US20070018341A1 - Contact etching utilizing partially recessed hard mask - Google Patents
Contact etching utilizing partially recessed hard mask Download PDFInfo
- Publication number
- US20070018341A1 US20070018341A1 US11/540,392 US54039206A US2007018341A1 US 20070018341 A1 US20070018341 A1 US 20070018341A1 US 54039206 A US54039206 A US 54039206A US 2007018341 A1 US2007018341 A1 US 2007018341A1
- Authority
- US
- United States
- Prior art keywords
- layer
- region
- polysilicon
- forming
- hard mask
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000005530 etching Methods 0.000 title claims description 9
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims abstract description 49
- 229920005591 polysilicon Polymers 0.000 claims abstract description 49
- 239000000758 substrate Substances 0.000 claims abstract description 31
- 238000000034 method Methods 0.000 claims abstract description 15
- 229910052751 metal Inorganic materials 0.000 claims description 20
- 239000002184 metal Substances 0.000 claims description 20
- 229920002120 photoresistant polymer Polymers 0.000 claims description 16
- 230000004888 barrier function Effects 0.000 claims description 14
- 239000005380 borophosphosilicate glass Substances 0.000 claims description 8
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 claims description 4
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 claims description 4
- 238000005498 polishing Methods 0.000 claims description 4
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 4
- 229910052721 tungsten Inorganic materials 0.000 claims description 4
- 239000010937 tungsten Substances 0.000 claims description 4
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 3
- 230000015572 biosynthetic process Effects 0.000 claims description 3
- 239000000126 substance Substances 0.000 claims description 3
- 239000010936 titanium Substances 0.000 claims description 3
- 229910052719 titanium Inorganic materials 0.000 claims description 3
- 239000010410 layer Substances 0.000 description 112
- 239000004065 semiconductor Substances 0.000 description 13
- 238000004519 manufacturing process Methods 0.000 description 9
- 238000001459 lithography Methods 0.000 description 5
- 238000005229 chemical vapour deposition Methods 0.000 description 3
- 125000006850 spacer group Chemical group 0.000 description 3
- 238000000151 deposition Methods 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 239000011229 interlayer Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 210000003371 toe Anatomy 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/544—Marks applied to semiconductor devices or parts, e.g. registration marks, alignment structures, wafer maps
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/3105—After-treatment
- H01L21/311—Etching the insulating layers by chemical or physical means
- H01L21/31144—Etching the insulating layers by chemical or physical means using masks
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76801—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
- H01L21/76802—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/48—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
- H01L23/482—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of lead-in layers inseparably applied to the semiconductor body
- H01L23/485—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of lead-in layers inseparably applied to the semiconductor body consisting of layered constructions comprising conductive layers and insulating layers, e.g. planar contacts
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
Definitions
- the present invention relates to a semiconductor process and in particular to fabrication of a semiconductor device using a partially recessed hard mask.
- a photoresist layer having a thickness of 3000 ⁇ or more is not sensitive to the light used for lithography. That is, it is difficult to form a contact hole with a small critical dimension using a photoresist layer as an etch mask. Accordingly, the fabrication of a contact hole with small critical dimension using a polysilicon layer as an etch mask has been widely employed.
- FIG. 1 is a cross-section of a conventional semiconductor device fabricated using a single polysilicon hard mask.
- the semiconductor device comprises a substrate 100 , an interlayer dielectric (ILD) layer 112 , a polysilicon hard mask 114 , a barrier layer 116 , and a metal layer 118 .
- the substrate 100 comprises a device region 10 and an alignment region 20 , in which the device region 10 has a plurality of gate structures 107 formed thereon and the alignment region 20 has an opening 101 formed in the substrate 100 serving as an alignment mark (AM).
- the gate structure 107 comprises a gate dielectric layer 102 , a gate electrode 104 , and a gate spacer 106 .
- the ILD layer 112 overlies the substrate 100 , with the portion thereof over the device region 10 comprising a bit line contact hole (C B ) 113 a, a gate contact hole (C G ) 113 b, and a substrate contact hole (C S ) 113 c therein.
- the portion of ILD layer 112 on the alignment region 20 has an opening therein to expose the opening 101 .
- the polysilicon hard mask 114 is disposed on the ILD layer 112 and the portion thereof over the device region 10 has a plurality of holes to expose the bit line contact hole 113 a, the gate contact hole 113 b, and the substrate contact hole 113 c and the portion over the alignment region 20 has an opening therein to expose the opening (alignment mark) 101 .
- the barrier layer 116 comprising titanium nitride is conformably disposed on the polysilicon hard mask 114 and the inner surfaces of the contact holes 113 a, 113 b, and 113 c and the opening 101 .
- the metal layer 118 such as a tungsten layer, is conformably formed on the barrier layer 116 and the opening 101 and fills the contact holes 113 a, 113 b, and 113 c.
