JP2009169406A - ポジ型レジスト材料及びこれを用いたパターン形成方法 - Google Patents

ポジ型レジスト材料及びこれを用いたパターン形成方法 Download PDF

Info

Publication number
JP2009169406A
JP2009169406A JP2008316443A JP2008316443A JP2009169406A JP 2009169406 A JP2009169406 A JP 2009169406A JP 2008316443 A JP2008316443 A JP 2008316443A JP 2008316443 A JP2008316443 A JP 2008316443A JP 2009169406 A JP2009169406 A JP 2009169406A
Authority
JP
Japan
Prior art keywords
group
acid
carbon atoms
bis
resist material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008316443A
Other languages
English (en)
Other versions
JP5019075B2 (ja
Inventor
Jun Hatakeyama
畠山  潤
Seiichiro Tachibana
誠一郎 橘
Yoichi Osawa
洋一 大澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2008316443A priority Critical patent/JP5019075B2/ja
Publication of JP2009169406A publication Critical patent/JP2009169406A/ja
Application granted granted Critical
Publication of JP5019075B2 publication Critical patent/JP5019075B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Materials For Photolithography (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

【課題】高感度で高解像性を有する化学増幅機能と非化学増幅機能の両方を有し、超LSI製造用又はフォトマスク作製用微細パターン形成材料に好適なポジ型レジスト材料の提供。
【解決手段】下記3式の繰り返し単位を有する高分子化合物を含むポジ型レジスト材料。
Figure 2009169406

【選択図】なし

Description

本発明は、高エネルギー線での露光において、酸拡散による像のぼけが非常に小さいために高解像でしかも化学増幅機能による感度も高く、更にラインエッジラフネスが小さく、優れたエッチング耐性を示す、特に超LSI製造用あるいはフォトマスクパターン作製における微細パターン形成用材料として好適なポジ型レジスト材料、特には化学増幅ポジ型レジスト材料及びこれを用いたパターン形成方法に関する。
近年、LSIの高集積化と高速度化に伴い、パターンルールの微細化が求められている中、現在汎用技術として用いられている光露光では、光源の波長に由来する本質的な解像度の限界に近づきつつある。レジストパターン形成の際に使用する露光光として、1980年代には水銀灯のg線(436nm)もしくはi線(365nm)を光源とする光露光が広く用いられた。更なる微細化のための手段として、露光波長を短波長化する方法が有効とされ、1990年代の64Mビット(加工寸法が0.25μm以下)DRAM(ダイナミック・ランダム・アクセス・メモリー)以降の量産プロセスには、露光光源としてi線(365nm)に代わって短波長のKrFエキシマレーザー(248nm)が利用された。しかし、更に微細な加工技術(加工寸法が0.2μm以下)を必要とする集積度256M及び1G以上のDRAMの製造には、より短波長の光源が必要とされ、10年ほど前からArFエキシマレーザー(193nm)を用いたフォトグラフィーが本格的に検討されてきた。当初ArFリソグラフィーは180nmノードのデバイス作製から適用されるはずであったが、KrFエキシマリソグラフィーは130nmノードデバイス量産まで延命され、ArFリソグラフィーの本格適用は90nmノードからである。更に、NAを0.9にまで高めたレンズと組み合わせて65nmノードデバイスの検討が行われている。次の45nmノードデバイスには露光波長の短波長化が推し進められ、波長157nmのF2リソグラフィーが候補に挙がった。しかしながら、投影レンズに高価なCaF2単結晶を大量に用いることによるスキャナーのコストアップ、ソフトペリクルの耐久性が極めて低いためのハードペリクル導入に伴う光学系の変更、レジスト膜のエッチング耐性低下等の種々問題により、F2リソグラフィーの先送りと、ArF液浸リソグラフィーの早期導入が提唱された(非特許文献1:Proc. SPIE Vol. 4690 xxix)。
ArF液浸リソグラフィーにおいて、投影レンズとウエハーの間に水を含浸させることが提案されている。193nmにおける水の屈折率は1.44であり、NA(開口数)1.0以上のレンズを使ってもパターン形成が可能で、理論上はNAを1.44近くにまで上げることができる。当初、水温変化に伴う屈折率変化による解像性の劣化やフォーカスのシフトが指摘された。水温を1/100℃以内にコントロールすることと、露光によるレジスト膜からの発熱による影響もほぼ心配ないことが確認され、屈折率変化の問題が解決された。水中のマイクロバブルがパターン転写されることも危惧されたが、水の脱気を十分に行うことと、露光によるレジスト膜からのバブル発生の心配がないことが確認された。1980年代の液浸リソグラフィーの初期段階では、ステージを全て水に浸ける方式が提案されていたが、高速スキャナーの動作に対応するために投影レンズとウエハーの間のみに水を挿入し、水の給排水ノズルを備えたパーシャルフィル方式が採用された。水を用いた液浸によって原理的にはNAが1以上のレンズ設計が可能になったが、従来の屈折率系による光学系では巨大なレンズになってしまい、レンズが自身の自重によって変形してしまう問題が生じた。よりコンパクトなレンズ設計のために反射屈折(Catadioptric)光学系が提案され、NA1.0以上のレンズ設計が加速された。NA1.2以上のレンズと強い超解像技術の組み合わせで45nmノードの可能性が示され(非特許文献2:Proc. SPIE Vol. 5040 p724)、更にはNA1.35のレンズの開発も行われている。
32nmノードのリソグラフィー技術としては、波長13.5nmの真空紫外光(EUV)リソグラフィーが候補に挙げられている。EUVリソグラフィーの問題点としてはレーザーの高出力化、レジスト膜の高感度化、高解像度化、低ラインエッジラフネス(LWR)化、無欠陥MoSi積層マスク、反射ミラーの低収差化などが挙げられ、克服すべき問題が山積している。
NA1.35レンズを使った水液浸リソグラフィーの最高NAで到達できる解像度は40〜38nmであり、32nmには到達できない。そこで更にNAを高めるための高屈折率材料の開発が行われている。レンズのNAの限界を決めるのは投影レンズ、液体、レジスト膜の中で最小の屈折率である。水液浸の場合、投影レンズ(合成石英で屈折率1.5)、レジスト膜(従来のメタクリレート系で屈折率1.7)に比べて水の屈折率が最も低く、水の屈折率によって投影レンズのNAが決まっていた。最近、屈折率1.65の高透明な液体が開発されてきている。この場合、合成石英による投影レンズの屈折率が最も低く、屈折率の高い投影レンズ材料を開発する必要がある。LUAG(Lu3Al512)ガーネットは屈折率が2以上であり、最も期待される材料ではあるが、複屈折率と吸収が大きい問題を持っている。また、屈折率1.8以上の投影レンズ材料が開発されたとしても屈折率1.65の液体ではNAは1.55止まりであり、32nmを解像できない。32nmを解像するには屈折率1.8以上の液体が必要である。今のところ吸収と屈折率がトレードオフの関係にあり、このような材料は未だ見つかっていない。アルカン系化合物の場合、屈折率を上げるためには直鎖状よりは有橋環式化合物の方が好ましいが、環式化合物は粘度が高いために露光装置ステージの高速スキャンに追随できない問題も孕んでいる。また、屈折率1.8の液体が開発された場合、屈折率の最小がレジスト膜になるために、レジスト膜も1.8以上に高屈折率化する必要がある。
ここで最近注目を浴びているのは、1回目の露光と現像でパターンを形成し、2回目の露光で1回目のパターンの丁度間にパターンを形成するダブルパターニングプロセスである(非特許文献3:Proc. SPIE Vol. 5992 p557(2005))。ダブルパターニングの方法としては多くのプロセスが提案されている。例えば、1回目の露光と現像でラインとスペースが1:3の間隔のフォトレジストパターンを形成し、ドライエッチングで下層のハードマスクを加工し、その上にハードマスクをもう1層敷いて1回目の露光のスペース部分にフォトレジスト膜の露光と現像でラインパターンを形成してハードマスクをドライエッチングで加工して初めのパターンのピッチの半分のラインアンドスペースパターンを形成する方法である。また、1回目の露光と現像でスペースとラインが1:3の間隔のフォトレジストパターンを形成し、ドライエッチングで下層のハードマスクをドライエッチングで加工し、その上にフォトレジスト膜を塗布してハードマスクが残っている部分に2回目のスペースパターンを露光しハードマスクをドライエッチングで加工する。いずれも2回のドライエッチングでハードマスクを加工する。
ダブルパターニングにおいて最もクリティカルな問題となるのは、1回目のパターンと2回目のパターンの合わせ精度である。位置ずれの大きさがラインの寸法のバラツキとなるために、例えば32nmのラインを10%の精度で形成しようとすると3.2nm以内の合わせ精度が必要となる。現状のスキャナーの合わせ精度が8nm程度であるので、大幅な精度の向上が必要である。
微細化の進行と共に、酸の拡散による像のぼけが問題になっている(非特許文献4:Proc. SPIE Vol. 5039 p1(2003))。寸法サイズ45nm以降の微細パターンでの解像性を確保するためには、従来提案されている溶解コントラストの向上だけでなく、酸拡散の制御が重要であることが提案されている(非特許文献5:Proc. SPIE Vol. 6520 65203L−1 (2007))。しかしながら、化学増幅型レジストは、酸の拡散によって感度とコントラストを上げているため、ポストエクスポージャベーク(PEB)温度や時間を短くして酸拡散を極限まで抑えようとすると感度とコントラストが著しく低下する。
バルキーな酸が発生する酸発生剤を添加して酸拡散を抑えることは有効である。そこで、ポリマーに酸発生剤を重合性オレフィンを有するオニウム塩の酸発生剤を共重合することが提案されている。特許文献1〜4:特開平4−230645号公報、特開2005−84365号公報、特開2006−045311号公報には、特定のスルホン酸が発生する重合性オレフィンを有するスルホニウム塩、ヨードニウム塩が提案されている。特許文献4:特開2006−178317号公報には、スルホン酸が主鎖に直結したスルホニウム塩が提案されている。
非化学増幅型レジスト材料は、ポジレジストであれば酸による脱保護反応を伴わないために、酸拡散によるボケが生じない。ポリメチルメタクリレート(PMMA)やカリックスアレンのEB露光では非常に微細なパターンの形成例が報告されている。非化学増幅型レジスト材料の欠点は感度が低いことである。
高感度で、ビームボケが小さくて高解像なレジストが求められているのである。
極性変換型の非化学増幅型レジスト材料の研究は古くから行われており、最も工業的に用いられたのはナフトキノンジアジドスルホン酸(DNQ)エステル化合物である。このものは、光照射によりWolff転移を起こし、インデンケテンを経由してインデンカルボン酸が生成することによってアルカリに対する溶解性が向上する。DNQエステルはノボラック樹脂に対する溶解阻止能も有しているため、溶解コントラストを向上することができる。ベンゾインエステル化合物は、露光によりカルボン酸が発生することが報告されている(非特許文献6:J. Amer. Chem. Soc., 93, (1971)、特許文献5:特開平4−116660号公報)。電子供与性のアルコキシ基をベンゾインのアルコール側芳香環のm−位又はp−位に導入することによって光反応性が向上し、3,5ジメトキシ体で0.64という高い量子収率が報告されている。
Proc. SPIE Vol. 4690 xxix Proc. SPIE Vol. 5040 p724 Proc. SPIE Vol. 5992 p557(2005) Proc. SPIE Vol. 5039 p1(2003) Proc. SPIE Vol. 6520 65203L−1(2007) J. Amer. Chem. Soc., 93, (1971) 特開平4−230645号公報 特開2005−84365号公報 特開2006−045311号公報 特開2006−178317号公報 特開平4−116660号公報
本発明は、このような問題に鑑みてなされたもので、高エネルギー線での露光において、高感度で高解像性を有する化学増幅機能と非化学増幅機能の両方を有するポジ型レジスト材料及びこれを用いたパターン形成方法を提供することを目的とする。
上記課題を解決するために、本発明は、以下に示されるレジスト材料及びこれを用いたパターン形成方法を提供する。
請求項1:
下記一般式(a)、及び(b−1)又は(b−2)の繰り返し単位を有する高分子化合物を含むことを特徴とするポジ型レジスト材料。
Figure 2009169406

(式中、R1、R4、R6は同一又は異種の水素原子又はメチル基を示す。R21、R22、R31、R32は水素原子、又は炭素数1〜4のアルキル基、アルコキシ基又はヒドロキシ基であり、R21とR22、R31とR32はそれぞれ結合してこれらが結合するベンゼン環の炭素原子と共に環を形成してもよく、環の中に2重結合又はエーテル基を有していてもよい。R5、R7は酸不安定基である。X1、X2は単結合、又はフェニレン基又はナフチレン基であり、炭素数1〜4のアルキレン基、エステル基又はエーテル基を含んでいてもよく、X3はフェニレン基又はナフチレン基であり、炭素数1〜4のアルキレン基、エステル基又はエーテル基を含んでいてもよい。m、n、p、qは0〜4の整数であり、m+qは0〜5の整数、n+pは0〜5の整数である。a、b1、b2は、0<a<1.0、0≦b1≦0.8、0≦b2≦0.8、0<b1+b2≦0.8の範囲である。)
請求項2:
更に有機溶剤及び酸発生剤を含有する化学増幅型のレジスト材料であることを特徴とする請求項1記載のポジ型レジスト材料。
請求項3:
更に溶解阻止剤を含有するものであることを特徴とする請求項2記載のポジ型レジスト材料。
請求項4:
更に添加剤として塩基性化合物及び/又は界面活性剤が配合されたものであることを特徴とする請求項2又は3記載のポジ型レジスト材料。
請求項5:
請求項1乃至4のいずれか1項記載のレジスト材料を基板上に塗布する工程と、加熱処理後、高エネルギー線で露光する工程と、現像液を用いて現像する工程とを含むことを特徴とするパターン形成方法。
請求項6:
前記高エネルギー線を、波長200nm以下の範囲のものとすることを特徴とする請求項5記載のパターン形成方法。
請求項7:
前記高エネルギー線が、波長193nmのArFエキシマレーザー、波長13.5nmの真空紫外光(EUV)又は電子ビーム(EB)であることを特徴とする請求項5記載のパターン形成方法。
請求項8:
現像後のパターン寸法が100nm以下であることを特徴とする請求項5乃至7のいずれか1項記載のパターン形成方法。
本発明によれば、高エネルギー線での露光において、高感度で高解像性を有する化学増幅機能と非化学増幅機能の両方を有するポジ型レジスト材料であり、従って、特に超LSI製造用あるいはフォトマスクパターン作製における微細パターン形成材料として好適な化学増幅ポジ型レジスト材料等のポジ型レジスト材料を提供することが可能である。
本発明者らは、高エネルギー線での露光において、高感度で高解像性を有し、また、現像時の膨潤が抑えられるためラインエッジラフネスが小さく、現像後の残渣が少ないポジ型レジスト材料を得るために鋭意検討を行った。
酸拡散による解像性の低下が深刻になっている。特にパターン寸法が45nmにおいては、微細化の進行と共に酸拡散を小さくしなければならない。酸拡散を抑えるためにPEB温度を低くしたり、PEB時間を短くしたり、バルキーな酸を発生させる酸発生剤(PAG)を添加したりすることは有効であるが、感度の低下を招き、コントラストの低下によって逆に解像性能が低下する。
一方、光照射によって直接カルボキシル基が発生する非化学増幅型レジスト材料は、酸拡散による像のボケが発生しないが、酸触媒による増幅反応がないために非常に低感度になる。
本発明者らは、種々検討した結果、解像性能と感度の両方の特性を満たすために、化学増幅型と非化学増幅型の両方の機能を有するフォトレジスト材料を考え、そのためにカルボキシル基をo−ニトロベンジル基で置換された繰り返し単位と、カルボキシル基又はフェノールの水酸基の水素原子が酸不安定基で置換された繰り返し単位の両方を有する非化学増幅型レジスト材料と化学増幅型レジスト材料のハイブリッドによって感度と解像度の両方を満たすことが可能になることに想到し、本発明を完成させたものである。
即ち、本発明のポジ型レジスト材料のベースポリマーに係る高分子化合物は、下記一般式(a)、及び(b−1)又は(b−2)に示される繰り返し単位を含むものである。
Figure 2009169406

(式中、R1、R4、R6は同一又は異種の水素原子又はメチル基を示す。R21、R22、R31、R32は水素原子、又は炭素数1〜4のアルキル基、アルコキシ基又はヒドロキシ基であり、R21とR22、R31とR32はそれぞれ結合してこれらが結合するベンゼン環の炭素原子と共に環を形成してもよく、環の中に2重結合又はエーテル基を有していてもよい。R5、R7は酸不安定基である。X1、X2は単結合、又はフェニレン基又はナフチレン基であり、炭素数1〜4のアルキレン基、エステル基又はエーテル基を含んでいてもよく、X3はフェニレン基又はナフチレン基であり、炭素数1〜4のアルキレン基、エステル基又はエーテル基を含んでいてもよい。m、n、p、qは0〜4の整数であり、m+qは0〜5の整数、n+pは0〜5の整数である。a、b1、b2は、0<a<1.0、0≦b1≦0.8、0≦b2≦0.8、0<b1+b2≦0.8の範囲である。)
ここで、R21とR22、R31とR32とが形成する環としては、ベンゼン環、ジオキソラン環、ラクトン環等が挙げられる。
この場合、本発明のポジ型レジスト材料のベースポリマーに係る高分子化合物の一般式(a)で示される繰り返し単位を得るためのモノマーとしては、下記に示すものを挙げることができる。
Figure 2009169406
Figure 2009169406
Figure 2009169406
Figure 2009169406
上記ベンゾインエステル化合物の合成方法としては、ベンゾインと(メタ)アクリル酸クロリドとの反応によって容易に得ることができる。メトキシベンゾインの合成方法としては、特許文献5:特開平4−116660号公報に示されているように、メトキシベンズアルデヒドとメタノールとの反応により得ることができる。
ベンゾインエステルの光反応機能については、非特許文献6:J. Amer. Chem. Soc., 93, (1971)に示されているように、カルボン酸と2−フェニルベンゾフランが生成する。
一般式(b−1)で示される繰り返し単位を得るためのモノマーとしては、下記に示すものを挙げることができる。下記式中、R5は酸不安定基である。
Figure 2009169406
一般式(b−2)で示される繰り返し単位を得るためのモノマーとしては、下記に示すものを挙げることができる。下記式中、R7は酸不安定基である。
Figure 2009169406
なお、一般式(b−2)で示される繰り返し単位を得るためのモノマーにおいて、重合時には酸不安定基で置換していてもよいし、ヒドロキシ基で重合して、重合後に酸不安定基で置換してもよい。また、ヒドロキシ基をアセチル基で置換して重合し、重合後アセチル基を脱保護してヒドロキシ基にしてもよい。ヒドロキシ基がアセチル基で置換されている場合、重合後のアルカリ加水分解でアセチル基を脱保護化してヒドロキシ基にすることができ、ヒドロキシ基がアセタールなどの酸不安定基で置換されていて、酸触媒による加水分解で脱保護化してヒドロキシ基にすることもできるし、重合後の脱保護を行わなくてもよい。
本発明のポジ型レジスト材料に用いられる高分子化合物は、一般式(a)に示されるo−ニトロベンジルのカルボン酸エステル基を有する繰り返し単位と、一般式(b−1)又は(b−2)に示される酸不安定基で置換された繰り返し単位とが共重合されていることを必須とするが、これに加え、ヒドロキシ基、ラクトン環、シアノ基、アセチル基、カルボン酸無水物などの密着性基を有する繰り返し単位cを共重合することもできる。
ここで、ヒドロキシ基やラクトン環などの密着性基を有する繰り返し単位cを得るためのモノマーとしては、下記に示すものを挙げることができる。
Figure 2009169406

Figure 2009169406
Figure 2009169406
次に、R5及びR7で示される酸不安定基は、種々選定されるが、同一でも異なっていてもよく、ヒドロキシル基又はカルボキシル基の水酸基の水素原子が、特に下記式(AL−10)、(AL−11)で示される基、下記式(AL−12)で示される炭素数4〜40の3級アルキル基、炭素数4〜20のオキソアルキル基等で置換されている構造のものが挙げられる。
Figure 2009169406
式(AL−10)、(AL−11)においてR51、R54は炭素数1〜40、特に1〜20の直鎖状、分岐状又は環状のアルキル基等の一価炭化水素基であり、酸素、硫黄、窒素、フッ素などのヘテロ原子を含んでもよい。R52、R53は水素原子、又は炭素数1〜20の直鎖状、分岐状又は環状のアルキル基等の一価炭化水素基であり、酸素、硫黄、窒素、フッ素などのヘテロ原子を含んでもよく、a5は0〜10の整数である。R52とR53、R52とR54、又はR53とR54はそれぞれ結合してこれらが結合する炭素原子又は炭素原子と酸素原子と共に炭素数3〜20、特に4〜16の環(特に非芳香環)を形成してもよい。
55、R56、R57はそれぞれ炭素数1〜20の直鎖状、分岐状又は環状のアルキル基等の一価炭化水素基であり、酸素、硫黄、窒素、フッ素などのヘテロ原子を含んでもよい。あるいはR55とR56、R55とR57、又はR56とR57はそれぞれ結合してこれらが結合する炭素原子と共に炭素数3〜20、特に4〜16の環(特に非芳香環)を形成してもよい。
式(AL−10)に示される化合物を具体的に例示すると、tert−ブトキシカルボニル基、tert−ブトキシカルボニルメチル基、tert−アミロキシカルボニル基、tert−アミロキシカルボニルメチル基、1−エトキシエトキシカルボニルメチル基、2−テトラヒドロピラニルオキシカルボニルメチル基、2−テトラヒドロフラニルオキシカルボニルメチル基等、また下記一般式(AL−10)−1〜(AL−10)−10で示される置換基が挙げられる。
Figure 2009169406
式(AL−10)−1〜(AL−10)−10中、R58は同一又は異種の炭素数1〜8の直鎖状、分岐状又は環状のアルキル基、炭素数6〜20のアリール基、又は炭素数7〜20のアラルキル基を示す。R59は水素原子、又は炭素数1〜20の直鎖状、分岐状又は環状のアルキル基を示す。R60は炭素数6〜20のアリール基、又は炭素数7〜20のアラルキル基を示す。
前記式(AL−11)で示されるアセタール化合物を(AL−11)−1〜(AL−11)−38に例示する。
Figure 2009169406
Figure 2009169406
また、酸不安定基として、一般式(AL−11a)あるいは(AL−11b)で表される基が挙げられ、該酸不安定基によってベース樹脂が分子間あるいは分子内架橋されていてもよい。
Figure 2009169406
上記式中、R61、R62は水素原子、又は炭素数1〜8の直鎖状、分岐状又は環状のアルキル基を示す。又は、R61とR62は結合してこれらが結合する炭素原子と共に環を形成してもよく、環を形成する場合にはR61、R62は炭素数1〜8の直鎖状又は分岐状のアルキレン基を示す。R63は炭素数1〜10の直鎖状、分岐状又は環状のアルキレン基、b5、d5は0又は1〜10、好ましくは0又は1〜5の整数、c5は1〜7の整数である。Aは、(c5+1)価の炭素数1〜50の脂肪族もしくは脂環式飽和炭化水素基、芳香族炭化水素基又はヘテロ環基を示し、これらの基はO、S、N等のヘテロ原子を介在してもよく、又はその炭素原子に結合する水素原子の一部が水酸基、カルボキシル基、カルボニル基又はフッ素原子によって置換されていてもよい。Bは−CO−O−、−NHCO−O−又は−NHCONH−を示す。
この場合、好ましくはAは2〜4価の炭素数1〜20の直鎖状、分岐状又は環状のアルキレン基、アルキルトリイル基、アルキルテトライル基、炭素数6〜30のアリーレン基であり、これらの基はO、S、N等のヘテロ原子を介在していてもよく、またその炭素原子に結合する水素原子の一部が水酸基、カルボキシル基、アシル基又はハロゲン原子によって置換されていてもよい。また、c5は好ましくは1〜3の整数である。
一般式(AL−11a)、(AL−11b)で示される架橋型アセタール基は、具体的には下記式(AL−11)−39〜(AL−11)−46のものが挙げられる。
Figure 2009169406
次に、前記式(AL−12)に示される3級アルキル基としては、tert−ブチル基、トリエチルカルビル基、1−エチルノルボニル基、1−メチルシクロヘキシル基、1−エチルシクロペンチル基、tert−アミル基等あるいは下記一般式(AL−12)−1〜(AL−12)−16で示される基を挙げることができる。
Figure 2009169406
上記式中、R64は同一又は異種の炭素数1〜8の直鎖状、分岐状又は環状のアルキル基、炭素数6〜20のアリール基、又は炭素数7〜20のアラルキル基を示す。R65、R67は水素原子あるいは炭素数1〜20の直鎖状、分岐状又は環状のアルキル基を示す。R66は炭素数6〜20のアリール基、又は炭素数7〜20のアラルキル基を示す。
更に、酸不安定基として、下記式(AL−12)−17、(AL−12)−18に示す基が挙げられ、2価以上のアルキレン基、又はアリーレン基であるR68を含む該酸不安定基によってベース樹脂が分子内あるいは分子間架橋されていてもよい。式(AL−12)−17、(AL−12)−18のR64は前述と同様、R68は炭素数1〜20の直鎖状、分岐状又は環状のアルキレン基、又はアリーレン基を示し、酸素原子や硫黄原子、窒素原子などのヘテロ原子を含んでいてもよい。b6は1〜3の整数である。
Figure 2009169406
なお、上記したR64、R65、R66、R67は酸素、窒素、硫黄などのヘテロ原子を有していてもよく、具体的には下記式(AL−13)−1〜(AL−13)−7に示すことができる。
Figure 2009169406
特に、上記式(AL−12)の酸不安定基としては、下記式(AL−12)−19に示されるエキソ体構造を有するものが好ましい。
Figure 2009169406

(式中、R69は炭素数1〜8の直鎖状、分岐状又は環状のアルキル基又は炭素数6〜20の置換されていてもよいアリール基を示す。R70〜R75及びR78、R79はそれぞれ独立に水素原子又は炭素数1〜15のヘテロ原子を含んでもよい1価の炭化水素基を示し、R76、R77は水素原子を示す。あるいは、R70とR71、R72とR74、R72とR75、R73とR75、R73とR79、R74とR78、R76とR77又はR77とR78は互いに結合してこれらが結合する炭素原子と共に環(特に非芳香環)を形成していてもよく、その場合には環の形成に関与するものは炭素数1〜15のヘテロ原子を含んでもよい2価の炭化水素基を示す。また、R70とR79、R76とR79又はR72とR74は隣接する炭素に結合するもの同士で何も介さずに結合し、二重結合を形成してもよい。R77は水素原子、炭素数1〜15の直鎖状、分岐状又は環状のアルキル基を示す。また、本式により、鏡像体も表す。)
ここで、一般式(AL−12)−19に示すエキソ体構造を有する繰り返し単位
Figure 2009169406

を得るためのエステル体のモノマーとしては、特開2000−327633号公報に示されている。具体的には下記に示すものを挙げることができるが、これらに限定されることはない。
Figure 2009169406
更に、上記式(AL−12)の酸不安定基としては、下記式(AL−12)−20に示されるフランジイル、テトラヒドロフランジイル又はオキサノルボルナンジイルを有する酸不安定基を挙げることができる。
Figure 2009169406

(式中、R80、R81はそれぞれ独立に炭素数1〜10の直鎖状、分岐状又は環状の1価炭化水素基を示す。又は、R80、R81は互いに結合してこれらが結合する炭素原子と共に炭素数3〜20の脂肪族炭化水素環を形成してもよい。R82はフランジイル、テトラヒドロフランジイル又はオキサノルボルナンジイルから選ばれる2価の基を示す。R83は水素原子又はヘテロ原子を含んでもよい炭素数1〜10の直鎖状、分岐状又は環状の1価炭化水素基を示す。)
フランジイル、テトラヒドロフランジイル又はオキサノルボルナンジイルを有する酸不安定基で置換された繰り返し単位
Figure 2009169406
(式中、R80、R81、R82、R83は上記と同じ。)
を得るためのモノマーとしては、下記に例示される。なお、下記式中、Meはメチル基、Acはアセチル基を示す。
Figure 2009169406
Figure 2009169406
本発明の高分子化合物は、一般式(a)、(b−1)又は(b−2)に示す繰り返し単位を必須とするが、上記繰り返し単位cに加え、それ以外の繰り返し単位dを共重合させてもよく、具体的にはインデン類、インドール類、ベンゾチオフェン類、アセナフチレン類、クマリン類、クロモン類、ノルボルネン類、ノルボルナジエン類から選ばれるモノマーに由来する繰り返し単位dを含むことができる。
繰り返し単位a、b−1、b−2、c、dおいて、a、b−1、b−2、c、dの比率は0<a<1.0、0≦b1≦0.8、0≦b2≦0.8、0<b1+b2≦0.8、0≦c≦0.9、0≦d≦0.8、好ましくは0.05≦a≦0.9、0≦b1≦0.7、0≦b2≦0.7、0.05≦b1+b2≦0.7、0≦c≦0.8、0≦d≦0.7、より好ましくは0.07≦a≦0.8、0≦b1≦0.6、0≦b2≦0.6、0.07≦b1+b2≦0.6、0≦c≦0.7、0≦d≦0.6の範囲である。
なお、0<a+b1+b2≦1.0であるが、好ましくは0.05≦a+b1+b2≦0.8であり、更に好ましくは0.1≦a+b1+b2≦0.7である。また、0<a+b1+b2+c≦1.0であることが好ましく、より好ましくは0.1≦a+b1+b2+c≦1.0、更に好ましくは0.15≦a+b1+b2+c≦1.0である。a+b1+b2+c+d=1であり、これら繰り返し単位a、b1、b2、c、dの合計量は全繰り返し単位の合計量に対して100モル%である。
本発明の高分子化合物は、ゲルパーミエーションクロマトグラフィー(GPC)によるポリスチレン換算重量平均分子量が1,000〜500,000、特に2,000〜30,000であることが好ましい。重量平均分子量が小さすぎるとレジスト材料が耐熱性に劣るものとなり、大きすぎるとアルカリ溶解性が低下し、パターン形成後に裾引き現象が生じ易くなる可能性がある。
更に、本発明の高分子化合物においては、分子量分布(Mw/Mn)が広い場合は低分子量や高分子量のポリマーが存在するために露光後、パターン上に異物が見られたり、パターンの形状が悪化したりするおそれがある。それ故、パターンルールが微細化するに従ってこのような分子量、分子量分布の影響が大きくなり易いことから、微細なパターン寸法に好適に用いられるレジスト材料を得るには、使用する多成分共重合体の分子量分布は1.0〜2.0、特に1.0〜1.5と狭分散であることが好ましい。
また、組成比率や分子量分布や分子量が異なる2つ以上のポリマーをブレンドすることも可能である。
これら高分子化合物を合成するには、1つの方法としては、繰り返し単位a、b−1、b−2、c、dを得るための不飽和結合を有するモノマーを有機溶剤中、ラジカル開始剤を加え、加熱重合を行う方法があり、これにより高分子化合物を得ることができる。重合時に使用する有機溶剤としては、トルエン、ベンゼン、テトラヒドロフラン、ジエチルエーテル、ジオキサン等が例示できる。重合開始剤としては、2,2’−アゾビスイソブチロニトリル(AIBN)、2,2’−アゾビス(2,4−ジメチルバレロニトリル)、ジメチル−2,2−アゾビス(2−メチルプロピオネート)、ベンゾイルパーオキシド、ラウロイルパーオキシド等が例示でき、好ましくは50〜80℃に加熱して重合できる。反応時間としては2〜100時間、好ましくは5〜20時間である。酸不安定基は、モノマーに導入されたものをそのまま用いてもよいし、酸不安定基を酸触媒によって一旦脱離し、その後保護化あるいは部分保護化してもよい。
本発明のポジ型レジスト材料には、上記高分子化合物をベース樹脂とするほか、有機溶剤、高エネルギー線に感応して酸を発生する化合物(酸発生剤)、必要に応じて溶解阻止剤、塩基性化合物、界面活性剤、その他の成分を含有することができる。
本発明のレジスト材料、特には化学増幅ポジ型レジスト材料に使用される有機溶剤としては、ベース樹脂、酸発生剤、その他の添加剤等が溶解可能な有機溶剤であればいずれでもよい。このような有機溶剤としては、例えば、シクロヘキサノン、メチル−2−n−アミルケトン等のケトン類、3−メトキシブタノール、3−メチル−3−メトキシブタノール、1−メトキシ−2−プロパノール、1−エトキシ−2−プロパノール等のアルコール類、プロピレングリコールモノメチルエーテル、エチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル等のエーテル類、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、乳酸エチル、ピルビン酸エチル、酢酸ブチル、3−メトキシプロピオン酸メチル、3−エトキシプロピオン酸エチル、酢酸tert−ブチル、プロピオン酸tert−ブチル、プロピレングリコールモノtert−ブチルエーテルアセテート等のエステル類、γ−ブチルラクトン等のラクトン類が挙げられ、これらの1種を単独で又は2種以上を混合して使用することができるが、これらに限定されるものではない。本発明では、これらの有機溶剤の中でもレジスト成分中の酸発生剤の溶解性が最も優れているジエチレングリコールジメチルエーテルや1−エトキシ−2−プロパノール、プロピレングリコールモノメチルエーテルアセテート及びその混合溶剤が好ましく使用される。
有機溶剤の使用量は、ベース樹脂100部(質量部、以下同じ)に対して200〜1,000部、特に400〜800部が好適である。
本発明で使用される酸発生剤としては、
i.下記一般式(P1a−1)、(P1a−2)又は(P1b)のオニウム塩、
ii.下記一般式(P2)のジアゾメタン誘導体、
iii.下記一般式(P3)のグリオキシム誘導体、
iv.下記一般式(P4)のビススルホン誘導体、
v.下記一般式(P5)のN−ヒドロキシイミド化合物のスルホン酸エステル、
vi.β−ケトスルホン酸誘導体、
vii.ジスルホン誘導体、
viii.ニトロベンジルスルホネート誘導体、
ix.スルホン酸エステル誘導体
等が挙げられる。
Figure 2009169406

