JP2009200373A - 半導体装置の製造方法 - Google Patents

半導体装置の製造方法 Download PDF

Info

Publication number
JP2009200373A
JP2009200373A JP2008042344A JP2008042344A JP2009200373A JP 2009200373 A JP2009200373 A JP 2009200373A JP 2008042344 A JP2008042344 A JP 2008042344A JP 2008042344 A JP2008042344 A JP 2008042344A JP 2009200373 A JP2009200373 A JP 2009200373A
Authority
JP
Japan
Prior art keywords
metal wiring
insulating film
film
value
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008042344A
Other languages
English (en)
Other versions
JP5221979B2 (ja
Inventor
Takahiro Kotabe
隆宏 小田部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2008042344A priority Critical patent/JP5221979B2/ja
Publication of JP2009200373A publication Critical patent/JP2009200373A/ja
Application granted granted Critical
Publication of JP5221979B2 publication Critical patent/JP5221979B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

【課題】 金属配線を埋設する層間絶縁膜の厚さを精度良く制御可能な半導体装置の製造方法を提供する。
【解決手段】 素子が形成された半導体基板1上に、金属配線膜を堆積する工程と、金属配線膜を所定の配線パターンに加工して金属配線10を形成する工程と、金属配線10の上面と金属配線10の周囲の下地層6の上面の高低差で規定される段差値を測定する工程と、金属配線10と下地層6を被覆する絶縁膜11を、段差値の測定値と目標値の差分に基づいて設定された膜厚で堆積する工程と、絶縁膜11を化学的機械研磨により平坦化する工程を有し、絶縁膜11を堆積する工程において、段差値の測定値が目標値より大きい場合には、絶縁膜11の膜厚を段差値の測定値が目標値である場合の絶縁膜11の基準膜厚より厚く設定し、段差値の測定値が目標値より小さい場合には、絶縁膜11の膜厚を基準膜厚より薄く設定する。
【選択図】 図1

Description

本発明は、半導体装置の製造方法に関し、より詳細には、配線工程における層間絶縁膜の厚さを精度良く形成可能な半導体装置の製造方法に関する。
従来の半導体装置の製造方法について図13を用いて説明する。先ず、シリコンウェハ1の表面及び裏面に、例えば熱酸化法によりシリコン酸化膜(図示せず)を夫々形成する。次いで、シリコンウェハ1の表面及び裏面に形成されたシリコン酸化膜に、例えば縦型炉を用いた熱CVD(化学気相成長)法により、シリコン窒化膜(図示せず)を夫々形成する。次いで、フォトリソグラフィーにより、シリコンウェハ1の表面上のシリコン窒化膜上に、素子分離膜の形成領域を露出し、他の領域を覆うフォトレジスト膜(図示せず)を形成する。次いで、フォトレジスト膜をマスクとして、シリコン窒化膜をエッチングする。これにより、シリコン窒化膜に開口部を形成する。次いで、フォトレジスト膜及びシリコン窒化膜をマスクとして、シリコンウェハ1の表面側からシリコン酸化膜及びシリコンウェハ1を夫々エッチングする。これにより、シリコン酸化膜に開口部を形成するとともに、シリコンウェハ1の表面に溝を形成する。シリコンウェハ1の表面に溝を形成した後、例えばアッシングにより、フォトレジスト膜を除去する。次いで、シリコンウェハ1の表面の全面に、例えばCVD法により、シリコン酸化膜を形成する。次いで、例えばCMP(化学的機械研磨)法により、シリコン窒化膜の表面が露出するまでシリコン酸化膜を研磨し、シリコン窒化膜上のシリコン酸化膜を除去する。この結果、シリコンウェハ1に形成された溝、シリコン酸化膜及びシリコン窒化膜に形成された開口部の夫々にシリコン酸化膜が埋め込まれ、シリコン酸化膜よりなる素子分離膜2が形成される。次いで、ウェットエッチングにより、シリコンウェハ1の表面上のシリコン窒化膜を除去する。このとき、シリコンウェハ1の裏面のシリコン窒化膜もエッチング除去される。次いで、ウェットエッチングにより、シリコンウェハ1の表面に露出したシリコン酸化膜を除去する。このとき、シリコンウェハ1の裏面のシリコン酸化膜もエッチング除去される。
上記要領で素子分離膜2により素子領域(活性領域)が画定されたシリコンウェハ1の表面上には、MOSFET等の半導体素子が形成される(符号3はゲート酸化膜、符号4はゲート電極、符号5はソースまたはドレイン領域を夫々示す)。半導体素子は、層間絶縁膜6で被覆され、ゲート電極4、ソースまたはドレイン領域5と、後述する金属配線10との電気的接続を形成するために、層間絶縁膜6に、ゲート電極4、或いは、ソースまたはドレイン領域5の表面にまで貫通するコンタクト孔7を開口して、その内部に導電材料(コンタクトプラグ)を充填し、金属配線10との電気的接続を形成する。以下、コンタクト孔とその内部に充填された導電材料を総称してビアと言う。
図13に示す例では、半導体素子が形成されたシリコンウェハ1の表面上(層間絶縁膜6の表面上)には、1層目の金属配線10と、1層目の金属配線10を埋め込んだ層間絶縁膜11が形成され、更に、層間絶縁膜11の表面上には、2層目の金属配線20と、2層目の金属配線20を埋め込んだ層間絶縁膜21が形成され、更に、層間絶縁膜21の表面上には、3層目の金属配線30と、3層目の金属配線30を埋め込んだ層間絶縁膜31が形成されている。また、層間絶縁膜11には、1層目と2層目の金属配線10,20を電気的に接続するビア12が形成され、層間絶縁膜21には、2層目と3層目の金属配線20,30を電気的に接続するビア22が形成されている。尚、金属配線と層間絶縁膜とビアの形成を適宜繰り返すことで、任意の層数の多層金属配線が形成される。
各金属配線層において、層間絶縁膜の膜厚をその内部に金属配線が埋め込まれているか否かに拘わらず規定の膜厚にするために、層間絶縁膜成膜後の表面の凹凸を、化学的機械研磨(CMP)を用いて平坦化する技術が使用されている。この化学的機械研磨工程において、絶縁膜等の被研磨面を傷なく高速に研磨することが可能な酸化セリウム研磨剤を用いた研磨方法が下記の特許文献1に開示されている。
特開平10−152673号公報
近年、半導体装置に対するウェハ面積の増大に伴い半導体基板上に形成される多層配線を構成する配線層の膜厚ばらつきは大きくなる傾向にあるが、半導体装置の高速化の要請に伴い配線間の容量を均一に作成する必要がある。また、配線層の層間絶縁膜を厚く堆積させ、化学的機械研磨する工程はコストが多く掛かるため、できる限り薄く層間絶縁膜を堆積することが望ましい。これらの課題より、配線層の層間膜厚をより精度良く制御する必要がある。
本発明は、上記問題点に鑑みてなされたもので、その目的は、金属配線を埋設する層間絶縁膜の厚さを精度良く制御可能な半導体装置の製造方法を提供することである。
上記目的を達成するための本発明に係る半導体装置の製造方法は、素子が形成された半導体基板上に、金属配線膜を堆積する工程と、前記金属配線膜を所定の配線パターンに加工して金属配線を形成する工程と、前記金属配線の上面と前記金属配線の周囲の下地層の上面の高低差で規定される段差値を測定する工程と、前記金属配線と前記下地層を被覆する絶縁膜を、前記段差値の測定値と目標値の差分に基づいて設定された膜厚で堆積する工程と、前記絶縁膜を化学的機械研磨により平坦化する工程と、を有し、前記絶縁膜を堆積する工程において、前記段差値の測定値が前記目標値より大きい場合には、前記絶縁膜の膜厚を前記段差値の測定値が前記目標値である場合の前記絶縁膜の基準膜厚より厚く設定し、前記段差値の測定値が前記目標値より小さい場合には、前記絶縁膜の膜厚を前記基準膜厚より薄く設定することを第1の特徴とする。
上記第1の特徴の半導体装置の製造方法は、更に、前記絶縁膜を堆積する工程において、前記段差値の測定値が前記目標値より大きい場合には、前記絶縁膜の膜厚を前記基準膜厚より前記段差値の差分の絶対値だけ厚く設定し、前記段差値の測定値が前記目標値より小さい場合には、前記絶縁膜の膜厚を前記基準膜厚より前記段差値の差分の絶対値だけ薄く設定することを第2の特徴とする。
上記第1または第2の特徴の半導体装置の製造方法によれば、金属配線を被覆する絶縁膜を堆積する前に、金属配線の段差値を測定することにより、段差値の目標値からのずれを把握し、絶縁膜を堆積する際に、段差値の測定値と目標値の差分に基づいて設定された膜厚で堆積することにより、前記絶縁膜を化学的機械研磨により平坦化した後の当該ずれに起因する金属配線上の膜厚の目標値からの変動を軽減或いは補正することができ、金属配線の段差に起因する絶縁膜の基準膜厚からのずれを軽減或いは回避することができる。これにより、例えば、多層金属配線間の配線容量を狙い通りに形成することが可能となる。尚、第2の特徴の半導体装置の製造方法によれば、絶縁膜を堆積する際の堆積膜厚の設定時に段差値の目標値からのずれを完全に吸収できるため、金属配線の段差に起因する絶縁膜の基準膜厚からのずれを回避することができる。
また、上記第1または第2の特徴の半導体装置の製造方法は、更に、前記金属配線膜を堆積する工程、前記金属配線を形成する工程、前記段差値を測定する工程、前記絶縁膜を堆積する工程、及び、前記平坦化する工程の一連の工程を2回以上繰り返すことを第3の特徴とする。
上記第3の特徴の半導体装置の製造方法によれば、3層以上の多層金属配線構造において、中間層の金属配線の下層側及び上層側の各金属配線との間の配線容量を狙い通りに形成することが可能となる。
また、上記第1乃至第3の何れかの特徴の半導体装置の製造方法は、更に、前記段差値を測定する工程において、原子間力顕微鏡、光学式CD測定装置、触針式段差測定装置の内の少なくとも何れか1つを用いることを第4の特徴とする。
また、上記第1乃至第4の何れかの特徴の半導体装置の製造方法は、更に、前記絶縁膜を堆積する工程において、前記絶縁膜を高密度プラズマ化学気相成長法で形成することを第5の特徴とする。
また、上記第1乃至第5の何れかの特徴の半導体装置の製造方法は、更に、前記平坦化する工程において、化学的機械研磨の研磨剤として酸化セリウムを用いることを第6の特徴とする。
上記第4乃至第6の特徴の半導体装置の製造方法によれば、具体的に、金属配線の段差に起因する絶縁膜の基準膜厚からのずれを軽減或いは回避するのに好適な金属配線の段差値の測定方法、絶縁膜の成膜方法、及び、絶縁膜の研磨方法が実現できる。
また、上記第1乃至第6の何れかの特徴の半導体装置の製造方法は、更に、前記平坦化する工程後における前記金属配線上の前記絶縁膜の膜厚が、前記金属配線膜の膜厚の2分の1以下となるように、前記金属配線膜の膜厚と前記絶縁膜の堆積膜厚を設定することを第7の特徴とする。
上記第7の特徴の半導体装置の製造方法によれば、先ず、第1或いは第2の特徴によって、金属配線の段差に起因する絶縁膜の基準膜厚からのずれを軽減或いは回避することができるため、金属配線上の絶縁膜の膜厚を薄くでき、結果として絶縁膜の堆積膜厚を薄くでき、半導体装置の製造コスト及び製造時間を削減できる。
また、上記第1乃至第7の何れかの特徴の半導体装置の製造方法は、更に、前記金属配線膜を堆積する工程において、前記金属配線膜の材料が、Al、Cu、W、Ti、TiNの中から選択される金属を少なくとも含むことを第8の特徴とする。
また、上記第1乃至第8の何れかの特徴の半導体装置の製造方法は、更に、前記絶縁膜を堆積する工程において、前記絶縁膜が、SiO、FSG、PSG、SiOC、SiOCHから選択される少なくとも何れか1つであることを第9の特徴とする。
上記第8または第9の特徴の半導体装置の製造方法によれば、具体的に、金属配線の段差に起因する絶縁膜の基準膜厚からのずれを軽減或いは回避するのに好適な金属配線の膜種、及び、絶縁膜の膜種を選択できる。
次に、本発明に係る半導体装置の製造方法(以下、適宜「本発明方法」と略称する)について、図面を参照して説明する。
先ず、本発明方法の金属配線とそれを被覆埋設する層間絶縁膜の形成に関する主要工程部分について説明する。本発明方法の当該主要工程は、1層分の金属配線と層間絶縁膜を形成するのに、素子(下層の金属配線を含む)が形成された半導体基板上に、金属配線膜を堆積する第1堆積工程と、金属配線膜を所定の配線パターンに加工して金属配線を形成するパターニング工程と、金属配線の上面と金属配線の周囲の下地層の層間絶縁膜の上面の高低差で規定される段差値を測定する測定工程と、金属配線と下地層を被覆する絶縁膜を、段差値の測定値と目標値の差分に基づいて設定された膜厚で堆積する第2堆積工程と、絶縁膜を化学的機械研磨(CMP)により平坦化する研磨工程を備える。
本発明方法の特徴は、上述の測定工程を有し、第2堆積工程において、層間絶縁膜の膜厚を段差値の測定値と目標値Bの差分に基づいて設定する点にある。具体的には、層間絶縁膜の膜厚設定は、段差値の測定値が目標値Bより大きい場合には、層間絶縁膜の膜厚を段差値の測定値が目標値である場合の層間絶縁膜の基準膜厚Aより厚く、より好ましくは、基準膜厚Aより段差値の差分の絶対値αだけ厚く設定し、段差値の測定値が目標値Bより小さい場合には、層間絶縁膜の膜厚を基準膜厚Aより薄く、より好ましくは、基準膜厚Aより段差値の差分の絶対値αだけ薄く設定するようにして行われる。
次に、上述の測定工程を有し、第2堆積工程において、絶縁膜の膜厚を段差値の測定値と目標値Bの差分αに基づいて設定する効果について、絶縁膜の膜厚を差分αに基づいて設定する場合としない場合を比較して、図7〜図12を参照して説明する。尚、各図の図中の記号は、Aが層間絶縁膜の堆積膜厚の基準膜厚、A’が金属配線の段差値が目標値の場合の金属配線上の層間絶縁膜の膜厚、A”が金属配線の段差値が目標値より厚めの場合の金属配線上の層間絶縁膜の膜厚、Bが金属配線の段差値の目標値、Bが目標値Bより厚めの場合の金属配線の段差値、αが段差値の測定値と目標値の差分の絶対値を夫々示している。
