JP2009196845A - 単結晶製造装置、それに用いる貴金属枠及び貴金属基板ホルダー - Google Patents

単結晶製造装置、それに用いる貴金属枠及び貴金属基板ホルダー Download PDF

Info

Publication number
JP2009196845A
JP2009196845A JP2008039266A JP2008039266A JP2009196845A JP 2009196845 A JP2009196845 A JP 2009196845A JP 2008039266 A JP2008039266 A JP 2008039266A JP 2008039266 A JP2008039266 A JP 2008039266A JP 2009196845 A JP2009196845 A JP 2009196845A
Authority
JP
Japan
Prior art keywords
single crystal
substrate
noble metal
metal frame
manufacturing apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008039266A
Other languages
English (en)
Inventor
Takayuki Shimamune
孝之 島宗
Shigeharu Akatsuka
重治 赤塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furuya Metal Co Ltd
Original Assignee
Furuya Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furuya Metal Co Ltd filed Critical Furuya Metal Co Ltd
Priority to JP2008039266A priority Critical patent/JP2009196845A/ja
Publication of JP2009196845A publication Critical patent/JP2009196845A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Led Devices (AREA)

Abstract

【課題】単結晶製造装置において、良質な単結晶を成長させると共に、繰り返し使用可能な枠および基板ホルダーを提供する。
【解決手段】気相法によって基板7上に単結晶10を成長させる単結晶製造装置において、貴金属枠5を配置し、貴金属枠5の枠内で単結晶10を成長させ、かつ、貴金属枠5の線膨張係数が、単結晶10の線膨張係数と比較して、±1.0×10−6(1/K)の範囲にあるものとする。また、基板7の単結晶成長面には、成長方向制御薄膜6を形成しておく。
【選択図】図2

Description

本発明は、気相法による単結晶製造装置、特にハイドライド気相成長法(H−VPE法:Hydride Vapor Phase Epitaxy)を含むVPE法によって基板上に単結晶を成長させる単結晶製造装置に関する。さらに、単結晶を成長させるときに単結晶の縁部を画定する貴金属枠及び基板を保持する基板ホルダーに関する。
発光ダイオード(LED)の結晶を成長させるためのエピタキシャル結晶成長法には、大別してLPE法、VPE法、OMVPE法、MBE法の4種類がある。それぞれ、成長可能な結晶材料、成膜速度、残留不純物、制御性などに得手不得手があり、求められるLED特性に応じて選択される。ここで、VPE法(気相成長法)とは、高温で気体状の塩化物ガスから結晶(固体)を成長させる方法である。LEDを構成する金属材料は、高温で塩化水素ガスと反応して気体状の塩化物ガスを生成する。VPE法は、高温部で生成した塩化物ガスと非金属材料の水素化物ガスを、低温部に設けた基板上で反応させ、半導体結晶を得る方法である。特に非金属材料に水素化物ガスを用いるVPE法を、ハイドライド気相成長法という。この方法は、成膜速度が速く厚膜成長をさせる場合に適性を有する(非特許文献1を参照。)。
ハイドライド気相成長法を含むVPE法で単結晶を製造するに際し、結晶を成長させる基板としてはセラミックス基板を用いる。例えばGaN単結晶を成長させる場合、成長用仮支持基板であるサファイヤに載置したGaNの種単結晶基板上に成長させる(例えば特許文献1を参照。)なお、特許文献1には、種結晶基板のズレを防止するためサファイヤの表面の周縁に土手部を設けている。この土手部内に種結晶基板を嵌合させる。なお、種結晶ではなく、サファイヤ基板上にGaNをエピタキシャル成長させる場合には格子の整合性を取るためサファイヤ基板上にバッファー層を設ける(例えば特許文献2を参照。)
特定非営利活動法人LED照明推進協議会ホームページ(http://www.led.or.jp/handbook/a_1_6_1_led_dosaso_seichohoho.htm) 特開2006‐120785号公報 特開2004‐269313号公報
ところで、上記のとおり気相法で単結晶の成長を試みた場合、成長させた単結晶自体の形状が、成長方向に対して側面となる部分が成長面に対してほぼ垂直となっており、かつ、単結晶の天面が端まで水平であるほど、形状を整える加工の手間が省け、かつ、歩留まりが高まる。そこで基板上に枠、例えば基板と同素材のセラミックス枠を配置し、その枠内で単結晶を成長させ、成長後に枠を取り外すことで単結晶の端部の形状を上記のように整えることができる。
なお、特許文献2に開示された土手部はあくまで種結晶基板の横ズレを予防するためのものであり、単結晶の端部の形状を整える機能は有していない。土手部の高さが種結晶基板の表面を僅かに覆う程度までしかないからである。
いずれにしてもハイドライド気相成長法を含むVPE法において単結晶を成長させるときに、使用するセラミックス基板及びセラミックス枠は、高温での耐熱性及び耐食性を有しており、高温での単結晶生成中に、熱膨張等による変形並びに熱劣化、腐食等による破損が少ない。そのため、単結晶を育成するための基板の平坦性や、単結晶を生成するための方向を整えることができる。
しかし、セラミックス基板及びセラミックス枠を用いたとしても、セラミックス基板及びセラミックス枠と、成長させる単結晶との間で熱膨張係数の差が大きいと、成長後に室温まで温度を下げる際に結晶にひずみが入る問題や、クラック等の結晶の破壊の問題、結晶欠陥の生成の問題が生じ、単結晶製造の歩留まりが不十分となる。また、成長させる単結晶と枠の親和性が良好な場合、枠を外すときに、成長させた単結晶にダメージを与えてしまい、使える部分が目的のサイズより小さくなるという問題が生じる。更に、単結晶は、高温雰囲気下で成長させられると共に、反応系の副生成物として生成する極めて腐食性の強いガスに晒される為、使用する基板と枠は成長させる単結晶との線膨張係数の差が極めて小さい上に、耐熱性と耐食性が良好で、単結晶との親和性が低い材料で形成されていることが好ましい。
セラミックスは、上記の条件を十分に満たしておらず、線膨張係数の制御が難しいという問題、靭性の問題、急熱・急冷による膨張・収縮の繰り返しによって破壊が生じ易い問題がある。また、セラミックス特有の脆性のために繰り返しの使用が困難という問題がある。
LED用基板単結晶としてのGaNをはじめ、ハイドライド気相成長法による製造方法は尤も一般的であり、生成結晶のより完全で欠陥のない構造体の製造技術は最も重要であるとともに、そのコストダウンが急務になっている。そこで本発明の目的は、単結晶製造装置において、良質な単結晶を成長させると共に、枠を繰り返し使用可能とすることである。また、単結晶製造装置において基板固定用に使用される基板ホルダーについても繰り返し使用可能とすることを目的とする。
本発明者らは、枠の材料について検討したところ、枠を貴金属枠とすることで上記課題が解決できることを見出し、本発明を完成させた。すなわち、本発明に係る単結晶製造装置は、気相法によって基板上に単結晶を成長させる単結晶製造装置において、貴金属枠を配置し、該貴金属枠の枠内で前記単結晶を成長させ、かつ、該貴金属枠の線膨張係数が、前記単結晶の線膨張係数と比較して、±1.0×10−6(1/K)の範囲にあることを特徴とする。このような貴金属枠は、単結晶生成の条件に対して充分な耐熱性と耐食性を有しており、成長させる単結晶との間に親和性がないことから、貴金属枠を外すときに当該単結晶の破壊を抑制することができる。なお、本発明においては、貴金属の用語の意味には、貴金属同士の合金、貴金属を主成分として高融点金属等を含有する貴金属基合金及び酸化物粒子等の粒子を分散した貴金属の概念を包含するものとする。
本発明に係る単結晶製造装置では、前記基板は、単結晶成長面に成長方向制御薄膜が形成された基板であり、前記貴金属枠は、前記成長方向制御薄膜の表面に配置されて該表面の周縁部を覆っており、前記貴金属枠で囲まれた前記成長方向制御薄膜の表面上が前記単結晶を成長させる領域である形態を包含する。基板上の周縁部を除いて単結晶を端まで形良く成長させる形態である。
本発明に係る単結晶製造装置では、前記成長方向制御薄膜が形成された基板が、単結晶基板又は表面に単結晶膜が形成されている貴金属基板である形態が包含される。基板としてはエピタキシャル成長をさせやすいことから単結晶基板を用いる形態がある。また、単結晶基板は高価なことから、単結晶膜が形成されている貴金属基板を用いてもよい。このとき貴金属基板は再利用が可能である。
また、本発明に係る単結晶製造装置では、前記基板は、前記単結晶の種結晶となる基板であり、前記貴金属枠は、前記種結晶基板を側面から取り囲んでズレを防止している形態も包含される。種結晶の表面全面に単結晶を端まで形良く成長させる形態である。
本発明に係る単結晶製造装置では、前記基板は、基板の裏面縁端を保持する基板ホルダーを挟んで配置された均熱板によって加熱され、かつ、前記基板ホルダーは、Pt又はIr或いはこれらの少なくともいずれか一方を主成分とする合金からなるか或いはPt又はIr或いはこれらの少なくともいずれか一方を主成分とする合金で被膜されたMo又はW或いはこれらの少なくともいずれか一方を主成分とする合金の基材からなることが好ましい。基板ホルダーで基板を保持させることによって基板のズレを予防でき、繰り返し使用できる。特に基板が単結晶基板又は貴金属基板である場合に前記基板ホルダーを使用することが好ましい。
本発明に係る単結晶製造装置では、前記成長させる単結晶の線膨張係数が、4.0×10−6〜10.0×10−6(1/K)の範囲にある形態が包含される。
本発明に係る単結晶製造装置では、前記成長させる単結晶は、GaN単結晶、ZnO単結晶、フェライト単結晶又はペロブスカイト構造を有する単結晶であるある形態が包含される。
本発明に係る単結晶製造装置では、前記貴金属枠は、Pt又はIr或いはこれらの少なくともいずれか一方を主成分とする合金からなるか或いはPt又はIr或いはこれらの少なくともいずれか一方を主成分とする合金で被膜されたMo又はW或いはこれらの少なくともいずれか一方を主成分とする合金の基材からなることが好ましい。GaN単結晶、ZnO単結晶、フェライト単結晶又はペロブスカイト構造を有する単結晶は、線膨張係数が4.0×10−6〜10.0×10−6(1/K)の範囲にあり、前記貴金属枠の何れかを選択することで線膨張係数の調整が可能になり、また、前記貴金属枠は単結晶生成の条件に対して充分な耐熱性と耐食性を有しており、成長させる単結晶との間に親和性がないことから、貴金属枠を外すときに当該単結晶の破壊を抑制することができる。また、繰り返し使用ができる。
本発明に係る単結晶製造装置では、前記貴金属基板が、Pt又はIr或いはこれらの少なくともいずれか一方を主成分とする合金で形成されていることが好ましい。貴金属枠の場合と同様に前記貴金属基板の何れかを選択することで線膨張係数の調整が可能になり、また、前記貴金属基板は単結晶生成の条件に対して充分な耐熱性と耐食性を有しており、成長させる単結晶との間に親和性がないことから、貴金属枠を外すときに当該単結晶の破壊を抑制することができる。また、繰り返し使用ができる。
本発明に係る単結晶製造装置では、前記単結晶基板が、GaN単結晶、Al単結晶、フェライト単結晶又はZnO単結晶で形成されているか或いはペロブスカイト構造を有する単結晶で形成されている形態が包含される。成長させる単結晶と同種の単結晶基板を用いることで、転位の少ない高品質の単結晶を成長させることができる。
本発明に係る単結晶製造装置では、前記単結晶膜が、GaN単結晶、フェライト単結晶、Al単結晶又はZnO単結晶で形成されているか或いはペロブスカイト構造を有する単結晶で形成されている形態が包含される。貴金属基板の上に成膜した単結晶膜の上にGaN、ZnO、フェライト又はペロブスカイトの単結晶を生成できる状況を作る。
本発明に係る単結晶製造装置では、前記成長方向制御薄膜が、AlN、フェライト、Pt、Pt合金、Ir又はIr合金で形成されていることが好ましい。単結晶を生成するときの成長方位を定めることができる。
本発明に係る貴金属枠は、気相法によって基板上に単結晶を成長させるときに、前記単結晶の成長方向に対して側面側に配置される枠であって、Pt又はIr或いはこれらの少なくともいずれか一方を主成分とする合金からなるか或いはPt又はIr或いはこれらの少なくともいずれか一方を主成分とする合金で被膜されたMo又はW或いはこれらの少なくともいずれか一方を主成分とする合金の基材からなることを特徴とする。
本発明に係る貴金属基板ボルダーは、気相法によって基板上に単結晶を成長させるときに、前記基板の裏面縁端を保持し、基板と均熱板との間に配置される基板ホルダーであって、Pt又はIr或いはこれらの少なくともいずれか一方を主成分とする合金からなるか或いはPt又はIr或いはこれらの少なくともいずれか一方を主成分とする合金で被膜されたMo又はW或いはこれらの少なくともいずれか一方を主成分とする合金の基材からなることを特徴とする。
本発明は、気相法、特にハイドライド気相成長法を含むVPE法による単結晶製造装置において、製造雰囲気に耐えうる耐熱性と耐食性を有し、かつ成長させる単結晶との低い親和性を有する貴金属枠を用いたため、良質な単結晶を成長させることができると共に、枠を繰り返し使用可能とすることができる。また、基板ホルダーについても繰り返し使用できる。
以下本発明について実施形態を示して詳細に説明するが本発明はこれらの記載に限定して解釈されない。本発明の効果を奏する限り、実施形態は種々の変形をしてもよい。なお、図中、同等部材・同等部位には同一符号を付した。
図1に、本実施形態に係る単結晶製造装置の反応部を要部とする概略構成図を示す。本実施形態に係る単結晶製造装置は、気相法(CVD法)、特にハイドライド気相成長法によって基板上に単結晶を成長させる装置である。本実施形態に係る単結晶製造装置では、原料として金属塩化物を使用し、高温で水素、或いはアンモニアなどと反応させ、生成物の金属や金属化合物を単結晶として基板上に形成するとともに、副成物として腐食性の極めて強い塩化水素ガスを含むガスを生成する。生成物である金属或いは金属化合物はCVD法の特徴である、雰囲気内のガス濃度(ガス分圧)の大きさ、基板温度によってその結晶の完全性、成長速度が規定される。このような反応系を利用する本実施形態に係る単結晶製造装置の成膜室1には、生成物の原料を導入する金属塩化物ガス導入管13とアンモニアガス導入管15とが接続されている。金属塩化物ガス導入管13には途中で窒素ガス導入管14が接続されている。本実施形態に係る単結晶製造装置では、いずれのガスについても成膜室1に直接導入してもよいが、ガスの混合の観点から図1に示すようにガスの配管を接続している。また、成膜室1には排気配管16が接続されており、塩化水素ガス、窒素ガス、塩化アンモニウムなどの排気ガスが排出される。成膜室1の周囲には、成膜室内の温度を制御するための第1ヒータ2が配置されている。また、成膜室1内には、基板部4が配置されており、基板部4は第1ヒータ2による加熱のほか、基板部4の下方に配置された第2ヒータ3によってより精密に温度制御されている。図1にはベルジャータイプの成膜室1を示したが本実施形態は成膜室の形状には限定して解釈されず、例えばガラス管状の成膜室(不図示)としてもよい。或いは、管状の長い容器内に又は大きなベルジャー内に複数の製膜機構が並列に並べられ、それぞれの製膜機構毎に又はいくつかの製膜機構を一組としてその一組毎に原料ガス供給機構が与えられた複数の単結晶を同時に作製する様な装置も含む。
例えば、GaNの単結晶を成長させる場合は、窒素ガス雰囲気中で、三塩化ガリウムを原料としてアンモニアと反応させて、900℃〜1100℃に保持した基板結晶上にGaNをエピタキシャル成長によって生成・成長させる。副成ガスは主副成ガスであるHClの他に雰囲気ガスであるNと副・副成ガスであるNHClなどが装置から抜かれるようになっている。すなわち、金属塩化物ガス導入管13には金属塩化物ガスとして三塩化ガリウムを通す。窒素ガス導入管14でキャリアガスかつ雰囲気ガスである窒素ガスを流し、三塩化ガリウムのガス濃度を調節する。そして、三塩化ガリウムのガリウム元素を窒化するため、アンモニアガスをアンモニアガス導入管15から成膜室1に導入する。アンモニアガスは平衡分圧を利用した各種ガス系で導入することが可能であるが、例えば窒素ガスをキャリアガスとして塩化アンモニウムを成膜室1に導入する。或いは窒素ガス+水素ガスを導入して窒素ガス‐水素ガス‐アンモニア系の平衡ガスとしてアンモニアガスを供給してもよい。三塩化ガリウムのガリウム元素は窒化されて基板上にエピタキシャル成長するGaNとなり、塩化物元素は水素と結合して塩化水素ガスとなり、排気配管16から排気される。
次に基板部4について図2〜図6を参照して説明する。図2〜図6は、それぞれ本実施形態に係る単結晶製造装置の基板部の概略構成図を示している。なお、図2〜図6は基板中央を通る縦断面図である。図2〜図6に示すように、本実施形態に係る単結晶製造装置では、気相法によって基板上に単結晶10を成長させるときに、貴金属枠5を配置し、貴金属枠5の枠内で単結晶10を成長させる。このとき、貴金属枠5の線膨張係数が、単結晶10の線膨張係数と比較して、±1.0×10−6(1/K)の範囲とする。生成する単結晶は基板や枠の線膨張係数と略一致していないと結晶の生成から実際に結晶を取り出す室温までの温度変化時に、生成させた結晶に歪みを与え、酷くなれば破壊が生じる。また、熱膨張差に起因する物理応力によって結晶欠陥が増大し、生成結晶の完全性の破壊が起こることがある。さらに、生成結晶の大きさを規定する枠についてはこれに加えて、枠からの結晶の剥離を行うことが必要であり、そのためには枠と結晶の間の親和性が良好でないことが必要である。このような理由から、枠は貴金属枠とし、貴金属枠の材料は、単結晶10の線膨張係数と比較して、±1.0×10−6(1/K)の範囲にあるものを選択する。
貴金属枠の厚さは、枠の上面が成長させる単結晶の上面とほぼ同一平面上となる厚さが好ましく、基板上に載せる場合には成長させる単結晶の高さとほぼ同じである0.5〜1.0mmが好ましい。貴金属枠が種結晶基板を囲む場合には成長させる単結晶の高さと種結晶基板の厚さの和の厚さを与えることが好ましい。貴金属枠の形状は、上面視で円形輪状若しくは矩形輪状若しくは多角形輪状であることが好ましい。さらに、貴金属枠の内面(成長させる単結晶の側面と接する面)は、基板の面に対して垂直に起立した面(平面若しくは曲面)となっていることが好ましい。また、貴金属枠の表面のうち少なくとも内面は研磨された平滑面であることが好ましい。貴金属枠の上面視の内側面積(成長させる単結晶の上面面積とほぼ一致する)は、例えば10〜100cmとする。以下、具体的に説明する。
図2で示すように、基板7は、単結晶成長面に成長方向制御薄膜6が形成された基板であり(基板部の第一形態)、貴金属枠5は、成長方向制御薄膜6の表面に配置されてその表面の周縁部21a,21bを覆っている。貴金属枠5で囲まれた成長方向制御薄膜の表面上が単結晶10を成長させる領域20である。成長方向制御薄膜6が形成された基板7は、図3に示すように、表面に単結晶膜7bが形成されている貴金属基板7aであってもよい(基板部の第二形態)。このように、基板としては、単結晶成長面に近づく順に、単結晶基板7/成長方向制御薄膜6の二層構造(基板部の第一形態)とするか、或いは、貴金属基板/単結晶膜/成長方向制御薄膜の三層構造(基板部の第二形態)とする。基板7及び貴金属基板7aの厚さは例えば0.5〜2.0mmとする。成長方向制御薄膜の厚さは例えば20〜100μmとする。単結晶膜7bの厚さは例えば50〜200μmとする。
第一形態と第二形態のいずれの場合においても、貴金属枠5は、成長させる単結晶10の成長方向に対して側面となる面を画定する。すなわち、貴金属枠5で囲まれた成長方向制御薄膜の表面上の領域20を埋めるように単結晶をエピタキシャル成長させる。
貴金属枠5は成長方向制御薄膜6上で物理的な力でおさえつけによって固定されるか、或いは接着剤で固定される。接着剤としては例えばセラミックセメントにガラス質を混合して低温で固定でき、高温まで安定に保持できるようなセメント系接着剤を使用する。水平に固定される場合には、低融点金属やフェノール樹脂などの炭素系物質でもよい。
均熱板8は、第2ヒータ3と基板7との間に入れられる。基板7の温度は結晶成長への影響が極めて大きいために、基板7の温度が全面にわたって完全に均一であることが望ましく、それには基板7と略同じ線膨張係数を有する、熱伝導性の優れた金属あて板であることが好ましく、この均熱板8を介して基板7を加熱する。均熱板8の材料としては、貴金属枠5、貴金属基板7a又は単結晶基板7が成長させる単結晶10と近い熱膨張係数を有する材料で形成することから、貴金属枠5又は貴金属基板7aと同じ貴金属の材料とすることが好ましい。均熱板8の厚さは、例えば0.5〜2.0mmとする。
なお、貴金属基板上に単結晶膜を成長させた基板を用いる場合には、その貴金属基板自身を均熱板として使用してもよい。この場合、均熱板を省略できる。
均熱板8と基板7との間に基板ホルダー9を装着し、基板ホルダー9に、単結晶基板7/成長方向制御薄膜6/貴金属枠5の積層構造又は貴金属基板7a/単結晶膜7b/成長方向制御薄膜6/貴金属枠5の積層構造を保持させて安定性を向上させてもよい。図4は、単結晶基板7/成長方向制御薄膜6/貴金属枠5の積層構造に基板ホルダー9を装着した形態例(第三形態)を示した。基板ホルダー9の材料としては、貴金属枠5、貴金属基板7a又は単結晶基板7が成長させる単結晶10と近い熱膨張係数を有する材料で形成することから、貴金属枠5又は貴金属基板7aと同じ貴金属の材料とすることが好ましい。
本実施形態に係る単結晶製造装置において、目的とする成長させる単結晶は、線膨張係数が、4.0×10−6〜10.0×10−6(1/K)の範囲にある物質であり、例えば、GaN単結晶、ZnO単結晶、フェライト単結晶又はペロブスカイト構造を有する単結晶である。ペロブスカイト構造としては、例えばBaTiO、チタン酸ジルコン酸鉛(PZT;(PbZrO‐PbTiO))、SrCeO、BaCeO、CaZrO、SrZrO、BaZrOなどのABX構造である。ここで、Aサイトの陽イオンとXサイトの陰イオンが同程度の大きさを有し、このAサイトとXサイトから構成される立方晶系単位格子の中にAサイトよりも小さなサイズの陽イオンがBサイトに位置する。
貴金属枠5は、線膨張係数が、単結晶10の線膨張係数と比較して、±1.0×10−6(1/K)の範囲となるよう選択される。具体的には、耐食性、高温耐性を有するPt又はIr或いはこれらの少なくともいずれか一方を主成分とする合金で形成する。Ptの線膨張係数は、8.8×10−6/℃(20−100℃)であり、Irの線膨張係数は、6.4×10−6/℃(20−100℃)である。PtとIrは全率固溶するため、Ir‐Pt合金とすることで6.4×10−6〜8.8×10−6/℃の範囲の線膨張係数の貴金属合金が容易に得られる。したがって、Ir‐Pt合金を使用することによって、5.4×10−6〜9.8×10−6/℃の範囲の線膨張係数を有する単結晶に対して、±1.0×10−6(1/K)の範囲の貴金属材料を準備することができる。また、Ptを主成分とする合金としては、Si、Mo、Ta、W、Cr、Zr、Nb、Nd又はReを0.1〜50質量%、好ましくは0.1〜20質量%加えたPt合金を使用する。例えば、95Pt‐5Au合金(質量比)では、線膨張係数が9.1×10−6/℃となるので、10.0×10−6/℃を線膨張係数の上限とする単結晶に対して使用することができる。また、60Pt‐25Ir‐15Au(質量比)では線膨張係数が9.0×10−6(1/K)となるので、10.0×10−6/℃を線膨張係数の上限とする単結晶に対して使用することができる。また、Irを主成分とする合金としては、Si、Mo、Ta、W、Cr、Zr、Nb、Nd又はReを0.1〜50質量%、好ましくは0.1〜20質量%加えたIr合金を使用する。例えば、75Ir‐25Si合金(質量比)では、線膨張係数が5.0×10−6/℃となるので、4.0×10−6/℃を線膨張係数の下限とする単結晶に対して使用することができる。
なお、貴金属枠5は、図5に示すように、Pt又はIr或いはこれらの少なくともいずれか一方を主成分とする合金で被膜5bされたMo又はW或いはこれらの少なくともいずれか一方を主成分とする合金の基材5aからなっていてもよい(第四形態)。Mo及びWは耐熱性に優れた金属であり、成長させる単結晶との親和性を低下させるためにPt又はIr或いはこれらの少なくともいずれか一方を主成分とする合金で被膜する。Moの線膨張係数は、5.1×10−6/℃(0〜100℃)である。Wの線膨張係数は、4.5×10−6/℃(0〜100℃)である。貴金属枠5の線膨張係数は基材5の線膨張係数に依存するため、Mo基材であれば4.1×10−6〜6.1×10−6/℃の範囲の線膨張係数を有する単結晶に対して、W基材であれば3.5×10−6〜5.5×10−6/℃の範囲の線膨張係数を有する単結晶に対して、対応することができる。さらに、基材5aとしては、Moを主成分とする合金、例えば、Si、Ta、W、Cr、Zr、Nb、Nd又はReを0.1〜50質量%、好ましくは0.1〜20質量%加えたMo合金を使用してもよい。また、Wを主成分とする合金、例えば、Si、Mo、Ta、Cr、Zr、Nb、Nd又はReを0.1〜50質量%、好ましくは0.1〜20質量%加えたW合金を使用してもよい。Mo合金又はW合金とすることで、線膨張係数の調整が可能となる。
なお、不図示であるが、基板ホルダー9は、貴金属枠と同様の理由により、Pt又はIr或いはこれらの少なくともいずれか一方を主成分とする合金で被膜5bされたMo又はW或いはこれらの少なくともいずれか一方を主成分とする合金の基材5aからなっていてもよい。
貴金属枠5又は基板ホルダー9において、Mo又はW或いはこれらの少なくともいずれか一方を主成分とする合金からなる基材5aに、Pt又はIr或いはこれらの少なくともいずれか一方を主成分とする合金で被膜5bを形成する方法としては、例えば溶融塩電気メッキ法、PVD(物理的気相成長法)、熱分解法がある。
図2の単結晶基板7/成長方向制御薄膜6/貴金属枠5の積層構造(第一形態)において、単結晶基板7は、例えば、GaN単結晶、Al単結晶、フェライト単結晶又はZnO単結晶で形成されているか或いはペロブスカイト構造を有する単結晶で形成されていることが好ましい。ここでGaN単結晶基板は成長面をc面とすることが好ましく、フェライト単結晶基板は成長面をa面とすることが好ましく、Al単結晶基板は成長面をc面とすることが好ましく、ZnO単結晶基板は成長面をc面とすることが好ましい。単結晶基板7としては、成長させる単結晶と同じ材料の単結晶材料のものを選択することが好ましいが、半導体構造によって異種材料とすることもある。例えばGaNを成長させる場合に基板としてはGaNのほかAlであってもよい。なお、GaNの線膨張係数は、⊥c軸:5.59×10−6/K、Alの線膨張係数はc軸:5.3×10−6/K、⊥c軸:4.5×10−6/K(25℃)、フェライトの線膨張係数は組成によって変わるが8×10−6〜10×10−6/K、ZnOの線膨張係数は、⊥c軸:4.87×10−6/℃(1000℃)である。また、ペロブスカイト構造を有する単結晶の線膨張係数は種々の組成により変わるが、例えばYAlOではa:9.5、b:4.3、c:10.8×10−6/Kであり、YAl12では7.8×10−6/Kである。
図3の貴金属基板/単結晶膜/成長方向制御薄膜/貴金属枠の積層構造(第二形態)において、貴金属基板7aは、Pt又はIr或いはこれらの少なくともいずれか一方を主成分とする合金で形成されている。貴金属基板7aは、成長させる単結晶10とほぼ同じ線膨張係数を有する材料で形成することが好ましい。したがって、貴金属枠5と同様の材料で形成することが好ましい。すなわち、Pt、Ir、Ir‐Pt合金、Ptを主成分とする合金(Si、Mo、Ta、W、Cr、Zr、Nb、Nd又はReを0.1〜50質量%、好ましくは0.1〜20質量%加えたPt合金)、又はIrを主成分とする合金(Si、Mo、Ta、W、Cr、Zr、Nb、Nd又はReを0.1〜50質量%、好ましくは0.1〜20質量%を加えたIr合金)を使用する。
図3の貴金属基板/単結晶膜/成長方向制御薄膜/貴金属枠の積層構造(第二形態)において、単結晶膜7bは、GaN単結晶、フェライト単結晶、Al単結晶又はZnO単結晶で形成されているか或いはペロブスカイト構造を有する単結晶で形成されていることが好ましい。ここでGaN単結晶膜は好ましくはc軸配向させ、フェライト単結晶膜は好ましくはa軸配向させ、ZnO単結晶膜は好ましくはc軸配向させ、Al単結晶膜は好ましくはc軸配向させ、ペロブスカイト構造を有する単結晶膜は好ましくはb軸配向させる。このように貴金属基板の表面に単結晶膜を成膜した積層構造とすることで、図2に示す単結晶基板7と近い線膨張係数及び表面性状を付与することができる。
単結晶の成長面は、単結晶基板/成長方向制御薄膜/貴金属枠の積層構造(第一形態)又は貴金属基板/単結晶膜/成長方向制御薄膜/貴金属枠の積層構造(第二形態)のいずれにおいても、成長方向制御薄膜(バッファー膜)6を成膜する。成長させる単結晶10はエピタキシャル成長させることから、下地面の結晶構造に影響を受ける。そこで、成長させる単結晶10と同一の結晶構造(この場合、ホモ成長となる)若しくは類似の結晶構造(この場合、ヘテロ成長となる)を有する成長方向制御薄膜6を成膜する。成長方向制御薄膜6は、例えば、AlN、Pt、Pt合金、Ir又はIr合金で形成する。表1に単結晶基板/成長方向制御薄膜/貴金属枠の積層構造(第一形態)における単結晶基板と成長方向制御薄膜と成長させる単結晶との組み合わせ例を示す。表2に貴金属基板/単結晶膜/成長方向制御薄膜/貴金属枠の積層構造(第二形態)における貴金属基板と単結晶膜と成長方向制御薄膜と成長させる単結晶との組み合わせ例を示す。
Figure 2009196845
Figure 2009196845
次に基板部4の第五形態について図6を参照しながら説明する。図6に示すように支持基板22の上面の周縁部に貴金属枠5が配置されており、基板12は単結晶10の種結晶となる基板であり、貴金属枠5は種結晶基板12を側面から取り囲んでズレを防止している。貴金属枠5の内側側面形状と種結晶となる基板12の側面形状はほぼ同一形状であることが好ましく、基板12が貴金属枠5の内側に嵌って固定されていることが好ましい。このような形状の関係とすることで、成長させる単結晶10の成長方向に対する側面が貴金属枠5によって画定される。また、基板12は接着剤11によって支持基板22に固定することが好ましい。接着剤11は、例えば金属ガリウムであり、低融点であるので室温では凝固し、接着剤として働く。なお、成膜時では金属ガリウムは溶融し、表面張力によって接合している。貴金属枠5は図2〜図5で説明したものと同じ材料で形成することが好ましい。すなわち、貴金属枠5はPt又はIr或いはこれらの少なくともいずれか一方を主成分とする合金からなるか或いはPt又はIr或いはこれらの少なくともいずれか一方を主成分とする合金で被膜されたMo又はWの基材からなる。
例えばGaN単結晶を成長させる場合、貴金属枠5、貴金属基板7a、基板ボルダー9の材料としては、GaNの線膨張係数と略同じ線膨張係数を有し、耐食性、高温耐性を有するIr又はこれにわずかにSi、Mo、Ta、W、Cr、Zr、Nb、Nd又はReを加えたIr合金又はIr‐Pt合金を使用する。単結晶基板7或いは単結晶膜7bはサファイヤとし、成長方向制御薄膜6にはc軸配向したAlNを使用する。更に単結晶基板7の下側の均熱板8にはサファイヤと略同じ線膨張係数を有する、Ir板を使用する。
成長させる単結晶10がペロスカイト構造を有する単結晶やフェライト単結晶の場合は線膨張係数が白金と略等しいことなどから基板7としてシリコン基板、成長方向制御薄膜6としてa軸配向の白金膜を用い、その表面に目的単結晶を成長させる。なお、ペロスカイト構造を有する単結晶やフェライト結晶ではそれぞれの割合になるように調整された金属塩化物ガスの混合体と、H及びOの混合ガス或いはHO ガスと反応させることで酸化物単結晶を成長させる。結晶枠は同様の膨張率を有する材質がPt、Ir又はIr‐Pt合金の枠を使用する。
ここで特に重要な部分は成長させる単結晶部分10であり、サファイヤ基板7の下にほぼ同じ線膨張係数を有する耐食性、耐熱性金属であるIr薄板(均熱板8)を介して下部から第2ヒータ3で加熱して基板7の全面を均一温度に保持する。サファイヤ基板7の表面には方位性の保持と生成結晶の剥離を容易にする、AlNの薄層を成長方向制御薄膜6として形成しておく。これはIr金属板にサファイヤ単結晶膜を成膜した基板にAlNの薄層を成長方向制御薄膜6として形成した基板でも良い。またその上には生成させるGaN結晶の大きさを規定してより完全な結晶とするための貴金属枠5を設ける。貴金属枠5も生成結晶と線膨張係数がほぼ等しいIr製とする。
単結晶基板としてPZTなどのペロブスカイト型結晶やスピネルを用いる場合には線膨張係数が大きいので、均熱板は白金製又はイリジウム‐白金合金製が好ましい。またその上に基板結晶{単結晶}をおき、更に成長方向制御薄膜を付ける。貴金属枠は生成単結晶とほぼ同じ線膨張係数を有する、貴金属が望ましく、生成結晶によって変化させる。たとえば上記のスピネル{フェライト}やペロブスカイト{PZT}の場合は白金若しくは白金に一部イリジウムが入った合金(例えば30Ir‐70Pt合金(質量比))が望ましく、またZnOでは、その線膨張係数が4.9×10−6(1/K)であるので、イリジウムに26質量%程度シリコンを加えた合金製であることが望ましい。また運転温度は750℃から1000℃程度である。なお、成長させる単結晶がGaNの場合は線膨張係数が6.4×10−6(1/K)であるイリジウム金属製の貴金属枠を使用する。
またフェライトの場合は組成によるがその線膨張係数が8×10−6〜10×10−6(1/K)である。また結晶温度は原料によって若干異なるが900〜1050℃であり、副成物はHClである。雰囲気ガスは通常Arである。ここで、貴金属枠の線膨張係数は白金にイリジウム加えて合金とした、例えばPt:Ir=87.5:12.5の合金が望ましい。白金のみでも良いがPt/Ir=90/10〜70/30の組成とすることで耐食性が飛躍的に増す。
本実施形態に係る単結晶製造装置では、貴金属基板と貴金属基板ホルダーとの当接箇所、貴金属基板と貴金属製の均熱板との当接箇所、又は、貴金属基板ホルダーと貴金属製の均熱板との当接箇所など、貴金属同士の当接箇所において、相互拡散の問題を生じさせないために何れか一方の表面又は両方の表面に酸化物被覆をすることが好ましい。つまり白金、白金合金、イリジウム、イリジウム合金については、酸化タンタル‐酸化イリジウム複合酸化物の被覆を表面に行う。被覆は熱分解等で行うことによって作製する。例えば、タンタルエトキシドなどのタンタルをブタノールやプロピルアルコールで希釈した溶液に塩化イリジウムを溶解して塗布液を作製する。この塗布液を貴金属の表面に塗布、乾燥した後、400〜600℃で10〜30分熱分解することによって、貴金属表面に酸化タンタル‐酸化イリジウム複合酸化物被膜を生成させる。この操作を繰り返して必要な被覆の厚みにする。なお必要な厚みは0.2〜1μm程度であり、2〜10回の繰り返しが望ましい。被覆厚みは、0.2〜1μm程度で非常に薄く、複合酸化物ではあるがその一部が非晶質となっていることもあり熱膨張の影響をほとんど受けない。
(実施例1)
図2の単結晶基板7としてサファイヤ基板を用い、成長方向制御薄膜6としてc軸配向のAlNの薄層を設け、そこに貴金属枠5としてイリジウム金属製を用いた。貴金属枠5は上面視でφ=55mmの円形の輪状の形状であり、厚さは0.5mmとした。枠の内側面は基板成長面に対して垂直平面とし、研磨(#800)品とした。端0.5mmの板厚を有するイリジウム金属製の均熱板8にAlNの薄層を設けたサファイヤ基板を置き、その上に貴金属枠を載せた。図1に示すようなCVD装置内に置いてGaNの薄板単結晶の生成を行った。原料ガスとして三塩化ガリウムと過剰量のアンモニア及び雰囲気ガスとして乾燥窒素ガスを、窒素ガスがCVD装置チャンバー内で50質量%となるように調節しながら、アンモニア、三塩化ガリウムとも同じ質量%となるように加えた。基板温度は1030℃とし、1気圧が保持されるようにした。これによって、0.05mm/hrの速度で基板に対してc軸が成長面に対して垂直になるようにGaNの単結晶が成長した。ほぼ0.5mmの厚み迄成長したところで、原料ガスを止めて雰囲気ガスである窒素ガスを流しながら、温度を下げて室温まで冷却した。この後まず貴金属枠を取り除いてから、生成した結晶を成長方向制御薄膜6であるAlN膜の部分からはがした。このときに剥がす時のストレスで、イリジウム枠にはわずかなひずみが生じたがそのまま再使用できる状態であった。同じ条件で繰り返し使用したところ、3回以上の使用に耐えた。なお、貴金属枠と成長させたGaNの熱膨張係数の差はほぼ等しかった。
(実施例2)
図3の貴金属基板7aとしてIr50‐W50合金(以下、実施例において数値は質量比を表わす)の基板の表面にc軸方向に配向させたAlN薄膜7bを形成したものを用い、その上に、成長方向制御薄膜6としてa軸配向のNi‐Mnフェライトの薄層を設けた。そこでは貴金属枠5としてIr50‐W50合金製を用いた。貴金属枠5は上面視でφ=55mmの円形の輪状の形状であり、厚さは0.5mmとした。枠の内側面は基板成長面に対して垂直平面とし、研磨(#400)品とした。端0.5mmの板厚を有するイリジウム金属製の均熱板8に上記Ni‐Mnフェライト層を設けた単結晶基板をおき、その上に貴金属枠5を載せた。図1に示すようなCVD装置内においてZnOの薄板単結晶の生成を行った。原料ガスとして塩化亜鉛と過剰量の乾燥空気、さらに雰囲気ガスとして乾燥窒素ガスを、全窒素ガスがCVD装置チャンバー内で90質量%となるように調節しながら、塩化亜鉛と空気量が質量で5:4となるように加えた。基板温度を1000℃とし、1気圧が保持されるようにした。これによって、0.10mm/hrの速度でc軸が成長面(基板面)に対して垂直になるようにZnOの単結晶が成長した。ほぼ0.5mmの厚み迄成長したところで、原料ガスを止めて雰囲気ガスである窒素ガスを流しながら、温度を下げて室温まで冷却した。この後まず貴金属枠5を取り除いてから、生成した結晶を成長方向制御薄膜6であるNi‐Mnフェライトの薄層の部分からはがした。このときに剥がす時のストレスで、Ir‐W合金枠にはわずかなひずみが生じたがそのまま再使用できる状態であった。同じ条件で繰り返し使用したところ、2回以上の使用に耐えた。なお、貴金属枠と成長させたZnOの熱膨張係数の差はほぼ等しかった。
(実施例3)
図4の単結晶基板7としてa軸方向に成長させたNi‐Mnフェライト単結晶を用い、その上に、成長方向制御薄膜6としてa軸配向の白金の薄層を設けた。そこでは貴金属枠5としてPt90/Ir10の合金製を用いた。貴金属枠5は上面視でφ=26mmの円形の輪状の形状であり、厚さは0.5mmとした。枠の内側面は基板成長面に対して垂直平面とし、研磨(#800)品とした。端0.5mmの板厚を有するPt90‐Ir10金属製の均熱板8上に厚さ0.3mm、Pt90‐Ir10金属製の基板ホルダー9を介して、上記Ni‐Mnフェライト単結晶基板をおき、その上に貴金属枠5を載せた。図1に示すようなCVD装置内に置いてフェライトの薄板単結晶の生成を行った。原料ガスとして塩化鉄、塩化マンガン及び塩化ニッケルを組成割合に混合した原料ガスと過剰量の乾燥酸素、さらに雰囲気ガスとして乾燥窒素ガスを、窒素ガスがCVD装置チャンバー内で90質量%となるように調節しながら加えた。なお過剰酸素量は理論必要量に対して5〜10モル%過剰となるように調整した。基板温度は980℃とし、1気圧が保持されるようにした。これによって、0.05mm/hrの速度で基板に対してa軸が成長面に対して垂直になるようにNi‐Mnフェライトの単結晶が成長した。ほぼ0.5mmの厚み迄成長したところで、原料ガスを止めて雰囲気ガスである窒素ガスを流しながら、温度を下げて室温まで冷却した。この後まず貴金属枠を取り除いてから、生成した結晶を成長方向制御薄膜6であるa軸配向の白金の薄層の部分からはがした。このときに剥がす時のストレスで、Pt90/Ir10枠にはわずかなひずみが生じたがそのまま再使用できる状態であった。同じ条件で繰り返し使用したところ、2回以上の使用に耐えた。なお、貴金属枠と成長させたフェライトの熱膨張係数の差は約0.7×10−6(/K)であった。
(実施例4)
図2の単結晶基板7として板面がc軸に垂直なサファイヤ(Al)単結晶を用い、その上に、成長方向制御薄膜6としてa軸配向のイリジウム薄膜を設けた。なおイリジウムは通常のスパッタ法で生成させたが、サファイヤ基板のハビットに従ったことによりa軸配向が出来た。貴金属枠5としてPt90‐Ir10合金を用いた。貴金属枠5は上面視でφ=25mmの円形の輪状の形状であり、厚さは0.5mmとした。枠の内側面は基板成長面に対して垂直平面とし、研磨(#800)品とした。0.5mmの板厚を有するイリジウム金属製の均熱板8に上記サファイヤ単結晶基板をおき、その上にIrメッキを行ったW基材の貴金属枠を載せた。図1に示すようなCVD装置内においてPZTの薄板単結晶の生成を行った。原料ガスとして塩化鉛、塩化ジルコニウム、及び塩化チタンガスを所定割合になるように予熱室であらかじめ混合し、さらに雰囲気ガスとして乾燥アルゴンガスを加えて、CVD装置チャンバー内に送った。また反応ガスとしては10%酸素−90%アルゴンの混合ガスを理論値の10%過剰となるように供給した。基板温度は1100℃とし、全圧力で1気圧が保持されるようにした。これによって、0.05mm/hrの速度で基板に対してc軸が成長面に対して垂直になるようにPZTの単結晶が成長した。ほぼ0.5mmの厚み迄成長したところで、原料ガスを止めて雰囲気ガスである窒素ガスを流しながら、温度を下げて室温まで冷却した。この後まず貴金属枠を取り除いてから、生成した結晶を成長方向制御薄膜6であるIr膜の部分からはがした。このときに剥がす時のストレスで、Pt‐Ir合金枠にはわずかなひずみが生じたがそのまま再使用できる状態であった。同じ条件で繰り返し使用したところ、2回以上の使用に耐えた。なお、貴金属枠と成長させたPZTの熱膨張係数の差は0.55×10−6(/K)であった。
(実施例5)
図5の貴金属枠としてW基材5aの表面に厚さ5μmのIr被覆5bを設けたものを使用し、単結晶基板7として厚さ1mmのAlN単結晶を用い、成長方向制御薄膜6としてフェライトとした以外実施例2と同様にしてZnO板状単結晶を生成した。条件は同じであり、結果も同じであった。なおこの場合の貴金属枠の見掛け線膨張係数は4.8×10−6(/K)であり、生成したZnOとほぼ同じであった。
(実施例6)
図6の支持基板22としてサファイヤを用い、種結晶基板12としてc面の成長面を有するGaN単結晶(厚さ0.2mm)を用い、そこに貴金属枠5としてイリジウム金属製を用いた。接着剤11としては金属ガリウムを用いた。貴金属枠5は上面視でφ=55mmの円形の輪状の形状であり、厚さは0.7mmとした。枠の内側面は基板成長面に対して垂直平面とし、研磨(#800)品とした。端0.5mmの板厚を有するイリジウム90/白金10合金からなる金属製の均熱板8に支持基板22であるサファイヤを置き、その上に種結晶基板12を載せた。種結晶基板12は貴金属枠5の枠内にほぼ隙間なく嵌る大きさとした。それ以外は実施例1と同様にしてGaNの薄板単結晶の生成を行った。これによって、0.05mm/hrの速度で基板に対してc軸が成長面に対して垂直になるようにGaNの単結晶が成長した。ほぼCVD法によって0.5mmの厚み迄成長したところで、原料ガスを止めて雰囲気ガスである窒素ガスを流しながら、温度を下げて室温まで冷却した。この後まず貴金属枠を取り除いてから、金属ガリウムの融点以上に加熱して種結晶基板ごと下面から取り外した。貴金属枠を剥がす時のストレスで、イリジウム枠にはわずかなひずみが生じたがそのまま再使用できる状態であった。同じ条件で繰り返し使用したところ、3回以上の使用に耐えた。なお、貴金属枠と成長させたGaNの熱膨張係数の差は0.3×10−6(1/K)であった。
(比較例1)
結晶枠としてGaNとほぼ同じ線膨張係数を有するムライト(セラミックス)製の枠を使った以外同じ条件で実施例1と同様にGaN結晶の製造を行った。結晶生成までは問題なかったが、枠の引きはがしが困難であり、無理に剥がそうとした時に、ムライトが割れてしまい、枠の寿命は一回限りであった。
(比較例2)
GaNと線膨張係数差が2.04×10−6(1/K)である貴金属枠(Pt70/Ir30合金)を使った以外同じ条件で実施例1と同様にGaN結晶の製造を行った。結晶にクラックが入っていた。このときに剥がす時のストレスで、貴金属合金枠にはわずかなひずみが生じたがそのまま再使用できる状態であった。
本実施形態に係る単結晶製造装置の反応部を要部とする概略構成図を示す。 本実施形態に係る単結晶製造装置の基板部の概略構成図であり、単結晶基板/成長方向制御薄膜/貴金属枠の積層構造の形態例を示す。 本実施形態に係る単結晶製造装置の基板部の概略構成図であり、貴金属基板/単結晶膜/成長方向制御薄膜/貴金属枠の積層構造の形態例を示す。 本実施形態に係る単結晶製造装置の基板部の概略構成図であり、単結晶基板/成長方向制御薄膜/貴金属枠の積層構造に基板ホルダーを装着した形態例を示す。 本実施形態に係る単結晶製造装置の基板部の概略構成図であり、貴金属を被覆した枠を配置した形態例を示す。 本実施形態に係る単結晶製造装置の基板部の概略構成図であり、種結晶基板を用いる形態例を示す。
符号の説明
1 成膜室
2 第1ヒータ
3 第2ヒータ
4 基板部
5 貴金属枠
5a 基材
5b 被膜
6 成長方向制御薄膜
7 基板
7a 貴金属基板
7b 単結晶膜
8 均熱板
9 基板ホルダー
10 成長させる単結晶
11 接着剤
12 種結晶基板
13 金属塩化物ガス導入管
14 窒素ガス導入管
アンモニアガス導入管15
16 排気配管
20 単結晶を成長させる領域
21a,21b 成長方向制御薄膜の表面の周縁部
22 支持基板

Claims (14)

  1. 気相法によって基板上に単結晶を成長させる単結晶製造装置において、
    貴金属枠を配置し、該貴金属枠の枠内で前記単結晶を成長させ、かつ、該貴金属枠の線膨張係数が、前記単結晶の線膨張係数と比較して、±1.0×10−6(1/K)の範囲にあることを特徴とする単結晶製造装置。
  2. 前記基板は、単結晶成長面に成長方向制御薄膜が形成された基板であり、前記貴金属枠は、前記成長方向制御薄膜の表面に配置されて該表面の周縁部を覆っており、前記貴金属枠で囲まれた前記成長方向制御薄膜の表面上が前記単結晶を成長させる領域であることを特徴とする請求項1に記載の単結晶製造装置。
  3. 前記成長方向制御薄膜が形成された基板が、単結晶基板又は表面に単結晶膜が形成されている貴金属基板であることを特徴とする請求項2に記載の単結晶製造装置。
  4. 前記基板は、前記単結晶の種結晶となる基板であり、前記貴金属枠は、前記種結晶基板を側面から取り囲んでズレを防止していることを特徴とする請求項1に記載の単結晶製造装置。
  5. 前記基板は、基板の裏面縁端を保持する基板ホルダーを挟んで配置された均熱板によって加熱され、かつ、前記基板ホルダーは、Pt又はIr或いはこれらの少なくともいずれか一方を主成分とする合金からなるか或いはPt又はIr或いはこれらの少なくともいずれか一方を主成分とする合金で被膜されたMo又はW或いはこれらの少なくともいずれか一方を主成分とする合金の基材からなることを特徴とする請求項1、2、3又は4に記載の単結晶製造装置。
  6. 前記成長させる単結晶の線膨張係数が、4.0×10−6〜10.0×10−6(1/K)の範囲にあることを特徴とする請求項1、2、3、4又は5に単結晶製造装置。
  7. 前記成長させる単結晶は、GaN単結晶、ZnO単結晶、フェライト単結晶又はペロブスカイト構造を有する単結晶であることを特徴とする請求項1、2、3、4、5又は6に記載の単結晶製造装置。
  8. 前記貴金属枠は、Pt又はIr或いはこれらの少なくともいずれか一方を主成分とする合金からなるか或いはPt又はIr或いはこれらの少なくともいずれか一方を主成分とする合金で被膜されたMo又はW或いはこれらの少なくともいずれか一方を主成分とする合金の基材からなることを特徴とする請求項1、2、3、4、5、6又は7に記載の単結晶製造装置。
  9. 前記貴金属基板が、Pt又はIr或いはこれらの少なくともいずれか一方を主成分とする合金で形成されていることを特徴とする請求項3に記載の単結晶製造装置。
  10. 前記単結晶基板が、GaN単結晶、Al単結晶、フェライト単結晶又はZnO単結晶で形成されているか或いはペロブスカイト構造を有する単結晶で形成されていることを特徴とする請求項3に記載の単結晶製造装置。
  11. 前記単結晶膜が、GaN単結晶、フェライト単結晶、Al単結晶又はZnO単結晶で形成されているか或いはペロブスカイト構造を有する単結晶で形成されていることを特徴とする請求項3に記載の単結晶製造装置。
  12. 前記成長方向制御薄膜が、AlN、フェライト、Pt、Pt合金、Ir又はIr合金で形成されていることを特徴とする請求項2、3、5、6、7、8、9、10又は11に記載の単結晶製造装置。
  13. 気相法によって基板上に単結晶を成長させるときに、前記単結晶の成長方向に対して側面側に配置される枠であって、Pt又はIr或いはこれらの少なくともいずれか一方を主成分とする合金からなるか或いはPt又はIr或いはこれらの少なくともいずれか一方を主成分とする合金で被膜されたMo又はW或いはこれらの少なくともいずれか一方を主成分とする合金の基材からなることを特徴とする貴金属枠。
  14. 気相法によって基板上に単結晶を成長させるときに、前記基板の裏面縁端を保持し、基板と均熱板との間に配置される基板ホルダーであって、Pt又はIr或いはこれらの少なくともいずれか一方を主成分とする合金からなるか或いはPt又はIr或いはこれらの少なくともいずれか一方を主成分とする合金で被膜されたMo又はW或いはこれらの少なくともいずれか一方を主成分とする合金の基材からなることを特徴とする貴金属基板ボルダー。
JP2008039266A 2008-02-20 2008-02-20 単結晶製造装置、それに用いる貴金属枠及び貴金属基板ホルダー Pending JP2009196845A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008039266A JP2009196845A (ja) 2008-02-20 2008-02-20 単結晶製造装置、それに用いる貴金属枠及び貴金属基板ホルダー

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008039266A JP2009196845A (ja) 2008-02-20 2008-02-20 単結晶製造装置、それに用いる貴金属枠及び貴金属基板ホルダー

Publications (1)

Publication Number Publication Date
JP2009196845A true JP2009196845A (ja) 2009-09-03

Family

ID=41140792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008039266A Pending JP2009196845A (ja) 2008-02-20 2008-02-20 単結晶製造装置、それに用いる貴金属枠及び貴金属基板ホルダー

Country Status (1)

Country Link
JP (1) JP2009196845A (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4772918B1 (ja) * 2010-12-21 2011-09-14 エー・イー・テック株式会社 窒化ガリウム(GaN)自立基板の製造方法及び製造装置
JP2012131692A (ja) * 2011-04-28 2012-07-12 Aetech Corp 窒化ガリウム(GaN)自立基板の製造方法及び製造装置
JP2015003836A (ja) * 2013-06-19 2015-01-08 日本碍子株式会社 単結晶体の製造方法
JP2018115096A (ja) * 2017-01-20 2018-07-26 株式会社サイオクス Iii族窒化物基板の製造方法およびiii族窒化物基板
JP2018115095A (ja) * 2017-01-20 2018-07-26 株式会社サイオクス 窒化物結晶基板および窒化物結晶基板の製造方法
JP2019069897A (ja) * 2012-11-30 2019-05-09 クエスト インテグレーテッド, エルエルシー ジルコン酸チタン酸鉛単結晶成長方法
US10501864B2 (en) 2015-09-30 2019-12-10 Iucf-Hyu (Industry-University Cooperation Foundation Hanyang University) Method for manufacturing a perovskite crystal structure and apparatus for manufacturing a perovskite crystal structure therefor

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4772918B1 (ja) * 2010-12-21 2011-09-14 エー・イー・テック株式会社 窒化ガリウム(GaN)自立基板の製造方法及び製造装置
WO2012086212A1 (ja) * 2010-12-21 2012-06-28 エー・イー・テック株式会社 窒化ガリウム(GaN)自立基板の製造方法及び製造装置
JP2012131662A (ja) * 2010-12-21 2012-07-12 Aetech Corp 窒化ガリウム(GaN)自立基板の製造方法及び製造装置
JP2012131692A (ja) * 2011-04-28 2012-07-12 Aetech Corp 窒化ガリウム(GaN)自立基板の製造方法及び製造装置
JP2019069897A (ja) * 2012-11-30 2019-05-09 クエスト インテグレーテッド, エルエルシー ジルコン酸チタン酸鉛単結晶成長方法
JP2015003836A (ja) * 2013-06-19 2015-01-08 日本碍子株式会社 単結晶体の製造方法
US10501864B2 (en) 2015-09-30 2019-12-10 Iucf-Hyu (Industry-University Cooperation Foundation Hanyang University) Method for manufacturing a perovskite crystal structure and apparatus for manufacturing a perovskite crystal structure therefor
JP2018115096A (ja) * 2017-01-20 2018-07-26 株式会社サイオクス Iii族窒化物基板の製造方法およびiii族窒化物基板
JP2018115095A (ja) * 2017-01-20 2018-07-26 株式会社サイオクス 窒化物結晶基板および窒化物結晶基板の製造方法

Similar Documents

Publication Publication Date Title
TWI712701B (zh) 氮化物半導體基板之製造方法、氮化物半導體基板及其加熱裝置
TW533607B (en) Semiconductor substrate made of group III nitride, and process for manufacture thereof
JP2009196845A (ja) 単結晶製造装置、それに用いる貴金属枠及び貴金属基板ホルダー
JP5938871B2 (ja) GaN系膜の製造方法
KR101060289B1 (ko) 반도체 기판의 제조 방법
JP6418343B2 (ja) アルミナ基板の製造方法
TW200933740A (en) Method for manufacturing gallium nitride single crystalline substrate using self-split
JPWO2007122865A1 (ja) 窒化物単結晶の製造方法
JP2004137142A (ja) 単結晶窒化アルミニウム膜およびその形成方法、iii族窒化物膜用下地基板、発光素子、並びに表面弾性波デバイス
JP2009057260A (ja) Iii族窒化物単結晶の製造方法及びiii族窒化物単結晶基板の製造方法
JP2010222642A (ja) Iii族窒化物半導体基板の製造方法
TW201316377A (zh) GaN系膜之製造方法及使用於其之複合基板
KR102025617B1 (ko) 알루미나 기판
JP4481118B2 (ja) 高結晶性窒化アルミニウム積層基板の製造方法
TWI254465B (en) Method of manufacturing III-V group compound semiconductor
JP5023834B2 (ja) 半導体結晶の成長方法
CN107794567A (zh) 用于制造iii族氮化物半导体的方法
WO2009128434A1 (ja) AlN結晶の成長方法およびAlN積層体
JP2011100783A (ja) 気相成長装置
US11932936B2 (en) Method for producing a group III compound crystal by hydride vapor phase epitaxy on a seed substrate formed on a group III nitride base substrate
JP6334259B2 (ja) 自立基板の製造方法
JP4680140B2 (ja) AlN単結晶膜の形成方法
JP2015098411A (ja) 窒化物半導体基板の製造方法および窒化物半導体基板の製造装置
JP2012106906A (ja) GaN系膜の製造方法
JP2016008166A (ja) 自立基板の製造方法