(式中、R101a、R101b、R101cはそれぞれ炭素数1〜12の直鎖状、分岐状又は環状のアルキル基、アルケニル基、オキソアルキル基又はオキソアルケニル基、炭素数6〜20のアリール基、又は炭素数7〜12のアラルキル基、アリールオキソアルキル基を示し、これらの基の水素原子の一部又は全部がアルコキシ基等によって置換されていてもよい。また、R101bとR101cとは環を形成してもよく、環を形成する場合には、R101b、R101cはそれぞれ炭素数1〜6のアルキレン基を示す。K-は非求核性対向イオンを表す。)
上記R101a、R101b、R101cは互いに同一であっても異なっていてもよく、具体的にはアルキル基として、メチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、sec−ブチル基、tert−ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロプロピルメチル基、4−メチルシクロヘキシル基、シクロヘキシルメチル基、ノルボルニル基、アダマンチル基等が挙げられる。アルケニル基としては、ビニル基、アリル基、プロぺニル基、ブテニル基、ヘキセニル基、シクロヘキセニル基等が挙げられる。オキソアルキル基としては、2−オキソシクロペンチル基、2−オキソシクロヘキシル基等が挙げられ、2−オキソプロピル基、2−シクロペンチル−2−オキソエチル基、2−シクロヘキシル−2−オキソエチル基、2−(4−メチルシクロヘキシル)−2−オキソエチル基等を挙げることができる。オキソアルケニル基としては、2−オキソ−4−シクロヘキセニル基、2−オキソ−4−プロペニル基等が挙げられる。アリール基としては、フェニル基、ナフチル基等や、p−メトキシフェニル基、m−メトキシフェニル基、o−メトキシフェニル基、エトキシフェニル基、p−tert−ブトキシフェニル基、m−tert−ブトキシフェニル基等のアルコキシフェニル基、2−メチルフェニル基、3−メチルフェニル基、4−メチルフェニル基、エチルフェニル基、4−tert−ブチルフェニル基、4−ブチルフェニル基、ジメチルフェニル基等のアルキルフェニル基、メチルナフチル基、エチルナフチル基等のアルキルナフチル基、メトキシナフチル基、エトキシナフチル基等のアルコキシナフチル基、ジメチルナフチル基、ジエチルナフチル基等のジアルキルナフチル基、ジメトキシナフチル基、ジエトキシナフチル基等のジアルコキシナフチル基等が挙げられる。アラルキル基としてはベンジル基、フェニルエチル基、フェネチル基等が挙げられる。アリールオキソアルキル基としては、2−フェニル−2−オキソエチル基、2−(1−ナフチル)−2−オキソエチル基、2−(2−ナフチル)−2−オキソエチル基等の2−アリール−2−オキソエチル基等が挙げられる。K-の非求核性対向イオンとしては塩化物イオン、臭化物イオン等のハライドイオン、トリフレート、1,1,1−トリフルオロエタンスルホネート、ノナフルオロブタンスルホネート等のフルオロアルキルスルホネート、トシレート、ベンゼンスルホネート、4−フルオロベンゼンスルホネート、1,2,3,4,5−ペンタフルオロベンゼンスルホネート等のアリールスルホネート、メシレート、ブタンスルホネート等のアルキルスルホネート等が挙げられる。
Figure 2009169406

(式中、R102a、R102bはそれぞれ炭素数1〜8の直鎖状、分岐状又は環状のアルキル基を示す。R103は炭素数1〜10の直鎖状、分岐状又は環状のアルキレン基を示す。R104a、R104bはそれぞれ炭素数3〜7の2−オキソアルキル基を示す。K-は非求核性対向イオンを表す。)
上記R102a、R102bとして具体的には、メチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、sec−ブチル基、tert−ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、シクロペンチル基、シクロヘキシル基、シクロプロピルメチル基、4−メチルシクロヘキシル基、シクロヘキシルメチル基等が挙げられる。R103としては、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンチレン基、へキシレン基、へプチレン基、オクチレン基、ノニレン基、1,4−シクロへキシレン基、1,2−シクロへキシレン基、1,3−シクロペンチレン基、1,4−シクロオクチレン基、1,4−シクロヘキサンジメチレン基等が挙げられる。R104a、R104bとしては、2−オキソプロピル基、2−オキソシクロペンチル基、2−オキソシクロヘキシル基、2−オキソシクロヘプチル基等が挙げられる。K-は式(P1a−1)及び(P1a−2)で説明したものと同様のものを挙げることができる。
Figure 2009169406

(式中、R105、R106は炭素数1〜12の直鎖状、分岐状又は環状のアルキル基又はハロゲン化アルキル基、炭素数6〜20のアリール基又はハロゲン化アリール基、又は炭素数7〜12のアラルキル基を示す。)
105、R106のアルキル基としてはメチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、sec−ブチル基、tert−ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、アミル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、ノルボルニル基、アダマンチル基等が挙げられる。R105、R106のハロゲン化アルキル基としてはトリフルオロメチル基、1,1,1−トリフルオロエチル基、1,1,1−トリクロロエチル基、ノナフルオロブチル基等が挙げられる。R105、R106のアリール基としてはフェニル基、p−メトキシフェニル基、m−メトキシフェニル基、o−メトキシフェニル基、エトキシフェニル基、p−tert−ブトキシフェニル基、m−tert−ブトキシフェニル基等のアルコキシフェニル基、2−メチルフェニル基、3−メチルフェニル基、4−メチルフェニル基、エチルフェニル基、4−tert−ブチルフェニル基、4−ブチルフェニル基、ジメチルフェニル基等のアルキルフェニル基が挙げられる。R105、R106のハロゲン化アリール基としてはフルオロフェニル基、クロロフェニル基、1,2,3,4,5−ペンタフルオロフェニル基等が挙げられる。R105、R106のアラルキル基としてはベンジル基、フェネチル基等が挙げられる。
Figure 2009169406

(式中、R107、R108、R109は炭素数1〜12の直鎖状、分岐状又は環状のアルキル基又はハロゲン化アルキル基、炭素数6〜20のアリール基又はハロゲン化アリール基、又は炭素数7〜12のアラルキル基を示す。R108、R109は互いに結合して環状構造を形成してもよく、環状構造を形成する場合、R108、R109はそれぞれ炭素数1〜6の直鎖状、分岐状のアルキレン基を示す。R105は式(P2)のものと同様である。)
107、R108、R109のアルキル基、ハロゲン化アルキル基、アリール基、ハロゲン化アリール基、アラルキル基としては、R105、R106で説明したものと同様の基が挙げられる。なお、R108、R109のアルキレン基としてはメチレン基、エチレン基、プロピレン基、ブチレン基、ヘキシレン基等が挙げられる。
Figure 2009169406

(式中、R101a、R101bは前記と同様である。)
Figure 2009169406

(式中、R110は炭素数6〜10のアリーレン基、炭素数1〜6のアルキレン基又は炭素数2〜6のアルケニレン基を示し、これらの基の水素原子の一部又は全部は更に炭素数1〜4の直鎖状又は分岐状のアルキル基又はアルコキシ基、ニトロ基、アセチル基、又はフェニル基で置換されていてもよい。R111は炭素数1〜8の直鎖状、分岐状又は置換のアルキル基、アルケニル基又はアルコキシアルキル基、フェニル基、又はナフチル基を示し、これらの基の水素原子の一部又は全部は更に炭素数1〜4のアルキル基又はアルコキシ基;炭素数1〜4のアルキル基、アルコキシ基、ニトロ基又はアセチル基で置換されていてもよいフェニル基;炭素数3〜5のヘテロ芳香族基;又は塩素原子、フッ素原子で置換されていてもよい。)
ここで、R110のアリーレン基としては、1,2−フェニレン基、1,8−ナフチレン基等が、アルキレン基としては、メチレン基、エチレン基、トリメチレン基、テトラメチレン基、フェニルエチレン基、ノルボルナン−2,3−ジイル基等が、アルケニレン基としては、1,2−ビニレン基、1−フェニル−1,2−ビニレン基、5−ノルボルネン−2,3−ジイル基等が挙げられる。R111のアルキル基としては、R101a〜R101cと同様のものが、アルケニル基としては、ビニル基、1−プロペニル基、アリル基、1−ブテニル基、3−ブテニル基、イソプレニル基、1−ペンテニル基、3−ペンテニル基、4−ペンテニル基、ジメチルアリル基、1−ヘキセニル基、3−ヘキセニル基、5−ヘキセニル基、1−ヘプテニル基、3−ヘプテニル基、6−ヘプテニル基、7−オクテニル基等が、アルコキシアルキル基としては、メトキシメチル基、エトキシメチル基、プロポキシメチル基、ブトキシメチル基、ペンチロキシメチル基、ヘキシロキシメチル基、ヘプチロキシメチル基、メトキシエチル基、エトキシエチル基、プロポキシエチル基、ブトキシエチル基、ペンチロキシエチル基、ヘキシロキシエチル基、メトキシプロピル基、エトキシプロピル基、プロポキシプロピル基、ブトキシプロピル基、メトキシブチル基、エトキシブチル基、プロポキシブチル基、メトキシペンチル基、エトキシペンチル基、メトキシヘキシル基、メトキシヘプチル基等が挙げられる。
なお、更に置換されていてもよい炭素数1〜4のアルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、イソブチル基、tert−ブチル基等が、炭素数1〜4のアルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、n−ブトキシ基、イソブトキシ基、tert−ブトキシ基等が、炭素数1〜4のアルキル基、アルコキシ基、ニトロ基又はアセチル基で置換されていてもよいフェニル基としては、フェニル基、トリル基、p−tert−ブトキシフェニル基、p−アセチルフェニル基、p−ニトロフェニル基等が、炭素数3〜5のヘテロ芳香族基としては、ピリジル基、フリル基等が挙げられる。
酸発生剤は、具体的には、オニウム塩としては、例えばトリフルオロメタンスルホン酸ジフェニルヨードニウム、トリフルオロメタンスルホン酸(p−tert−ブトキシフェニル)フェニルヨードニウム、p−トルエンスルホン酸ジフェニルヨードニウム、p−トルエンスルホン酸(p−tert−ブトキシフェニル)フェニルヨードニウム、トリフルオロメタンスルホン酸トリフェニルスルホニウム、トリフルオロメタンスルホン酸(p−tert−ブトキシフェニル)ジフェニルスルホニウム、トリフルオロメタンスルホン酸ビス(p−tert−ブトキシフェニル)フェニルスルホニウム、トリフルオロメタンスルホン酸トリス(p−tert−ブトキシフェニル)スルホニウム、p−トルエンスルホン酸トリフェニルスルホニウム、p−トルエンスルホン酸(p−tert−ブトキシフェニル)ジフェニルスルホニウム、p−トルエンスルホン酸ビス(p−tert−ブトキシフェニル)フェニルスルホニウム、p−トルエンスルホン酸トリス(p−tert−ブトキシフェニル)スルホニウム、ノナフルオロブタンスルホン酸トリフェニルスルホニウム、ブタンスルホン酸トリフェニルスルホニウム、トリフルオロメタンスルホン酸トリメチルスルホニウム、p−トルエンスルホン酸トリメチルスルホニウム、トリフルオロメタンスルホン酸シクロヘキシルメチル(2−オキソシクロヘキシル)スルホニウム、p−トルエンスルホン酸シクロヘキシルメチル(2−オキソシクロヘキシル)スルホニウム、トリフルオロメタンスルホン酸ジメチルフェニルスルホニウム、p−トルエンスルホン酸ジメチルフェニルスルホニウム、トリフルオロメタンスルホン酸ジシクロヘキシルフェニルスルホニウム、p−トルエンスルホン酸ジシクロヘキシルフェニルスルホニウム、トリフルオロメタンスルホン酸トリナフチルスルホニウム、トリフルオロメタンスルホン酸(2−ノルボニル)メチル(2−オキソシクロヘキシル)スルホニウム、エチレンビス[メチル(2−オキソシクロペンチル)スルホニウムトリフルオロメタンスルホナート]、1,2’−ナフチルカルボニルメチルテトラヒドロチオフェニウムトリフレート等のオニウム塩を挙げることができる。
ジアゾメタン誘導体としては、ビス(ベンゼンスルホニル)ジアゾメタン、ビス(p−トルエンスルホニル)ジアゾメタン、ビス(キシレンスルホニル)ジアゾメタン、ビス(シクロヘキシルスルホニル)ジアゾメタン、ビス(シクロペンチルスルホニル)ジアゾメタン、ビス(n−ブチルスルホニル)ジアゾメタン、ビス(イソブチルスルホニル)ジアゾメタン、ビス(sec−ブチルスルホニル)ジアゾメタン、ビス(n−プロピルスルホニル)ジアゾメタン、ビス(イソプロピルスルホニル)ジアゾメタン、ビス(tert−ブチルスルホニル)ジアゾメタン、ビス(n−アミルスルホニル)ジアゾメタン、ビス(イソアミルスルホニル)ジアゾメタン、ビス(sec−アミルスルホニル)ジアゾメタン、ビス(tert−アミルスルホニル)ジアゾメタン、1−シクロヘキシルスルホニル−1−(tert−ブチルスルホニル)ジアゾメタン、1−シクロヘキシルスルホニル−1−(tert−アミルスルホニル)ジアゾメタン、1−tert−アミルスルホニル−1−(tert−ブチルスルホニル)ジアゾメタン等のジアゾメタン誘導体を挙げることができる。
グリオキシム誘導体としては、ビス−O−(p−トルエンスルホニル)−α−ジメチルグリオキシム、ビス−O−(p−トルエンスルホニル)−α−ジフェニルグリオキシム、ビス−O−(p−トルエンスルホニル)−α−ジシクロヘキシルグリオキシム、ビス−O−(p−トルエンスルホニル)−2,3−ペンタンジオングリオキシム、ビス−O−(p−トルエンスルホニル)−2−メチル−3,4−ペンタンジオングリオキシム、ビス−O−(n−ブタンスルホニル)−α−ジメチルグリオキシム、ビス−O−(n−ブタンスルホニル)−α−ジフェニルグリオキシム、ビス−O−(n−ブタンスルホニル)−α−ジシクロヘキシルグリオキシム、ビス−O−(n−ブタンスルホニル)−2,3−ペンタンジオングリオキシム、ビス−O−(n−ブタンスルホニル)−2−メチル−3,4−ペンタンジオングリオキシム、ビス−O−(メタンスルホニル)−α−ジメチルグリオキシム、ビス−O−(トリフルオロメタンスルホニル)−α−ジメチルグリオキシム、ビス−O−(1,1,1−トリフルオロエタンスルホニル)−α−ジメチルグリオキシム、ビス−O−(tert−ブタンスルホニル)−α−ジメチルグリオキシム、ビス−O−(パーフルオロオクタンスルホニル)−α−ジメチルグリオキシム、ビス−O−(シクロヘキサンスルホニル)−α−ジメチルグリオキシム、ビス−O−(ベンゼンスルホニル)−α−ジメチルグリオキシム、ビス−O−(p−フルオロベンゼンスルホニル)−α−ジメチルグリオキシム、ビス−O−(p−tert−ブチルベンゼンスルホニル)−α−ジメチルグリオキシム、ビス−O−(キシレンスルホニル)−α−ジメチルグリオキシム、ビス−O−(カンファースルホニル)−α−ジメチルグリオキシム等のグリオキシム誘導体を挙げることができる。
ビススルホン誘導体としては、ビスナフチルスルホニルメタン、ビストリフルオロメチルスルホニルメタン、ビスメチルスルホニルメタン、ビスエチルスルホニルメタン、ビスプロピルスルホニルメタン、ビスイソプロピルスルホニルメタン、ビス−p−トルエンスルホニルメタン、ビスベンゼンスルホニルメタン等のビススルホン誘導体を挙げることができる。
β−ケトスルホン酸誘導体としては、2−シクロヘキシルカルボニル−2−(p−トルエンスルホニル)プロパン、2−イソプロピルカルボニル−2−(p−トルエンスルホニル)プロパン等のβ−ケトスルホン酸誘導体を挙げることができる。
ジスルホン誘導体としては、ジフェニルジスルホン、ジシクロヘキシルジスルホン等のジスルホン誘導体を挙げることができる。
ニトロベンジルスルホネート誘導体としては、p−トルエンスルホン酸2,6−ジニトロベンジル、p−トルエンスルホン酸2,4−ジニトロベンジル等のニトロベンジルスルホネート誘導体を挙げることができる。
スルホン酸エステル誘導体としては、1,2,3−トリス(メタンスルホニルオキシ)ベンゼン、1,2,3−トリス(トリフルオロメタンスルホニルオキシ)ベンゼン、1,2,3−トリス(p−トルエンスルホニルオキシ)ベンゼン等のスルホン酸エステル誘導体を挙げることができる。
N−ヒドロキシイミド化合物のスルホン酸エステル誘導体としては、N−ヒドロキシスクシンイミドメタンスルホン酸エステル、N−ヒドロキシスクシンイミドトリフルオロメタンスルホン酸エステル、N−ヒドロキシスクシンイミドエタンスルホン酸エステル、N−ヒドロキシスクシンイミド1−プロパンスルホン酸エステル、N−ヒドロキシスクシンイミド2−プロパンスルホン酸エステル、N−ヒドロキシスクシンイミド1−ペンタンスルホン酸エステル、N−ヒドロキシスクシンイミド1−オクタンスルホン酸エステル、N−ヒドロキシスクシンイミドp−トルエンスルホン酸エステル、N−ヒドロキシスクシンイミドp−メトキシベンゼンスルホン酸エステル、N−ヒドロキシスクシンイミド2−クロロエタンスルホン酸エステル、N−ヒドロキシスクシンイミドベンゼンスルホン酸エステル、N−ヒドロキシスクシンイミド−2,4,6−トリメチルベンゼンスルホン酸エステル、N−ヒドロキシスクシンイミド1−ナフタレンスルホン酸エステル、N−ヒドロキシスクシンイミド2−ナフタレンスルホン酸エステル、N−ヒドロキシ−2−フェニルスクシンイミドメタンスルホン酸エステル、N−ヒドロキシマレイミドメタンスルホン酸エステル、N−ヒドロキシマレイミドエタンスルホン酸エステル、N−ヒドロキシ−2−フェニルマレイミドメタンスルホン酸エステル、N−ヒドロキシグルタルイミドメタンスルホン酸エステル、N−ヒドロキシグルタルイミドベンゼンスルホン酸エステル、N−ヒドロキシフタルイミドメタンスルホン酸エステル、N−ヒドロキシフタルイミドベンゼンスルホン酸エステル、N−ヒドロキシフタルイミドトリフルオロメタンスルホン酸エステル、N−ヒドロキシフタルイミドp−トルエンスルホン酸エステル、N−ヒドロキシナフタルイミドメタンスルホン酸エステル、N−ヒドロキシナフタルイミドベンゼンスルホン酸エステル、N−ヒドロキシ−5−ノルボルネン−2,3−ジカルボキシイミドメタンスルホン酸エステル、N−ヒドロキシ−5−ノルボルネン−2,3−ジカルボキシイミドトリフルオロメタンスルホン酸エステル、N−ヒドロキシ−5−ノルボルネン−2,3−ジカルボキシイミドp−トルエンスルホン酸エステル等のN−ヒドロキシイミド化合物のスルホン酸エステル誘導体等が挙げられる。
特に、トリフルオロメタンスルホン酸トリフェニルスルホニウム、トリフルオロメタンスルホン酸(p−tert−ブトキシフェニル)ジフェニルスルホニウム、トリフルオロメタンスルホン酸トリス(p−tert−ブトキシフェニル)スルホニウム、p−トルエンスルホン酸トリフェニルスルホニウム、p−トルエンスルホン酸(p−tert−ブトキシフェニル)ジフェニルスルホニウム、p−トルエンスルホン酸トリス(p−tert−ブトキシフェニル)スルホニウム、トリフルオロメタンスルホン酸トリナフチルスルホニウム、トリフルオロメタンスルホン酸シクロヘキシルメチル(2−オキソシクロヘキシル)スルホニウム、トリフルオロメタンスルホン酸(2−ノルボニル)メチル(2−オキソシクロヘキシル)スルホニウム、1,2’−ナフチルカルボニルメチルテトラヒドロチオフェニウムトリフレート等のオニウム塩、ビス(ベンゼンスルホニル)ジアゾメタン、ビス(p−トルエンスルホニル)ジアゾメタン、ビス(シクロヘキシルスルホニル)ジアゾメタン、ビス(n−ブチルスルホニル)ジアゾメタン、ビス(イソブチルスルホニル)ジアゾメタン、ビス(sec−ブチルスルホニル)ジアゾメタン、ビス(n−プロピルスルホニル)ジアゾメタン、ビス(イソプロピルスルホニル)ジアゾメタン、ビス(tert−ブチルスルホニル)ジアゾメタン等のジアゾメタン誘導体、ビス−O−(p−トルエンスルホニル)−α−ジメチルグリオキシム、ビス−O−(n−ブタンスルホニル)−α−ジメチルグリオキシム等のグリオキシム誘導体、ビスナフチルスルホニルメタン等のビススルホン誘導体、N−ヒドロキシスクシンイミドメタンスルホン酸エステル、N−ヒドロキシスクシンイミドトリフルオロメタンスルホン酸エステル、N−ヒドロキシスクシンイミド1−プロパンスルホン酸エステル、N−ヒドロキシスクシンイミド2−プロパンスルホン酸エステル、N−ヒドロキシスクシンイミド1−ペンタンスルホン酸エステル、N−ヒドロキシスクシンイミドp−トルエンスルホン酸エステル、N−ヒドロキシナフタルイミドメタンスルホン酸エステル、N−ヒドロキシナフタルイミドベンゼンスルホン酸エステル等のN−ヒドロキシイミド化合物のスルホン酸エステル誘導体が好ましく用いられる。
なお、上記酸発生剤は1種を単独で又は2種以上を組み合わせて用いることができる。オニウム塩は矩形性向上効果に優れ、ジアゾメタン誘導体及びグリオキシム誘導体は定在波低減効果に優れるため、両者を組み合わせることによりプロファイルの微調整を行うことが可能である。
酸発生剤の添加量は、ベース樹脂100部に対して、好ましくは0.1〜50部、より好ましくは0.5〜40部である。0.1部より少ないと露光時の酸発生量が少なく、感度及び解像力が劣る場合があり、50部を超えるとレジストの透過率が低下し、解像力が劣る場合がある。
次に、本発明のポジ型レジスト材料、特には化学増幅ポジ型レジスト材料に配合される溶解阻止剤(溶解制御剤)としては、重量平均分子量が100〜1,000、好ましくは150〜800で、かつ分子内にフェノール性水酸基を2つ以上有する化合物の該フェノール性水酸基の水素原子を酸不安定基により全体として平均0〜100モル%の割合で置換した化合物又は分子内にカルボキシ基を有する化合物の該カルボキシ基の水素原子を酸不安定基により全体として平均50〜100モル%の割合で置換した化合物を配合する。
なお、フェノール性水酸基の水素原子の酸不安定基による置換率は、平均でフェノール性水酸基全体の0モル%以上、好ましくは30モル%以上であり、その上限は100モル%、より好ましくは80モル%である。カルボキシ基の水素原子の酸不安定基による置換率は、平均でカルボキシ基全体の50モル%以上、好ましくは70モル%以上であり、その上限は100モル%である。
この場合、かかるフェノール性水酸基を2つ以上有する化合物又はカルボキシ基を有する化合物としては、下記式(D1)〜(D14)で示されるものが好ましい。
Figure 2009169406
但し、式中R201、R202はそれぞれ水素原子、又は炭素数1〜8の直鎖状又は分岐状のアルキル基又はアルケニル基を示す。R203は水素原子、又は炭素数1〜8の直鎖状又は分岐状のアルキル基又はアルケニル基、あるいは−(R207hCOOHを示す。R204は−(CH2i−(i=2〜10)、炭素数6〜10のアリーレン基、カルボニル基、スルホニル基、酸素原子又は硫黄原子を示す。R205は炭素数1〜10のアルキレン基、炭素数6〜10のアリーレン基、カルボニル基、スルホニル基、酸素原子又は硫黄原子を示す。R206は水素原子、炭素数1〜8の直鎖状又は分岐状のアルキル基、アルケニル基又はそれぞれ水酸基で置換されたフェニル基又はナフチル基を示す。R207は炭素数1〜10の直鎖状又は分岐状のアルキレン基を示す。R208は水素原子又は水酸基を示す。jは0〜5の整数である。u、hは0又は1である。s、t、s’、t’、s’’、t’’はそれぞれs+t=8、s’+t’=5、s’’+t’’=4を満足し、かつ各フェニル骨格中に少なくとも1つの水酸基を有するような数である。αは式(D8)、(D9)の化合物の分子量を100〜1,000とする数である。
溶解阻止剤の配合量は、ベース樹脂100部に対して0〜50部、好ましくは5〜50部、より好ましくは10〜30部であり、単独又は2種以上を混合して使用できる。配合量が少ないと解像性の向上がない場合があり、多すぎるとパターンの膜減りが生じ、解像度が低下する傾向がある。
更に、本発明のポジ型レジスト材料、特には化学増幅ポジ型レジスト材料には、塩基性化合物を配合することができる。
塩基性化合物としては、酸発生剤より発生する酸がレジスト膜中に拡散する際の拡散速度を抑制することができる化合物が適している。塩基性化合物の配合により、レジスト膜中での酸の拡散速度が抑制されて解像度が向上し、露光後の感度変化を抑制したり、基板や環境依存性を少なくし、露光余裕度やパターンプロファイル等を向上することができる。
このような塩基性化合物としては、第一級、第二級、第三級の脂肪族アミン類、混成アミン類、芳香族アミン類、複素環アミン類、カルボキシ基を有する含窒素化合物、スルホニル基を有する含窒素化合物、水酸基を有する含窒素化合物、ヒドロキシフェニル基を有する含窒素化合物、アルコール性含窒素化合物、アミド誘導体、イミド誘導体等が挙げられる。
具体的には、第一級の脂肪族アミン類として、アンモニア、メチルアミン、エチルアミン、n−プロピルアミン、イソプロピルアミン、n−ブチルアミン、イソブチルアミン、sec−ブチルアミン、tert−ブチルアミン、ペンチルアミン、tert−アミルアミン、シクロペンチルアミン、ヘキシルアミン、シクロヘキシルアミン、ヘプチルアミン、オクチルアミン、ノニルアミン、デシルアミン、ドデシルアミン、セチルアミン、メチレンジアミン、エチレンジアミン、テトラエチレンペンタミン等が例示され、第二級の脂肪族アミン類として、ジメチルアミン、ジエチルアミン、ジ−n−プロピルアミン、ジイソプロピルアミン、ジ−n−ブチルアミン、ジイソブチルアミン、ジ−sec−ブチルアミン、ジペンチルアミン、ジシクロペンチルアミン、ジヘキシルアミン、ジシクロヘキシルアミン、ジヘプチルアミン、ジオクチルアミン、ジノニルアミン、ジデシルアミン、ジドデシルアミン、ジセチルアミン、N,N−ジメチルメチレンジアミン、N,N−ジメチルエチレンジアミン、N,N−ジメチルテトラエチレンペンタミン等が例示され、第三級の脂肪族アミン類として、トリメチルアミン、トリエチルアミン、トリ−n−プロピルアミン、トリイソプロピルアミン、トリ−n−ブチルアミン、トリイソブチルアミン、トリ−sec−ブチルアミン、トリペンチルアミン、トリシクロペンチルアミン、トリヘキシルアミン、トリシクロヘキシルアミン、トリヘプチルアミン、トリオクチルアミン、トリノニルアミン、トリデシルアミン、トリドデシルアミン、トリセチルアミン、N,N,N’,N’−テトラメチルメチレンジアミン、N,N,N’,N’−テトラメチルエチレンジアミン、N,N,N’,N’−テトラメチルテトラエチレンペンタミン等が例示される。
また、混成アミン類としては、例えばジメチルエチルアミン、メチルエチルプロピルアミン、ベンジルアミン、フェネチルアミン、ベンジルジメチルアミン等が例示される。
芳香族アミン類及び複素環アミン類の具体例としては、アニリン誘導体(例えばアニリン、N−メチルアニリン、N−エチルアニリン、N−プロピルアニリン、N,N−ジメチルアニリン、2−メチルアニリン、3−メチルアニリン、4−メチルアニリン、エチルアニリン、プロピルアニリン、トリメチルアニリン、2−ニトロアニリン、3−ニトロアニリン、4−ニトロアニリン、2,4−ジニトロアニリン、2,6−ジニトロアニリン、3,5−ジニトロアニリン、N,N−ジメチルトルイジン等)、ジフェニル(p−トリル)アミン、メチルジフェニルアミン、トリフェニルアミン、フェニレンジアミン、ナフチルアミン、ジアミノナフタレン、ピロール誘導体(例えばピロール、2H−ピロール、1−メチルピロール、2,4−ジメチルピロール、2,5−ジメチルピロール、N−メチルピロール等)、オキサゾール誘導体(例えばオキサゾール、イソオキサゾール等)、チアゾール誘導体(例えばチアゾール、イソチアゾール等)、イミダゾール誘導体(例えばイミダゾール、4−メチルイミダゾール、4−メチル−2−フェニルイミダゾール等)、ピラゾール誘導体、フラザン誘導体、ピロリン誘導体(例えばピロリン、2−メチル−1−ピロリン等)、ピロリジン誘導体(例えばピロリジン、N−メチルピロリジン、ピロリジノン、N−メチルピロリドン等)、イミダゾリン誘導体、イミダゾリジン誘導体、ピリジン誘導体(例えばピリジン、メチルピリジン、エチルピリジン、プロピルピリジン、ブチルピリジン、4−(1−ブチルペンチル)ピリジン、ジメチルピリジン、トリメチルピリジン、トリエチルピリジン、フェニルピリジン、3−メチル−2−フェニルピリジン、4−tert−ブチルピリジン、ジフェニルピリジン、ベンジルピリジン、メトキシピリジン、ブトキシピリジン、ジメトキシピリジン、1−メチル−2−ピリドン、4−ピロリジノピリジン、1−メチル−4−フェニルピリジン、2−(1−エチルプロピル)ピリジン、アミノピリジン、ジメチルアミノピリジン等)、ピリダジン誘導体、ピリミジン誘導体、ピラジン誘導体、ピラゾリン誘導体、ピラゾリジン誘導体、ピペリジン誘導体、ピペラジン誘導体、モルホリン誘導体、インドール誘導体、イソインドール誘導体、1H−インダゾール誘導体、インドリン誘導体、キノリン誘導体(例えばキノリン、3−キノリンカルボニトリル等)、イソキノリン誘導体、シンノリン誘導体、キナゾリン誘導体、キノキサリン誘導体、フタラジン誘導体、プリン誘導体、プテリジン誘導体、カルバゾール誘導体、フェナントリジン誘導体、アクリジン誘導体、フェナジン誘導体、1,10−フェナントロリン誘導体、アデニン誘導体、アデノシン誘導体、グアニン誘導体、グアノシン誘導体、ウラシル誘導体、ウリジン誘導体等が例示される。
更に、カルボキシ基を有する含窒素化合物としては、例えばアミノ安息香酸、インドールカルボン酸、アミノ酸誘導体(例えばニコチン酸、アラニン、アルギニン、アスパラギン酸、グルタミン酸、グリシン、ヒスチジン、イソロイシン、グリシルロイシン、ロイシン、メチオニン、フェニルアラニン、スレオニン、リジン、3−アミノピラジン−2−カルボン酸、メトキシアラニン)等が例示され、スルホニル基を有する含窒素化合物として3−ピリジンスルホン酸、p−トルエンスルホン酸ピリジニウム等が例示され、水酸基を有する含窒素化合物、ヒドロキシフェニル基を有する含窒素化合物、アルコール性含窒素化合物としては、2−ヒドロキシピリジン、アミノクレゾール、2,4−キノリンジオール、3−インドールメタノールヒドレート、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、N−エチルジエタノールアミン、N,N−ジエチルエタノールアミン、トリイソプロパノールアミン、2,2’−イミノジエタノール、2−アミノエタノ−ル、3−アミノ−1−プロパノール、4−アミノ−1−ブタノール、4−(2−ヒドロキシエチル)モルホリン、2−(2−ヒドロキシエチル)ピリジン、1−(2−ヒドロキシエチル)ピペラジン、1−[2−(2−ヒドロキシエトキシ)エチル]ピペラジン、ピペリジンエタノール、1−(2−ヒドロキシエチル)ピロリジン、1−(2−ヒドロキシエチル)−2−ピロリジノン、3−ピペリジノ−1,2−プロパンジオール、3−ピロリジノ−1,2−プロパンジオール、8−ヒドロキシユロリジン、3−クイヌクリジノール、3−トロパノール、1−メチル−2−ピロリジンエタノール、1−アジリジンエタノール、N−(2−ヒドロキシエチル)フタルイミド、N−(2−ヒドロキシエチル)イソニコチンアミド等が例示される。
アミド誘導体としては、ホルムアミド、N−メチルホルムアミド、N,N−ジメチルホルムアミド、アセトアミド、N−メチルアセトアミド、N,N−ジメチルアセトアミド、プロピオンアミド、ベンズアミド等が例示される。
イミド誘導体としては、フタルイミド、サクシンイミド、マレイミド等が例示される。
更に、下記一般式(B)−1で示される塩基性化合物から選ばれる1種又は2種以上を添加することもできる。
N(X)n(Y)3-n (B)−1
(上記式中、n=1、2又は3である。側鎖Xは同一でも異なっていてもよく、下記一般式(X)−1、(X)−2又は(X)−3で表すことができる。側鎖Yは同一又は異種の水素原子もしくは直鎖状、分岐状又は環状の炭素数1〜20のアルキル基を示し、エーテル基もしくはヒドロキシル基を含んでもよい。また、X同士が結合して環を形成してもよい。)
Figure 2009169406
ここで、R300、R302、R305は炭素数1〜4の直鎖状、分岐状のアルキレン基であり、R301、R304は水素原子、炭素数1〜20の直鎖状、分岐状又は環状のアルキル基であり、ヒドロキシ基、エーテル基、エステル基、ラクトン環を1個あるいは複数個含んでいてもよい。
303は単結合もしくは炭素数1〜4の直鎖状、分岐状のアルキレン基であり、R306は炭素数1〜20の直鎖状、分岐状又は環状のアルキル基であり、ヒドロキシ基、エーテル基、エステル基、ラクトン環を1個あるいは複数個含んでいてもよい。
上記一般式(B)−1で表される化合物は、具体的には下記に例示される。
トリス(2−メトキシメトキシエチル)アミン、トリス{2−(2−メトキシエトキシ)エチル}アミン、トリス{2−(2−メトキシエトキシメトキシ)エチル}アミン、トリス{2−(1−メトキシエトキシ)エチル}アミン、トリス{2−(1−エトキシエトキシ)エチル}アミン、トリス{2−(1−エトキシプロポキシ)エチル}アミン、トリス[2−{2−(2−ヒドロキシエトキシ)エトキシ}エチル]アミン、4,7,13,16,21,24−ヘキサオキサ−1,10−ジアザビシクロ[8.8.8]ヘキサコサン、4,7,13,18−テトラオキサ−1,10−ジアザビシクロ[8.5.5]エイコサン、1,4,10,13−テトラオキサ−7,16−ジアザビシクロオクタデカン、1−アザ−12−クラウン−4、1−アザ−15−クラウン−5、1−アザ−18−クラウン−6、トリス(2−ホルミルオキシエチル)アミン、トリス(2−アセトキシエチル)アミン、トリス(2−プロピオニルオキシエチル)アミン、トリス(2−ブチリルオキシエチル)アミン、トリス(2−イソブチリルオキシエチル)アミン、トリス(2−バレリルオキシエチル)アミン、トリス(2−ピバロイルオキシエチル)アミン、N,N−ビス(2−アセトキシエチル)2−(アセトキシアセトキシ)エチルアミン、トリス(2−メトキシカルボニルオキシエチル)アミン、トリス(2−tert−ブトキシカルボニルオキシエチル)アミン、トリス[2−(2−オキソプロポキシ)エチル]アミン、トリス[2−(メトキシカルボニルメチル)オキシエチル]アミン、トリス[2−(tert−ブトキシカルボニルメチルオキシ)エチル]アミン、トリス[2−(シクロヘキシルオキシカルボニルメチルオキシ)エチル]アミン、トリス(2−メトキシカルボニルエチル)アミン、トリス(2−エトキシカルボニルエチル)アミン、N,N−ビス(2−ヒドロキシエチル)2−(メトキシカルボニル)エチルアミン、N,N−ビス(2−アセトキシエチル)2−(メトキシカルボニル)エチルアミン、N,N−ビス(2−ヒドロキシエチル)2−(エトキシカルボニル)エチルアミン、N,N−ビス(2−アセトキシエチル)2−(エトキシカルボニル)エチルアミン、N,N−ビス(2−ヒドロキシエチル)2−(2−メトキシエトキシカルボニル)エチルアミン、N,N−ビス(2−アセトキシエチル)2−(2−メトキシエトキシカルボニル)エチルアミン、N,N−ビス(2−ヒドロキシエチル)2−(2−ヒドロキシエトキシカルボニル)エチルアミン、N,N−ビス(2−アセトキシエチル)2−(2−アセトキシエトキシカルボニル)エチルアミン、N,N−ビス(2−ヒドロキシエチル)2−[(メトキシカルボニル)メトキシカルボニル]エチルアミン、N,N−ビス(2−アセトキシエチル)2−[(メトキシカルボニル)メトキシカルボニル]エチルアミン、N,N−ビス(2−ヒドロキシエチル)2−(2−オキソプロポキシカルボニル)エチルアミン、N,N−ビス(2−アセトキシエチル)2−(2−オキソプロポキシカルボニル)エチルアミン、N,N−ビス(2−ヒドロキシエチル)2−(テトラヒドロフルフリルオキシカルボニル)エチルアミン、N,N−ビス(2−アセトキシエチル)2−(テトラヒドロフルフリルオキシカルボニル)エチルアミン、N,N−ビス(2−ヒドロキシエチル)2−[(2−オキソテトラヒドロフラン−3−イル)オキシカルボニル]エチルアミン、N,N−ビス(2−アセトキシエチル)2−[(2−オキソテトラヒドロフラン−3−イル)オキシカルボニル]エチルアミン、N,N−ビス(2−ヒドロキシエチル)2−(4−ヒドロキシブトキシカルボニル)エチルアミン、N,N−ビス(2−ホルミルオキシエチル)2−(4−ホルミルオキシブトキシカルボニル)エチルアミン、N,N−ビス(2−ホルミルオキシエチル)2−(2−ホルミルオキシエトキシカルボニル)エチルアミン、N,N−ビス(2−メトキシエチル)2−(メトキシカルボニル)エチルアミン、N−(2−ヒドロキシエチル)ビス[2−(メトキシカルボニル)エチル]アミン、N−(2−アセトキシエチル)ビス[2−(メトキシカルボニル)エチル]アミン、N−(2−ヒドロキシエチル)ビス[2−(エトキシカルボニル)エチル]アミン、N−(2−アセトキシエチル)ビス[2−(エトキシカルボニル)エチル]アミン、N−(3−ヒドロキシ−1−プロピル)ビス[2−(メトキシカルボニル)エチル]アミン、N−(3−アセトキシ−1−プロピル)ビス[2−(メトキシカルボニル)エチル]アミン、N−(2−メトキシエチル)ビス[2−(メトキシカルボニル)エチル]アミン、N−ブチルビス[2−(メトキシカルボニル)エチル]アミン、N−ブチルビス[2−(2−メトキシエトキシカルボニル)エチル]アミン、N−メチルビス(2−アセトキシエチル)アミン、N−エチルビス(2−アセトキシエチル)アミン、N−メチルビス(2−ピバロイルオキシエチル)アミン、N−エチルビス[2−(メトキシカルボニルオキシ)エチル]アミン、N−エチルビス[2−(tert−ブトキシカルボニルオキシ)エチル]アミン、トリス(メトキシカルボニルメチル)アミン、トリス(エトキシカルボニルメチル)アミン、N−ブチルビス(メトキシカルボニルメチル)アミン、N−ヘキシルビス(メトキシカルボニルメチル)アミン、β−(ジエチルアミノ)−δ−バレロラクトンを例示できるが、これらに制限されない。
更に、下記一般式(B)−2に示される環状構造を持つ塩基性化合物の1種あるいは2種以上を添加することもできる。
Figure 2009169406
(上記式中、Xは前述の通り、R307は炭素数2〜20の直鎖状、分岐状のアルキレン基であり、カルボニル基、エーテル基、エステル基、スルフィドを1個あるいは複数個含んでいてもよい。)
上記一般式(B)−2として具体的には、1−[2−(メトキシメトキシ)エチル]ピロリジン、1−[2−(メトキシメトキシ)エチル]ピペリジン、4−[2−(メトキシメトキシ)エチル]モルホリン、1−[2−[(2−メトキシエトキシ)メトキシ]エチル]ピロリジン、1−[2−[(2−メトキシエトキシ)メトキシ]エチル]ピペリジン、4−[2−[(2−メトキシエトキシ)メトキシ]エチル]モルホリン、酢酸2−(1−ピロリジニル)エチル、酢酸2−ピペリジノエチル、酢酸2−モルホリノエチル、ギ酸2−(1−ピロリジニル)エチル、プロピオン酸2−ピペリジノエチル、アセトキシ酢酸2−モルホリノエチル、メトキシ酢酸2−(1−ピロリジニル)エチル、4−[2−(メトキシカルボニルオキシ)エチル]モルホリン、1−[2−(t−ブトキシカルボニルオキシ)エチル]ピペリジン、4−[2−(2−メトキシエトキシカルボニルオキシ)エチル]モルホリン、3−(1−ピロリジニル)プロピオン酸メチル、3−ピペリジノプロピオン酸メチル、3−モルホリノプロピオン酸メチル、3−(チオモルホリノ)プロピオン酸メチル、2−メチル−3−(1−ピロリジニル)プロピオン酸メチル、3−モルホリノプロピオン酸エチル、3−ピペリジノプロピオン酸メトキシカルボニルメチル、3−(1−ピロリジニル)プロピオン酸2−ヒドロキシエチル、3−モルホリノプロピオン酸2−アセトキシエチル、3−(1−ピロリジニル)プロピオン酸2−オキソテトラヒドロフラン−3−イル、3−モルホリノプロピオン酸テトラヒドロフルフリル、3−ピペリジノプロピオン酸グリシジル、3−モルホリノプロピオン酸2−メトキシエチル、3−(1−ピロリジニル)プロピオン酸2−(2−メトキシエトキシ)エチル、3−モルホリノプロピオン酸ブチル、3−ピペリジノプロピオン酸シクロヘキシル、α−(1−ピロリジニル)メチル−γ−ブチロラクトン、β−ピペリジノ−γ−ブチロラクトン、β−モルホリノ−δ−バレロラクトン、1−ピロリジニル酢酸メチル、ピペリジノ酢酸メチル、モルホリノ酢酸メチル、チオモルホリノ酢酸メチル、1−ピロリジニル酢酸エチル、モルホリノ酢酸2−メトキシエチル等を挙げることができる。
更に、下記一般式(B)−3〜(B)−6で表されるシアノ基を含む塩基性化合物を添加することができる。
Figure 2009169406

(上記式中、X、R307、nは前述の通り、R308、R309は同一又は異種の炭素数1〜4の直鎖状、分岐状のアルキレン基である。)
シアノ基を含む塩基性化合物として具体的には、具体的には3−(ジエチルアミノ)プロピオノニトリル、N,N−ビス(2−ヒドロキシエチル)−3−アミノプロピオノニトリル、N,N−ビス(2−アセトキシエチル)−3−アミノプロピオノニトリル、N,N−ビス(2−ホルミルオキシエチル)−3−アミノプロピオノニトリル、N,N−ビス(2−メトキシエチル)−3−アミノプロピオノニトリル、N,N−ビス[2−(メトキシメトキシ)エチル]−3−アミノプロピオノニトリル、N−(2−シアノエチル)−N−(2−メトキシエチル)−3−アミノプロピオン酸メチル、N−(2−シアノエチル)−N−(2−ヒドロキシエチル)−3−アミノプロピオン酸メチル、N−(2−アセトキシエチル)−N−(2−シアノエチル)−3−アミノプロピオン酸メチル、N−(2−シアノエチル)−N−エチル−3−アミノプロピオノニトリル、N−(2−シアノエチル)−N−(2−ヒドロキシエチル)−3−アミノプロピオノニトリル、N−(2−アセトキシエチル)−N−(2−シアノエチル)−3−アミノプロピオノニトリル、N−(2−シアノエチル)−N−(2−ホルミルオキシエチル)−3−アミノプロピオノニトリル、N−(2−シアノエチル)−N−(2−メトキシエチル)−3−アミノプロピオノニトリル、N−(2−シアノエチル)−N−[2−(メトキシメトキシ)エチル]−3−アミノプロピオノニトリル、N−(2−シアノエチル)−N−(3−ヒドロキシ−1−プロピル)−3−アミノプロピオノニトリル、N−(3−アセトキシ−1−プロピル)−N−(2−シアノエチル)−3−アミノプロピオノニトリル、N−(2−シアノエチル)−N−(3−ホルミルオキシ−1−プロピル)−3−アミノプロピオノニトリル、N−(2−シアノエチル)−N−テトラヒドロフルフリル−3−アミノプロピオノニトリル、N,N−ビス(2−シアノエチル)−3−アミノプロピオノニトリル、ジエチルアミノアセトニトリル、N,N−ビス(2−ヒドロキシエチル)アミノアセトニトリル、N,N−ビス(2−アセトキシエチル)アミノアセトニトリル、N,N−ビス(2−ホルミルオキシエチル)アミノアセトニトリル、N,N−ビス(2−メトキシエチル)アミノアセトニトリル、N,N−ビス[2−(メトキシメトキシ)エチル]アミノアセトニトリル、N−シアノメチル−N−(2−メトキシエチル)−3−アミノプロピオン酸メチル、N−シアノメチル−N−(2−ヒドロキシエチル)−3−アミノプロピオン酸メチル、N−(2−アセトキシエチル)−N−シアノメチル−3−アミノプロピオン酸メチル、N−シアノメチル−N−(2−ヒドロキシエチル)アミノアセトニトリル、N−(2−アセトキシエチル)−N−(シアノメチル)アミノアセトニトリル、N−シアノメチル−N−(2−ホルミルオキシエチル)アミノアセトニトリル、N−シアノメチル−N−(2−メトキシエチル)アミノアセトニトリル、N−シアノメチル−N−[2−(メトキシメトキシ)エチル]アミノアセトニトリル、N−(シアノメチル)−N−(3−ヒドロキシ−1−プロピル)アミノアセトニトリル、N−(3−アセトキシ−1−プロピル)−N−(シアノメチル)アミノアセトニトリル、N−シアノメチル−N−(3−ホルミルオキシ−1−プロピル)アミノアセトニトリル、N,N−ビス(シアノメチル)アミノアセトニトリル、1−ピロリジンプロピオノニトリル、1−ピペリジンプロピオノニトリル、4−モルホリンプロピオノニトリル、1−ピロリジンアセトニトリル、1−ピペリジンアセトニトリル、4−モルホリンアセトニトリル、3−ジエチルアミノプロピオン酸シアノメチル、N,N−ビス(2−ヒドロキシエチル)−3−アミノプロピオン酸シアノメチル、N,N−ビス(2−アセトキシエチル)−3−アミノプロピオン酸シアノメチル、N,N−ビス(2−ホルミルオキシエチル)−3−アミノプロピオン酸シアノメチル、N,N−ビス(2−メトキシエチル)−3−アミノプロピオン酸シアノメチル、N,N−ビス[2−(メトキシメトキシ)エチル]−3−アミノプロピオン酸シアノメチル、3−ジエチルアミノプロピオン酸(2−シアノエチル)、N,N−ビス(2−ヒドロキシエチル)−3−アミノプロピオン酸(2−シアノエチル)、N,N−ビス(2−アセトキシエチル)−3−アミノプロピオン酸(2−シアノエチル)、N,N−ビス(2−ホルミルオキシエチル)−3−アミノプロピオン酸(2−シアノエチル)、N,N−ビス(2−メトキシエチル)−3−アミノプロピオン酸(2−シアノエチル)、N,N−ビス[2−(メトキシメトキシ)エチル]−3−アミノプロピオン酸(2−シアノエチル)、1−ピロリジンプロピオン酸シアノメチル、1−ピペリジンプロピオン酸シアノメチル、4−モルホリンプロピオン酸シアノメチル、1−ピロリジンプロピオン酸(2−シアノエチル)、1−ピペリジンプロピオン酸(2−シアノエチル)、4−モルホリンプロピオン酸(2−シアノエチル)等が例示される。
なお、本発明のポジ型レジスト材料への塩基性化合物の配合量は、ベース樹脂100部に対して0.001〜2部、特に0.01〜1部が好適である。配合量が0.001部より少ないと配合効果が少なく、2部を超えると感度が低下しすぎる場合がある。
本発明のポジ型レジスト材料に添加することができる分子内に≡C−COOHで示される基を有する化合物としては、例えば下記[I群]及び[II群]から選ばれる1種又は2種以上の化合物を使用することができるが、これらに限定されるものではない。本成分の配合により、レジストのPED(Post Exposure Delay)安定性が向上し、窒化膜基板上でのエッジラフネスが改善されるものである。
[I群]
下記一般式(A1)〜(A10)で示される化合物のフェノール性水酸基の水素原子の一部又は全部を−R401−COOH(R401は炭素数1〜10の直鎖状又は分岐状のアルキレン基)により置換してなり、かつ分子中のフェノール性水酸基(C)と≡C−COOHで示される基(D)とのモル比率がC/(C+D)=0.1〜1.0である化合物。
Figure 2009169406

(上記式中、R408は水素原子又はメチル基を示す。R402、R403はそれぞれ水素原子又は炭素数1〜8の直鎖状又は分岐状のアルキル基又はアルケニル基を示す。R404は水素原子又は炭素数1〜8の直鎖状又は分岐状のアルキル基又はアルケニル基、あるいは−(R409h−COOR’基(R’は水素原子又は−R409−COOH)を示す。R405は−(CH2i−(i=2〜10)、炭素数6〜10のアリーレン基、カルボニル基、スルホニル基、酸素原子又は硫黄原子を示す、R406は炭素数1〜10のアルキレン基、炭素数6〜10のアリーレン基、カルボニル基、スルホニル基、酸素原子又は硫黄原子を示す。R407は水素原子又は炭素数1〜8の直鎖状又は分岐状のアルキル基、アルケニル基、それぞれ水酸基で置換されたフェニル基又はナフチル基を示す。R409は炭素数1〜10の直鎖状又は分岐状のアルキル基又はアルケニル基又は−R411−COOH基を示す。R410は水素原子、炭素数1〜8の直鎖状又は分岐状のアルキル基又はアルケニル基又は−R411−COOH基を示す。R411は炭素数1〜10の直鎖状又は分岐状のアルキレン基を示す。hは1〜4の整数である。jは0〜3、s1〜s4、t1〜t4はそれぞれs1+t1=8、s2+t2=5、s3+t3=4、s4+t4=6を満足し、かつ各フェニル骨格中に少なくとも1つの水酸基を有するような数である。uは1〜4の整数である。κは式(A6)の化合物を重量平均分子量1,000〜5,000とする数である。λは式(A7)の化合物を重量平均分子量1,000〜10,000とする数である。)
[II群]
下記一般式(A11)〜(A15)で示される化合物。
Figure 2009169406

(上記式中、R402、R403、R411は上記と同様の意味を示す。R412は水素原子又は水酸基を示す。s5、t5は、s5≧0、t5≧0で、s5+t5=5を満足する数である。h’は0又は1である。)
本成分として具体的には、下記一般式(AI−1)〜(AI−14)及び(AII−1)〜(AII−10)で示される化合物を挙げることができるが、これらに限定されるものではない。
Figure 2009169406

(上記式中、R’’は水素原子又は−CH2COOH基を示し、各化合物においてR’’の10〜100モル%は−CH2COOH基である。κ、λは上記と同様の意味を示す。)
Figure 2009169406
なお、上記分子内に≡C−COOHで示される基を有する化合物の添加量は、ベース樹脂100部に対して0〜5部、好ましくは0.1〜5部、より好ましくは0.1〜3部、更に好ましくは0.1〜2部である。5部より多いとレジスト材料の解像度が低下する場合がある。
本発明のポジ型レジスト材料、特には化学増幅ポジ型レジスト材料には、更に、塗布性を向上させる等のための界面活性剤を加えることができる。
界面活性剤の例としては、特に限定されるものではないが、ポリオキシエチレンラウリルエーテル、ポリエチレンステアリルエーテル、ポリオキシエチレンセチルエーテル、ポリオキシエチレンオレインエーテル等のポリオキシエチレンアルキルエーテル類、ポリオキシエチレンオクチルフェノールエーテル、ポリオキシエチレンノニルフェノール等のポリオキシエチレンアルキルアリルエーテル類、ポリオキシエチレンポリオキシプロピレンブロックコポリマー類、ソルビタンモノラウレート、ソルビタンモノバルミテート、ソルビタンモノステアレート等のソルビタン脂肪酸エステル類、ポリオキシエチレンソルビタンモノラウレート、ポリオキシエチレンソルビタンモノバルミテート、ポリオキシエチレンソルビタンモノステアレート、ポリオキシエチレンソルビタントリオレエート、ポリオキシエチレンソルビタントリステアレート等のポリオキシエチレンソルビタン脂肪酸エステルのノニオン系界面活性剤、エフトップEF301、EF303、EF352(トーケムプトダクツ)、メガファックF171、F172、F173(大日本インキ化学工業)、フロラードFC430、FC431(住友スリーエム)、アサヒガードAG710、サーフロンS−381、S−382、SC101、SC102、SC103、SC104、SC105、SC106、サーフィノールE1004、KH−10、KH−20、KH−30、KH−40(旭硝子)等のフッ素系界面活性剤、オルガノシロキサンポリマーKP−341、X−70−092、X−70−093(信越化学工業)、アクリル酸系又はメタクリル酸系ポリフローNo.75、No.95(共栄社油脂化学工業)等が挙げられ、中でもフロラードFC430、サーフロンS−381、サーフィノールE1004、KH−20、KH−30、FC−4430が好適である。これらは単独あるいは2種以上の組み合わせで用いることができる。
本発明のポジ型レジスト材料、特には化学増幅ポジ型レジスト材料中の界面活性剤の添加量としては、レジスト材料組成物中のベース樹脂100部に対して2部以下、好ましくは1部以下である。
本発明のポジ型レジスト材料、特には、有機溶剤と、上記高分子化合物と、酸発生剤等を含む化学増幅ポジ型レジスト材料を種々の集積回路製造に用いる場合は、特に限定されないが公知のリソグラフィー技術を用いることができる。
例えば、本発明のレジスト材料を、集積回路製造用の基板(Si、SiO2、SiN、SiON、TiN、WSi、BPSG、SOG、有機反射防止膜、Cr、CrO、CrON、MoSi等)上にスピンコート、ロールコート、フローコート、ディップコート、スプレーコート、ドクターコート等の適当な塗布方法により塗布膜厚が0.1〜2.0μmとなるように塗布し、ホットプレート上で60〜150℃、1〜10分間、好ましくは80〜120℃、1〜5分間プリベークする。次いで、紫外線、遠紫外線、電子線、X線、エキシマレーザー、γ線、シンクロトロン放射線などから選ばれる光源、好ましくは300nm以下の露光波長、より好ましくは180〜200nmの範囲の露光波長で目的とするパターンを所定のマスクを通じて露光を行う。露光量は1〜200mJ/cm2程度、好ましくは10〜100mJ/cm2程度となるように露光することが好ましい。次に、ホットプレート上で60〜150℃で1〜5分間、好ましくは80〜120℃で1〜3分間ポストエクスポージャベーク(PEB)する。
更に、0.1〜5質量%、好ましくは2〜3質量%テトラメチルアンモニウムヒドロキシド(TMAH)等のアルカリ水溶液の現像液を用い、0.1〜3分間、好ましくは0.5〜2分間、浸漬(dip)法、パドル(puddle)法、スプレー(spray)法等の常法を用いて現像することにより、基板上に目的のパターンが形成される。なお、本発明のレジスト材料は、特に高エネルギー線の中でも波長254〜193nmの遠紫外線、波長157nmの真空紫外線、電子線、軟X線、X線、エキシマレーザー、γ線、シンクロトロン放射線、より好ましくは波長200nm以下、特に180〜200nmの範囲、波長13.5nmのEUV、及びEBの高エネルギー線による微細パターンニングに最適である。
また、本発明のレジスト材料は、液浸リソグラフィーに適用することも可能である。ArF液浸リソグラフィーにおいては液浸溶媒として純水が用いられる。液浸リソグラフィーは、プリベーク後のレジスト膜と投影レンズの間に水を挿入して露光する。投影レンズの開口数(NA)を1.0以上にでき、解像力を向上できるため、ArFリソグラフィーを65nmノードまで延命させるための重要な技術であり、開発が加速されている。従来ArFレジストの親水性基として用いられてきたラクトン環は、アルカリ水溶液と水の両方に溶解性がある。水への溶解性が高いラクトンあるいは無水マレイン酸や無水イタコン酸のような酸無水物を親水性基に用いた場合、水中での液浸により水がレジスト表面から染み込み、レジスト表面が膨潤する問題が発生する。液浸露光の場合は、レジスト膜上に残った水滴残りを除去するための露光後の純水リンス(ポストソーク)を行ってもよいし、レジスト膜からの溶出物を防ぎ、膜表面の滑水性を上げるために、プリベーク後のレジスト膜上に保護膜を形成させてもよい。液浸リソグラフィーに用いられるレジスト保護膜としては、例えば、水に不溶でアルカリ現像液に溶解する1,1,1,3,3,3−ヘキサフルオロ−2−プロパノール残基を有する高分子化合物をベースとし、炭素数4以上のアルコール系溶剤、炭素数8〜12のエーテル系溶剤、及びこれらの混合溶媒に溶解させた材料が好ましい。フォトレジスト膜形成後に、純水リンス(ポストソーク)を行うことによって膜表面からの酸発生剤などの抽出、あるいはパーティクルの洗い流しを行ってもよいし、露光後に膜上に残った水を取り除くためのリンス(ポストソーク)を行ってもよい。
本発明の実施に用いるレジスト材料には、特にはレジスト保護膜を用いない場合、スピンコート後のレジスト表面に配向することによって水のしみ込みやリーチングを低減させる機能を有する界面活性剤を添加することができる。この界面活性剤は高分子型の界面活性剤であり、水に溶解せずアルカリに溶解する性質であり、特に撥水性が高く滑水性を向上させるものが好ましい。
このような高分子型の界面活性剤は、下記に示すことができる。
Figure 2009169406

(上記式中、R01、R04、R07、R014はそれぞれ独立して水素原子又はメチル基、R02、R03、R015及びR016は水素原子、又は炭素数1〜20の直鎖状、分岐状又は環状のアルキル基又はフッ素化アルキル基を示し、R02とR03、R015とR016はそれぞれ結合してこれらが結合する炭素原子と共に環(特に非芳香環)を形成してもよく、その場合、R02とR03、R015とR016は合計して炭素数2〜20の直鎖状、分岐状又は環状のアルキレン基又はフッ素化アルキレン基を示す。Rはフッ素原子、又は水素原子であり、あるいはR05と結合してこれらが結合する炭素原子と共に炭素数の和が3〜10の環(特に非芳香環)を形成してもよい。
05は炭素数1〜6の直鎖状、分岐状又は環状のアルキレン基で、1つ以上の水素原子がフッ素原子で置換されていてもよい。
06は1つ以上の水素原子がフッ素原子で置換された炭素数1〜10の直鎖状又は分岐状のアルキル基で、R05とR06が結合してこれらが結合する炭素原子と共に環(特に非芳香環)を形成していてもよく、その場合R05とR06とこれらが結合する炭素原子との炭素数の総和が4〜14の環を形成し、この環の1つ以上の水素原子はフッ素原子で置換されている。
08は単結合又は炭素数1〜4のアルキレン基、R010、R011はそれぞれ水素原子、フッ素原子、メチル基、又はトリフルオロメチル基、R012、R013は同一又は異種の単結合、又は−O−又は−CR018019−であり、R09、R018、R019は水素原子、フッ素原子、メチル基、又はトリフルオロメチル基である。
017は炭素数1〜4の直鎖状又は分岐状のアルキレン基であり、R015又はR016と結合してこれらが結合する炭素原子と共に炭素数4〜14の環(特に非芳香環)を形成してもよい。
01、X02、X03はそれぞれ−C(=O)−O−、−O−、又は−C(=O)−R020−C(=O)−O−であり、R020は炭素数1〜10の直鎖状、分岐状又は環状のアルキレン基である。
0≦(x−1)<1、0≦(x−2)<1、0≦(x−3)<1、0<(x−1)+(x−2)+(x−3)<1、0<y<1であり、0<(x−1)+(x−2)+(x−3)+y≦1である。)
なお、(x−1)+(x−2)+(x−3)+y<1である場合、上記単位以外の単位zは、フルオロアルキル基、アルキル基、カルボキシル基、スルホ基から選ばれる基を有する繰り返し単位、例えば
Figure 2009169406

(R021は水素原子又はメチル基、X04は単結合、−C(=O)−O−、−O−、又は−C(=O)−R020−C(=O)−O−であり、R022は水素原子、SO3H、又は炭素数1〜20のフルオロアルキル基又はアルキル基である。)
で示される単位であり、zは(x−1)+(x−2)+(x−3)+y+z=1を満足する数(0又は正数)である。
また、上記高分子型の界面活性剤のGPCによるポリスチレン換算重量平均分子量は2,000〜200,000の範囲である。
上記高分子型の界面活性剤の添加量は、レジストのベースポリマー100部に対して0.001〜20部、好ましくは0.01〜10部の範囲である。
このような界面活性剤は、塗布後のレジスト表面を覆い、撥水性を上げることによって保護膜を用いない液浸リソグラフィー用レジストとしての高滑水性機能を有するだけでなく、レジスト表面からの酸発生剤の蒸発を防ぐことによってパターン形状の変化を抑え、EB露光における真空中でのパターン形状や寸法の変化を抑えることもできる。
以下、合成例及び比較合成例、実施例及び比較例を示して本発明を具体的に説明するが、本発明は下記実施例等に制限されるものではない。なお、重量平均分子量(Mw)はGPCによるポリスチレン換算重量平均分子量を示す。
[合成例1]
100mLのフラスコにメタクリル酸−3,3’,4,4’−テトラメトキシベンゾイン8.0g、メタクリル酸−3−エチル−3−エキソテトラシクロ[4.4.0.12,5.17,10]ドデカニル2.7g、メタクリル酸−3−ヒドロキシ−1−アダマンチル4.7g、メタクリル酸3−オキソ−2,7−ジオキサトリシクロ[4.2.1.04,8]ノナン−9−イル9.0g、メタクリル酸−ビス3,5−(2−ヒドロキシ−1,1,1,3,3,3−ヘキサフルオロ−2−プロピル)シクロヘキシル5.0g、溶媒としてテトラヒドロフランを30g添加した。この反応容器を窒素雰囲気下、−70℃まで冷却し、減圧脱気、窒素フローを3回繰り返した。室温まで昇温後、重合開始剤としてAIBN(2,2’−アゾビスイソブチロニトリル)を0.02g加え、60℃まで昇温後、15時間反応させた。この反応溶液をイソプロピルアルコール500mL溶液中に沈澱させ、得られた白色固体を濾過後、60℃で減圧乾燥し、白色重合体を得た。
得られた重合体を13C,1H−NMR、及び、GPC測定したところ、以下の分析結果となった。
共重合組成比(モル比)
メタクリル酸−3,3’,4,4’−テトラメトキシベンゾイン:メタクリル酸−3−エチル−3−エキソテトラシクロ[4.4.0.12,5.17,10]ドデカニル:メタクリル酸−3−ヒドロキシ−1−アダマンチル:メタクリル酸3−オキソ−2,7−ジオキサトリシクロ[4.2.1.04,8]ノナン−9−イル:メタクリル酸−ビス3,5−(2−ヒドロキシ−1,1,1,3,3,3−ヘキサフルオロ−2−プロピル)シクロヘキシル=0.20:0.10:0.20:0.40:0.10
重量平均分子量(Mw)=8,100
分子量分布(Mw/Mn)=1.62
Figure 2009169406

この高分子化合物をポリマー1とする。
[合成例2]
100mLのフラスコにメタクリル酸−3,3’,4,4’−テトラメトキシベンゾイン8.0g、メタクリル酸−3−エチル−3−エキソテトラシクロ[4.4.0.12,5.17,10]ドデカニル2.7g、メタクリル酸−3−ヒドロキシ−1−アダマンチル4.7g、メタクリル酸テトラヒドロ−2−オキソフラン−3−イル8.5g、溶媒としてテトラヒドロフランを30g添加した。この反応容器を窒素雰囲気下、−70℃まで冷却し、減圧脱気、窒素フローを3回繰り返した。室温まで昇温後、重合開始剤としてAIBNを0.02g加え、60℃まで昇温後、15時間反応させた。この反応溶液をイソプロピルアルコール500mL溶液中に沈澱させ、得られた白色固体を濾過後、60℃で減圧乾燥し、白色重合体を得た。
得られた重合体を13C,1H−NMR、及び、GPC測定したところ、以下の分析結果となった。
共重合組成比(モル比)
メタクリル酸−3,3’,4,4’−テトラメトキシベンゾイン:メタクリル酸−3−エチル−3−エキソテトラシクロ[4.4.0.12,5.17,10]ドデカニル:メタクリル酸−3−ヒドロキシ−1−アダマンチル:メタクリル酸テトラヒドロ−2−オキソフラン−3−イル=0.20:0.10:0.20:0.50
重量平均分子量(Mw)=7,800
分子量分布(Mw/Mn)=1.66
Figure 2009169406

この高分子化合物をポリマー2とする。
[合成例3]
100mLのフラスコにスチレン−4−カルボン酸 3,3’,4,4’−テトラメトキシベンゾイン13.9g、スチレン−4−カルボン酸t−ブチル2.0g、4−アセトキシスチレン8.1g、クマリン1.5g、溶媒としてテトラヒドロフランを30g添加した。この反応容器を窒素雰囲気下、−70℃まで冷却し、減圧脱気、窒素フローを3回繰り返した。室温まで昇温後、重合開始剤としてAIBNを0.02g加え、60℃まで昇温後、15時間反応させた。この反応溶液をイソプロピルアルコール500mL溶液中に沈澱させ、得られた白色固体をメタノール50mL、テトラヒドロフラン80mLに再度溶解し、トリエチルアミン12g、水10gを加え、70℃で5時間アセチル基の脱保護反応を行い、酢酸を用いて中和した。反応溶液を濃縮後、アセトン200mLに溶解し、上記と同様の沈澱、濾過、60℃で乾燥を行い、白色重合体を得た。
得られた重合体を13C,1H−NMR、及び、GPC測定したところ、以下の分析結果となった。
共重合組成比(モル比)
スチレン−4−カルボン酸 3,3’,4,4’−テトラメトキシベンゾイン:スチレン−4−カルボン酸t−ブチル:4−ヒドロキシスチレン:クマリン=0.30:0.10:0.50:0:10
重量平均分子量(Mw)=7,200
分子量分布(Mw/Mn)=1.66
Figure 2009169406

この高分子化合物をポリマー3とする。
[合成例4]
100mLのフラスコにスチレン−4−カルボン酸 4,4’−ジメトキシ−3,3’ジメチルベンゾイン17.2g、スチレン−4−カルボン酸t−アミル2.2g、6−アセトキシ−2−ビニルナフタレン10.6g、溶媒としてテトラヒドロフランを30g添加した。この反応容器を窒素雰囲気下、−70℃まで冷却し、減圧脱気、窒素フローを3回繰り返した。室温まで昇温後、重合開始剤としてAIBNを0.02g加え、60℃まで昇温後、15時間反応させた。この反応溶液をイソプロピルアルコール500mL溶液中に沈澱させ、得られた白色固体をメタノール50mL、テトラヒドロフラン80mLに再度溶解し、トリエチルアミン12g、水10gを加え、70℃で5時間アセチル基の脱保護反応を行い、酢酸を用いて中和した。反応溶液を濃縮後、アセトン200mLに溶解し、上記と同様の沈澱、濾過、60℃で乾燥を行い、白色重合体を得た。
得られた重合体を13C,1H−NMR、及び、GPC測定したところ、以下の分析結果となった。
共重合組成比(モル比)
スチレン−4−カルボン酸 4,4’−ジメトキシ−3,3’ジメチルベンゾイン:スチレン−4−カルボン酸t−アミル:6−ヒドロキシ−2−ビニルナフタレン=0.40:0.10:0.50
重量平均分子量(Mw)=6,500
分子量分布(Mw/Mn)=1.69
Figure 2009169406

この高分子化合物をポリマー4とする。
[合成例5]
100mLのフラスコに1−ビニルナフタレン−5−カルボン酸 3,3’,4,4’−テトラメトキシベンゾイン20.5g、スチレン−4−カルボン酸t−アミル2.2g、4−アセトキシスチレン6.5g、アセナフチレン1.5g、溶媒としてテトラヒドロフランを30g添加した。この反応容器を窒素雰囲気下、−70℃まで冷却し、減圧脱気、窒素フローを3回繰り返した。室温まで昇温後、重合開始剤としてAIBNを0.02g加え、60℃まで昇温後、15時間反応させた。この反応溶液をイソプロピルアルコール500mL溶液中に沈澱させ、得られた白色固体をメタノール50mL、テトラヒドロフラン80mLに再度溶解し、トリエチルアミン12g、水10gを加え、70℃で5時間アセチル基の脱保護反応を行い、酢酸を用いて中和した。反応溶液を濃縮後、アセトン200mLに溶解し、上記と同様の沈澱、濾過、60℃で乾燥を行い、白色重合体を得た。
得られた重合体を13C,1H−NMR、及び、GPC測定したところ、以下の分析結果となった。
共重合組成比(モル比)
1−ビニルナフタレン−5−カルボン酸 3,3’,4,4’−テトラメトキシベンゾイン:スチレン−4−カルボン酸t−アミル:4−ヒドロキシスチレン:アセナフチレン=0.40:0.10:0.40:0.10
重量平均分子量(Mw)=6,900
分子量分布(Mw/Mn)=1.86
Figure 2009169406

この高分子化合物をポリマー5とする。
[合成例6]
100mLのフラスコにスチレン−4−カルボン酸 3,3’,4,4’−テトラメトキシベンゾイン18.5g、モノマー1の3.0g、4−アセトキシスチレン6.5g、PAGモノマー1の4.3g、溶媒としてテトラヒドロフランを30g添加した。この反応容器を窒素雰囲気下、−70℃まで冷却し、減圧脱気、窒素フローを3回繰り返した。室温まで昇温後、重合開始剤としてAIBNを0.02g加え、60℃まで昇温後、15時間反応させた。この反応溶液をイソプロピルアルコール500mL溶液中に沈澱させ、得られた白色固体をメタノール50mL、テトラヒドロフラン80mLに再度溶解し、トリエチルアミン12g、水10gを加え、70℃で5時間アセチル基の脱保護反応を行い、酢酸を用いて中和した。反応溶液を濃縮後、アセトン200mLに溶解し、上記と同様の沈澱、濾過、60℃で乾燥を行い、白色重合体を得た。
得られた重合体を13C,1H−NMR、及び、GPC測定したところ、以下の分析結果となった。
共重合組成比(モル比)
スチレン−4−カルボン酸 3,3’,4,4’−テトラメトキシベンゾイン:モノマー1:4−ヒドロキシスチレン:PAGモノマー1=0.40:0.10:0.40:0.10
重量平均分子量(Mw)=7,700
分子量分布(Mw/Mn)=1.81
Figure 2009169406

この高分子化合物をポリマー6とする。
[合成例7]
100mLのフラスコにスチレン−4−カルボン酸 3,3’,4,4’−テトラメトキシベンゾイン18.5g、モノマー2の3.3g、4−アセトキシスチレン6.5g、PAGモノマー2の5.8g、溶媒としてテトラヒドロフランを30g添加した。この反応容器を窒素雰囲気下、−70℃まで冷却し、減圧脱気、窒素フローを3回繰り返した。室温まで昇温後、重合開始剤としてAIBNを0.02g加え、60℃まで昇温後、15時間反応させた。この反応溶液をイソプロピルアルコール500mL溶液中に沈澱させ、得られた白色固体をメタノール50mL、テトラヒドロフラン80mLに再度溶解し、トリエチルアミン12g、水10gを加え、70℃で5時間アセチル基の脱保護反応を行い、酢酸を用いて中和した。反応溶液を濃縮後、アセトン200mLに溶解し、上記と同様の沈澱、濾過、60℃で乾燥を行い、白色重合体を得た。
得られた重合体を13C,1H−NMR、及び、GPC測定したところ、以下の分析結果となった。
共重合組成比(モル比)
スチレン−4−カルボン酸 3,3’,4,4’−テトラメトキシベンゾイン:モノマー2:4−ヒドロキシスチレン:PAGモノマー2=0.40:0.10:0.40:0.10
重量平均分子量(Mw)=7,500
分子量分布(Mw/Mn)=1.71
Figure 2009169406

この高分子化合物をポリマー7とする。
[合成例8]
100mLのフラスコにスチレン−4−カルボン酸 3,3’,4,4’−テトラメトキシベンゾイン18.5g、モノマー1の3.0g、4−アセトキシスチレン6.5g、PAGモノマー3の5.6g、溶媒としてテトラヒドロフランを30g添加した。この反応容器を窒素雰囲気下、−70℃まで冷却し、減圧脱気、窒素フローを3回繰り返した。室温まで昇温後、重合開始剤としてAIBNを0.02g加え、60℃まで昇温後、15時間反応させた。この反応溶液をイソプロピルアルコール500mL溶液中に沈澱させ、得られた白色固体をメタノール50mL、テトラヒドロフラン80mLに再度溶解し、トリエチルアミン12g、水10gを加え、70℃で5時間アセチル基の脱保護反応を行い、酢酸を用いて中和した。反応溶液を濃縮後、アセトン200mLに溶解し、上記と同様の沈澱、濾過、60℃で乾燥を行い、白色重合体を得た。
得られた重合体を13C,1H−NMR、及び、GPC測定したところ、以下の分析結果となった。
共重合組成比(モル比)
スチレン−4−カルボン酸 3,3’,4,4’−テトラメトキシベンゾイン:モノマー1:4−ヒドロキシスチレン:PAGモノマー3=0.40:0.10:0.40:0.10
重量平均分子量(Mw)=8,200
分子量分布(Mw/Mn)=1.95
Figure 2009169406

この高分子化合物をポリマー8とする。
[合成例9]
100mLのフラスコにメタクリル酸−3,3’,4,4’−メチレンジオキシベンゾイン8.0g、メタクリル酸−3−エチル−3−エキソテトラシクロ[4.4.0.12,5.17,10]ドデカニル2.7g、メタクリル酸−3−ヒドロキシ−1−アダマンチル4.7g、メタクリル酸テトラヒドロ−2−オキソフラン−3−イル8.5g、溶媒としてテトラヒドロフランを30g添加した。この反応容器を窒素雰囲気下、−70℃まで冷却し、減圧脱気、窒素フローを3回繰り返した。室温まで昇温後、重合開始剤としてAIBNを0.02g加え、60℃まで昇温後、15時間反応させた。この反応溶液をイソプロピルアルコール500mL溶液中に沈澱させ、得られた白色固体を濾過後、60℃で減圧乾燥し、白色重合体を得た。
得られた重合体を13C,1H−NMR、及び、GPC測定したところ、以下の分析結果となった。
共重合組成比(モル比)
メタクリル酸−3,3’,4,4’−メチレンジオキシベンゾイン:メタクリル酸−3−エチル−3−エキソテトラシクロ[4.4.0.12,5.17,10]ドデカニル:メタクリル酸−3−ヒドロキシ−1−アダマンチル:メタクリル酸テトラヒドロ−2−オキソフラン−3−イル=0.20:0.10:0.20:0.50
重量平均分子量(Mw)=7,300
分子量分布(Mw/Mn)=1.62
Figure 2009169406

この高分子化合物をポリマー9とする。
[合成例10]
100mLのフラスコにメタクリル酸−3,3’,4,4’−メチレンジオキシベンゾイン8.0g、メタクリル酸−3−エチル−3−エキソテトラシクロ[4.4.0.12,5.17,10]ドデカニル2.7g、メタクリル酸−3−ヒドロキシ−1−アダマンチル4.7g、メタクリル酸テトラヒドロ−2−オキソフラン−3−イル6.8g、PAGモノマー3の5.6g、溶媒としてテトラヒドロフランを30g添加した。この反応容器を窒素雰囲気下、−70℃まで冷却し、減圧脱気、窒素フローを3回繰り返した。室温まで昇温後、重合開始剤としてAIBNを0.02g加え、60℃まで昇温後、15時間反応させた。この反応溶液をイソプロピルアルコール500mL溶液中に沈澱させ、得られた白色固体を濾過後、60℃で減圧乾燥し、白色重合体を得た。
得られた重合体を13C,1H−NMR、及び、GPC測定したところ、以下の分析結果となった。
共重合組成比(モル比)
メタクリル酸−3,3’,4,4’−メチレンジオキシベンゾイン:メタクリル酸−3−エチル−3−エキソテトラシクロ[4.4.0.12,5.17,10]ドデカニル:メタクリル酸−3−ヒドロキシ−1−アダマンチル:メタクリル酸テトラヒドロ−2−オキソフラン−3−イル:PAGモノマー3=0.20:0.10:0.20:0.40:0.10
重量平均分子量(Mw)=7,900
分子量分布(Mw/Mn)=1.83
Figure 2009169406

この高分子化合物をポリマー10とする。
[合成例11]
100mLのフラスコにメタクリル酸−3,3’,4,4’−メチレンジオキシベンゾイン8.0g、メタクリル酸−3−エチル−3−エキソテトラシクロ[4.4.0.12,5.17,10]ドデカニル2.7g、メタクリル酸−4−ヒドロキシベンゼン5.3g、メタクリル酸3−オキソ−2,7−ジオキサトリシクロ[4.2.1.04,8]ノナン−9−イル6.7g、PAGモノマー3の5.6g、溶媒としてテトラヒドロフランを30g添加した。この反応容器を窒素雰囲気下、−70℃まで冷却し、減圧脱気、窒素フローを3回繰り返した。室温まで昇温後、重合開始剤としてAIBNを0.02g加え、60℃まで昇温後、15時間反応させた。この反応溶液をイソプロピルアルコール500mL溶液中に沈澱させ、得られた白色固体を濾過後、60℃で減圧乾燥し、白色重合体を得た。
得られた重合体を13C,1H−NMR、及び、GPC測定したところ、以下の分析結果となった。
共重合組成比(モル比)
メタクリル酸−3,3’,4,4’−メチレンジオキシベンゾイン:メタクリル酸−3−エチル−3−エキソテトラシクロ[4.4.0.12,5.17,10]ドデカニル:メタクリル酸−4−ヒドロキシベンゼン:メタクリル酸3−オキソ−2,7−ジオキサトリシクロ[4.2.1.04,8]ノナン−9−イル:PAGモノマー3=0.20:0.10:0.30:0.30:0.10
重量平均分子量(Mw)=7,200
分子量分布(Mw/Mn)=1.89
Figure 2009169406

この高分子化合物をポリマー11とする。
[比較合成例1]
100mLのフラスコにメタクリル酸−3−エチル−3−エキソテトラシクロ[4.4.0.12,5.17,10]ドデカニル8.2g、メタクリル酸−3−ヒドロキシ−1−アダマンチル4.7g、メタクリル酸3−オキソ−2,7−ジオキサトリシクロ[4.2.1.04,8]ノナン−9−イル9.0g、メタクリル酸−ビス3,5−(2−ヒドロキシ−1,1,1,3,3,3−ヘキサフルオロ−2−プロピル)シクロヘキシル5.0g、溶媒としてテトラヒドロフランを30g添加した。この反応容器を窒素雰囲気下、−70℃まで冷却し、減圧脱気、窒素フローを3回繰り返した。室温まで昇温後、重合開始剤としてAIBNを0.02g加え、60℃まで昇温後、15時間反応させた。この反応溶液をイソプロピルアルコール500mL溶液中に沈澱させ、得られた白色固体を濾過後、60℃で減圧乾燥し、白色重合体を得た。
得られた重合体を13C,1H−NMR、及び、GPC測定したところ、以下の分析結果となった。
共重合組成比(モル比)
メタクリル酸−3−エチル−3−エキソテトラシクロ[4.4.0.12,5.17,10]ドデカニル:メタクリル酸−3−ヒドロキシ−1−アダマンチル:メタクリル酸3−オキソ−2,7−ジオキサトリシクロ[4.2.1.04,8]ノナン−9−イル:メタクリル酸−ビス3,5−(2−ヒドロキシ−1,1,1,3,3,3−ヘキサフルオロ−2−プロピル)シクロヘキシル=0.30:0.20:0.40:0.10
重量平均分子量(Mw)=8,600
分子量分布(Mw/Mn)=1.79
Figure 2009169406

この高分子化合物を比較ポリマー1とする。
[比較合成例2]
100mLのフラスコにスチレン−4−カルボン酸t−ブチル6.1g、4−アセトキシスチレン11.3g、溶媒としてテトラヒドロフランを30g添加した。この反応容器を窒素雰囲気下、−70℃まで冷却し、減圧脱気、窒素フローを3回繰り返した。室温まで昇温後、重合開始剤としてAIBNを0.02g加え、60℃まで昇温後、15時間反応させた。この反応溶液をイソプロピルアルコール500mL溶液中に沈澱させ、得られた白色固体をメタノール50mL、テトラヒドロフラン80mLに再度溶解し、トリエチルアミン12g、水10gを加え、70℃で5時間アセチル基の脱保護反応を行い、酢酸を用いて中和した。反応溶液を濃縮後、アセトン200mLに溶解し、上記と同様の沈澱、濾過、60℃で乾燥を行い、白色重合体を得た。
得られた重合体を13C,1H−NMR、及び、GPC測定したところ、以下の分析結果となった。
共重合組成比(モル比)
スチレン−4−カルボン酸t−ブチル:4−ヒドロキシスチレン=0.30:0.70
重量平均分子量(Mw)=9,600
分子量分布(Mw/Mn)=1.93
Figure 2009169406

この高分子化合物を比較ポリマー2とする。
[比較合成例3]
100mLのフラスコにメタクリル酸−3,3’,4,4’−テトラメトキシベンゾイン12.0g、メタクリル酸−3−ヒドロキシ−1−アダマンチル4.7g、メタクリル酸3−オキソ−2,7−ジオキサトリシクロ[4.2.1.04,8]ノナン−9−イル9.0g、メタクリル酸−ビス3,5−(2−ヒドロキシ−1,1,1,3,3,3−ヘキサフルオロ−2−プロピル)シクロヘキシル5.0g、溶媒としてテトラヒドロフランを30g添加した。この反応容器を窒素雰囲気下、−70℃まで冷却し、減圧脱気、窒素フローを3回繰り返した。室温まで昇温後、重合開始剤としてAIBNを0.02g加え、60℃まで昇温後、15時間反応させた。この反応溶液をイソプロピルアルコール500mL溶液中に沈澱させ、得られた白色固体を濾過後、60℃で減圧乾燥し、白色重合体を得た。
得られた重合体を13C,1H−NMR、及び、GPC測定したところ、以下の分析結果となった。
共重合組成比(モル比)
メタクリル酸−3,3’,4,4’−テトラメトキシベンゾイン:メタクリル酸−3−ヒドロキシ−1−アダマンチル:メタクリル酸3−オキソ−2,7−ジオキサトリシクロ[4.2.1.04,8]ノナン−9−イル:メタクリル酸−ビス3,5−(2−ヒドロキシ−1,1,1,3,3,3−ヘキサフルオロ−2−プロピル)シクロヘキシル=0.30:0.20:0.40:0.10
重量平均分子量(Mw)=8,300
分子量分布(Mw/Mn)=1.66
Figure 2009169406

この高分子化合物を比較ポリマー3とする。
Figure 2009169406
[実施例1〜7、比較例1,2]
ポジ型レジスト材料の調製
上記合成した高分子化合物(ポリマー1,2,9、比較ポリマー1,3)を用いて、下記表1に示される組成で溶解させた溶液を0.2μmサイズのフィルターで濾過してレジスト溶液を調製した。
表1,2中の各組成は次の通りである。
ポリマー1,2,9:合成例1,2,9で得られたポリマー
比較ポリマー1,3:比較合成例1,3で得られたポリマー
酸発生剤:PAG1〜3(下記構造式参照)
Figure 2009169406

塩基性化合物:アミン1〜3(下記構造式参照)
Figure 2009169406

有機溶剤:PGMEA(プロピレングリコールモノメチルエーテルアセテート)
撥水剤:界面活性剤(下記構造式参照)
Figure 2009169406
露光パターニング評価
上記調製したレジスト材料を、シリコンウエハー上に作製した反射防止膜ARC−29A(日産化学社工業(株)製)の80nm上にスピンコーティングし、ホットプレートを用いて100℃で60秒間ベークし、レジストの厚みを90nmにした。
これをArFエキシマレーザーステッパー(ASML社製、AT1700i、NA1.20、σ0.94/0.74、輪帯照明、X−Y偏光照明、6%ハーフトーン位相シフトマスク)を用いて露光し、露光後直ちに100℃で60秒間ベークし、2.38質量%のテトラメチルアンモニウムヒドロキシドの水溶液で30秒間現像を行って、ポジ型のパターンを得た。
得られたレジストパターンを次のように評価した。
50nmのラインアンドスペースを1:1のマスクを用い、露光量を大きくしていったときに解像している最小のライン寸法を評価レジストの解像度とした。
この結果を表1に示す。
Figure 2009169406
表1の結果から、実施例1〜7のレジスト材料は、オーバー露光における限界の解像性が高く、1.0を超えるNAでの露光における基板反射が増加した基板においても定在波の発生による凹凸が小さく抑えられ、限界解像性を高めることができる。従来の化学増幅型レジスト材料の比較ポリマー1は限界解像性が劣り、非化学増幅型レジスト材料は感度が非常に低く、拡散は小さいがコントラストが低いために解像性も低い。
[実施例8〜16、比較例3,4]
電子ビーム描画評価
描画評価では、上記で合成した高分子化合物(ポリマー3〜11、比較ポリマー2,3)を用いて、表2に示される組成で溶解させた溶液を、0.2μmサイズのフィルターで濾過してポジ型レジスト材料を調製した。
得られたポジ型レジスト材料を直径6インチφのSi基板上に、クリーントラックMark5(東京エレクトロン(株)製)を用いてスピンコートし、ホットプレート上で110℃で90秒間プリベークして100nmのレジスト膜を作製した。これに、(株)日立製作所製HL−800Dを用いてHV電圧50keVで真空チャンバー内描画を行った。
描画後直ちにクリーントラックMark5(東京エレクトロン(株)製)を用いてホットプレート上で110℃で90秒間ポストエクスポージャベーク(PEB)を行い、2.38質量%のTMAH水溶液で30秒間パドル現像を行い、ポジ型のパターンを得た。
得られたレジストパターンを次のように評価した。
120nmのラインアンドスペースを1:1で解像する露光量をレジストの感度とし、この時に解像している最小寸法を解像度とした。
レジスト組成とEB露光における感度、解像度の結果を表2に示す。
Figure 2009169406
表2の結果から、実施例8〜16のレジスト材料は、高解像力であることがわかる。
[実施例17〜27、比較例5〜7]
耐ドライエッチング性
耐ドライエッチング性の試験では、ポリマー2gをPGMEA10gに溶解させて0.2μmサイズのフィルターで濾過したポリマー溶液をSi基板にスピンコートで成膜し、300nmの厚さの膜にし、2系統の条件で評価した。
(1)CHF3/CF4系ガスでのエッチング試験
東京エレクトロン株式会社製ドライエッチング装置TE−8500Pを用い、エッチング前後のポリマー膜の膜厚差を求めた。
エッチング条件は下記に示す通りである。
チャンバー圧力 40.0Pa
RFパワー 1,000W
ギャップ 9mm
CHF3ガス流量 30ml/min
CF4ガス流量 30ml/min
Arガス流量 100ml/min
時間 60sec
この結果を表3に示す。
Figure 2009169406
表1〜3の結果から、本発明の高分子化合物を用いたレジスト材料は、十分な解像力と感度を満たし、エッチング後の膜厚差が小さいことより、優れた耐ドライエッチング性を有していることがわかる。

Claims (8)

  1. 下記一般式(a)、及び(b−1)又は(b−2)の繰り返し単位を有する高分子化合物を含むことを特徴とするポジ型レジスト材料。
    Figure 2009169406

    (式中、R1、R4、R6は同一又は異種の水素原子又はメチル基を示す。R21、R22、R31、R32は水素原子、又は炭素数1〜4のアルキル基、アルコキシ基又はヒドロキシ基であり、R21とR22、R31とR32はそれぞれ結合してこれらが結合するベンゼン環の炭素原子と共に環を形成してもよく、環の中に2重結合又はエーテル基を有していてもよい。R5、R7は酸不安定基である。X1、X2は単結合、又はフェニレン基又はナフチレン基であり、炭素数1〜4のアルキレン基、エステル基又はエーテル基を含んでいてもよく、X3はフェニレン基又はナフチレン基であり、炭素数1〜4のアルキレン基、エステル基又はエーテル基を含んでいてもよい。m、n、p、qは0〜4の整数であり、m+qは0〜5の整数、n+pは0〜5の整数である。a、b1、b2は、0<a<1.0、0≦b1≦0.8、0≦b2≦0.8、0<b1+b2≦0.8の範囲である。)
  2. 更に有機溶剤及び酸発生剤を含有する化学増幅型のレジスト材料であることを特徴とする請求項1記載のポジ型レジスト材料。
  3. 更に溶解阻止剤を含有するものであることを特徴とする請求項2記載のポジ型レジスト材料。
  4. 更に添加剤として塩基性化合物及び/又は界面活性剤が配合されたものであることを特徴とする請求項2又は3記載のポジ型レジスト材料。
  5. 請求項1乃至4のいずれか1項記載のレジスト材料を基板上に塗布する工程と、加熱処理後、高エネルギー線で露光する工程と、現像液を用いて現像する工程とを含むことを特徴とするパターン形成方法。
  6. 前記高エネルギー線を、波長200nm以下の範囲のものとすることを特徴とする請求項5記載のパターン形成方法。
  7. 前記高エネルギー線が、波長193nmのArFエキシマレーザー、波長13.5nmの真空紫外光(EUV)又は電子ビーム(EB)であることを特徴とする請求項5記載のパターン形成方法。
  8. 現像後のパターン寸法が100nm以下であることを特徴とする請求項5乃至7のいずれか1項記載のパターン形成方法。
JP2008316443A 2007-12-17 2008-12-12 ポジ型レジスト材料及びこれを用いたパターン形成方法 Active JP5019075B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008316443A JP5019075B2 (ja) 2007-12-17 2008-12-12 ポジ型レジスト材料及びこれを用いたパターン形成方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007324273 2007-12-17
JP2007324273 2007-12-17
JP2008316443A JP5019075B2 (ja) 2007-12-17 2008-12-12 ポジ型レジスト材料及びこれを用いたパターン形成方法

Publications (2)

Publication Number Publication Date
JP2009169406A true JP2009169406A (ja) 2009-07-30
JP5019075B2 JP5019075B2 (ja) 2012-09-05

Family

ID=40970567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008316443A Active JP5019075B2 (ja) 2007-12-17 2008-12-12 ポジ型レジスト材料及びこれを用いたパターン形成方法

Country Status (1)

Country Link
JP (1) JP5019075B2 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010085971A (ja) * 2008-09-05 2010-04-15 Fujifilm Corp ポジ型レジスト組成物、該組成物を用いたパターン形成方法及び該組成物に用いられる樹脂
JP2011075687A (ja) * 2009-09-29 2011-04-14 Jsr Corp 感放射線性樹脂組成物
JP2011154216A (ja) * 2010-01-27 2011-08-11 Fujifilm Corp 感活性光線性又は感放射線性樹脂組成物及びそれを用いたパターン形成方法
WO2011108696A1 (ja) 2010-03-05 2011-09-09 国立大学法人名古屋大学 α-アシロキシカルボニル化合物の製法及び新規なα-アシロキシカルボニル化合物
JP2012012577A (ja) * 2010-06-01 2012-01-19 Shin-Etsu Chemical Co Ltd 重合性モノマー、高分子化合物、化学増幅ポジ型レジスト材料、及びパターン形成方法
JP2012242699A (ja) * 2011-05-20 2012-12-10 Jsr Corp ドライ露光用フォトレジスト組成物及びレジストパターン形成方法
JP2014044415A (ja) * 2012-08-01 2014-03-13 Sumitomo Chemical Co Ltd レジスト組成物及びレジストパターンの製造方法
JP2014136706A (ja) * 2013-01-15 2014-07-28 Hitachi Chemical Co Ltd 樹脂組成物、樹脂組成物の製造方法、樹脂組成物を含むレジスト組成物及びレジスト組成物を用いたパターン形成方法
WO2017057537A1 (ja) * 2015-10-01 2017-04-06 東洋合成工業株式会社 ポリマー、該ポリマーを含有するレジスト組成物及びそれを用いたデバイスの製造方法
WO2018056369A1 (ja) * 2016-09-26 2018-03-29 富士フイルム株式会社 レジスト組成物、パターン形成方法及び電子デバイスの製造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57147628A (en) * 1981-01-28 1982-09-11 Ciba Geigy Ag Picture formation
JPS59184209A (ja) * 1983-03-28 1984-10-19 イー・アイ・デュポン・ドゥ・ヌムール・アンド・カンパニー 光感受性重合体
JPH04116660A (ja) * 1990-09-07 1992-04-17 Matsushita Electric Ind Co Ltd 感光性高分子及び感光性高分子積層体及び画像形成方法
JPH0572738A (ja) * 1991-09-17 1993-03-26 Fujitsu Ltd 化学増幅型レジストとレジストパターン形成方法
JP2004125832A (ja) * 2002-09-30 2004-04-22 Fuji Photo Film Co Ltd 光分解型画像形成材料および平版印刷版の製版方法
JP2004133976A (ja) * 2002-10-09 2004-04-30 Hitachi Ltd ポジ型感放射線組成物及びそれを用いたスタンパの製造方法
JP2008214619A (ja) * 2007-02-06 2008-09-18 Canon Inc 感光性化合物、感光性組成物、レジストパターンの形成方法及びデバイスの製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57147628A (en) * 1981-01-28 1982-09-11 Ciba Geigy Ag Picture formation
JPS59184209A (ja) * 1983-03-28 1984-10-19 イー・アイ・デュポン・ドゥ・ヌムール・アンド・カンパニー 光感受性重合体
JPH04116660A (ja) * 1990-09-07 1992-04-17 Matsushita Electric Ind Co Ltd 感光性高分子及び感光性高分子積層体及び画像形成方法
JPH0572738A (ja) * 1991-09-17 1993-03-26 Fujitsu Ltd 化学増幅型レジストとレジストパターン形成方法
JP2004125832A (ja) * 2002-09-30 2004-04-22 Fuji Photo Film Co Ltd 光分解型画像形成材料および平版印刷版の製版方法
JP2004133976A (ja) * 2002-10-09 2004-04-30 Hitachi Ltd ポジ型感放射線組成物及びそれを用いたスタンパの製造方法
JP2008214619A (ja) * 2007-02-06 2008-09-18 Canon Inc 感光性化合物、感光性組成物、レジストパターンの形成方法及びデバイスの製造方法

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9217919B2 (en) 2008-09-05 2015-12-22 Fujifilm Corporation Photosensitive composition, pattern-forming method using the composition, and resin used in the composition
JP2010085971A (ja) * 2008-09-05 2010-04-15 Fujifilm Corp ポジ型レジスト組成物、該組成物を用いたパターン形成方法及び該組成物に用いられる樹脂
JP2011075687A (ja) * 2009-09-29 2011-04-14 Jsr Corp 感放射線性樹脂組成物
JP2011154216A (ja) * 2010-01-27 2011-08-11 Fujifilm Corp 感活性光線性又は感放射線性樹脂組成物及びそれを用いたパターン形成方法
WO2011108696A1 (ja) 2010-03-05 2011-09-09 国立大学法人名古屋大学 α-アシロキシカルボニル化合物の製法及び新規なα-アシロキシカルボニル化合物
JP2012012577A (ja) * 2010-06-01 2012-01-19 Shin-Etsu Chemical Co Ltd 重合性モノマー、高分子化合物、化学増幅ポジ型レジスト材料、及びパターン形成方法
JP2014088557A (ja) * 2010-06-01 2014-05-15 Shin Etsu Chem Co Ltd 高分子化合物、化学増幅ポジ型レジスト材料、及びパターン形成方法
US9017918B2 (en) 2010-06-01 2015-04-28 Shin-Etsu Chemical Co., Ltd. Monomer, polymer, chemically amplified positive resist composition, and patterning process
JP2012242699A (ja) * 2011-05-20 2012-12-10 Jsr Corp ドライ露光用フォトレジスト組成物及びレジストパターン形成方法
JP2014044415A (ja) * 2012-08-01 2014-03-13 Sumitomo Chemical Co Ltd レジスト組成物及びレジストパターンの製造方法
JP2014136706A (ja) * 2013-01-15 2014-07-28 Hitachi Chemical Co Ltd 樹脂組成物、樹脂組成物の製造方法、樹脂組成物を含むレジスト組成物及びレジスト組成物を用いたパターン形成方法
WO2017057537A1 (ja) * 2015-10-01 2017-04-06 東洋合成工業株式会社 ポリマー、該ポリマーを含有するレジスト組成物及びそれを用いたデバイスの製造方法
JPWO2017057537A1 (ja) * 2015-10-01 2018-07-26 東洋合成工業株式会社 ポリマー、該ポリマーを含有するレジスト組成物及びそれを用いたデバイスの製造方法
US10781276B2 (en) 2015-10-01 2020-09-22 Toyo Gosei Co., Ltd. Polymer, resist composition containing polymer, and method for manufacturing device using same
JP6998769B2 (ja) 2015-10-01 2022-01-18 東洋合成工業株式会社 ポリマー、該ポリマーを含有するレジスト組成物及びそれを用いたデバイスの製造方法
WO2018056369A1 (ja) * 2016-09-26 2018-03-29 富士フイルム株式会社 レジスト組成物、パターン形成方法及び電子デバイスの製造方法
JPWO2018056369A1 (ja) * 2016-09-26 2019-07-04 富士フイルム株式会社 レジスト組成物、パターン形成方法及び電子デバイスの製造方法

Also Published As

Publication number Publication date
JP5019075B2 (ja) 2012-09-05

Similar Documents

Publication Publication Date Title
JP4697443B2 (ja) ポジ型レジスト材料並びにこれを用いたパターン形成方法
JP5228995B2 (ja) 重合性モノマー化合物、パターン形成方法並びにこれに用いるレジスト材料
JP4642452B2 (ja) ポジ型レジスト材料及びこれを用いたパターン形成方法
JP4840610B2 (ja) パターン形成方法並びにこれに用いるレジスト材料
JP4662049B2 (ja) ポジ型レジスト材料並びにこれを用いたパターン形成方法
JP4025162B2 (ja) 高分子化合物及びポジ型レジスト材料並びにこれを用いたパターン形成方法
JP4539847B2 (ja) ポジ型レジスト材料並びにこれを用いたパターン形成方法
JP4424500B2 (ja) ポジ型レジスト材料及びパターン形成方法
JP4822020B2 (ja) ポジ型レジスト材料及びこれを用いたパターン形成方法
JP4636276B2 (ja) ポジ型レジスト材料並びにこれを用いたパターン形成方法
JP5054042B2 (ja) ポジ型レジスト材料並びにこれを用いたパターン形成方法
JP5054041B2 (ja) ポジ型レジスト材料並びにこれを用いたパターン形成方法
JP5019075B2 (ja) ポジ型レジスト材料及びこれを用いたパターン形成方法
JP5206972B2 (ja) レジストパターンの形成方法並びにこれに用いるポジ型レジスト材料
JP5398966B2 (ja) 高分子化合物及びポジ型レジスト材料並びにこれを用いたパターン形成方法
JP5223168B2 (ja) 化学増幅ポジ型レジスト材料並びにこれを用いたパターン形成方法
JP5029839B2 (ja) ポジ型レジスト材料並びにこれを用いたパターン形成方法
JP5148090B2 (ja) レジスト材料及びこれを用いたパターン形成方法
JP2008248063A (ja) 高分子化合物、化学増幅ポジ型レジスト材料及びパターン形成方法
JP4305637B2 (ja) 高分子化合物及びポジ型レジスト材料並びにこれを用いたパターン形成方法
JP5182468B2 (ja) 高分子化合物及びポジ型レジスト材料並びにこれを用いたパターン形成方法
JP5067523B2 (ja) 化学増幅ポジ型レジスト材料並びにこれを用いたパターン形成方法
JP5051387B2 (ja) ポジ型レジスト材料並びにこれを用いたパターン形成方法
JP4247164B2 (ja) 高分子化合物及びポジ型レジスト材料並びにこれを用いたパターン形成方法
JP4241535B2 (ja) 高分子化合物及びポジ型レジスト材料並びにこれを用いたパターン形成方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120516

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120529

R150 Certificate of patent or registration of utility model

Ref document number: 5019075

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150622

Year of fee payment: 3