ここで、上記研磨工程の化学的機械研磨は非プレストン特性(閾値圧力以下では殆ど研磨能を有さず、閾値圧力を超えると急激に研磨能が増大する特性)を有している例えば酸化セリウムを砥粒として用いたスラリーを使用し、層間絶縁膜の凸部のみを選択的に除去する。
図7と図8は、金属配線10の段差値が目標値Bに形成された場合の、第2堆積工程後と研磨工程後の金属配線10と層間絶縁膜11の各断面構造を模式的に示す概略断面図である。
図9と図10は、金属配線10の段差値が目標値Bより厚めに形成された場合で、層間絶縁膜11の膜厚を差分に基づいて設定せずに基準膜厚Aで層間絶縁膜11を堆積した場合の、第2堆積工程後と研磨工程後の金属配線10と層間絶縁膜11の各断面構造を模式的に示す概略断面図である。
図11と図12は、金属配線10の段差値が目標値Bより厚めに形成された場合で、層間絶縁膜11の膜厚を差分に基づいて設定した膜厚(A+α)で層間絶縁膜11を堆積した場合の、第2堆積工程後と研磨工程後の金属配線10と層間絶縁膜11の各断面構造を模式的に示す概略断面図である。
図7と図8に示す金属配線10の段差値が目標値Bに形成された場合では、金属配線10上の層間絶縁膜11の膜厚A’は、下記の数1に示すように、層間絶縁膜11の堆積膜厚(基準膜厚A)から化学的機械研磨により研磨される金属配線10の段差値(目標値B)に等しい膜厚を差し引いた値となる。当該膜厚A’が、金属配線10上の層間絶縁膜11の目標膜厚となる。
[数1]
A’=A−B
図9と図10に示す金属配線10の段差値が目標値Bより厚めに形成され、且つ、層間絶縁膜11の膜厚を差分に基づいて設定せずに基準膜厚Aで層間絶縁膜11を堆積した場合では、金属配線10上の層間絶縁膜11の膜厚A”は、下記の数2に示すように、層間絶縁膜11の堆積膜厚(基準膜厚A)から化学的機械研磨により研磨される金属配線10の段差値B(B=B+α)に等しい膜厚を差し引いた値となり、金属配線10上の層間絶縁膜11の目標膜厚A’より金属配線10の段差の測定値と目標値の差分の絶対値αだけ薄くなる。
[数2]
A”=A−(B+α)=A’−α
ここで、図9と図10は、金属配線10の段差値が目標値Bより厚めに形成された場合を示しているが、逆に、金属配線10の段差値が目標値Bより薄めに形成された場合では、上記とは逆に、金属配線10上の層間絶縁膜11の膜厚は、金属配線10上の層間絶縁膜11の目標膜厚A’より金属配線10の段差の測定値と目標値の差分の絶対値αだけ厚くなる。
図11と図12に示す金属配線10の段差値が目標値Bより厚めに形成され、且つ、層間絶縁膜11の膜厚を差分に基づいて設定した膜厚(A+α)で層間絶縁膜11を堆積した場合では、金属配線10上の層間絶縁膜11の膜厚Axは、下記の数3に示すように、層間絶縁膜11の堆積膜厚(A+α)から化学的機械研磨により研磨される金属配線10の段差値B(B=B+α)に等しい膜厚を差し引いた値となり、金属配線10上の層間絶縁膜11の目標膜厚A’と同じ膜厚となる。
[数3]
Ax=A+α−(B+α)=A’
ここで、図11と図12は、金属配線10の段差値が目標値Bより厚めに形成された場合を示しているが、逆に、金属配線10の段差値が目標値Bより薄め(B−α)に形成された場合でも、層間絶縁膜11の膜厚を差分に基づいて設定した膜厚(A−α)に設定することにより、金属配線10上の層間絶縁膜11の膜厚Axは、下記の数4に示すように、層間絶縁膜11の堆積膜厚(A−α)から化学的機械研磨により研磨される金属配線10の段差値(B−α)に等しい膜厚を差し引いた値となり、金属配線10上の層間絶縁膜11の目標膜厚A’と同じ膜厚となる。
[数4]
Ax=A−α−(B−α)=A’
次に、上述の本発明方法の主要工程を含む製造方法で作製された本実施形態の半導体装置と、当該製造方法の各工程について、図1〜図6を参照して説明する。図1は、本発明方法の主要工程を含む製造方法で作製された半導体装置の要部断面構造の一例を模式的に示す概略断面図である。図2〜図6は、本実施形態における製造方法(以下、単に「本製造方法」と称す)の工程を模式的に示す工程断面図である。
先ず、本実施形態の半導体装置(以下、単に「本半導体装置」と称す)の断面構造について図1を用いて説明する。図1に示すように、本半導体装置は、半導体素子としてのMOSFETが表面に形成されたシリコンウェハ(半導体基板)1と、シリコンウェハ1の上面側に形成された層間絶縁膜6,11,21,31と複数の金属配線10,20,30からなる多層金属配線構造体と、層間絶縁膜6,11,21を夫々貫通するビア7,12,22を備えて構成されている。MOSFETは、ゲート酸化膜3、ゲート電極4、ソース及びドレイン領域6を夫々備えて構成され、ビア7は、層間絶縁膜6に、ゲート電極4、或いは、ソースまたはドレイン領域5の表面にまで貫通するコンタクト孔を開口して、その内部に導電材料(コンタクトプラグ)を充填して形成され、1層目の金属配線10とMOSFETの各電極間を電気的に接続する。ビア12は、層間絶縁膜11に、1層目の金属配線10の表面にまで貫通するコンタクト孔を開口して、その内部に導電材料(コンタクトプラグ)を充填して形成され、2層目の金属配線20と1層目の金属配線10間を電気的に接続する。ビア22は、層間絶縁膜21に、2層目の金属配線20の表面にまで貫通するコンタクト孔を開口して、その内部に導電材料(コンタクトプラグ)を充填して形成され、3層目の金属配線30と2層目の金属配線20間を電気的に接続する。
次に、図2〜図6を参照して本製造方法について詳細に説明する。図2に示すように、シリコンウェハ1の表面に、公知の手法を用いて、例えば、図13に例示した従来の半導体装置の製造方法と同様の要領で、素子領域を画定する素子分離膜2を形成する。シリコンウェハ1の表面の素子分離膜2で画定された活性領域に、MOSFET等の半導体素子が形成される。
更に、図2に示すように、シリコンウェハ1の表面の活性領域に、ゲート酸化膜3を介してゲート電極4が形成される。ゲート電極4の側壁部分には、サイドウォール絶縁膜が形成される。ゲート電極4の両側のシリコンウェハ1の表面に、ソース/ドレイン領域5が形成される。ソース/ドレイン領域5は、ゲート電極4の側端部がサイドウォール絶縁膜下まで延在する浅く低濃度の不純物拡散領域と、ゲート電極4の側端部がサイドウォール絶縁膜端部まで延在する深く高濃度の不純物拡散領域とを有する。ソース/ドレイン領域5のチャネル領域側には、ポケット領域が形成される。ゲート電極4上及びソース/ドレイン領域5上には、夫々金属シリサイド膜(図示せず)が形成される。このようにして、ゲート電極4とソース/ドレイン領域5とを有するMOSFETが形成される。
更に、図2に示すように、MOSFETの形成されたシリコンウェハ1上には、シリコン窒化膜とシリコン酸化膜とが順次積層されてなる層間絶縁膜6を成膜し、MOSFETと上部の1層目の金属配線10を接続するためのビア7を形成する。
次に、図3に示すように図2で示した素子形成後の半導体基板(層間絶縁膜6)上にスパッタリング法により、例えばTiN膜、Al膜(Cuを0〜1%含有)、TiN膜を夫々50nm、400nm、100nmの膜厚(総膜厚550nm)で積層することにより、1層目の金属配線10用の金属配線膜を堆積し(第1堆積工程)、フォトリソグラフィー工程、エッチング工程を経て金属配線10をパターニングする(パターニング工程)。上記エッチング工程は、例えばCl、BCl、CHFの混合ガスを用いドライエッチング法で行い、金属配線10がパターニング後に隣接する配線間で短絡しないように下地層の層間絶縁膜6を50nmオーバーエッチングする。当該オーバーエッチングにより、金属配線10の段差(金属配線10の上面と金属配線10の周囲のオーバーエッチング後の下地層6の上面の高低差)は、金属配線10の膜厚550nmより50nm大きい600nmとなる。この段差値600nmが本製造方法における段差値の目標値となる。
次に、パターニング工程後のウェハを光学式CD測定装置(OCD)によりウェハ面内数点、例えば9点において、金属配線10の段差値を測定し、9点の測定値の平均値を求める(測定工程)。本実施形態では、測定結果の1例として、当該平均値は650nmとする。
次に、図4に示すように、金属配線10と下地層の層間絶縁膜6を被覆する層間絶縁膜11を堆積する(第2堆積工程)。本実施形態では高密度プラズマCVD(HDP−CVD)法によりSiH、O、Arの混合ガスを用い、300〜480℃の成膜温度でSiO膜を形成する。堆積する層間絶縁膜11の膜厚は、金属配線10の段差値が目標値600nmである場合の目標膜厚(基準膜厚と称す)を例えば800nmとしたとき、本実施形態では金属配線10の段差値(650nm)が目標値600nmより50nm大きいため、成膜レートより換算して基準膜厚より50nm大きい850nmを狙った成膜時間で層間絶縁膜11を堆積する。
次に、図5に示すように、化学的機械研磨により層間絶縁膜11の平坦化を行う(研磨工程)。化学的機械研磨による層間絶縁膜11の凸部の上方部分の除去は、例えば、凸部を選択的に除去する特性を有する絶縁層研磨用スラリーを用いて化学機械研磨することよって行うことができる。凸部を選択的に除去する特性を有する絶縁層研磨用スラリーは、例えば酸化セリウムを砥粒として含むスラリーで、非プレストン特性を有しているため、第1薄膜の凸部のみを選択的に除去する。本研磨工程により金属配線10上の層間絶縁膜11の厚さは約200nmとなる。本膜厚は、金属配線10の段差値が目標値600nmの場合に、層間絶縁膜11を基準膜厚800nmで堆積し、化学機械研磨した場合の金属配線10上の層間絶縁膜11の厚さ200nmに一致する。ここで、金属配線10上の層間絶縁膜11の厚さは、金属配線10の膜厚(550nm)の2分の1以下が好ましく、本実施形態では当該条件を満たしている。
次に、図6に示すように、1層目の金属配線10と後工程で形成される2層目の金属配線20を接続するためのビア12を、研磨工程後の層間絶縁膜11に形成する。引き続いて、図2〜図5に示した方法と同様に、2層目の金属配線20と層間絶縁膜21とビア22を順次形成する。2層目の金属配線20と層間絶縁膜21についても、上記測定工程を実施し、第2堆積工程において、上記と同じ要領で、層間絶縁膜21の膜厚を金属配線20の段差値の測定値と目標値の差分に基づいて設定することで、金属配線20上の層間絶縁膜21の厚さを、金属配線20の段差値が目標値の場合に、層間絶縁膜21を層間絶縁膜21の基準膜厚で堆積し、化学的機械研磨した場合の金属配線20上の層間絶縁膜21の目標膜厚に一致させることができる。引き続いて、図2〜図5に示した方法と同様に、3層目の金属配線30と層間絶縁膜31を順次形成する。但し、本実施形態では、3層目の金属配線30が最上層の金属配線であるので、必ずしも、上記測定工程を実施し、第2堆積工程において、上記と同じ要領で、層間絶縁膜31の膜厚を金属配線30の段差値の測定値と目標値の差分に基づいて設定する必要はない。
以上、図2〜図6に示す各工程を経て、本半導体装置が作製される。本実施形態によれば、金属配線の段差の目標値からのずれを測定することにより、そのずれ量を把握し、次の第2堆積工程において、層間絶縁膜の堆積膜厚を金属配線の段差値の測定値と目標値の差分に基づいて設定することで、そのずれ量を相殺し、化学的機械研磨後に金属配線上の層間絶縁膜の膜厚を目標値にすることが可能となり、本実施形態では金属配線上の層間絶縁膜の膜厚の目標値からのずれを解消できた。また、本発明方法では、金属配線の段差のばらつきを相殺可能なため、化学的機械研磨後に金属配線が露出しない層間絶縁膜の最低膜厚を低減することができ、例えば、本実施形態では、従来は金属配線上の層間絶縁膜の膜厚の目標値からのずれを解消できた。また、本発明方法では、金属配線の段差のばらつきを考慮して1000nm必要であった層間絶縁膜の膜厚を800nmまで低減することができた。この結果、上述の通り、金属配線10上の層間絶縁膜11の厚さを、金属配線10の膜厚(550nm)の2分の1以下に薄膜化できた。
次に、本発明方法の別実施形態について説明する。
〈1〉上記実施形態では、測定工程後に、金属配線の段差値の測定値と目標値の差分を求める際に、測定工程でウェハ面内の数点で測定した測定値の平均値を使用したが、平均値に代えて、測定値の最大値と最小値の中間値を使用しても構わない。
上記実施形態では、測定値と目標値の差分を求める際に、平均値或いは中間値を使用するため、金属配線の個々の段差における実際の値とは異なるため、完全には個々の段差における段差値の目標値からのずれを補正して、金属配線上の層間絶縁膜の膜厚を目標値に一致できない場合もあり得るが、少なくとも何も補正しない場合と比較すれば、金属配線上の層間絶縁膜の膜厚を目標値により近づけることができる。
〈2〉上記実施形態において、金属配線10,20,30がTiN膜とAl膜とTiN膜の3層構造である場合を説明したが、各金属配線10,20,30は、夫々の配線材料として、Al、Cu、W、Ti、TiNの中から選択される金属を含むその他の金属膜を用いても構わない。また、各金属配線10,20,30の成膜方法及び膜厚も上記実施形態の条件に限定されるものではない。
〈3〉上記実施形態では、測定工程において金属配線の段差を測定するのに光学式CD測定装置を用いたが、光学式CD測定装置に代えて、或いは、追加して原子間力顕微鏡(AFM)、触針式段差測定装置の何れかを用いても構わない。
〈4〉上記実施形態では、層間絶縁膜11,21,31はSiO膜である場合を説明したが、第1薄膜101はFSG膜、PSG膜、SiOC膜、SiOCH膜を用いても構わない、また、層間絶縁膜11,21,31の成膜方法として、高密度プラズマCVD法である場合を説明したが、成膜方法及び膜厚も上記実施形態の条件に限定されるものではない。
〈5〉上記実施形態では、化学的機械研磨により層間絶縁膜11,21,31を平坦化する研磨工程において、研磨剤として酸化セリウムを用いる場合を説明したが、研磨剤は、層間絶縁膜11,21,31に使用する膜材に対して非プレストン特性を持つ研磨材であればよく、上記実施形態の酸化セリウムに限定されるものではない。
〈6〉上記実施形態では、半導体素子としてのMOSFETが形成された多層金属配線構造体を備える半導体装置を想定したが、シリコンウェハ1に形成する半導体素子は、MOSFETに限定されるものではない。また、多層配線構造体の有する配線層の層数も、上記実施形態で例示した層数に限定されるものではない。
本発明に係る半導体装置の製造方法は、配線金属膜の段差のずれを次工程の層間絶縁膜の堆積工程で相殺することにより、層間絶縁膜の厚さを精度良く制御することが可能であり、電気特性のばらつきを軽減可能な半導体装置の製造方法に利用可能である。
本発明に係る半導体装置の製造方法で作製された半導体装置の要部断面構造の一例を模式的に示す概略断面図 本発明に係る半導体装置の製造方法の一実施形態における工程途中(第1堆積工程前)の要部断面構造を模式的に示す工程断面図 本発明に係る半導体装置の製造方法の一実施形態における工程途中(パターニング工程後)の要部断面構造を模式的に示す工程断面図 本発明に係る半導体装置の製造方法の一実施形態における工程途中(第2堆積工程後)の要部断面構造を模式的に示す工程断面図 本発明に係る半導体装置の製造方法の一実施形態における工程途中(研磨工程後)の要部断面構造を模式的に示す工程断面図 本発明に係る半導体装置の製造方法の一実施形態における工程途中(多層金属配線構造体の完成状態)の要部断面構造を模式的に示す工程断面図 パターニング工程において金属配線の段差値が目標値に形成された場合の第2堆積工程後の金属配線と層間絶縁膜の各断面構造を模式的に示す概略断面図 パターニング工程において金属配線の段差値が目標値に形成された場合の研磨工程後の金属配線と層間絶縁膜の各断面構造を模式的に示す概略断面図 パターニング工程において金属配線の段差値が目標値より厚めに形成され、層間絶縁膜を基準膜厚で堆積した場合の第2堆積工程後の金属配線と層間絶縁膜の各断面構造を模式的に示す概略断面図 パターニング工程において金属配線の段差値が目標値より厚めに形成され、層間絶縁膜を基準膜厚で堆積した場合の研磨工程後の金属配線と層間絶縁膜の各断面構造を模式的に示す概略断面図 パターニング工程において金属配線の段差値が目標値より厚めに形成され、層間絶縁膜の膜厚を差分に基づいて設定した膜厚で層間絶縁膜を堆積した場合の第2堆積工程後の金属配線と層間絶縁膜の各断面構造を模式的に示す概略断面図 パターニング工程において金属配線の段差値が目標値より厚めに形成され、層間絶縁膜の膜厚を差分に基づいて設定した膜厚で層間絶縁膜を堆積した場合の研磨工程後の金属配線と層間絶縁膜の各断面構造を模式的に示す概略断面図 従来の半導体装置の要部断面構造の一例を模式的に示す概略断面図
符号の説明
1: シリコンウェハ(半導体基板)
2: 素子分離膜
3: ゲート酸化膜
4: ゲート電極
5: ソース領域/ドレイン領域
6: 層間絶縁膜(下地層)
7,12,22: ビア(コンタクトプラグ)
10,20,30: 金属配線
11,21,31: 層間絶縁膜
A: 絶縁膜の堆積膜厚の基準膜厚
A’: 絶縁膜の金属配線上の膜厚(金属配線の段差値が目標値の場合)
A”: 絶縁膜の金属配線上の膜厚(金属配線の段差値が目標値より厚めの場合)
B: 金属配線の段差値の目標値
: 金属配線の段差値(目標値より厚めの場合)
α: 段差値の測定値と目標値の差分の絶対値

Claims (9)

  1. 素子が形成された半導体基板上に、金属配線膜を堆積する工程と、
    前記金属配線膜を所定の配線パターンに加工して金属配線を形成する工程と、
    前記金属配線の上面と前記金属配線の周囲の下地層の上面の高低差で規定される段差値を測定する工程と、
    前記金属配線と前記下地層を被覆する絶縁膜を、前記段差値の測定値と目標値の差分に基づいて設定された膜厚で堆積する工程と、
    前記絶縁膜を化学的機械研磨により平坦化する工程と、を有し、
    前記絶縁膜を堆積する工程において、前記段差値の測定値が前記目標値より大きい場合には、前記絶縁膜の膜厚を前記段差値の測定値が前記目標値である場合の前記絶縁膜の基準膜厚より厚く設定し、前記段差値の測定値が前記目標値より小さい場合には、前記絶縁膜の膜厚を前記基準膜厚より薄く設定することを特徴とする半導体装置の製造方法。
  2. 前記絶縁膜を堆積する工程において、前記段差値の測定値が前記目標値より大きい場合には、前記絶縁膜の膜厚を前記基準膜厚より前記段差値の差分の絶対値だけ厚く設定し、前記段差値の測定値が前記目標値より小さい場合には、前記絶縁膜の膜厚を前記基準膜厚より前記段差値の差分の絶対値だけ薄く設定することを特徴とする請求項1に記載の半導体装置の製造方法。
  3. 前記金属配線膜を堆積する工程、前記金属配線を形成する工程、前記段差値を測定する工程、前記絶縁膜を堆積する工程、及び、前記平坦化する工程の一連の工程を2回以上繰り返すことを特徴とする請求項1または2に記載の半導体装置の製造方法。
  4. 前記段差値を測定する工程において、原子間力顕微鏡、光学式CD測定装置、触針式段差測定装置の内の少なくとも何れか1つを用いることを特徴とする請求項1〜3の何れか1項に記載の半導体装置の製造方法。
  5. 前記絶縁膜を堆積する工程において、前記絶縁膜を高密度プラズマ化学気相成長法で形成することを特徴とする請求項1〜4の何れか1項に記載の半導体装置の製造方法。
  6. 前記平坦化する工程において、化学的機械研磨の研磨剤として酸化セリウムを用いることを特徴とする請求項1〜5の何れか1項に記載の半導体装置の製造方法。
  7. 前記平坦化する工程後における前記金属配線上の前記絶縁膜の膜厚が、前記金属配線膜の膜厚の2分の1以下となるように、前記金属配線膜の膜厚と前記絶縁膜の堆積膜厚を設定することを特徴とする請求項1〜6の何れか1項に記載の半導体装置の製造方法。
  8. 前記金属配線膜を堆積する工程において、前記金属配線膜の材料が、Al、Cu、W、Ti、TiNの中から選択される金属を少なくとも含むことを特徴とする請求項1〜7の何れか1項に記載の半導体装置の製造方法。
  9. 前記絶縁膜を堆積する工程において、前記絶縁膜が、SiO、FSG、PSG、SiOC、SiOCHから選択される少なくとも何れか1つであることを特徴とする請求項1〜8の何れか1項に記載の半導体装置の製造方法。

JP2008042344A 2008-02-25 2008-02-25 半導体装置の製造方法 Expired - Fee Related JP5221979B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008042344A JP5221979B2 (ja) 2008-02-25 2008-02-25 半導体装置の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008042344A JP5221979B2 (ja) 2008-02-25 2008-02-25 半導体装置の製造方法

Publications (2)

Publication Number Publication Date
JP2009200373A true JP2009200373A (ja) 2009-09-03
JP5221979B2 JP5221979B2 (ja) 2013-06-26

Family

ID=41143536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008042344A Expired - Fee Related JP5221979B2 (ja) 2008-02-25 2008-02-25 半導体装置の製造方法

Country Status (1)

Country Link
JP (1) JP5221979B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013004607A (ja) * 2011-06-14 2013-01-07 Rohm Co Ltd 半導体装置およびその製造方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6378551A (ja) * 1986-09-22 1988-04-08 Hitachi Ltd 配線接続方法
JPH024974A (ja) * 1988-06-13 1990-01-09 Fujitsu Ltd 半導体装置の製造装置
JPH0244755A (ja) * 1988-08-05 1990-02-14 Hitachi Ltd 半導体集積回路装置の製造方法およびそれに用いる製造装置
JPH10152673A (ja) * 1996-09-30 1998-06-09 Hitachi Chem Co Ltd 酸化セリウム研磨剤および基板の研磨法
JP2002198410A (ja) * 2000-12-27 2002-07-12 Mitsubishi Electric Corp 半導体装置の製造方法及び製造システム
JP2003535469A (ja) * 2000-06-01 2003-11-25 アトメル・コーポレイション 選択された厚さの層間誘電体材料を堆積させて半導体ウェハ上に最適の全体的平坦性を達成するための方法
JP2004040004A (ja) * 2002-07-08 2004-02-05 Renesas Technology Corp 配線設計データを利用した化学的機械的研磨方法、加工物の製造方法、およびデザインルール決定方法
JP2004319574A (ja) * 2003-04-11 2004-11-11 Trecenti Technologies Inc 半導体装置の製造方法、半導体製造装置の自動運転方法および自動運転システム、並びにcmp装置の自動運転方法
JP2005150340A (ja) * 2003-11-14 2005-06-09 Hitachi Ltd エッチング条件だし方法およびその装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6378551A (ja) * 1986-09-22 1988-04-08 Hitachi Ltd 配線接続方法
JPH024974A (ja) * 1988-06-13 1990-01-09 Fujitsu Ltd 半導体装置の製造装置
JPH0244755A (ja) * 1988-08-05 1990-02-14 Hitachi Ltd 半導体集積回路装置の製造方法およびそれに用いる製造装置
JPH10152673A (ja) * 1996-09-30 1998-06-09 Hitachi Chem Co Ltd 酸化セリウム研磨剤および基板の研磨法
JP2003535469A (ja) * 2000-06-01 2003-11-25 アトメル・コーポレイション 選択された厚さの層間誘電体材料を堆積させて半導体ウェハ上に最適の全体的平坦性を達成するための方法
JP2002198410A (ja) * 2000-12-27 2002-07-12 Mitsubishi Electric Corp 半導体装置の製造方法及び製造システム
JP2004040004A (ja) * 2002-07-08 2004-02-05 Renesas Technology Corp 配線設計データを利用した化学的機械的研磨方法、加工物の製造方法、およびデザインルール決定方法
JP2004319574A (ja) * 2003-04-11 2004-11-11 Trecenti Technologies Inc 半導体装置の製造方法、半導体製造装置の自動運転方法および自動運転システム、並びにcmp装置の自動運転方法
JP2005150340A (ja) * 2003-11-14 2005-06-09 Hitachi Ltd エッチング条件だし方法およびその装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013004607A (ja) * 2011-06-14 2013-01-07 Rohm Co Ltd 半導体装置およびその製造方法

Also Published As

Publication number Publication date
JP5221979B2 (ja) 2013-06-26

Similar Documents

Publication Publication Date Title
US11011421B2 (en) Semiconductor device having voids and method of forming same
JP2003152077A (ja) 半導体装置および半導体装置の製造方法
US6987322B2 (en) Contact etching utilizing multi-layer hard mask
JP2002009149A (ja) 半導体装置およびその製造方法
US20070018341A1 (en) Contact etching utilizing partially recessed hard mask
CN110838464A (zh) 金属内连线结构及其制作方法
JP2008010824A (ja) 半導体メモリ素子の製造方法
KR100827498B1 (ko) 다마신을 이용한 금속 배선의 제조 방법
JP4623949B2 (ja) 半導体集積回路装置の製造方法
JP5221979B2 (ja) 半導体装置の製造方法
US7932168B2 (en) Method for fabricating bitline in semiconductor device
JPH10116904A (ja) 半導体装置の製造方法
JP4472286B2 (ja) 変形されたデュアルダマシン工程を利用した半導体素子の金属配線形成方法
US7704820B2 (en) Fabricating method of metal line
JP5924198B2 (ja) 半導体装置の製造方法
KR100832018B1 (ko) 반도체 소자 및 그 제조 방법
US7361575B2 (en) Semiconductor device and method for manufacturing the same
US6709975B2 (en) Method of forming inter-metal dielectric
JP4379245B2 (ja) 半導体装置の製造方法
US7842608B2 (en) Method for manufacturing semiconductor device having via plug
KR20030052811A (ko) 반도체소자의 제조방법
JP2012038898A (ja) 半導体装置の製造方法および半導体装置
JP2006332405A (ja) 半導体装置及びその製造方法
JP2007335547A (ja) 半導体装置及びその製造方法
JP2006339479A (ja) 多層配線の製造方法および多層配線

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130308

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160315

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees