として機能する。縮径部3bの周囲にはヒータ(図示せず)が設けられ、内部の温度を調整できるようになっている。縮径部3bの内部の温度をAlCl(昇華点:180℃)が析出しない温度に保持することで、シリコン粒子と気体とを分離する。具体的には、縮径部3bの内部の温度を200℃以上となるように調整することが好ましい。縮径部3bの内部の温度を200℃よりも低くした場合、縮径部3b内においてAlClが析出し、シリコン粒子中に混入しやすくなる傾向がある。
固気混合流体排出口3dから排出される固気混合流体は、ライン(排出手段)L2を通じて固気分離器5に供給される。固気分離器5は、第2段目の固気分離器として機能する。固気分離器5は、固気混合流体排出口3dから排出される気体中に存在するシリコン粒子を分離するためのものである。この固気分離器5の内部の温度も200℃以上となるように調整することが好ましい。固気分離器5の好適な例として、保温サイクロン式固気分離器などを例示できる。
固気分離器5から排出されるガスは固気分離器6に供給される。固気分離器6は、第3段目の固気分離器として機能する。固気分離器6は、固気分離器5からのガスに含まれるAlClを除去するためのものである。固気分離器6内の温度を、AlClは析出するがSiCl(沸点:57℃)は凝縮しない温度に保持することで、析出したAlCl(固体)を除去する。具体的には、固気分離器6の内部の温度を60〜170℃(より好ましくは70〜100℃)に維持することが好ましい。固気分離器6の内部の温度を60℃よりも低くした場合、固気分離器6内においてSiClが凝縮し、リサイクルされるSiClの量が不十分となる傾向がある。他方、固気分離器6の内部の温度を170℃よりも高くした場合、AlClの析出が不十分となり、リサイクルされるSiCl中のAlClの含有量が高くなる傾向がある。
固気分離器6は、その内部にバッフル板(図示せず)を備えるものであることが好ましい。バッフル板を内部に設けることで、固気分離器6の内表面積が増大してAlClが効率的に析出し、ガス中のAlCl含有量を十分に低減できる。固気分離器6の内表面積は、固気分離器6の装置表面積の5倍以上であることが好ましい。
このように、本実施形態に係る反応装置10は、第1段目の固気分離器として縮径部3bを備え、第2段目の固気分離器として固気分離器5を備え、更に、第3段目の固気分離器として固気分離器6を備える。かかる構成を採用することにより、未反応のテトラクロロシランを効率的に回収し、原料ガスの一部として再利用できる。また、固形物(主にシリコン粒子)を予め除去することで、副生成物及び未反応物の混合流体から未反応物を容易に蒸留分離できると共に、蒸留分離などを行う回収装置の損耗を十分に抑制できる。
固気分離器の段数は特に制限はなく、例えば、固気分離器5を採用することなく、縮径部3bと固気分離器6とを連結してもよく、あるいは、固気分離器を4段以上設けてもよい。なお、ガス排出口3dは、必ずしも縮径部3bに設ける必要はなく、例えば、反応器3の円筒部3aに設けてもよい。また、ガス排出口3dを具備しない反応器を使用する場合などにあっては、シリコン粒子排出口3cの後段に固気分離器5等を設置してもよい。
また、回収手段として、固気分離器に加え、必要に応じてフィルターを併用してもよい。この場合、フィルターに対する副生成物等の固着による閉塞を防止するため、フィルター等の保温を実施してもよい。他方、副生成物及び未反応物が凝集しない温度にまで冷却することで、装置材料の長寿命化することができる。捕集されたシリコンに混入する金属成分の除去には、一般的には、酸又はアルカリ溶液によるリーチングを行なえばよい。その後にシリコンを溶融し凝固時の偏析作用を利用して更なる高純度化のため精製を行ってもよい。
固気分離器6においてAlClの除去処理がなされたガスは、ラインL7を通じて固気分離器6から排出される。当該ガス中に未反応のテトラクロロシランガスと不活性ガスとが共存する場合には、不活性ガスを分離し、必要に応じて精製を行うことで、テトラクロロシランを回収できる。このテトラクロロシランを原料ガスとしてリサイクルしてもよい。このように、未反応ガスや副生成物を回収し、これを有効利用することでこれらの除害に要するコスト増加を抑制でき、シリコンの製造コストの十分な節減が可能である。ハロゲン化シランの除害には、一般的には水又はアルカリ水溶液が使用できるが、塩酸成分の発生に十分注意する必要がある。
なお、ラインL7を通じて固気分離器6から排出されるガスに含まれる未反応ガスが少ない場合、簡便な除害手段によって安価に除害することができる場合など、未反応ガスや副生成物を回収せずに直接除害する方がシリコンの製造コストを節減できる場合にあっては、当該ガスを直接に除害設備に移送してもよい。
本実施形態に係るシリコン製造方法によれば、以下のような効果が奏される。すなわち、テトラクロロシランと不活性ガスとの混合ガスからなる原料ガスを薄膜状の溶融アルミニウムF1に吹き付け、その場で反応を生じさせるため、溶融アルミニウムの微小液滴と原料ガスとが接触する場合と比較し、溶融アルミニウムや反応場の温度の低下を抑制できる。したがって、本実施形態によれば、溶融アルミニウムによるハロゲン化シランの還元反応において、十分に高い反応率を達成できる。
また、本実施形態に係るシリコン製造方法によれば、スリット状の開口を有するノズル1aを使用することにより、ノズルaを通して単位時間当たり比較的多量の溶融アルミニウムを反応器3内に供給できる。大量の溶融アルミニウムを予め準備し、ノズル1aを通して溶融アルミニウムを反応器3内に供給することで、例えば、金属体を直接加熱し溶融滴下させる方法に比較し、溶融アルミニウムの安定した流れを反応器3内に形成できる。その結果、本実施形態によれば、シリコンを大量且つ安定的に製造できる。
更に、本実施形態に係るシリコン製造方法を採用することにより、比較的簡易な構成の反応装置でシリコンを製造できるという利点がある。すなわち、ガスアトマイズ法を利用した従来のシリコン製造方法にあっては、微小液滴を形成するための不活性ガス(アトマイズガス)の供給手段、及び、形成された微小液滴と接触させるテトラクロロシランガスの供給手段の両方を備える反応装置が必要である。これに対し、本実施形態に係るシリコン製造方法によれば、原料ガスG1を薄膜状の溶融アルミニウムF1に吹き付けることでシリコンを製造できるため、図1に示す反応装置10のように、別途テトラクロロシランガスを反応器3へと供給する機構を具備しない反応装置を使用できる。
ただし、別途テトラクロロシランガス及び/又は不活性ガスを反応器3へと供給する機構を具備する反応装置を使用してもよい。反応器3内に別途テトラクロロシランガスを供給することで、原料ガスの一部として供給される高圧のテトラクロロシランの量を低減することが可能となる。反応器3内の高い反応率を得る観点から、別途供給するテトラクロロシランガス及び不活性ガスの温度は、200℃以上とすることが好ましい。かかる構成を採用して高い反応率を維持することで、生成されたシリコンに残存するアルミニウム量が増加することなく、太陽電池原料に適したシリコンを製造できる。
また、原料ガスは必ずしもテトラクロロシランと不活性ガスとの混合ガスでなくてもよく、テトラクロロシラン単独であってもよい。かかる構成を採用することにより、反応場におけるテトラクロロシランガスの分圧を更に高くすることができ、より一層高い反応率を達成できる。
(第2実施形態)
本発明の第2実施形態について、図3,4を参照しながら詳細に説明する。図3は、本実施形態に係る反応装置の構成を示す概略構成図である。図4は、筒状の先端部を有するノズル(第3のノズル)21aの近傍を拡大して示す断面図である。
第2実施形態に係るシリコン製造方法は、主に、以下の(1)〜(4)の点において上記第1実施形態に係るシリコン製造方法と相違する。
(1)筒状の先端部を有するノズル21aから溶融アルミニウムを水平方向に流出させる点。
(2)ノズル21aの外周に沿って設けられた開口を有するノズル(第4のノズル)22aから原料ガスを吐出させる点。
(3)ノズル21aの端面21b上に形成される薄膜状の溶融アルミニウムF2に原料ガスが吹き付けられ、この端面21b上においてテトラクロロシランの還元反応が進行する点(図4を参照)。
(4)反応器23から排出された固気混合流体からシリコン粒子を回収するための固気分離器4を備える点。
以下、第2実施形態について、第1実施形態との相違点を主に説明し、第1実施形態と共通する事項については説明を省略する。
図3に示す反応装置20は、溶融金属収容部(溶融金属供給手段)21、原料ガス吐出部(原料ガス供給手段)22、反応器23、固気分離器(回収手段)4,5,6及びこれらを接続するライン等を備える。
溶融金属収容部21は、溶融アルミニウムを流出させるノズル21aを有する管状部材21cと、管状部材21c及び溶融アルミニウムを収容する容器21dとを備える。管状部材21c及び容器21dは、密閉容器25内に設けられている。この溶融金属収容部21の周囲にはヒータ(図示せず)が設けられ、収容する溶融アルミニウムの温度を調整できるようになっている。
図3に示すように、ノズル21aは反応器23内にまで延在している。反応器23内の底部には、原料ガス吐出部22が設けられ、この原料ガス吐出部22はノズル21aの外周に沿って設けられた開口を有するノズル22aを備える。ラインL1を通じて供給される原料ガスがノズル22aから吐出される。ノズル22aから原料ガスを吐出させると、ノズル21aの出口付近に負圧が生じ、この負圧によって容器21d内の溶融アルミニウムが上方に吸い上げられる。上方に吸い上げられた溶融アルミニウムがノズル21aから流出する。
原料ガスの吐出による負圧で溶融アルミニウムを流出させるという構成を採用することにより、原料ガスの供給が不可避的に停止した場合に、反応器3内への溶融アルミニウムの供給も同時に中断する。したがって、このような事態が生じた場合であっても、溶融アルミニウムによって汚染されることなく、反応器3内のシリコンを回収することができる。
図4に示すように、ノズル21aから流出した溶融アルミニウムは、ノズル21aの端面21b上において薄膜状の溶融アルミニウムF2を形成する。他方、ノズル22aから吐出した原料ガスの一部は、ノズル21aの端面21bの上方で図4の矢印G2に示すような流れを形成する。すなわち、ノズル21aの端面21bの上方において、ノズル21aの中心軸付近において下方に向かった後、端面21b上の溶融アルミニウムF2と接触しながらノズル21aの径方向に向かい、その後、ノズル21aの中心軸付近に向けて上方に向かう流れが生じる。
上記のような原料ガスの流れが生じることによって、端面21b上において薄膜状の溶融アルミニウムF2に原料ガスが吹き付けられる(吹付工程)。これにより、原料ガスに含まれるテトラクロロシランと溶融アルミニウムとが接触し、上記化学式(A)で表される反応が進行する。
ノズル21aの出口付近に溶融アルミニウムを吸い込むのに十分な負圧を生じさせる観点から、図4に示すように、ノズル21aの端面21bは、ノズル21aの外面側の方が内面側よりも低い傾斜面をなしていることが好ましく、あるいは、外面側と内面側とが同じ高さの水平面をなしていることが好ましい。具体的には、図4に示す角度β(ノズル21aの端面の傾斜角)は、0〜40°であることが好ましく、0〜20°であることがより好ましい。また、図4に示すように、ノズル22aから噴出する原料ガスはノズル21aの中心軸に対して傾きを持ってもよい。具体的には図4に示す角度γ(ノズル21aの外周のテーパ角)は0〜40°であることが好ましい。
反応器23は、図3に示すように、鉛直方向に延びる円筒部23aを備えている。ノズル21aの端面21b上における上記化学式(A)の反応が生じた後、円筒部23a内においては、残存するテトラクロロシランガスと溶融アルミニウムとが接触して、上記化学式(A)の反応が更に進行する。
反応器23の頭頂部には、反応によって生じたシリコン粒子を含有する気体を排出するための固気混合流体排出口(排出手段)23bが設けられている。固気混合流体排出口23bからシリコン粒子と共に排出されたガスは、排出ライン(排出手段)L2を通じて固気分離器4へと導入される。なお、排出ラインL2の内面等に生成物、副生物及び未反応物などが付着し、閉塞などが生じることを防止するため、排出ラインL2等の保温を実施することが好ましい。
ガス排出口23bは、必ずしも頭頂部に設ける必要はなく、例えば、反応器23の円筒部23aに設けてもよい。
固気分離器4は、第1段目の固気分離器として機能する。固気分離器4は、内部の温度を調整できるようになっている。固気分離器4の内部の温度をAlCl(昇華点:180℃)が析出しない温度に保持することで、シリコン粒子とガスとを分離する。具体的には、固気分離器4の内部の温度を200℃以上となるように調整することが好ましい。固気分離器4の内部の温度を200℃よりも低くした場合、固気分離器4内においてAlClが析出し、シリコン粒子中に混入しやすくなる傾向がある。固気分離器4から排出された流体は、固気分離器5,6へと順次導入される。
本実施形態に係るシリコン製造方法によれば、以下のような効果が奏される。すなわち、テトラクロロシランを含有する原料ガスを薄膜状の溶融アルミニウムF2に吹き付け、その場で反応を生じさせるため、溶融アルミニウムの液滴と原料ガスとが接触する場合と比較し、溶融アルミニウムや反応場の温度の低下を抑制できる。したがって、本実施形態によれば、溶融アルミニウムによるハロゲン化シランの還元反応において、十分に高い反応率を達成できる。
本実施形態においては、原料ガスの吐出による吸引作用によって溶融アルミニウムを流出させる。この吸引作用により溶融アルミニウムの流出量を制御でき、溶融アルミニウムの流出量の変動に対して背圧を制御するといった操作を省略することも可能であるため、溶融アルミニウムの流出量を一定に維持しやすい。したがって、品質が十分に均一化したシリコンを安定的に製造できる。
本実施形態に係るシリコン製造方法における薄膜状の溶融アルミニウムF2の厚さは、溶融アルミニウムの流量の1/3乗に比例すると見積もられている。したがって、高速度で溶融アルミニウムを流出させた場合でも、十分に安定的にテトラクロロシランの還元反応が進行するため、大量のシリコンを低コストで生産できる。なお、本実施形態における吹付機構としては、一体型(Confined又はClosed−Coupled型)と呼ばれるノズルを使用することができる。一体型ノズルを使用することにより、簡便且つ安定的に溶融アルミニウムを流出させることができる。
以上、本発明の好適な実施形態について詳細に説明したが、本発明は上記第1実施形態及び第2実施形態に限定されるものではない。例えば、上記実施形態においては、ハロゲン化シランとしてテトラクロロシランを使用する場合を例示したが、これに限定されず、上記式(1)で示されるハロゲン化シランのうち、テトラクロロシラン以外のものを単独で使用してもよく、あるいは、上記式(1)で示されるハロゲン化シランの2種以上を適宜組み合わせて使用してもよい。
上記実施形態においては、薄膜状の溶融アルミニウムF1,F2に原料ガスを吹き付け、シリコンを生成する場合を例示したが、溶融アルミニウムの流出量、溶融アルミニウムF1,F2の厚さ、溶融アルミニウムの温度及び原料ガスの吐出量などを制御し、所定の粒径のシリコン粒子(例えば、平均粒径:5〜300μm)を製造してもよい。シリコン粒子の平均粒子径が5μm未満であると、シリコン粒子の捕集する効率が不十分となる傾向があり、他方、300μmを越えると、生成したシリコン粒子内に残存するアルミニウム量が多くなる傾向がある。
また、上記実施形態においては、溶融金属としてアルミニウムを使用する場合を例示したが、これに限定されず、ナトリウム、カリウム、マグネシウム、カルシウム及び亜鉛からなる群より選択された1種を単独で使用してもよく、あるいは、ナトリウム、カリウム、マグネシウム、カルシウム、亜鉛及びアルミニウムからなる群より選択された2種以上を適宜組み合わせて使用してもよい。また、溶融金属として、アルミニウムとシリコンとの合金を使用してもよい。
本発明の第1実施形態に係る反応装置の構成を示す概略構成図である。 図1に示す反応装置が備える吹付機構の構成を示す斜視図である。 本発明の第2実施形態に係る反応装置の構成を示す概略構成図である。 図3に示す反応装置が備えるノズルの先端部を拡大して示す断面図である。
符号の説明
1,21…溶融金属収容部(溶融金属供給手段)、1a…ノズル(第1のノズル)、2a…ノズル(第2のノズル)、2…原料ガス吐出部(原料ガス供給手段)、3,23…反応器、4,5,6…固気分離器(回収手段)、3d,23b…固気混合流体排出口(排出手段)、10,20…反応装置、21a…ノズル(第3のノズル)、21b…ノズルの端面、22a…ノズル(第4のノズル)、F1,F2…薄膜状の溶融アルミニウム、G1,G2…原料ガス、L2…排出ライン(排出手段)。

Claims (17)

  1. 下記式(1)で示されるハロゲン化シランと溶融金属とを接触させることにより、ハロゲン化シランを還元してシリコンを得るシリコン製造方法において、
    薄膜状の前記溶融金属に前記ハロゲン化シランを含有する原料ガスを吹き付ける吹付工程を備えることを特徴とするシリコン製造方法。
    SiH4−n (1)
    [式中、nは0〜3の整数;Xは、F、Cl、Br及びIからなる群より選択された原子をそれぞれ示す。nが0〜2のとき、Xは互いに同一でも異なっていてもよい。]
  2. 前記原料ガスは、前記ハロゲン化シランの濃度が10モル%以上であることを特徴とする、請求項1に記載のシリコン製造方法。
  3. 前記溶融金属に吹き付ける前記原料ガスの単位時間当たりに供給される重量を、前記原料ガスが吹き付けられる前記溶融金属の単位時間当たりに供給される重量以上とする、請求項1又は2に記載のシリコンの製造方法。
  4. 前記原料ガスが、前記ハロゲン化シランのみからなるものであることを特徴とする、請求項1に記載のシリコン製造方法。
  5. 前記原料ガスが、ガス状の前記ハロゲン化シランと不活性ガスとの混合ガスであることを特徴とする、請求項1又は2に記載のシリコン製造方法。
  6. 前記不活性ガスが、アルゴン及び/又はヘリウムであることを特徴とする、請求項5に記載のシリコン製造方法。
  7. 前記溶融金属がAlであることを特徴とする、請求項1〜6のいずれか一項に記載のシリコン製造方法。
  8. 前記ハロゲン化シランが、テトラクロロシランであることを特徴とする、請求項1〜7のいずれか一項に記載のシリコン製造方法。
  9. 前記吹付工程において、前記溶融金属に向けて前記原料ガスを0.1〜15MPaの圧力で吐出させることを特徴とする、請求項1〜8のいずれか一項に記載のシリコン製造方法。
  10. 前記吹付工程において、前記薄膜状の溶融金属を水平方向に向けて流出させることを特徴とする、請求項1〜9のいずれか一項に記載のシリコン製造方法。
  11. 前記吹付工程は、スリットを有する第1のノズルから薄膜状の溶融金属を流出させると共に、当該第1のノズルの近傍に設けられた第2のノズルから前記原料ガスを吐出させることによって、前記薄膜状の溶融金属に前記原料ガスを吹き付けるものであることを特徴とする、請求項1〜9のいずれか一項に記載のシリコン製造方法。
  12. 前記吹付工程は、筒状の先端部を有する第3のノズルから溶融金属を流出させると共に、当該第3のノズルの外周に沿って設けられた開口を有する第4のノズルから前記原料ガスを吐出させることによって、前記第3のノズルの端面上に形成される薄膜状の溶融金属に前記原料ガスを吹き付けるものであることを特徴とする、請求項1〜9のいずれか一項に記載のシリコン製造方法。
  13. 下記式(1)で示されるハロゲン化シランと溶融金属とを接触させることにより、ハロゲン化シランを還元してシリコンを製造するためのシリコン製造装置であって、
    薄膜状の溶融金属に前記ハロゲン化シランを含有する原料ガスを吹き付け、前記ハロゲン化シランの還元反応を生じさせる反応器と、
    溶融金属を前記反応器に供給する溶融金属供給手段と、
    前記ハロゲン化シランを含有する原料ガスを前記反応器に供給する原料ガス供給手段と、
    前記反応器から固気混合流体を排出する排出手段と、
    を備えることを特徴とするシリコン製造装置。
    SiH4−n (1)
    [式中、nは0〜3の整数;Xは、F、Cl、Br及びIからなる群より選択された原子をそれぞれ示す。nが0〜2のとき、Xは互いに同一でも異なっていてもよい。]
  14. 前記排出手段によって前記反応器から排出された固気混合流体から、固形生成物、副生成物及び未反応物を回収する回収手段を更に備えることを特徴とする、請求項13に記載のシリコン製造装置。
  15. 前記溶融金属供給手段が前記反応器内に設けられ且つスリットを有する溶融金属流出用の第1のノズルを備えると共に、前記原料ガス供給手段が前記反応器内に設けられ且つ前記第1のノズルの近傍に設けられた原料ガス吐出用の第2のノズルを備えることを特徴とする、請求項13又は14に記載のシリコン製造装置。
  16. 前記溶融金属供給手段が前記反応器内に設けられ且つ筒状の先端部を有する溶融金属流出用の第3のノズルを備えると共に、前記原料ガス供給手段が前記第3のノズルの外周に沿って設けられた開口を有する原料ガス吐出用の第4のノズルを備えることを特徴とする、請求項13又は14に記載のシリコン製造装置。
  17. 前記溶融金属供給手段は、前記反応器内に前記溶融金属を供給するためのノズルを前記反応器内の底部に備え、当該ノズルが前記溶融金属を水平方向に流出させるものであることを特徴とする、請求項13又は14に記載のシリコン製造装置。
JP2008053552A 2008-03-04 2008-03-04 シリコン製造方法及びシリコン製造装置 Pending JP2009208994A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008053552A JP2009208994A (ja) 2008-03-04 2008-03-04 シリコン製造方法及びシリコン製造装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008053552A JP2009208994A (ja) 2008-03-04 2008-03-04 シリコン製造方法及びシリコン製造装置

Publications (1)

Publication Number Publication Date
JP2009208994A true JP2009208994A (ja) 2009-09-17

Family

ID=41182519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008053552A Pending JP2009208994A (ja) 2008-03-04 2008-03-04 シリコン製造方法及びシリコン製造装置

Country Status (1)

Country Link
JP (1) JP2009208994A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013013857A1 (de) * 2011-07-25 2013-01-31 Evonik Degussa Gmbh Verwendung von siliciumtetrachlorid-nebenprodukten zur herstellung von silizium durch umsetzung mit metallischen reduktionsmitteln

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013013857A1 (de) * 2011-07-25 2013-01-31 Evonik Degussa Gmbh Verwendung von siliciumtetrachlorid-nebenprodukten zur herstellung von silizium durch umsetzung mit metallischen reduktionsmitteln

Similar Documents

Publication Publication Date Title
CN101497441B (zh) 高纯度硅的制造方法
TWI386526B (zh) 高純度多結晶矽的製造方法及製造裝置
JP4294387B2 (ja) シリコンの製造方法
JP4157281B2 (ja) シリコン生成用反応装置
JP5511667B2 (ja) ハロゲン化水素、水素およびハロゲン化ケイ素を含む混合ガスから水素ガスを生産する方法、その水素ガスを用いたケイ素化合物の生産方法、およびその方法のためのプラント
KR102292341B1 (ko) 다결정 실리콘의 제조 방법
JP2006502941A (ja) 高級シリコンの製造、反応器、粒子再捕獲塔、およびそれらの使用
JP5194404B2 (ja) 珪素の製造方法
JP2009208995A (ja) シリコンの製造装置
JP4428484B2 (ja) 高純度シリコンの製造装置
JP2008037735A (ja) シリコン製造装置
JP2009208994A (ja) シリコン製造方法及びシリコン製造装置
KR101525860B1 (ko) 고순도 실리콘 미세분말의 제조 장치
JP2020139187A (ja) チタン粉の製造方法、スポンジチタンの製造方法、チタン粉および、ガス収集装置
JP2009280474A (ja) シリコンの製造装置
JP2010076951A (ja) シリコンの製造方法
JP2010100455A (ja) シリコンの製造方法
US20030091498A1 (en) Method for purification of tungsten hexafluoride
JP2009256143A (ja) シリコンの製造方法
JP2010030825A (ja) シリコン製造方法及びシリコン製造装置
JP2009292675A (ja) シリコン又はハロゲン化シランの製造方法及び製造装置
JP2009208999A (ja) テトラクロロシラン流体の製造方法、及び、シリコン粒子の製造方法
JP2003020216A (ja) シリコンの製造方法
JP2009208998A (ja) シリコン粒子の製造方法
JP2009209000A (ja) シリコン粒子の製造方法