- the alignment mark 101 on the alignment region 20 may fail due to light strongly reflected from the thicker polysilicon hard mask 114 . That is, it is difficult to define the contact holes 113 a, 113 b, and 113 c during lithography.
- the polysilicon hard mask 114 over the alignment mark 101 must be removed prior to definition of the contact holes 113 a, 113 b, and 113 c. As a result, a deeper and wider opening is formed by removing the ILD layer 112 over the alignment mark 101 during definition of the contact holes 113 a, 113 b, and 113 c.
- the subsequent metal layer 118 is filled for the fabrication of contact plugs, the deeper and wider opening cannot be completely filled with the metal layer 118 .
- the metal layer 118 is conformably formed on the inner surface of the opening. A dishing effect thus occurs during planarization by chemical mechanical polishing (CMP). As a result, the metal layer 118 adjacent to the alignment mark 118 is disconnected, as depicted by the arrows 119 shown in FIG. 1 , thus reducing device reliability.
- An embodiment of the invention provides a method for forming contact holes using a partially recessed hard mask.
- a substrate with a device region and an alignment region comprising an opening therein serving as an alignment mark is provided.
- a dielectric layer is formed overlying the substrate and fills the opening.
- a polysilicon pattern layer is formed overlying the dielectric layer serving as the hard mask, in which the polysilicon pattern layer comprises a recessed region over the opening and a plurality of holes therein on the device region to expose the underlying dielectric layer.
- the exposed dielectric layer is etched using the polysilicon pattern layer as an etch mask, to form the plurality of contact holes in the dielectric layer on the device region.
- the polysilicon pattern layer has a thickness of about 700 to 1000 ⁇ and the recessed region a depth of about 300 to 500 ⁇ .
- the contact hole may comprise a bit line contact hole, a gate contact hole, or a substrate contact hole.
- An embodiment of the invention also provides a semiconductor device fabricated using a partially recessed hard mask.
- the device comprises a substrate, a dielectric layer, a polysilicon pattern layer, a barrier layer, and a metal layer.
- the substrate has a device region and an alignment region comprising an opening therein serving as an alignment mark.
- the dielectric layer overlies the substrate and fills the opening, with the dielectric layer on the device region comprising a plurality of contact holes therein.
- the polysilicon pattern layer is disposed on the dielectric layer serving as the hard mask, with that over the opening on the alignment region having a recessed region and that on the device region having a plurality of holes therein to expose the contact holes formed in the underlying dielectric layer.
- the barrier layer is conformably disposed on the polysilicon pattern layer and the inner surfaces of the contact holes and the recessed region.
- the metal layer is disposed on the barrier layer and fills the contact holes and the recessed region.
- the polysilicon pattern layer has a thickness of about 700 to 1000 ⁇ and the recessed region a depth of about 300 to 500 ⁇ .
- the contact hole may comprise a bit line contact hole, a gate contact hole, or a substrate contact hole.
- FIG. 1 is a cross-section of a conventional semiconductor device fabricated using a single polysilicon hard mask.
- FIGS. 2A to 2 E are cross-sections of a method for forming contact plugs using a partially recessed hard mask of an embodiment of the invention.
- a substrate 200 for the fabrication of a semiconductor memory device is provided.
- the substrate 200 may be, for example, a silicon substrate.
- the substrate 200 has a device region 30 , such as an array region or peripheral circuit region, and an alignment region 40 .
- the device region 30 has a plurality of gate structures 207 thereon and the alignment region 40 an opening 201 therein serving as an alignment mark (AM).
- the gate structure 207 comprises a gate dielectric layer 202 , a gate electrode 204 , and a gate spacer 206 .
- a dielectric layer 212 is deposited overlying the substrate 200 serving as an interlayer dielectric (ILD) layer, covering the gate structures 207 on the device region 30 and filling the opening 201 on the alignment region 40 .
- the ILD layer 212 may be a single layer or multiple layers, and can comprise, for example, a borophosphosilicate glass (BPSG) layer and a tetraethyl orthosilicate (TOES) oxide layer, and can be formed by the following steps.
- BPSG borophosphosilicate glass
- TOES tetraethyl orthosilicate
- BPSG layer 208 over the gate structures 207 is removed by chemical mechanical polishing (CMP). Thereafter, a TEOS oxide layer 210 is formed on the polished BPSG layer 208 by conventional deposition, such as chemical vapor deposition (CVD).
- CVD chemical vapor deposition
- a polysilicon layer 214 is deposited overlying the ILD layer 212 serving as a hard mask for subsequent etching.
- the polysilicon layer 214 may be formed by conventional deposition, such as CVD.
- the polysilicon layer 214 has a thickness of about 700 to 1000 ⁇ .
- a photoresist pattern layer 216 is formed on the polysilicon layer 214 , which has an opening 217 therein to expose the polysilicon layer 214 over the opening 201 on the alignment region 40 .
- the polysilicon layer 214 overlying the ILD layer 212 is patterned to form a polysilicon pattern layer 214 a which has a recessed region 219 over the opening 201 on the alignment region 40 and a plurality of holes 221 a, 221 b, and 221 c on the device region 30 to expose the underlying ILD layer 212 .
- the polysilicon pattern layer 214 a may be formed by following steps. First, the polysilicon layer 214 under the opening 217 is partially etched using the photoresist pattern layer 216 shown in FIG. 2B as an etch mask, to form the recessed region 219 over the opening (alignment mark) 201 which has a depth of about 300 to 500 ⁇ .
- the photoresist pattern layer 216 no longer needed, is subsequently removed.
- another photoresist pattern layer 218 is formed on the polysilicon pattern layer 214 a, in which the photoresist pattern layer 218 has a plurality of holes 221 a, 221 b, and 221 c therein on the device region 30 .
- the polysilicon pattern layer 214 a is etched using the photoresist pattern layer 218 as an etch mask, to transfer the plurality of holes 221 a, 221 b, and 221 c therein and expose the underlying ILD layer 212 for the subsequent definition of contact holes.
- the hole 221 a can be used for definition of a bit line contact hole (C B ), hole 221 b for definition of a gate contact hole (C G ), and hole 221 c for definition of a substrate contact hole (C S ).
- the alignment mark for subsequent lithography may fail due to light strongly reflected from the hard mask. Conversely, if the polysilicon hard mask is not thick enough, the subsequent etching may suffer. However, in this embodiment, the thickness of the polysilicon hard mask 214 a over the alignment mark 201 is reduced due to the formation of the recessed region 219 . Accordingly, the strongly reflected light is prevented during subsequent lithography for the definition of contact holes.
- the exposed ILD layer 212 on the device region 30 is etched using the polysilicon pattern layer 214 a as an etch mask to form a bit line contact hole 223 a, a gate contact hole 223 b, and a substrate contact hole 223 c.
- the ILD layer 212 over and in the alignment mark 201 is not etched due to the protection of the polysilicon pattern layer 214 a thereon. As a result, the step height on the alignment region 40 can be reduced when the subsequent metal layer is deposited thereon.
- a barrier layer 222 comprising, for example, titanium and titanium nitride, is conformably formed on the polysilicon pattern layer 214 a and the inner surfaces of the contact holes 223 a, 223 b, 223 c and the opening 219 .
- a metal layer 224 such as a tungsten layer, is formed on the barrier layer 222 , filling the contact holes 223 a, 223 b, 223 c and the opening 219 to complete fabrication of the contact plugs.
- the metal layer 224 is subsequently planarized by CMP.
- FIG. 2E also illustrates a semiconductor device fabricated using a partially recessed hard mask of an embodiment of the invention.
- the semiconductor device comprises a substrate 200 , an ILD layer 212 , a polysilicon pattern layer 214 a, a barrier layer 222 , and a metal layer 224 .
- the substrate comprises a device region 30 and an alignment region 40 , the device region 30 comprising a plurality of gate structures 207 thereon and the alignment region 40 an opening 201 therein serving as an alignment mark (AM).
- the gate structure 207 comprises a gate dielectric layer 202 , a gate electrode 204 , and a gate spacer 206 .
- the ILD layer 212 overlies the substrate 200 and fills the opening 201 , the ILD layer 212 on the device region 30 comprising a bit line contact hole 223 a, a gate contact hole 223 b, and a substrate contact hole 223 c therein.
- the ILD layer 212 may comprise a borophosphosilicate glass (BPSG) layer and a tetraethyl orthosilicate (TOES) oxide layer.
- BPSG borophosphosilicate glass
- TOES tetraethyl orthosilicate
- the polysilicon pattern layer 214 a is disposed on the ILD layer 212 serving as the partially recessed hard mask, with over the opening (alignment mark) 201 on the alignment region 40 comprising a recessed region 219 .
- the polysilicon pattern layer 214 a on the device region 30 comprises a plurality of holes therein to expose the bit line contact hole 223 a, the gate contact hole 223 b, and the substrate contact hole 223 c in the ILD layer 212 .
- the polysilicon pattern layer 214 a has a thickness of about 700 to 1000 ⁇ and the recessed region 219 a depth of about 300 to 500 ⁇ .
- the barrier layer 222 comprising, for example, titanium and titanium nitride, is conformably disposed on the polysilicon pattern layer 214 a and the inner surfaces of the contact holes 223 a, 223 b, and 223 c and the recessed region 219 .
- the metal layer 224 such as a tungsten layer, is disposed on the barrier layer 222 and fills the contact holes 223 a, 223 b, and 223 c and the recessed region 219 .
- the thickness of the polysilicon pattern layer 214 a over the alignment mark 201 may be reduced, eliminating strongly reflected light from the hard mask. Moreover, since the step height of the metal layer 224 on the alignment region 40 is reduced by the partially recessed hard mask 214 a, disconnection of the metal layer 224 adjacent to the alignment mark 201 may be prevented after planarization.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
Abstract
A method for forming contact holes using a partially recessed hard mask. A substrate with a device region and an alignment region having an opening therein, acting as an alignment mark, is provided. A dielectric layer is formed overlying the substrate and fills the opening. A polysilicon layer is formed on the dielectric layer, with over the opening on the alignment region comprising a recessed region and on the device region comprising a plurality of holes therein to expose the underlying dielectric layer. The exposed dielectric layer on the device region is etched to form contact holes therein.
Description
- The present invention relates to a semiconductor process and in particular to fabrication of a semiconductor device using a partially recessed hard mask.
- The increasing demand for highly integrated and high-performance semiconductor devices has fueled the need for advances in integrated circuit manufacturing technology. To produce an integrated circuit with high integration density, semiconductor device and interconnect sizes must be reduced. Lithography and etching form trenches and contact holes in the dielectric layer prior to formation of the interconnects. Thereafter, the trenches and contact holes are filled with a metal layer, followed by polishing to complete the fabrication. This is a typical damascene process in semiconductor manufacturing technology. In a common etching technique used to form openings, such as trenches or contact holes, in a target layer on a substrate, a photoresist pattern is formed on the target layer serving as an etch mask. Since the thickness of the photoresist pattern can dictate the etching rate, the photoresist pattern must be thick if the contact holes are to be very small.
- A photoresist layer having a thickness of 3000 Å or more, however, is not sensitive to the light used for lithography. That is, it is difficult to form a contact hole with a small critical dimension using a photoresist layer as an etch mask. Accordingly, the fabrication of a contact hole with small critical dimension using a polysilicon layer as an etch mask has been widely employed.
-
FIG. 1 is a cross-section of a conventional semiconductor device fabricated using a single polysilicon hard mask. The semiconductor device comprises asubstrate 100, an interlayer dielectric (ILD)layer 112, a polysiliconhard mask 114, abarrier layer 116, and ametal layer 118. Thesubstrate 100 comprises adevice region 10 and analignment region 20, in which thedevice region 10 has a plurality ofgate structures 107 formed thereon and thealignment region 20 has an opening 101 formed in thesubstrate 100 serving as an alignment mark (AM). Thegate structure 107 comprises a gatedielectric layer 102, agate electrode 104, and agate spacer 106. TheILD layer 112 overlies thesubstrate 100, with the portion thereof over thedevice region 10 comprising a bit line contact hole (CB) 113 a, a gate contact hole (CG) 113 b, and a substrate contact hole (CS) 113 c therein. The portion ofILD layer 112 on thealignment region 20 has an opening therein to expose the opening 101. The polysiliconhard mask 114 is disposed on theILD layer 112 and the portion thereof over thedevice region 10 has a plurality of holes to expose the bitline contact hole 113 a, thegate contact hole 113 b, and the substrate contact hole 113 c and the portion over thealignment region 20 has an opening therein to expose the opening (alignment mark) 101. Thebarrier layer 116 comprising titanium nitride is conformably disposed on the polysiliconhard mask 114 and the inner surfaces of thecontact holes metal layer 118, such as a tungsten layer, is conformably formed on thebarrier layer 116 and the opening 101 and fills thecontact holes - During the fabrication of the semiconductor device, the alignment mark 101 on the
alignment region 20 may fail due to light strongly reflected from the thicker polysiliconhard mask 114. That is, it is difficult to define thecontact holes hard mask 114 over the alignment mark 101 must be removed prior to definition of thecontact holes ILD layer 112 over the alignment mark 101 during definition of thecontact holes subsequent metal layer 118 is filled for the fabrication of contact plugs, the deeper and wider opening cannot be completely filled with themetal layer 118. Themetal layer 118, however, is conformably formed on the inner surface of the opening. A dishing effect thus occurs during planarization by chemical mechanical polishing (CMP). As a result, themetal layer 118 adjacent to thealignment mark 118 is disconnected, as depicted by thearrows 119 shown inFIG. 1 , thus reducing device reliability. - An embodiment of the invention provides a method for forming contact holes using a partially recessed hard mask. A substrate with a device region and an alignment region comprising an opening therein serving as an alignment mark is provided. A dielectric layer is formed overlying the substrate and fills the opening. A polysilicon pattern layer is formed overlying the dielectric layer serving as the hard mask, in which the polysilicon pattern layer comprises a recessed region over the opening and a plurality of holes therein on the device region to expose the underlying dielectric layer. The exposed dielectric layer is etched using the polysilicon pattern layer as an etch mask, to form the plurality of contact holes in the dielectric layer on the device region.
- The polysilicon pattern layer has a thickness of about 700 to 1000 Å and the recessed region a depth of about 300 to 500 Å. Moreover, the contact hole may comprise a bit line contact hole, a gate contact hole, or a substrate contact hole.
- An embodiment of the invention also provides a semiconductor device fabricated using a partially recessed hard mask. The device comprises a substrate, a dielectric layer, a polysilicon pattern layer, a barrier layer, and a metal layer. The substrate has a device region and an alignment region comprising an opening therein serving as an alignment mark. The dielectric layer overlies the substrate and fills the opening, with the dielectric layer on the device region comprising a plurality of contact holes therein. The polysilicon pattern layer is disposed on the dielectric layer serving as the hard mask, with that over the opening on the alignment region having a recessed region and that on the device region having a plurality of holes therein to expose the contact holes formed in the underlying dielectric layer. The barrier layer is conformably disposed on the polysilicon pattern layer and the inner surfaces of the contact holes and the recessed region. The metal layer is disposed on the barrier layer and fills the contact holes and the recessed region.
- The polysilicon pattern layer has a thickness of about 700 to 1000 Å and the recessed region a depth of about 300 to 500 Å. Moreover, the contact hole may comprise a bit line contact hole, a gate contact hole, or a substrate contact hole.
- Embodiments of the invention will become more fully understood from the detailed description given hereinbelow and the accompanying drawings, given by way of illustration only and thus not intended to be limitative of the invention.
-
FIG. 1 is a cross-section of a conventional semiconductor device fabricated using a single polysilicon hard mask. -
FIGS. 2A to 2E are cross-sections of a method for forming contact plugs using a partially recessed hard mask of an embodiment of the invention. - First, as shown in
FIG. 2A , asubstrate 200 for the fabrication of a semiconductor memory device is provided. Thesubstrate 200 may be, for example, a silicon substrate. In this embodiment, thesubstrate 200 has adevice region 30, such as an array region or peripheral circuit region, and analignment region 40. Thedevice region 30 has a plurality ofgate structures 207 thereon and thealignment region 40 an opening 201 therein serving as an alignment mark (AM). Moreover, thegate structure 207 comprises a gatedielectric layer 202, agate electrode 204, and agate spacer 206. - As shown in
FIG. 2B , adielectric layer 212 is deposited overlying thesubstrate 200 serving as an interlayer dielectric (ILD) layer, covering thegate structures 207 on thedevice region 30 and filling theopening 201 on thealignment region 40. TheILD layer 212 may be a single layer or multiple layers, and can comprise, for example, a borophosphosilicate glass (BPSG) layer and a tetraethyl orthosilicate (TOES) oxide layer, and can be formed by the following steps. First, aBPSG layer 208 blanketly covers thegate structures 207 on thedevice region 30 and fills theopening 201 on thealignment region 40. ExcessBPSG layer 208 over thegate structures 207 is removed by chemical mechanical polishing (CMP). Thereafter, aTEOS oxide layer 210 is formed on the polishedBPSG layer 208 by conventional deposition, such as chemical vapor deposition (CVD). - Next, a
polysilicon layer 214 is deposited overlying theILD layer 212 serving as a hard mask for subsequent etching. Thepolysilicon layer 214 may be formed by conventional deposition, such as CVD. Moreover, thepolysilicon layer 214 has a thickness of about 700 to 1000 Å. Next, aphotoresist pattern layer 216 is formed on thepolysilicon layer 214, which has anopening 217 therein to expose thepolysilicon layer 214 over theopening 201 on thealignment region 40. - Next, in
FIG. 2C , thepolysilicon layer 214 overlying theILD layer 212 is patterned to form apolysilicon pattern layer 214 a which has a recessedregion 219 over theopening 201 on thealignment region 40 and a plurality ofholes device region 30 to expose theunderlying ILD layer 212. Thepolysilicon pattern layer 214 a may be formed by following steps. First, thepolysilicon layer 214 under theopening 217 is partially etched using thephotoresist pattern layer 216 shown inFIG. 2B as an etch mask, to form the recessedregion 219 over the opening (alignment mark) 201 which has a depth of about 300 to 500 Å. Thephotoresist pattern layer 216, no longer needed, is subsequently removed. Next, anotherphotoresist pattern layer 218 is formed on thepolysilicon pattern layer 214 a, in which thephotoresist pattern layer 218 has a plurality ofholes device region 30. Thereafter, thepolysilicon pattern layer 214 a is etched using thephotoresist pattern layer 218 as an etch mask, to transfer the plurality ofholes underlying ILD layer 212 for the subsequent definition of contact holes. Thehole 221 a can be used for definition of a bit line contact hole (CB),hole 221 b for definition of a gate contact hole (CG), andhole 221 c for definition of a substrate contact hole (CS). - As mentioned above, if the polysilicon hard mask is too thick, the alignment mark for subsequent lithography may fail due to light strongly reflected from the hard mask. Conversely, if the polysilicon hard mask is not thick enough, the subsequent etching may suffer. However, in this embodiment, the thickness of the polysilicon
hard mask 214 a over thealignment mark 201 is reduced due to the formation of the recessedregion 219. Accordingly, the strongly reflected light is prevented during subsequent lithography for the definition of contact holes. - Next, in
FIG. 2D , after removal of thephotoresist pattern layer 218, the exposedILD layer 212 on thedevice region 30 is etched using thepolysilicon pattern layer 214 a as an etch mask to form a bitline contact hole 223 a, agate contact hole 223 b, and asubstrate contact hole 223 c. TheILD layer 212 over and in thealignment mark 201 is not etched due to the protection of thepolysilicon pattern layer 214 a thereon. As a result, the step height on thealignment region 40 can be reduced when the subsequent metal layer is deposited thereon. - Finally, in
FIG. 2E , abarrier layer 222 comprising, for example, titanium and titanium nitride, is conformably formed on thepolysilicon pattern layer 214 a and the inner surfaces of the contact holes 223 a, 223 b, 223 c and theopening 219. Thereafter, ametal layer 224, such as a tungsten layer, is formed on thebarrier layer 222, filling the contact holes 223 a, 223 b, 223 c and theopening 219 to complete fabrication of the contact plugs. Themetal layer 224 is subsequently planarized by CMP. -
FIG. 2E also illustrates a semiconductor device fabricated using a partially recessed hard mask of an embodiment of the invention. The semiconductor device comprises asubstrate 200, anILD layer 212, apolysilicon pattern layer 214 a, abarrier layer 222, and ametal layer 224. The substrate comprises adevice region 30 and analignment region 40, thedevice region 30 comprising a plurality ofgate structures 207 thereon and thealignment region 40 anopening 201 therein serving as an alignment mark (AM). Moreover, thegate structure 207 comprises agate dielectric layer 202, agate electrode 204, and agate spacer 206. TheILD layer 212 overlies thesubstrate 200 and fills theopening 201, theILD layer 212 on thedevice region 30 comprising a bitline contact hole 223 a, agate contact hole 223 b, and asubstrate contact hole 223 c therein. Moreover, theILD layer 212 may comprise a borophosphosilicate glass (BPSG) layer and a tetraethyl orthosilicate (TOES) oxide layer. Thepolysilicon pattern layer 214 a is disposed on theILD layer 212 serving as the partially recessed hard mask, with over the opening (alignment mark) 201 on thealignment region 40 comprising a recessedregion 219. Moreover, thepolysilicon pattern layer 214 a on thedevice region 30 comprises a plurality of holes therein to expose the bitline contact hole 223 a, thegate contact hole 223 b, and thesubstrate contact hole 223 c in theILD layer 212. Thepolysilicon pattern layer 214 a has a thickness of about 700 to 1000 Å and the recessed region 219 a depth of about 300 to 500 Å. Thebarrier layer 222 comprising, for example, titanium and titanium nitride, is conformably disposed on thepolysilicon pattern layer 214 a and the inner surfaces of the contact holes 223 a, 223 b, and 223 c and the recessedregion 219. Themetal layer 224, such as a tungsten layer, is disposed on thebarrier layer 222 and fills the contact holes 223 a, 223 b, and 223 c and the recessedregion 219. - According to an embodiment of the invention, the thickness of the
polysilicon pattern layer 214 a over thealignment mark 201 may be reduced, eliminating strongly reflected light from the hard mask. Moreover, since the step height of themetal layer 224 on thealignment region 40 is reduced by the partially recessedhard mask 214 a, disconnection of themetal layer 224 adjacent to thealignment mark 201 may be prevented after planarization. - While the invention has been described by way of example and in terms of preferred embodiments, it is to be understood that the invention is not limited thereto. To the contrary, it is intended to cover various modifications and similar arrangements (as would be apparent to those skilled in the art) . Therefore, the scope of the appended claims should be accorded the broadest interpretation to encompass all such modifications and similar arrangements.
Claims (11)
1. A method for forming contact holes using a partially recessed hard mask, comprising:
providing a substrate with a device region and an alignment region comprising an opening therein serving as an alignment mark;
forming a dielectric layer overlying the substrate and filling the opening;
forming a polysilicon pattern layer overlying the dielectric layer, acting as the hard mask, wherein the polysilicon pattern layer comprises a recessed region over the opening and a plurality of holes therein on the device region, exposing the underlying dielectric layer; and etching the exposed dielectric layer using the polysilicon pattern layer as an etch mask, forming a plurality of contact holes in the dielectric layer on the device region.
2. The method as claimed in claim 1 , wherein formation of the polysilicon pattern layer comprises:
forming a polysilicon layer overlying the dielectric layer;
partially etching the polysilicon layer over the opening on the alignment region using a first photoresist pattern layer as a hard mask, forming the recessed region;
removing the first photoresist pattern layer;
etching the polysilicon layer on the device region using a second photoresist pattern layer as a hard mask, forming a plurality of holes therein; and
removing the second photoresist pattern layer.
3. The method as claimed in claim 1 , wherein the dielectric layer comprises borophosphosilicate glass or tetraethyl orthosilicate oxide.
4. The method as claimed in claim 1 , wherein the polysilicon pattern layer has a thickness of about 700 to 1000 Å.
5. The method as claimed in claim 4 , wherein the recessed region has a depth of about 300 to 500 Å.
6. The method as claimed in claim 1 , wherein the contact hole comprises a bit line contact hole, a gate contact hole, or a substrate contact hole.
7. The method as claimed in claim 1 , further comprising:
conformably forming a barrier layer overlying the polysilicon pattern layer and the inner surfaces of the contact holes on the device region and the recessed region on the alignment region;
forming a metal layer on the barrier layer and filling the contact holes and the recessed region; and
planarizing the metal layer.
8. The method as claimed in claim 7 , wherein the barrier layer comprises titanium and titanium nitride.
9. The method as claimed in claim 7 , wherein the metal layer comprises tungsten.
10. The panel as claimed in claim 7 , wherein the metal layer is planarized by chemical mechanical polishing.
11-17. (canceled)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/540,392 US20070018341A1 (en) | 2004-06-09 | 2006-09-29 | Contact etching utilizing partially recessed hard mask |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW093116521A TWI245325B (en) | 2004-06-09 | 2004-06-09 | Semiconductor device with partially recessed hard mask and method for contact etching thereof |
TWTW93116521 | 2004-06-09 | ||
US10/923,585 US7135783B2 (en) | 2004-06-09 | 2004-08-20 | Contact etching utilizing partially recessed hard mask |
US11/540,392 US20070018341A1 (en) | 2004-06-09 | 2006-09-29 | Contact etching utilizing partially recessed hard mask |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/923,585 Division US7135783B2 (en) | 2004-06-09 | 2004-08-20 | Contact etching utilizing partially recessed hard mask |
Publications (1)
Publication Number | Publication Date |
---|---|
US20070018341A1 true US20070018341A1 (en) | 2007-01-25 |
Family
ID=35459692
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/923,585 Active 2024-12-11 US7135783B2 (en) | 2004-06-09 | 2004-08-20 | Contact etching utilizing partially recessed hard mask |
US11/540,392 Abandoned US20070018341A1 (en) | 2004-06-09 | 2006-09-29 | Contact etching utilizing partially recessed hard mask |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/923,585 Active 2024-12-11 US7135783B2 (en) | 2004-06-09 | 2004-08-20 | Contact etching utilizing partially recessed hard mask |
Country Status (2)
Country | Link |
---|---|
US (2) | US7135783B2 (en) |
TW (1) | TWI245325B (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110177670A1 (en) * | 2010-01-20 | 2011-07-21 | International Business Machines Corporaton | Through silicon via lithographic alignment and registration |
US20110177435A1 (en) * | 2010-01-20 | 2011-07-21 | International Business Machines Corporation | Photomasks having sub-lithographic features to prevent undesired wafer patterning |
US20110284966A1 (en) * | 2010-05-19 | 2011-11-24 | Taiwan Semiconductor Manufacturing Company, Ltd. | Structure and Method for Alignment Marks |
US9123657B2 (en) | 2013-09-16 | 2015-09-01 | Samsung Electronics Co., Ltd. | Method of fabricating semiconductor devices |
US20160352776A1 (en) * | 2012-11-21 | 2016-12-01 | Unify Gmbh & Co. Kg | Local port managing method and device, packet-oriented data network, digital storage media, and computer program product |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150206789A1 (en) * | 2014-01-17 | 2015-07-23 | Nanya Technology Corporation | Method of modifying polysilicon layer through nitrogen incorporation for isolation structure |
US11929283B2 (en) * | 2018-08-31 | 2024-03-12 | Taiwan Semiconductor Manufacturing Company, Ltd. | Barrier structure for semiconductor device |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5950093A (en) * | 1998-08-18 | 1999-09-07 | Wei; Chi-Hung | Method for aligning shallow trench isolation |
US6774452B1 (en) * | 2002-12-17 | 2004-08-10 | Cypress Semiconductor Corporation | Semiconductor structure having alignment marks with shallow trench isolation |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6534867B1 (en) * | 1999-09-27 | 2003-03-18 | Kabushiki Kaisha Toshiba | Semiconductor device, semiconductor element and method for producing same |
US20030109113A1 (en) * | 2001-12-07 | 2003-06-12 | Wen-Ying Wen | Method of making identification code of ROM and structure thereof |
-
2004
- 2004-06-09 TW TW093116521A patent/TWI245325B/en not_active IP Right Cessation
- 2004-08-20 US US10/923,585 patent/US7135783B2/en active Active
-
2006
- 2006-09-29 US US11/540,392 patent/US20070018341A1/en not_active Abandoned
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5950093A (en) * | 1998-08-18 | 1999-09-07 | Wei; Chi-Hung | Method for aligning shallow trench isolation |
US6774452B1 (en) * | 2002-12-17 | 2004-08-10 | Cypress Semiconductor Corporation | Semiconductor structure having alignment marks with shallow trench isolation |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110177670A1 (en) * | 2010-01-20 | 2011-07-21 | International Business Machines Corporaton | Through silicon via lithographic alignment and registration |
US20110177435A1 (en) * | 2010-01-20 | 2011-07-21 | International Business Machines Corporation | Photomasks having sub-lithographic features to prevent undesired wafer patterning |
US8039356B2 (en) * | 2010-01-20 | 2011-10-18 | International Business Machines Corporation | Through silicon via lithographic alignment and registration |
US20110284966A1 (en) * | 2010-05-19 | 2011-11-24 | Taiwan Semiconductor Manufacturing Company, Ltd. | Structure and Method for Alignment Marks |
US9000525B2 (en) * | 2010-05-19 | 2015-04-07 | Taiwan Semiconductor Manufacturing Company, Ltd. | Structure and method for alignment marks |
US10665585B2 (en) | 2010-05-19 | 2020-05-26 | Taiwan Semiconductor Manufacturing Company, Ltd. | Structure and method for alignment marks |
US11121128B2 (en) | 2010-05-19 | 2021-09-14 | Taiwan Semiconductor Manufacturing Company, Ltd. | Structure and method for alignment marks |
US20160352776A1 (en) * | 2012-11-21 | 2016-12-01 | Unify Gmbh & Co. Kg | Local port managing method and device, packet-oriented data network, digital storage media, and computer program product |
US9123657B2 (en) | 2013-09-16 | 2015-09-01 | Samsung Electronics Co., Ltd. | Method of fabricating semiconductor devices |
Also Published As
Publication number | Publication date |
---|---|
TWI245325B (en) | 2005-12-11 |
US20050275111A1 (en) | 2005-12-15 |
US7135783B2 (en) | 2006-11-14 |
TW200540969A (en) | 2005-12-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6271084B1 (en) | Method of fabricating a metal-insulator-metal (MIM), capacitor structure using a damascene process | |
US7348676B2 (en) | Semiconductor device having a metal wiring structure | |
US6140224A (en) | Method of forming a tungsten plug | |
US6316329B1 (en) | Forming a trench mask comprising a DLC and ASH protecting layer | |
KR100673884B1 (en) | Method for fabrication of semiconductor device capable of protecting attack by wet cleaning | |
US6074942A (en) | Method for forming a dual damascene contact and interconnect | |
US7064044B2 (en) | Contact etching utilizing multi-layer hard mask | |
US6124200A (en) | Method of fabricating an unlanded via | |
US20070018341A1 (en) | Contact etching utilizing partially recessed hard mask | |
US6602773B2 (en) | Methods of fabricating semiconductor devices having protected plug contacts and upper interconnections | |
US6593223B1 (en) | Method of forming dual damascene structure | |
KR100549787B1 (en) | A semiconductor device and method for manufacturing the same | |
CN113540096B (en) | Static random access memory element and manufacturing method thereof | |
US7601586B2 (en) | Methods of forming buried bit line DRAM circuitry | |
US6994949B2 (en) | Method for manufacturing multi-level interconnections with dual damascene process | |
US6849536B2 (en) | Inter-metal dielectric patterns and method of forming the same | |
US6680248B2 (en) | Method of forming dual damascene structure | |
US7897499B2 (en) | Method for fabricating a semiconductor device with self-aligned contact | |
US6800522B2 (en) | Method for fabricating semiconductor device with storage node contact structure | |
US6339027B1 (en) | Process for borderless stop in tin via formation | |
KR100590205B1 (en) | Interconnection Structure For Semiconductor Device And Method Of Forming The Same | |
US6498081B2 (en) | Method of manufacturing self-aligned contact hole | |
US6815337B1 (en) | Method to improve borderless metal line process window for sub-micron designs | |
KR100832018B1 (en) | Semiconductor device and method for manufacturing the same | |
KR100525088B1 (en) | Method of forming interconnection with dual damascene process |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |