US20070018341A1 - Contact etching utilizing partially recessed hard mask - Google Patents

Contact etching utilizing partially recessed hard mask Download PDF

Info

Publication number
US20070018341A1
US20070018341A1 US11/540,392 US54039206A US2007018341A1 US 20070018341 A1 US20070018341 A1 US 20070018341A1 US 54039206 A US54039206 A US 54039206A US 2007018341 A1 US2007018341 A1 US 2007018341A1
Authority
US
United States
Prior art keywords
layer
region
polysilicon
forming
hard mask
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/540,392
Inventor
Wen-Kuei Hsieh
Hui-Min Mao
Yi-Nan Chen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanya Technology Corp
Original Assignee
Nanya Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanya Technology Corp filed Critical Nanya Technology Corp
Priority to US11/540,392 priority Critical patent/US20070018341A1/en
Publication of US20070018341A1 publication Critical patent/US20070018341A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/544Marks applied to semiconductor devices or parts, e.g. registration marks, alignment structures, wafer maps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31144Etching the insulating layers by chemical or physical means using masks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76802Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/482Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of lead-in layers inseparably applied to the semiconductor body
    • H01L23/485Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of lead-in layers inseparably applied to the semiconductor body consisting of layered constructions comprising conductive layers and insulating layers, e.g. planar contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a semiconductor process and in particular to fabrication of a semiconductor device using a partially recessed hard mask.
  • a photoresist layer having a thickness of 3000 ⁇ or more is not sensitive to the light used for lithography. That is, it is difficult to form a contact hole with a small critical dimension using a photoresist layer as an etch mask. Accordingly, the fabrication of a contact hole with small critical dimension using a polysilicon layer as an etch mask has been widely employed.
  • FIG. 1 is a cross-section of a conventional semiconductor device fabricated using a single polysilicon hard mask.
  • the semiconductor device comprises a substrate 100 , an interlayer dielectric (ILD) layer 112 , a polysilicon hard mask 114 , a barrier layer 116 , and a metal layer 118 .
  • the substrate 100 comprises a device region 10 and an alignment region 20 , in which the device region 10 has a plurality of gate structures 107 formed thereon and the alignment region 20 has an opening 101 formed in the substrate 100 serving as an alignment mark (AM).
  • the gate structure 107 comprises a gate dielectric layer 102 , a gate electrode 104 , and a gate spacer 106 .
  • the ILD layer 112 overlies the substrate 100 , with the portion thereof over the device region 10 comprising a bit line contact hole (C B ) 113 a, a gate contact hole (C G ) 113 b, and a substrate contact hole (C S ) 113 c therein.
  • the portion of ILD layer 112 on the alignment region 20 has an opening therein to expose the opening 101 .
  • the polysilicon hard mask 114 is disposed on the ILD layer 112 and the portion thereof over the device region 10 has a plurality of holes to expose the bit line contact hole 113 a, the gate contact hole 113 b, and the substrate contact hole 113 c and the portion over the alignment region 20 has an opening therein to expose the opening (alignment mark) 101 .
  • the barrier layer 116 comprising titanium nitride is conformably disposed on the polysilicon hard mask 114 and the inner surfaces of the contact holes 113 a, 113 b, and 113 c and the opening 101 .
  • the metal layer 118 such as a tungsten layer, is conformably formed on the barrier layer 116 and the opening 101 and fills the contact holes 113 a, 113 b, and 113 c.
  • the alignment mark 101 on the alignment region 20 may fail due to light strongly reflected from the thicker polysilicon hard mask 114 . That is, it is difficult to define the contact holes 113 a, 113 b, and 113 c during lithography.
  • the polysilicon hard mask 114 over the alignment mark 101 must be removed prior to definition of the contact holes 113 a, 113 b, and 113 c. As a result, a deeper and wider opening is formed by removing the ILD layer 112 over the alignment mark 101 during definition of the contact holes 113 a, 113 b, and 113 c.
  • the subsequent metal layer 118 is filled for the fabrication of contact plugs, the deeper and wider opening cannot be completely filled with the metal layer 118 .
  • the metal layer 118 is conformably formed on the inner surface of the opening. A dishing effect thus occurs during planarization by chemical mechanical polishing (CMP). As a result, the metal layer 118 adjacent to the alignment mark 118 is disconnected, as depicted by the arrows 119 shown in FIG. 1 , thus reducing device reliability.
  • An embodiment of the invention provides a method for forming contact holes using a partially recessed hard mask.
  • a substrate with a device region and an alignment region comprising an opening therein serving as an alignment mark is provided.
  • a dielectric layer is formed overlying the substrate and fills the opening.
  • a polysilicon pattern layer is formed overlying the dielectric layer serving as the hard mask, in which the polysilicon pattern layer comprises a recessed region over the opening and a plurality of holes therein on the device region to expose the underlying dielectric layer.
  • the exposed dielectric layer is etched using the polysilicon pattern layer as an etch mask, to form the plurality of contact holes in the dielectric layer on the device region.
  • the polysilicon pattern layer has a thickness of about 700 to 1000 ⁇ and the recessed region a depth of about 300 to 500 ⁇ .
  • the contact hole may comprise a bit line contact hole, a gate contact hole, or a substrate contact hole.
  • An embodiment of the invention also provides a semiconductor device fabricated using a partially recessed hard mask.
  • the device comprises a substrate, a dielectric layer, a polysilicon pattern layer, a barrier layer, and a metal layer.
  • the substrate has a device region and an alignment region comprising an opening therein serving as an alignment mark.
  • the dielectric layer overlies the substrate and fills the opening, with the dielectric layer on the device region comprising a plurality of contact holes therein.
  • the polysilicon pattern layer is disposed on the dielectric layer serving as the hard mask, with that over the opening on the alignment region having a recessed region and that on the device region having a plurality of holes therein to expose the contact holes formed in the underlying dielectric layer.
  • the barrier layer is conformably disposed on the polysilicon pattern layer and the inner surfaces of the contact holes and the recessed region.
  • the metal layer is disposed on the barrier layer and fills the contact holes and the recessed region.
  • the polysilicon pattern layer has a thickness of about 700 to 1000 ⁇ and the recessed region a depth of about 300 to 500 ⁇ .
  • the contact hole may comprise a bit line contact hole, a gate contact hole, or a substrate contact hole.
  • FIG. 1 is a cross-section of a conventional semiconductor device fabricated using a single polysilicon hard mask.
  • FIGS. 2A to 2 E are cross-sections of a method for forming contact plugs using a partially recessed hard mask of an embodiment of the invention.
  • a substrate 200 for the fabrication of a semiconductor memory device is provided.
  • the substrate 200 may be, for example, a silicon substrate.
  • the substrate 200 has a device region 30 , such as an array region or peripheral circuit region, and an alignment region 40 .
  • the device region 30 has a plurality of gate structures 207 thereon and the alignment region 40 an opening 201 therein serving as an alignment mark (AM).
  • the gate structure 207 comprises a gate dielectric layer 202 , a gate electrode 204 , and a gate spacer 206 .
  • a dielectric layer 212 is deposited overlying the substrate 200 serving as an interlayer dielectric (ILD) layer, covering the gate structures 207 on the device region 30 and filling the opening 201 on the alignment region 40 .
  • the ILD layer 212 may be a single layer or multiple layers, and can comprise, for example, a borophosphosilicate glass (BPSG) layer and a tetraethyl orthosilicate (TOES) oxide layer, and can be formed by the following steps.
  • BPSG borophosphosilicate glass
  • TOES tetraethyl orthosilicate
  • BPSG layer 208 over the gate structures 207 is removed by chemical mechanical polishing (CMP). Thereafter, a TEOS oxide layer 210 is formed on the polished BPSG layer 208 by conventional deposition, such as chemical vapor deposition (CVD).
  • CVD chemical vapor deposition
  • a polysilicon layer 214 is deposited overlying the ILD layer 212 serving as a hard mask for subsequent etching.
  • the polysilicon layer 214 may be formed by conventional deposition, such as CVD.
  • the polysilicon layer 214 has a thickness of about 700 to 1000 ⁇ .
  • a photoresist pattern layer 216 is formed on the polysilicon layer 214 , which has an opening 217 therein to expose the polysilicon layer 214 over the opening 201 on the alignment region 40 .
  • the polysilicon layer 214 overlying the ILD layer 212 is patterned to form a polysilicon pattern layer 214 a which has a recessed region 219 over the opening 201 on the alignment region 40 and a plurality of holes 221 a, 221 b, and 221 c on the device region 30 to expose the underlying ILD layer 212 .
  • the polysilicon pattern layer 214 a may be formed by following steps. First, the polysilicon layer 214 under the opening 217 is partially etched using the photoresist pattern layer 216 shown in FIG. 2B as an etch mask, to form the recessed region 219 over the opening (alignment mark) 201 which has a depth of about 300 to 500 ⁇ .
  • the photoresist pattern layer 216 no longer needed, is subsequently removed.
  • another photoresist pattern layer 218 is formed on the polysilicon pattern layer 214 a, in which the photoresist pattern layer 218 has a plurality of holes 221 a, 221 b, and 221 c therein on the device region 30 .
  • the polysilicon pattern layer 214 a is etched using the photoresist pattern layer 218 as an etch mask, to transfer the plurality of holes 221 a, 221 b, and 221 c therein and expose the underlying ILD layer 212 for the subsequent definition of contact holes.
  • the hole 221 a can be used for definition of a bit line contact hole (C B ), hole 221 b for definition of a gate contact hole (C G ), and hole 221 c for definition of a substrate contact hole (C S ).
  • the alignment mark for subsequent lithography may fail due to light strongly reflected from the hard mask. Conversely, if the polysilicon hard mask is not thick enough, the subsequent etching may suffer. However, in this embodiment, the thickness of the polysilicon hard mask 214 a over the alignment mark 201 is reduced due to the formation of the recessed region 219 . Accordingly, the strongly reflected light is prevented during subsequent lithography for the definition of contact holes.
  • the exposed ILD layer 212 on the device region 30 is etched using the polysilicon pattern layer 214 a as an etch mask to form a bit line contact hole 223 a, a gate contact hole 223 b, and a substrate contact hole 223 c.
  • the ILD layer 212 over and in the alignment mark 201 is not etched due to the protection of the polysilicon pattern layer 214 a thereon. As a result, the step height on the alignment region 40 can be reduced when the subsequent metal layer is deposited thereon.
  • a barrier layer 222 comprising, for example, titanium and titanium nitride, is conformably formed on the polysilicon pattern layer 214 a and the inner surfaces of the contact holes 223 a, 223 b, 223 c and the opening 219 .
  • a metal layer 224 such as a tungsten layer, is formed on the barrier layer 222 , filling the contact holes 223 a, 223 b, 223 c and the opening 219 to complete fabrication of the contact plugs.
  • the metal layer 224 is subsequently planarized by CMP.
  • FIG. 2E also illustrates a semiconductor device fabricated using a partially recessed hard mask of an embodiment of the invention.
  • the semiconductor device comprises a substrate 200 , an ILD layer 212 , a polysilicon pattern layer 214 a, a barrier layer 222 , and a metal layer 224 .
  • the substrate comprises a device region 30 and an alignment region 40 , the device region 30 comprising a plurality of gate structures 207 thereon and the alignment region 40 an opening 201 therein serving as an alignment mark (AM).
  • the gate structure 207 comprises a gate dielectric layer 202 , a gate electrode 204 , and a gate spacer 206 .
  • the ILD layer 212 overlies the substrate 200 and fills the opening 201 , the ILD layer 212 on the device region 30 comprising a bit line contact hole 223 a, a gate contact hole 223 b, and a substrate contact hole 223 c therein.
  • the ILD layer 212 may comprise a borophosphosilicate glass (BPSG) layer and a tetraethyl orthosilicate (TOES) oxide layer.
  • BPSG borophosphosilicate glass
  • TOES tetraethyl orthosilicate
  • the polysilicon pattern layer 214 a is disposed on the ILD layer 212 serving as the partially recessed hard mask, with over the opening (alignment mark) 201 on the alignment region 40 comprising a recessed region 219 .
  • the polysilicon pattern layer 214 a on the device region 30 comprises a plurality of holes therein to expose the bit line contact hole 223 a, the gate contact hole 223 b, and the substrate contact hole 223 c in the ILD layer 212 .
  • the polysilicon pattern layer 214 a has a thickness of about 700 to 1000 ⁇ and the recessed region 219 a depth of about 300 to 500 ⁇ .
  • the barrier layer 222 comprising, for example, titanium and titanium nitride, is conformably disposed on the polysilicon pattern layer 214 a and the inner surfaces of the contact holes 223 a, 223 b, and 223 c and the recessed region 219 .
  • the metal layer 224 such as a tungsten layer, is disposed on the barrier layer 222 and fills the contact holes 223 a, 223 b, and 223 c and the recessed region 219 .
  • the thickness of the polysilicon pattern layer 214 a over the alignment mark 201 may be reduced, eliminating strongly reflected light from the hard mask. Moreover, since the step height of the metal layer 224 on the alignment region 40 is reduced by the partially recessed hard mask 214 a, disconnection of the metal layer 224 adjacent to the alignment mark 201 may be prevented after planarization.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

A method for forming contact holes using a partially recessed hard mask. A substrate with a device region and an alignment region having an opening therein, acting as an alignment mark, is provided. A dielectric layer is formed overlying the substrate and fills the opening. A polysilicon layer is formed on the dielectric layer, with over the opening on the alignment region comprising a recessed region and on the device region comprising a plurality of holes therein to expose the underlying dielectric layer. The exposed dielectric layer on the device region is etched to form contact holes therein.

Description

    BACKGROUND
  • The present invention relates to a semiconductor process and in particular to fabrication of a semiconductor device using a partially recessed hard mask.
  • The increasing demand for highly integrated and high-performance semiconductor devices has fueled the need for advances in integrated circuit manufacturing technology. To produce an integrated circuit with high integration density, semiconductor device and interconnect sizes must be reduced. Lithography and etching form trenches and contact holes in the dielectric layer prior to formation of the interconnects. Thereafter, the trenches and contact holes are filled with a metal layer, followed by polishing to complete the fabrication. This is a typical damascene process in semiconductor manufacturing technology. In a common etching technique used to form openings, such as trenches or contact holes, in a target layer on a substrate, a photoresist pattern is formed on the target layer serving as an etch mask. Since the thickness of the photoresist pattern can dictate the etching rate, the photoresist pattern must be thick if the contact holes are to be very small.
  • A photoresist layer having a thickness of 3000 Å or more, however, is not sensitive to the light used for lithography. That is, it is difficult to form a contact hole with a small critical dimension using a photoresist layer as an etch mask. Accordingly, the fabrication of a contact hole with small critical dimension using a polysilicon layer as an etch mask has been widely employed.
  • FIG. 1 is a cross-section of a conventional semiconductor device fabricated using a single polysilicon hard mask. The semiconductor device comprises a substrate 100, an interlayer dielectric (ILD) layer 112, a polysilicon hard mask 114, a barrier layer 116, and a metal layer 118. The substrate 100 comprises a device region 10 and an alignment region 20, in which the device region 10 has a plurality of gate structures 107 formed thereon and the alignment region 20 has an opening 101 formed in the substrate 100 serving as an alignment mark (AM). The gate structure 107 comprises a gate dielectric layer 102, a gate electrode 104, and a gate spacer 106. The ILD layer 112 overlies the substrate 100, with the portion thereof over the device region 10 comprising a bit line contact hole (CB) 113 a, a gate contact hole (CG) 113 b, and a substrate contact hole (CS) 113 c therein. The portion of ILD layer 112 on the alignment region 20 has an opening therein to expose the opening 101. The polysilicon hard mask 114 is disposed on the ILD layer 112 and the portion thereof over the device region 10 has a plurality of holes to expose the bit line contact hole 113 a, the gate contact hole 113 b, and the substrate contact hole 113 c and the portion over the alignment region 20 has an opening therein to expose the opening (alignment mark) 101. The barrier layer 116 comprising titanium nitride is conformably disposed on the polysilicon hard mask 114 and the inner surfaces of the contact holes 113 a, 113 b, and 113 c and the opening 101. The metal layer 118, such as a tungsten layer, is conformably formed on the barrier layer 116 and the opening 101 and fills the contact holes 113 a, 113 b, and 113 c.
  • During the fabrication of the semiconductor device, the alignment mark 101 on the alignment region 20 may fail due to light strongly reflected from the thicker polysilicon hard mask 114. That is, it is difficult to define the contact holes 113 a, 113 b, and 113 c during lithography. In order to solve this problem, the polysilicon hard mask 114 over the alignment mark 101 must be removed prior to definition of the contact holes 113 a, 113 b, and 113 c. As a result, a deeper and wider opening is formed by removing the ILD layer 112 over the alignment mark 101 during definition of the contact holes 113 a, 113 b, and 113 c. As the subsequent metal layer 118 is filled for the fabrication of contact plugs, the deeper and wider opening cannot be completely filled with the metal layer 118. The metal layer 118, however, is conformably formed on the inner surface of the opening. A dishing effect thus occurs during planarization by chemical mechanical polishing (CMP). As a result, the metal layer 118 adjacent to the alignment mark 118 is disconnected, as depicted by the arrows 119 shown in FIG. 1, thus reducing device reliability.
  • SUMMARY
  • An embodiment of the invention provides a method for forming contact holes using a partially recessed hard mask. A substrate with a device region and an alignment region comprising an opening therein serving as an alignment mark is provided. A dielectric layer is formed overlying the substrate and fills the opening. A polysilicon pattern layer is formed overlying the dielectric layer serving as the hard mask, in which the polysilicon pattern layer comprises a recessed region over the opening and a plurality of holes therein on the device region to expose the underlying dielectric layer. The exposed dielectric layer is etched using the polysilicon pattern layer as an etch mask, to form the plurality of contact holes in the dielectric layer on the device region.
  • The polysilicon pattern layer has a thickness of about 700 to 1000 Å and the recessed region a depth of about 300 to 500 Å. Moreover, the contact hole may comprise a bit line contact hole, a gate contact hole, or a substrate contact hole.
  • An embodiment of the invention also provides a semiconductor device fabricated using a partially recessed hard mask. The device comprises a substrate, a dielectric layer, a polysilicon pattern layer, a barrier layer, and a metal layer. The substrate has a device region and an alignment region comprising an opening therein serving as an alignment mark. The dielectric layer overlies the substrate and fills the opening, with the dielectric layer on the device region comprising a plurality of contact holes therein. The polysilicon pattern layer is disposed on the dielectric layer serving as the hard mask, with that over the opening on the alignment region having a recessed region and that on the device region having a plurality of holes therein to expose the contact holes formed in the underlying dielectric layer. The barrier layer is conformably disposed on the polysilicon pattern layer and the inner surfaces of the contact holes and the recessed region. The metal layer is disposed on the barrier layer and fills the contact holes and the recessed region.
  • The polysilicon pattern layer has a thickness of about 700 to 1000 Å and the recessed region a depth of about 300 to 500 Å. Moreover, the contact hole may comprise a bit line contact hole, a gate contact hole, or a substrate contact hole.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Embodiments of the invention will become more fully understood from the detailed description given hereinbelow and the accompanying drawings, given by way of illustration only and thus not intended to be limitative of the invention.
  • FIG. 1 is a cross-section of a conventional semiconductor device fabricated using a single polysilicon hard mask.
  • FIGS. 2A to 2E are cross-sections of a method for forming contact plugs using a partially recessed hard mask of an embodiment of the invention.
  • DETAILED DESCRIPTION
  • First, as shown in FIG. 2A, a substrate 200 for the fabrication of a semiconductor memory device is provided. The substrate 200 may be, for example, a silicon substrate. In this embodiment, the substrate 200 has a device region 30, such as an array region or peripheral circuit region, and an alignment region 40. The device region 30 has a plurality of gate structures 207 thereon and the alignment region 40 an opening 201 therein serving as an alignment mark (AM). Moreover, the gate structure 207 comprises a gate dielectric layer 202, a gate electrode 204, and a gate spacer 206.
  • As shown in FIG. 2B, a dielectric layer 212 is deposited overlying the substrate 200 serving as an interlayer dielectric (ILD) layer, covering the gate structures 207 on the device region 30 and filling the opening 201 on the alignment region 40. The ILD layer 212 may be a single layer or multiple layers, and can comprise, for example, a borophosphosilicate glass (BPSG) layer and a tetraethyl orthosilicate (TOES) oxide layer, and can be formed by the following steps. First, a BPSG layer 208 blanketly covers the gate structures 207 on the device region 30 and fills the opening 201 on the alignment region 40. Excess BPSG layer 208 over the gate structures 207 is removed by chemical mechanical polishing (CMP). Thereafter, a TEOS oxide layer 210 is formed on the polished BPSG layer 208 by conventional deposition, such as chemical vapor deposition (CVD).
  • Next, a polysilicon layer 214 is deposited overlying the ILD layer 212 serving as a hard mask for subsequent etching. The polysilicon layer 214 may be formed by conventional deposition, such as CVD. Moreover, the polysilicon layer 214 has a thickness of about 700 to 1000 Å. Next, a photoresist pattern layer 216 is formed on the polysilicon layer 214, which has an opening 217 therein to expose the polysilicon layer 214 over the opening 201 on the alignment region 40.
  • Next, in FIG. 2C, the polysilicon layer 214 overlying the ILD layer 212 is patterned to form a polysilicon pattern layer 214 a which has a recessed region 219 over the opening 201 on the alignment region 40 and a plurality of holes 221 a, 221 b, and 221 c on the device region 30 to expose the underlying ILD layer 212. The polysilicon pattern layer 214 a may be formed by following steps. First, the polysilicon layer 214 under the opening 217 is partially etched using the photoresist pattern layer 216 shown in FIG. 2B as an etch mask, to form the recessed region 219 over the opening (alignment mark) 201 which has a depth of about 300 to 500 Å. The photoresist pattern layer 216, no longer needed, is subsequently removed. Next, another photoresist pattern layer 218 is formed on the polysilicon pattern layer 214 a, in which the photoresist pattern layer 218 has a plurality of holes 221 a, 221 b, and 221 c therein on the device region 30. Thereafter, the polysilicon pattern layer 214 a is etched using the photoresist pattern layer 218 as an etch mask, to transfer the plurality of holes 221 a, 221 b, and 221 c therein and expose the underlying ILD layer 212 for the subsequent definition of contact holes. The hole 221 a can be used for definition of a bit line contact hole (CB), hole 221 b for definition of a gate contact hole (CG), and hole 221 c for definition of a substrate contact hole (CS).
  • As mentioned above, if the polysilicon hard mask is too thick, the alignment mark for subsequent lithography may fail due to light strongly reflected from the hard mask. Conversely, if the polysilicon hard mask is not thick enough, the subsequent etching may suffer. However, in this embodiment, the thickness of the polysilicon hard mask 214 a over the alignment mark 201 is reduced due to the formation of the recessed region 219. Accordingly, the strongly reflected light is prevented during subsequent lithography for the definition of contact holes.
  • Next, in FIG. 2D, after removal of the photoresist pattern layer 218, the exposed ILD layer 212 on the device region 30 is etched using the polysilicon pattern layer 214 a as an etch mask to form a bit line contact hole 223 a, a gate contact hole 223 b, and a substrate contact hole 223 c. The ILD layer 212 over and in the alignment mark 201 is not etched due to the protection of the polysilicon pattern layer 214 a thereon. As a result, the step height on the alignment region 40 can be reduced when the subsequent metal layer is deposited thereon.
  • Finally, in FIG. 2E, a barrier layer 222 comprising, for example, titanium and titanium nitride, is conformably formed on the polysilicon pattern layer 214 a and the inner surfaces of the contact holes 223 a, 223 b, 223 c and the opening 219. Thereafter, a metal layer 224, such as a tungsten layer, is formed on the barrier layer 222, filling the contact holes 223 a, 223 b, 223 c and the opening 219 to complete fabrication of the contact plugs. The metal layer 224 is subsequently planarized by CMP.
  • FIG. 2E also illustrates a semiconductor device fabricated using a partially recessed hard mask of an embodiment of the invention. The semiconductor device comprises a substrate 200, an ILD layer 212, a polysilicon pattern layer 214 a, a barrier layer 222, and a metal layer 224. The substrate comprises a device region 30 and an alignment region 40, the device region 30 comprising a plurality of gate structures 207 thereon and the alignment region 40 an opening 201 therein serving as an alignment mark (AM). Moreover, the gate structure 207 comprises a gate dielectric layer 202, a gate electrode 204, and a gate spacer 206. The ILD layer 212 overlies the substrate 200 and fills the opening 201, the ILD layer 212 on the device region 30 comprising a bit line contact hole 223 a, a gate contact hole 223 b, and a substrate contact hole 223 c therein. Moreover, the ILD layer 212 may comprise a borophosphosilicate glass (BPSG) layer and a tetraethyl orthosilicate (TOES) oxide layer. The polysilicon pattern layer 214 a is disposed on the ILD layer 212 serving as the partially recessed hard mask, with over the opening (alignment mark) 201 on the alignment region 40 comprising a recessed region 219. Moreover, the polysilicon pattern layer 214 a on the device region 30 comprises a plurality of holes therein to expose the bit line contact hole 223 a, the gate contact hole 223 b, and the substrate contact hole 223 c in the ILD layer 212. The polysilicon pattern layer 214 a has a thickness of about 700 to 1000 Å and the recessed region 219 a depth of about 300 to 500 Å. The barrier layer 222 comprising, for example, titanium and titanium nitride, is conformably disposed on the polysilicon pattern layer 214 a and the inner surfaces of the contact holes 223 a, 223 b, and 223 c and the recessed region 219. The metal layer 224, such as a tungsten layer, is disposed on the barrier layer 222 and fills the contact holes 223 a, 223 b, and 223 c and the recessed region 219.
  • According to an embodiment of the invention, the thickness of the polysilicon pattern layer 214 a over the alignment mark 201 may be reduced, eliminating strongly reflected light from the hard mask. Moreover, since the step height of the metal layer 224 on the alignment region 40 is reduced by the partially recessed hard mask 214 a, disconnection of the metal layer 224 adjacent to the alignment mark 201 may be prevented after planarization.
  • While the invention has been described by way of example and in terms of preferred embodiments, it is to be understood that the invention is not limited thereto. To the contrary, it is intended to cover various modifications and similar arrangements (as would be apparent to those skilled in the art) . Therefore, the scope of the appended claims should be accorded the broadest interpretation to encompass all such modifications and similar arrangements.

Claims (11)

1. A method for forming contact holes using a partially recessed hard mask, comprising:
providing a substrate with a device region and an alignment region comprising an opening therein serving as an alignment mark;
forming a dielectric layer overlying the substrate and filling the opening;
forming a polysilicon pattern layer overlying the dielectric layer, acting as the hard mask, wherein the polysilicon pattern layer comprises a recessed region over the opening and a plurality of holes therein on the device region, exposing the underlying dielectric layer; and etching the exposed dielectric layer using the polysilicon pattern layer as an etch mask, forming a plurality of contact holes in the dielectric layer on the device region.
2. The method as claimed in claim 1, wherein formation of the polysilicon pattern layer comprises:
forming a polysilicon layer overlying the dielectric layer;
partially etching the polysilicon layer over the opening on the alignment region using a first photoresist pattern layer as a hard mask, forming the recessed region;
removing the first photoresist pattern layer;
etching the polysilicon layer on the device region using a second photoresist pattern layer as a hard mask, forming a plurality of holes therein; and
removing the second photoresist pattern layer.
3. The method as claimed in claim 1, wherein the dielectric layer comprises borophosphosilicate glass or tetraethyl orthosilicate oxide.
4. The method as claimed in claim 1, wherein the polysilicon pattern layer has a thickness of about 700 to 1000 Å.
5. The method as claimed in claim 4, wherein the recessed region has a depth of about 300 to 500 Å.
6. The method as claimed in claim 1, wherein the contact hole comprises a bit line contact hole, a gate contact hole, or a substrate contact hole.
7. The method as claimed in claim 1, further comprising:
conformably forming a barrier layer overlying the polysilicon pattern layer and the inner surfaces of the contact holes on the device region and the recessed region on the alignment region;
forming a metal layer on the barrier layer and filling the contact holes and the recessed region; and
planarizing the metal layer.
8. The method as claimed in claim 7, wherein the barrier layer comprises titanium and titanium nitride.
9. The method as claimed in claim 7, wherein the metal layer comprises tungsten.
10. The panel as claimed in claim 7, wherein the metal layer is planarized by chemical mechanical polishing.
11-17. (canceled)
US11/540,392 2004-06-09 2006-09-29 Contact etching utilizing partially recessed hard mask Abandoned US20070018341A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/540,392 US20070018341A1 (en) 2004-06-09 2006-09-29 Contact etching utilizing partially recessed hard mask

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
TW093116521A TWI245325B (en) 2004-06-09 2004-06-09 Semiconductor device with partially recessed hard mask and method for contact etching thereof
TWTW93116521 2004-06-09
US10/923,585 US7135783B2 (en) 2004-06-09 2004-08-20 Contact etching utilizing partially recessed hard mask
US11/540,392 US20070018341A1 (en) 2004-06-09 2006-09-29 Contact etching utilizing partially recessed hard mask

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/923,585 Division US7135783B2 (en) 2004-06-09 2004-08-20 Contact etching utilizing partially recessed hard mask

Publications (1)

Publication Number Publication Date
US20070018341A1 true US20070018341A1 (en) 2007-01-25

Family

ID=35459692

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/923,585 Active 2024-12-11 US7135783B2 (en) 2004-06-09 2004-08-20 Contact etching utilizing partially recessed hard mask
US11/540,392 Abandoned US20070018341A1 (en) 2004-06-09 2006-09-29 Contact etching utilizing partially recessed hard mask

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/923,585 Active 2024-12-11 US7135783B2 (en) 2004-06-09 2004-08-20 Contact etching utilizing partially recessed hard mask

Country Status (2)

Country Link
US (2) US7135783B2 (en)
TW (1) TWI245325B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110177670A1 (en) * 2010-01-20 2011-07-21 International Business Machines Corporaton Through silicon via lithographic alignment and registration
US20110177435A1 (en) * 2010-01-20 2011-07-21 International Business Machines Corporation Photomasks having sub-lithographic features to prevent undesired wafer patterning
US20110284966A1 (en) * 2010-05-19 2011-11-24 Taiwan Semiconductor Manufacturing Company, Ltd. Structure and Method for Alignment Marks
US9123657B2 (en) 2013-09-16 2015-09-01 Samsung Electronics Co., Ltd. Method of fabricating semiconductor devices
US20160352776A1 (en) * 2012-11-21 2016-12-01 Unify Gmbh & Co. Kg Local port managing method and device, packet-oriented data network, digital storage media, and computer program product

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150206789A1 (en) * 2014-01-17 2015-07-23 Nanya Technology Corporation Method of modifying polysilicon layer through nitrogen incorporation for isolation structure
US11929283B2 (en) * 2018-08-31 2024-03-12 Taiwan Semiconductor Manufacturing Company, Ltd. Barrier structure for semiconductor device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5950093A (en) * 1998-08-18 1999-09-07 Wei; Chi-Hung Method for aligning shallow trench isolation
US6774452B1 (en) * 2002-12-17 2004-08-10 Cypress Semiconductor Corporation Semiconductor structure having alignment marks with shallow trench isolation

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6534867B1 (en) * 1999-09-27 2003-03-18 Kabushiki Kaisha Toshiba Semiconductor device, semiconductor element and method for producing same
US20030109113A1 (en) * 2001-12-07 2003-06-12 Wen-Ying Wen Method of making identification code of ROM and structure thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5950093A (en) * 1998-08-18 1999-09-07 Wei; Chi-Hung Method for aligning shallow trench isolation
US6774452B1 (en) * 2002-12-17 2004-08-10 Cypress Semiconductor Corporation Semiconductor structure having alignment marks with shallow trench isolation

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110177670A1 (en) * 2010-01-20 2011-07-21 International Business Machines Corporaton Through silicon via lithographic alignment and registration
US20110177435A1 (en) * 2010-01-20 2011-07-21 International Business Machines Corporation Photomasks having sub-lithographic features to prevent undesired wafer patterning
US8039356B2 (en) * 2010-01-20 2011-10-18 International Business Machines Corporation Through silicon via lithographic alignment and registration
US20110284966A1 (en) * 2010-05-19 2011-11-24 Taiwan Semiconductor Manufacturing Company, Ltd. Structure and Method for Alignment Marks
US9000525B2 (en) * 2010-05-19 2015-04-07 Taiwan Semiconductor Manufacturing Company, Ltd. Structure and method for alignment marks
US10665585B2 (en) 2010-05-19 2020-05-26 Taiwan Semiconductor Manufacturing Company, Ltd. Structure and method for alignment marks
US11121128B2 (en) 2010-05-19 2021-09-14 Taiwan Semiconductor Manufacturing Company, Ltd. Structure and method for alignment marks
US20160352776A1 (en) * 2012-11-21 2016-12-01 Unify Gmbh & Co. Kg Local port managing method and device, packet-oriented data network, digital storage media, and computer program product
US9123657B2 (en) 2013-09-16 2015-09-01 Samsung Electronics Co., Ltd. Method of fabricating semiconductor devices

Also Published As

Publication number Publication date
TWI245325B (en) 2005-12-11
US20050275111A1 (en) 2005-12-15
US7135783B2 (en) 2006-11-14
TW200540969A (en) 2005-12-16

Similar Documents

Publication Publication Date Title
US6271084B1 (en) Method of fabricating a metal-insulator-metal (MIM), capacitor structure using a damascene process
US7348676B2 (en) Semiconductor device having a metal wiring structure
US6140224A (en) Method of forming a tungsten plug
US6316329B1 (en) Forming a trench mask comprising a DLC and ASH protecting layer
KR100673884B1 (en) Method for fabrication of semiconductor device capable of protecting attack by wet cleaning
US6074942A (en) Method for forming a dual damascene contact and interconnect
US7064044B2 (en) Contact etching utilizing multi-layer hard mask
US6124200A (en) Method of fabricating an unlanded via
US20070018341A1 (en) Contact etching utilizing partially recessed hard mask
US6602773B2 (en) Methods of fabricating semiconductor devices having protected plug contacts and upper interconnections
US6593223B1 (en) Method of forming dual damascene structure
KR100549787B1 (en) A semiconductor device and method for manufacturing the same
CN113540096B (en) Static random access memory element and manufacturing method thereof
US7601586B2 (en) Methods of forming buried bit line DRAM circuitry
US6994949B2 (en) Method for manufacturing multi-level interconnections with dual damascene process
US6849536B2 (en) Inter-metal dielectric patterns and method of forming the same
US6680248B2 (en) Method of forming dual damascene structure
US7897499B2 (en) Method for fabricating a semiconductor device with self-aligned contact
US6800522B2 (en) Method for fabricating semiconductor device with storage node contact structure
US6339027B1 (en) Process for borderless stop in tin via formation
KR100590205B1 (en) Interconnection Structure For Semiconductor Device And Method Of Forming The Same
US6498081B2 (en) Method of manufacturing self-aligned contact hole
US6815337B1 (en) Method to improve borderless metal line process window for sub-micron designs
KR100832018B1 (en) Semiconductor device and method for manufacturing the same
KR100525088B1 (en) Method of forming interconnection with dual damascene process

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION