JP2009160541A - 描画方法、及び描画装置、並びに電気光学装置の製造方法、及び電気光学装置の製造装置 - Google Patents

描画方法、及び描画装置、並びに電気光学装置の製造方法、及び電気光学装置の製造装置 Download PDF

Info

Publication number
JP2009160541A
JP2009160541A JP2008001892A JP2008001892A JP2009160541A JP 2009160541 A JP2009160541 A JP 2009160541A JP 2008001892 A JP2008001892 A JP 2008001892A JP 2008001892 A JP2008001892 A JP 2008001892A JP 2009160541 A JP2009160541 A JP 2009160541A
Authority
JP
Japan
Prior art keywords
load
waveform
drive waveform
drive
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008001892A
Other languages
English (en)
Inventor
Masaki Nakayama
優樹 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2008001892A priority Critical patent/JP2009160541A/ja
Publication of JP2009160541A publication Critical patent/JP2009160541A/ja
Withdrawn legal-status Critical Current

Links

Images

Abstract

【課題】同時に駆動される吐出ノズルの数によって変動する液滴吐出ヘッドの駆動信号波形の歪を、制御装置の負荷が増大することを抑制しながら、緻密な補正を実施できる描画方法、及び描画装置、並びに電気光学装置の製造方法、及び電気光学装置の製造装置を提供する。
【解決手段】描画方法は、液状体を吐出する複数の吐出ノズルと、駆動信号を印加されることによって吐出ノズルから液状体を吐出させる複数の駆動素子と、を備える描画装置を用いる描画方法であって、液状体を吐出することで描画する描画画像の描画パターン情報を取得する描画パターン情報取得工程と、描画パターン情報から、描画画像を描画する際に、略同時に駆動される駆動素子の数である負荷数を算出する負荷数算出工程と、駆動素子に印加する駆動信号の波形形状である駆動波形を、算出された負荷数に対応する負荷別駆動波形に決定する駆動波形決定工程と、を有する。
【選択図】図9

Description

本発明は、液状体を吐出する吐出ノズルを有する液滴吐出ヘッドを備え、当該液滴吐出ヘッドから液状体を描画対象物に向けて吐出することで、描画対象物上に液状体を配置する描画装置を用いる描画方法、及び描画装置に関する。また、電気光学装置の機能膜を形成する材料を含む機能液を吐出する吐出ノズルを有する液滴吐出ヘッドを備え、当該液滴吐出ヘッドから機能液液状体を描画対象物に向けて吐出することで、描画対象物上に機能液を配置して機能膜を形成する電気光学装置の製造方法、及び電気光学装置の製造装置に関する。
従来から、カラー液晶装置のカラーフィルタ膜などの機能膜を形成する技術として、液状体を液滴として吐出する液滴吐出ヘッドを有する描画装置を用いて、機能膜の材料を含む液状体の液滴を吐出して基板上の任意の位置に着弾させることで、当該位置に液状体を配置(描画)し、配置した液状体を乾燥させて機能膜を形成する技術が知られている。このような膜形成に用いられる描画装置の液滴吐出ヘッドは、そのノズル列から微小な液滴を選択的に吐出して位置精度良く着弾させることができるため、精密な平面形状及び膜厚を有する膜を形成することができる。
しかし、液滴吐出ヘッドを駆動するために液滴吐出ヘッドに印加する駆動信号において、当該駆動信号が駆動信号の生成部から液滴吐出ヘッドまで伝達される間に、波形に歪が生ずるという課題があった。駆動信号の波形に歪が生ずることで、吐出量が変動し、適正な吐出量が実現できなくなる。また、波形の歪の大きさや形状は、同時に駆動される吐出ノズルの数によって異なることが知られている。
特許文献1には、同時に駆動される吐出ノズルの数に対応して、駆動信号波形の変曲点の位置又は変曲点における電圧を補正することによって、駆動信号波形の補正を行うインクジェット式記録装置が開示されている。特許文献2には、負荷変動検出手段と記憶手段を有する負荷変動補正手段とを備え、負荷変動検出手段による負荷検出データによって、負荷変動補正手段は、記憶手段に記憶された補正データ値を選択して、駆動信号の補正を行うインクジェットヘッド駆動装置が開示されている。
特開2002−36535号公報 特開平9−187949号公報
しかしながら、駆動信号波形の歪は、台形波形の立上がり曲線や立下り曲線の部分的な歪み、又は最大印加電圧印加時の電圧の時間変動として現れる部分があることを、本発明の発明者は見出した。このような波形の歪は、特許文献1や特許文献2に開示されたような補正では、曲線を部分的に補正することができないため、必ずしも充分に補正することができないという課題があった。より緻密な補正をするためには、多くのデータを処理する必要があり、液滴吐出ヘッドを含む液滴吐出装置を制御する制御装置の負荷が大きくなるという別の課題が発生する。
特許文献2のインクジェットヘッド駆動装置では、記憶した補正データを選択することで、補正値をリアルタイムで求める場合に比べて、制御装置の負荷を軽減できている。しかし、負荷変動を検出して、その結果によって補正を実施するためには、負荷検出から吐出実施までの処理時間を短くする必要があり、制御装置の描画時における負荷が増大するという課題があった。
本発明は、上記課題の少なくとも一部を解決するためになされたものであり、以下の形態又は適用例として実現することが可能である。
[適用例1]本適用例にかかる描画方法は、液状体を吐出する複数の吐出ノズルと、該複数の吐出ノズルのそれぞれの吐出ノズルに対応して設けられており、駆動信号を印加されることによって変形することで前記吐出ノズルから前記液状体を吐出させる複数の駆動素子と、を備える描画装置を用いる描画方法であって、前記液状体を吐出することで描画する描画画像の描画パターン情報を取得する描画パターン情報取得工程と、前記描画パターン情報から、前記描画画像を描画する際の、前記複数の駆動素子の中で、略同時に駆動される駆動素子の数である負荷数を算出する負荷数算出工程と、前記駆動素子に印加する前記駆動信号の波形形状である駆動波形を、算出された前記負荷数に対応する負荷別駆動波形に決定する駆動波形決定工程と、を有することを特徴とする。
この描画方法によれば、描画する描画画像の描画パターン情報に基づいて負荷数を算出する。負荷数を求めるためには、描画パターン情報を取得すればよいため、実際の吐出を実施する前に負荷数を求めることができる。描画パターン情報から形成された描画データ信号から負荷数を求める場合に比べて、情報を処理する速度が遅くても充分対応できるため、負荷数を求めたり駆動信号を生成したりする制御装置の負荷を軽くすることができる。
[適用例2]上記適用例にかかる描画方法は、前記負荷別駆動波形を予め求める負荷別駆動波形取得工程と、前記負荷別駆動波形取得工程で取得された前記負荷別駆動波形を、対応する前記負荷数と対応させて記憶する負荷別駆動波形記憶工程と、をさらに有し、前記駆動波形決定工程では、前記負荷別駆動波形記憶工程において記憶された前記負荷別駆動波形の中から、前記負荷数算出工程において算出された前記負荷数に対応した前記負荷別駆動波形を読み出して、前記駆動素子に印加する前記駆動波形を、当該負荷別駆動波形に決定することが好ましい。
この描画方法によれば、負荷別駆動波形を予め求めて、対応する負荷数と対応させて記憶しており、駆動波形決定工程では記憶された負荷別駆動波形を選択して読み出すことで適用する負荷別駆動波形を決定する。負荷別駆動波形を予め求めるため、充分な時間及び検証工程を費やして負荷別駆動波形を求めることが可能となり、短時間で負荷別駆動波形を求める場合に比べて、より適切な負荷別駆動波形を求めることができる。駆動波形決定工程では記憶された負荷別駆動波形を選択して読み出すため、その時点で負荷別駆動波形を形成する場合に比べて、負荷別駆動波形を形成する制御装置の負荷を軽減することができる。
[適用例3]上記適用例にかかる描画方法において、前記駆動波形の基本波形が台形波を組み合わせた波形であり、該台形波の立上り曲線、立下り曲線、又は上底の曲線の少なくとも一つの形状を前記基本波形から修正することによって、前記負荷別駆動波形を形成することが好ましい。
この描画方法によれば、台形波の立上り曲線、立下り曲線、又は上底の曲線の少なくとも一つの形状を基本波形から変更するため、台形波の立上り曲線や立下り曲線の開始位置や傾きを変更する方法に比べて、台形波をより詳細に補正することができる。
[適用例4]上記適用例にかかる描画方法において、前記駆動波形を、時間軸における規定点の時点に対応する駆動信号の電圧を規定することによって規定し、前記規定点の数を、前記基本波形における勾配の変曲点の数より多くすることが好ましい。
この描画方法によれば、印加する駆動電圧が規定される規定点が、台形波の変曲点の数より多くなる。このため、変曲点における駆動電圧に加えて、変曲点の間の規定点における駆動電圧も規定して、駆動波形を規定することができる。これにより、変曲点においてのみ駆動電圧を規定する場合に比べて、台形波をより詳細に規定することができる。
[適用例5]上記適用例にかかる描画方法において、前記複数の吐出ノズルは、複数の吐出ヘッドのそれぞれの吐出ヘッドが有する第一の複数の吐出ノズルで構成されており、前記負荷数算出工程及び前記駆動波形決定工程において、前記負荷数又は前記駆動波形を、前記吐出ヘッドごとにそれぞれ算出又は規定することが好ましい。
この描画方法によれば、吐出ヘッドごとに負荷数を算出し、駆動波形を対応する負荷別駆動波形に決定する。
吐出ノズルのそれぞれの駆動素子に印加される駆動波形は、近接して配設された駆動素子に印加される駆動波形によって互いに影響を受ける。異なる吐出ヘッド間で及ぼしあう影響は、同一の吐出ヘッド内で及ぼしあう影響に比べて小さい。吐出ヘッド単位で負荷数を算出し、負荷別駆動波形を決定することで、効率的に負荷別駆動波形を決定することができる。
[適用例6]本適用例にかかる描画装置は、液状体を吐出する複数の吐出ノズルと、該複数の吐出ノズルのそれぞれの吐出ノズルに対応して設けられており、駆動信号を印加されることによって変形することで前記吐出ノズルから前記液状体を吐出させる複数の駆動素子と、を備える描画装置であって、前記液状体を吐出することで描画する描画画像の描画パターン情報を取得する描画情報取得部と、取得された前記描画パターン情報から、前記描画画像を描画する際の、前記複数の駆動素子の中で略同時に駆動される駆動素子の数である負荷数を算出する負荷数算出部と、前記駆動素子に印加する前記駆動信号の波形形状である駆動波形を、算出された前記負荷数に対応する負荷別駆動波形に決定する駆動波形決定部と、を備えることを特徴とする。
この描画装置によれば、負荷数算出部は、描画情報取得部が取得した描画画像の描画パターン情報に基づいて負荷数を算出する。負荷数算出部が負荷数を求めるためには、描画パターン情報を取得すればよいため、実際の吐出を実施する前に負荷数を求めることができる。さらに駆動波形決定部は、実際の吐出を実施する前に、駆動波形を算出された負荷数に対応する負荷別駆動波形に決定することができる。描画パターン情報から形成された描画データ信号から負荷数を求める場合に比べて、情報を処理する速度が遅くても充分対応できるため、負荷数算出部や駆動波形決定部を含む描画装置の制御装置の負荷を軽くすることができる。
[適用例7]上記適用例にかかる描画装置は、予め求められた前記負荷別駆動波形を取得する負荷別駆動波形取得部と、前記負荷別駆動波形取得部によって取得された前記負荷別駆動波形を、対応する前記負荷数と対応させて記憶する負荷別駆動波形記憶部と、をさらに備え、前記駆動波形決定部は、前記負荷別駆動波形記憶部に記憶された前記負荷別駆動波形の中から、前記負荷数算出部が算出し前記負荷数に対応した前記負荷別駆動波形を読み出して、前記駆動素子に印加する前記駆動波形を、当該負荷別駆動波形に決定することが好ましい。
この描画装置によれば、予め求められた負荷別駆動波形を負荷別駆動波形取得部が取得し、負荷別駆動波形記憶部が記憶している。負荷別駆動波形を予め求めるため、充分な時間及び検証工程を費やして負荷別駆動波形を求めることが可能となり、短時間で負荷別駆動波形を求める場合に比べて、より適切な負荷別駆動波形を求めることができる。
駆動波形決定部は記憶された負荷別駆動波形を選択して読み出すため、その時点で負荷別駆動波形を形成することが不要であり、駆動波形決定部を含む描画装置の制御装置の負荷を軽減することができる。
[適用例8]上記適用例にかかる描画装置において、前記駆動波形の基本波形が台形波を組み合わせた波形であり、前記負荷別駆動波形は、前記台形波の立上がり曲線、立下り曲線、又は上底の曲線の少なくとも一つの形状を前記基本波形から修正することによって、規定されていることが好ましい。
この描画装置によれば、台形波の立上り曲線、立下り曲線、又は上底の曲線の少なくとも一つの形状を基本波形から変更するため、台形波の立上り曲線や立下り曲線の開始位置や傾きを変更する場合に比べて、台形波をより詳細に補正することが可能となる。これにより、描画装置は、所望の吐出量をより正確に実現することができる。
[適用例9]上記適用例にかかる描画装置において、前記駆動波形は、時間軸における規定点の時点に対応する駆動信号の電圧を規定することによって規定されており、前記規定点の数が、前記基本波形における勾配の変曲点の数より多いことが好ましい。
この描画装置によれば、印加する駆動電圧が規定される規定点が、台形波の変曲点の数より多くなる。このため、変曲点における駆動電圧に加えて、変曲点の間の規定点における駆動電圧も規定して、駆動波形を規定することができる。したがって、変曲点においてのみ駆動電圧を規定する場合に比べて、台形波をより詳細に規定することができる。これにより、描画装置は、所望の吐出量をより正確に実現することができる。
[適用例10]上記適用例にかかる描画装置において、前記複数の吐出ノズルは、複数の吐出ヘッドのそれぞれの吐出ヘッドが有する第一の複数の吐出ノズルで構成されており、前記負荷算出部、及び前記駆動波形決定部は、前記負荷数、又は前記駆動素子に印加する前記駆動波形を、前記吐出ヘッドごとにそれぞれ算出又は規定することが好ましい。
この描画装置によれば、吐出ヘッドごとに負荷数を算出し、駆動波形を対応する負荷別駆動波形に決定する。
吐出ノズルのそれぞれの駆動素子に印加される駆動波形は、近接して配設された駆動素子に印加される駆動波形によって互いに影響を受ける。異なる吐出ヘッド間で及ぼしあう影響は、同一の吐出ヘッド内で及ぼしあう影響に比べて小さい。吐出ヘッド単位で負荷数を算出し、負荷別駆動波形を決定することで、効率的に負荷別駆動波形を決定することができる。
[適用例11]本適用例にかかる電気光学装置の製造方法は、上記適用例にかかる描画方法、又は上記適用例にかかる描画装置を用いて電気光学装置を構成する機能膜を形成することを特徴とする。
この電気光学装置の製造方法によれば、描画装置を制御する制御装置の負荷を軽くすることができる描画方法、又は描画装置を制御する制御装置の負荷を軽くすることができる描画装置を用いるため、電気光学装置を製造するために用いる装置を制御する制御装置の負荷を軽くすることができる。
[適用例12]本適用例にかかる電気光学装置の製造装置は、電気光学装置の機能膜を構成する材料を含む機能液を吐出する複数の吐出ノズルと、該複数の吐出ノズルのそれぞれの吐出ノズルに対応して設けられており、駆動信号を印加されることによって変形することで前記吐出ノズルから前記機能液を吐出させる複数の駆動素子と、を備える電気光学装置の製造装置であって、前記機能液を吐出することで描画する描画画像の描画パターン情報を取得する描画情報取得部と、取得された前記描画パターン情報から、前記描画画像を描画する際の、前記複数の駆動素子の中で略同時に駆動される駆動素子の数である負荷数を算出する負荷数算出部と、前記駆動素子に印加する前記駆動信号の波形形状である駆動波形を、算出された前記負荷数に対応する負荷別駆動波形に決定する駆動波形決定部と、を備えることを特徴とする。
この電気光学装置の製造装置によれば、負荷数算出部は、描画情報取得部が取得した描画画像の描画パターン情報に基づいて負荷数を算出する。負荷数算出部が負荷数を求めるためには、描画パターン情報を取得すればよいため、実際の吐出を実施する前に負荷数を求めることができる。さらに駆動波形決定部は、実際の吐出を実施する前に、駆動波形を算出された負荷数に対応する負荷別駆動波形に決定することができる。描画パターン情報から形成された描画データ信号から負荷数を求める場合に比べて、情報を処理する速度が遅くても充分対応できるため、負荷数算出部や駆動波形決定部を含む電気光学装置の製造装置の制御装置の負荷を軽くすることができる。
[適用例13]上記適用例にかかる電気光学装置の製造装置は、予め求められた前記負荷別駆動波形を取得する負荷別駆動波形取得部と、前記負荷別駆動波形取得部によって取得された前記負荷別駆動波形を、対応する前記負荷数と対応させて記憶する負荷別駆動波形記憶部と、をさらに備え、前記駆動波形決定部は、前記負荷別駆動波形記憶部に記憶された前記負荷別駆動波形の中から、前記負荷数算出部が算出し前記負荷数に対応した前記負荷別駆動波形を読み出して、前記駆動素子に印加する前記駆動波形を、当該負荷別駆動波形に決定することが好ましい。
この電気光学装置の製造装置によれば、予め求められた負荷別駆動波形を負荷別駆動波形取得部が取得し、負荷別駆動波形記憶部が記憶している。負荷別駆動波形を予め求めるため、充分な時間及び検証工程を費やして負荷別駆動波形を求めることが可能となり、短時間で負荷別駆動波形を求める場合に比べて、より適切な負荷別駆動波形を求めることができる。
駆動波形決定部は記憶された負荷別駆動波形を選択して読み出すため、その時点で負荷別駆動波形を形成することが不要であり、駆動波形決定部を含む電気光学装置の製造装置の制御装置の負荷を軽減することができる。
[適用例14]上記適用例にかかる電気光学装置の製造装置において、前記駆動波形の基本波形が台形波を組み合わせた波形であり、前記負荷別駆動波形は、前記台形波の立上がり曲線、立下り曲線、又は上底の曲線の少なくとも一つの形状を前記基本波形から修正することによって、規定されていることが好ましい。
この電気光学装置の製造装置によれば、台形波の立上り曲線、立下り曲線、又は上底の曲線の少なくとも一つの形状を基本波形から変更するため、台形波の立上り曲線や立下り曲線の開始位置や傾きを変更する場合に比べて、台形波をより詳細に補正することが可能となる。これにより、電気光学装置の製造装置は、所望の吐出量をより正確に実現することができる。
[適用例15]上記適用例にかかる電気光学装置の製造装置において、前記駆動波形は、時間軸における規定点の時点に対応する駆動信号の電圧を規定することによって規定されており、前記規定点の数が、前記基本波形における勾配の変曲点の数より多いことが好ましい。
この電気光学装置の製造装置によれば、印加する駆動電圧が規定される規定点が、台形波の変曲点の数より多くなる。このため、変曲点における駆動電圧に加えて、変曲点の間の規定点における駆動電圧も規定して、駆動波形を規定することができる。したがって、変曲点においてのみ駆動電圧を規定する場合に比べて、台形波をより詳細に規定することができる。これにより、電気光学装置の製造装置は、所望の吐出量をより正確に実現することができる。
以下、描画方法、及び描画装置の好適な実施の形態について、描画装置の一実施形態としてのインクジェット方式の液滴吐出装置を例に、図面を参照して説明する。なお、以下の説明において参照する図面では、図示の便宜上、部材又は部分の縦横の縮尺を実際のものとは異なるように表す場合がある。
<液滴吐出装置>
最初に、液滴吐出装置1の全体構成について、図1を参照して説明する。図1は液滴吐出装置の概略構成を示す外観斜視図である。
図1に示すように、液滴吐出装置1は、ヘッド機構部2と、ワーク機構部3と、機能液供給部4と、メンテナンス装置部5と、を備えている。ヘッド機構部2は、液状体としての機能液を液滴として吐出する液滴吐出ヘッド10を有する。ワーク機構部3は、液滴吐出ヘッド10から吐出された液滴の吐出対象であるワーク20を載置するワーク載置台23を有する。機能液供給部4は、給液チューブ24を有し、当該給液チューブ24が、液滴吐出ヘッド10に接続されている。給液チューブ24を介して機能液が液滴吐出ヘッド10に供給される。メンテナンス装置部5は、液滴吐出ヘッド10の検査及び保守を行う装置を備えている。液滴吐出装置1は、また、これら各機構部等を総括的に制御する吐出装置制御部6を備えている。
さらに、液滴吐出装置1は、床上に設置された複数の支持脚8と、支持脚8の上側に設置された定盤9とを備えている。定盤9の上側には、ワーク機構部3が定盤9の長手方向(X軸方向)に延在するように配設されている。ワーク機構部3の上方には、定盤9に固定された2本の支持柱で支持されているヘッド機構部2が、ワーク機構部3と直交する方向(Y軸方向)に延在するように配設されている。また、定盤9の傍らには、ヘッド機構部2の液滴吐出ヘッド10に連通する供給管を有する機能液供給部4の機能液タンクなどが配置されている。ヘッド機構部2の一方の支持柱の近傍には、メンテナンス装置部5がワーク機構部3と並んでX軸方向に配設されている。さらに、定盤9の下側に、吐出装置制御部6が収容されている。
ヘッド機構部2は、液滴吐出ヘッド10を有するヘッドユニット21と、ヘッドユニット21を支持するヘッドキャリッジ25と、ヘッドキャリッジ25が吊設された移動枠22とを有している。移動枠22とをY軸方向に移動させることで、液滴吐出ヘッド10をY軸方向に自在に移動させる。また、移動した位置に保持する。ワーク機構部3は、ワーク載置台23をX軸方向に移動させることで、ワーク載置台23に載置されたワーク20をX軸方向に自在に移動させる。また、移動した位置に保持する。
このように、液滴吐出ヘッド10は、Y軸方向の吐出位置まで移動して停止し、下方にあるワーク20のX軸方向の移動に同調して、機能液を液滴として吐出する。X軸方向に移動するワーク20と、Y軸方向に移動する液滴吐出ヘッド10とを相対的に制御することにより、ワーク20上の任意の位置に液滴を着弾させることで、所望する平面形状の描画を行うことが可能である。
<液滴吐出ヘッド>
次に、図2を参照して、液滴吐出ヘッド10の構成について説明する。図2は、液滴吐出ヘッドをノズルプレート側から見た外観斜視図である。図3は、液滴吐出ヘッドの構造を示す斜視断面図である。図3(a)は、液滴吐出ヘッドの圧力室周りの構造を示す斜視断面図であり、図3(b)は、液滴吐出ヘッドの吐出ノズル部の構造を示す断面図である。液滴吐出ヘッド10が、吐出ヘッドに相当する。
図2に示したように、液滴吐出ヘッド10は、いわゆる2連のものであり、2連の接続針46,46を有する液体導入部45と、液体導入部45の側方に連なるヘッド基板47と、液体導入部45に連なるポンプ部48と、ポンプ部48に連なるノズルプレート41とを備えている。液体導入部45には、配管接続部材が接続され、ヘッド基板47には、一対のヘッドコネクタ47A,47Aが実装されており、当該ヘッドコネクタ47Aを介してフレキシブルフラットケーブルが接続される。このポンプ部48とノズルプレート41とにより、方形のヘッド本体40Aが構成されている。
ポンプ部48の基部側、すなわちヘッド本体40Aの基部側は、液体導入部45を受けるべく方形フランジ状にフランジ部44が形成されている。このフランジ部44には、液滴吐出ヘッド10をヘッド保持部材に固定する小ねじ用のねじ孔(雌ねじ)49が一対形成されている。ヘッド保持部材を貫通してねじ孔49に螺合したヘッド止めねじにより、液滴吐出ヘッド10がヘッド保持部材に固定される。
ノズルプレート41のノズル形成面41aには、ノズルプレート41に形成されており液滴を吐出する吐出ノズル42から成るノズル列43が、2本形成されている。2本のノズル列43は相互に平行に列設されており、各ノズル列43は、等ピッチで並べた180個(図示では模式的に表している)の吐出ノズル42で構成されている。すなわち、ヘッド本体40Aのノズル形成面41aには、その中心線を挟んで2本のノズル列43が対称に配設されている。
液滴吐出ヘッド10が液滴吐出装置1に取り付けられた状態では、ノズル列43はY軸方向に延在する。2列のノズル列43をそれぞれ構成する吐出ノズル42同士は、Y軸方向において、相互に半ノズルピッチずつ位置ずれている。1ノズルピッチは、例えば140μmである。X軸方向の同じ位置において、それぞれのノズル列43を構成する吐出ノズル42から吐出された液滴は、設計上では、Y軸方向に等間隔に並んで一直線上に着弾する。吐出ノズル42のノズルピッチが140μmの場合、着弾位置の中心間距離は、設計上では、70μmである。
図3(a)及び(b)に示すように、液滴吐出ヘッド10は、ノズルプレート41にポンプ部48を構成する圧力室プレート51が積層されており、圧力室プレート51に振動板52が積層されている。
圧力室プレート51には、液体導入部45から振動板52の液供給孔53を介して供給される機能液が常に充填される液たまり55が形成されている。液たまり55は、振動板52と、ノズルプレート41と、圧力室プレート51の壁とに囲まれた空間である。また、圧力室プレート51には、複数のヘッド隔壁57によって区切られた圧力室58が形成されている。振動板52と、ノズルプレート41と、1対のヘッド隔壁57とによって囲まれた空間が圧力室58である。
圧力室58は吐出ノズル42のそれぞれに対応して設けられており、圧力室58の数と吐出ノズル42の数とは同じである。圧力室58には、1対のヘッド隔壁57の間に位置する供給口56を介して、液たまり55から機能液が供給される。ヘッド隔壁57と圧力室58と吐出ノズル42と供給口56との組は、液たまり55に沿って1列に並んでおり、1列に並んだ吐出ノズル42がノズル列43を形成している。図3(a)では図示省略したが、図示した吐出ノズル42を含むノズル列43に対して液たまり55に関して略対称位置に、1列に並んだ吐出ノズル42がもうひとつのノズル列43を形成しており、対応するヘッド隔壁57と圧力室58と供給口56との組が、1列に並んでいる。
振動板52の圧力室58を構成する部分には、それぞれ圧電素子59の一端が固定されている。圧電素子59の他端は、固定板54(図6(b)参照)を介して液滴吐出ヘッド10全体を支持する基台(図示省略)に固定されている。
圧電素子59は電極層と圧電材料とを積層した活性部を有し、電極層に駆動電圧を印加することで、活性部が長手方向(図3(b)では振動板52の厚さ方向)に縮む。活性部が縮むことで、圧電素子59の一端が固定された振動板52が圧力室58と反対側に引張られる力を受ける。振動板52が圧力室58と反対側に引張られることで、振動板52が圧力室58の反対側に撓む。これにより、圧力室58の容積が増加することから、機能液が液たまり55から供給口56を経て圧力室58に供給される。次に、電極層に印加されていた駆動電圧が解除されると、活性部が元の長さに戻ることで、圧電素子59が振動板52を押圧する。振動板52が押圧されることで、圧力室58側に戻る。これにより、圧力室58の容積が急激に元に戻る、即ち増加していた容積が減少することから、圧力室58内に充填されていた機能液に圧力が加わり、当該圧力室58に連通して形成された吐出ノズル42から機能液が液滴となって吐出される。機能液が、液状体に相当する。
吐出装置制御部6は、圧電素子59への印加電圧の制御、すなわち駆動信号を制御することにより、複数の吐出ノズル42のそれぞれに対して、機能液の吐出制御を行う。より詳細には、吐出ノズル42から吐出される液滴の体積や、単位時間あたりに吐出する液滴の数、基板上に着弾した液滴同士の距離などを変化させることができる。例えば、ノズル列43に並ぶ複数の吐出ノズル42の中から、液滴を吐出させる吐出ノズル42を選択的に使用することにより、ノズル列43の方向では、ノズル列43の長さの範囲であって吐出ノズル42のピッチ間隔で、複数の液滴を同時に吐出することができる。ノズル列43の方向と略直交する方向では、基板と吐出ノズル42とを相対移動させて、当該相対移動方向において、当該吐出ノズル42が対向可能な、基板の任意の位置に吐出ノズル42から吐出される液滴を配置することができる。なお、吐出ノズル42のそれぞれから吐出される液滴の体積は、1pl〜300pl(ピコリットル)の間で可変である。
<液滴吐出装置の電気的構成>
次に、上述したような構成を有する液滴吐出装置1を駆動するための電気的構成について、図4を参照して説明する。図4は、液滴吐出装置の電気的構成を示す電気構成ブロック図である。液滴吐出装置1は、図4に示した制御装置65を介してデータの入力や、稼働開始や停止などの制御指令の入力を行うことで、制御される。制御装置65は、演算処理を行うホストコンピュータ66と、液滴吐出装置1に入出力する情報を入出力するための入出力装置68とを有し、インタフェイス(I/F)67を介して吐出装置制御部6と接続されている。入出力装置68は、情報を入力可能なキーボード、記録媒体を介して情報を入出力する外部入出力装置、外部入出力装置を介して入力された情報を保存しておく記録部、モニタ装置などである。
液滴吐出装置1の吐出装置制御部6は、インタフェイス(I/F)77と、CPU(Central Processing Unit)74と、ROM(Read Only Memory)75と、RAM(Random Access Memory)76と、ハードディスク78と、を有している。また、ヘッドドライバ10dと、駆動機構ドライバ30dと、給液ドライバ40dと、メンテナンスドライバ50dと、検査ドライバ60dと、検出部インタフェイス(I/F)73と、を有している。これらは、データバス79を介して互いに電気的に接続されている。
インタフェイス77は、制御装置65とデータの授受を行い、CPU74は、制御装置65からの指令に基づいて各種演算処理を行い、液滴吐出装置1の各部の動作を制御する制御信号を出力する。RAM76は、CPU74からの指令に従って、制御装置65から受け取った制御コマンドや印刷データを一時的に保存する。ROM75は、CPU74が各種演算処理を行うためのルーチンなどを記憶している。ハードディスク78は、制御装置65から受け取った制御コマンドや印刷データを保存したり、CPU74が各種演算処理を行うためのルーチンなどを記憶したりしている。
ヘッドドライバ10dには、ヘッドユニット21を構成する液滴吐出ヘッド10が接続されている。ヘッドドライバ10dは、CPU74からの制御信号に従って液滴吐出ヘッド10を駆動して、機能液の液滴を吐出させる。
駆動機構ドライバ30dには、ヘッド機構部2を構成するY軸テーブル32のヘッド移動モータと、ワーク機構部3を構成するX軸テーブル31のX軸リニアモータと、各種駆動源を有する各種駆動機構を含む駆動機構71とが接続されている。各種駆動機構は、アライメントカメラを移動するためのカメラ移動モータや、ヘッド機構部2を構成するθ回転機構の駆動モータや、ワーク機構部3を構成するθ回転機構の駆動モータなどである。駆動機構ドライバ30dは、CPU74からの制御信号に従って上記モータなどを駆動して、液滴吐出ヘッド10とワーク20とを相対移動させてワーク20の任意の位置と液滴吐出ヘッド10とを対向させ、ヘッドドライバ10dと協働して、ワーク20上の任意の位置に機能液の液滴を着弾させて、当該位置に機能液を配置する。
メンテナンスドライバ50dには、メンテナンス装置部5に含まれるメンテナンスユニット50の吸引ユニットと、ワイピングユニットと、フラッシングユニットとが接続されている。メンテナンスドライバ50dは、CPU74からの制御信号に従って、吸引ユニット、ワイピングユニット、又はフラッシングユニットを駆動して、液滴吐出ヘッド10の保守作業を実施させる。
検査ドライバ60dには、メンテナンス装置部5に含まれる検査ユニット60の吐出検査ユニットと、重量測定ユニットとが接続されている。検査ドライバ60dは、CPU74からの制御信号に従って、吐出検査ユニット、又は重量測定ユニットを駆動して、吐出重量や吐出の可否や着弾位置精度などの、液滴吐出ヘッド10の吐出状態の検査を実施させる。
給液ドライバ40dには、機能液供給部4を構成する給液ユニット40が接続されている。給液ドライバ40dは、CPU74からの制御信号に従って給液ユニット40を駆動して、液滴吐出ヘッド10に機能液を供給する。検出部インタフェイス73には、各種センサを含む検出部72が接続されている。検出部72の各センサによって検出された検出情報が検出部インタフェイス73を介してCPU74に伝達される。
<機能液の吐出>
次に、液滴吐出装置1における吐出制御方法について、図5を参照して説明する。図5は、液滴吐出ヘッドの電気的構成と信号の流れを示す説明図である。
上述したように、液滴吐出装置1は、液滴吐出装置1の各部の動作を制御する制御信号を出力するCPU74と、液滴吐出ヘッド10の電気的な駆動制御を行うヘッドドライバ10dとを備えている。
図5に示すように、ヘッドドライバ10dは、フレキシブルケーブル12を介して各液滴吐出ヘッド10と電気的に接続されている。また、液滴吐出ヘッド10は、吐出ノズル42(図2参照)毎に設けられた圧電素子59に対応して、シフトレジスタ(SL)80、ラッチ回路(LAT)81、レベルシフタ(LS)82、スイッチ(SW)83を備えている。
液滴吐出装置1における吐出制御は次のように行われる。最初に、CPU74がワーク20などの描画対象物における機能液の配置パターンをデータ化したドットパターンデータをヘッドドライバ10dに伝送する。そして、ヘッドドライバ10dは、ドットパターンデータをデコードして吐出ノズル42毎のON/OFF(吐出/非吐出)情報であるノズルデータを生成する。ノズルデータは、シリアル信号(SI)化されて、クロック信号(CK)に同期して各シフトレジスタ80に伝送される。
シフトレジスタ80に伝送されたノズルデータは、ラッチ信号(LAT)がラッチ回路81に入力されるタイミングでラッチされ、さらにレベルシフタ82でスイッチ83用のゲート信号に変換される。すなわち、ノズルデータが「ON」の場合にはスイッチ83が開いて圧電素子59に駆動信号(COM)が供給され、ノズルデータが「OFF」の場合にはスイッチ83が閉じられて圧電素子59に駆動信号(COM)は供給されないことになる。そして、「ON」に対応する吐出ノズル42からは機能液が液滴化されて吐出され、吐出された機能液がワーク20などの描画対象物の上に配置される。
<駆動波形>
次に、圧電素子59に印加する駆動信号の駆動波形、及び当該駆動波形の駆動信号を印加された圧電素子59の動作による吐出動作について、図6を参照して説明する。図6(a)は、圧電素子に印加する駆動信号の駆動波形の基本波形を示す図であり、図6(b)は、駆動波形に対応した圧電素子の動作による液滴吐出ヘッドの吐出動作を示す模式断面図である。
図6(a)に示すように、駆動信号を印加する前の待機状態では、圧電素子59には一定の電圧が印加されている(図6(a)のA)。この電圧を中間電位と表記する。描画を実施する際は、描画開始前に、圧電素子59に印加する電圧を中間電位に引き上げ、描画終了後に、グランドレベルに戻す。
図6(b)に示すように、圧電素子59を中間電位に維持した待機状態では、圧電素子59がわずかに縮んで振動板52が圧電素子59の側に引張られることで、振動板52が圧力室58の反対側に撓んでいる(図6(b)のA)。
駆動周期の最初の工程は、圧電素子59に印加する電圧を、中間電位から始まって、高電位に引き上げる(図6(a)のB)。圧電素子59に印加される電圧が高くなることで、圧電素子59がさらに縮んで、振動板52が圧力室58と反対側に引張られる力を受ける。振動板52が圧力室58と反対側に引張られることで、振動板52が圧力室58の反対側に撓む。これにより、圧力室58の容積が増加することから、機能液が液たまり55から供給口56を経て圧力室58に供給される(図6(b)のB)。この工程を、昇圧給液工程と表記する。昇圧給液工程では、吐出ノズル42から空気が圧力室に入り込まないように、圧電素子59をゆっくり変位させる。
昇圧給液工程後、圧電素子59に印加する電圧を高電位に保った状態を維持する。この状態を、吐出前待機状態と表記する(図6(a)のC)。圧電素子59を構成する圧電材料は、電圧変動がなくなっても機械的に振動しているため、その機械振動が収まるまで待機する工程が、吐出前待機状態である。
機械振動が収まる時間だけ吐出前待機状態を維持した後、圧電素子59に印加する電圧を、一気に降圧させる(図6(a)のD)。圧電素子59に印加する電圧を、一気に降圧させることによって、圧電素子59の変位が一気に零になり、圧力室58は急激に狭くなり、圧力室58の内部に充填されていた機能液が、吐出ノズル42から吐出される(図6(b)のD)。この工程を、降圧吐出工程と表記する。
降圧吐出工程の次に、圧電素子59に印加する電圧を低電位に保った状態を維持する。この状態を、吐出後待機状態と表記する(図6(a)のE)。圧電素子59の機械振動が収まる時間だけ低電位状態を維持する工程が、吐出後待機状態である。
圧電素子59の機械振動が収まる時間だけ吐出後待機状態を維持した後、圧電素子59に印加する電圧を中間電位に引き上げて(図6(a)のF)、再び待機状態(中間電位)にする。
<負荷別駆動波形>
次に、圧電素子59に印加する駆動信号の負荷別駆動波形の一例について、図7及び図8を参照して説明する。図7は、駆動信号の基本波形を示す図であり、図8は、駆動信号の負荷別駆動波形の一例を示す図である。図7(a)は、駆動信号の基本波形の入力データを示す図であり、図7(b)は、基本波形を印加したときの圧電素子に印加される駆動波形の実測値を示す図である。図8(a)は、駆動信号の負荷別駆動波形の入力データを示す図であり、図8(b)は、負荷別駆動波形を印加したときの圧電素子に印加される駆動波形の実測値を示す図であり、図8(c)は、駆動波形ごとの吐出重量の実測値を示す表である。
なお、図6を参照して説明した駆動波形において、吐出後待機状態を維持した後に圧電素子59に印加する電圧を中間電位に引き上げる工程は、降圧吐出工程における吐出量には実質的に影響を与えないため、負荷別駆動波形においても基本波形と同じ形状である。負荷別駆動波形は、基本波形の昇圧給液工程、吐出前待機状態の工程、降圧吐出工程、及び吐出後待機状態の工程の部分波形を調整して形成する。
図7(a)に示した基本波形の入力データを入力したところ、図7(b)に示すような駆動波形が、液滴吐出ヘッド10に印加された。図7(b)に示す駆動波形は、ヘッドコネクタ47Aにおける駆動波形を実測したものである。図7(b)に一点鎖線で示した駆動波形は、圧電素子59を駆動させない状態、即ち無負荷の場合のヘッドコネクタ47Aにおける駆動波形である。図7(b)に実線で示した駆動波形は、60個の圧電素子59を駆動させた場合のヘッドコネクタ47Aにおける駆動波形である。
液滴吐出ヘッド10などの液滴吐出ヘッドにおいて圧電素子59などの駆動素子を駆動するための負荷をノズルデューティーと表記し、負荷の大きさを、同時に吐出を実施する吐出ノズル42などの吐出ノズルの数で表す。例えば、60個の圧電素子59(吐出ノズル42)を同時に駆動させる場合の負荷を、ノズルデューティー60と表記する。ノズルデューティー60の場合、図7(b)に示すように二点鎖線で囲ったa,b,c,dの部分で駆動波形に歪が生じている。なお、ノズルデューティー60の場合の吐出重量は、設定した設計上の吐出重量に比べて、約9%増加していた。
図8(a)に示したノズルデューティー60に対応する負荷別駆動波形の入力データを入力したところ、図8(b)に示すような駆動波形が、ヘッドコネクタ47A(液滴吐出ヘッド10)において測定された。図8(b)に一点鎖線で示した駆動波形は、無負荷の場合のヘッドコネクタ47Aにおける駆動波形である。図8(b)に実線で示した駆動波形は、ノズルデューティー60の場合のヘッドコネクタ47Aにおける駆動波形である。ノズルデューティー60に対応する負荷別駆動波形の入力データは、図8(a)において、二点鎖線で囲って示した部分の波形形状を、基本波形に対して変更して形成した。台形波である基本波形は直線で構成されているが、図8(a)において、a、b、c、又はdで示した部分は、それぞれ複数の時点における電圧を規定することで、直線で規定される波形とは異なる波形を規定している。
ノズルデューティー60の場合と無負荷の場合とで、駆動波形の形状にほとんど差がないため、図8(b)では一点鎖線が実線と判別できない程度によく一致している。
図8(a)において、a、b、c、又はdで示した部分を、基本波形に対して変更した駆動波形を、それぞれ調整波形a、調整波形b、調整波形c、調整波形dと表記する。図8(c)は、ノズルデューティー60で、調整波形a、調整波形b、調整波形c、又は調整波形dの駆動信号を印加して、60000ショットを吐出させた際の吐出重量の測定結果である。図8(c)に示した基本波形の駆動信号による吐出重量は、ノズルデューティー60で、調整波形a、調整波形b、調整波形c、又は調整波形dの駆動信号よる吐出重量測定と交互に実施した基本波形の駆動信号による吐出重量測定の結果である。
4回の基本波形の駆動信号による吐出重量が、互いに最大0.0007g異なっていることから、吐出重量及び重量測定ユニットのいずれか又は双方合わせて、0.001g以下程度の誤差があると推定される。
調整波形a、調整波形b、調整波形c、又は調整波形dそれぞれの駆動信号よる吐出重量の、基本波形の駆動信号による吐出重量との差の合計は、約−9%である。基本波形の駆動信号を印加した場合、ノズルデューティー60の場合の吐出重量は、設計上の吐出重量に比べて、約9%増加していた。図8(a)に示したノズルデューティー60に対応する負荷別駆動波形の駆動信号を印加した場合、ノズルデューティー60の場合の吐出重量も無負荷の場合の吐出重量も略同等であって、基本波形の駆動信号を印加した場合の設計上の吐出重量と同等であった。
これらの吐出重量測定の結果から、負荷別駆動波形の駆動信号を用いることによって、負荷の増大による吐出重量の変動を、ほとんど無くすることができることがわかる。
<描画吐出>
次に、機能液を吐出して、描画を実行する過程について、図9を参照して説明する。図9は、描画工程を示すフローチャートである。
図9のステップS1では、液滴吐出ヘッド10における同時に吐出を実施する吐出ノズル42の数(ノズルデューティー)ごとに、上述した負荷別駆動波形を作成する。負荷別駆動波形を作成する工程は、描画吐出に先立って、別途実施する。負荷別駆動波形の作成は、最初に、ノズルデューティーごとに、入力した駆動波形と吐出量との関係、及び入力した駆動波形と実際に液滴吐出ヘッド10に印加された駆動波形との関係を求める。次に、入力する駆動波形の形状を調整することによって、求める負荷別駆動波形のノズルデューティーにおける液滴吐出ヘッド10に印加される駆動波形を、ノズルデューティー0の場合における液滴吐出ヘッド10に印加される駆動波形に合致させる。さらに、当該負荷別駆動波形の駆動信号を用いることで、対応するノズルデューティーにおける吐出ノズルからの吐出重量が、基本波形の駆動信号を印加した場合の設計上の吐出重量と略同等となったかを検証する。
次に、ステップS2では、作成した負荷別駆動波形を、対応するノズルデューティーと対応させて記憶する。作成した負荷別駆動波形の情報を、入出力装置68から入力し、RAM76やハードディスク78などに記憶させる。入出力装置68が、負荷別駆動波形取得部に相当する。負荷別駆動波形の情報を記憶するRAM76やハードディスク78などが、負荷別駆動波形記憶部に相当する。
次に、ステップS3では、描画する画像の描画データを取得する。描画データの取得は、画像の描画データを入出力装置68から入力し、RAM76やハードディスク78などに記憶させることによって実行される。描画データは、例えば、ワーク20などの描画対象物における機能液の配置パターンをデータ化したドットパターンデータなどの形式で供給される。入出力装置68が、描画情報取得部に相当する。描画データが、描画パターン情報に相当する。
次に、ステップS4では、取得した画像データに基づいて、描画吐出を実施する際の、各液滴吐出ヘッド10におけるノズルデューティーを算出する。ノズルデューティーは、各吐出ノズル42に対応するノズルデータから算出する。上述したように、ヘッドドライバ10dは、ドットパターンデータをデコードして吐出ノズル42毎のON/OFF(吐出/非吐出)情報であるノズルデータを生成する。液滴吐出装置1が吐出動作を開始する時点からの経過時間が同じ時点において、各液滴吐出ヘッド10におけるノズルデータの情報がON(吐出)になっている吐出ノズル42の数を求めることによって、それぞれの液滴吐出ヘッド10におけるノズルデューティーを算出する。当該算出は、例えば、CPU74が、ROM75に記憶されたプログラムに従って実行する。この場合のCPU74及びROM75が、負荷数算出部に相当する。
次に、ステップS5では、記憶されている負荷別駆動波形の中から、算出されたノズルデューティーに対応する負荷別駆動波形を読み出す。そして、スイッチ83が開いている場合に圧電素子59に印加される駆動信号の波形を、読み出した負荷別駆動波形に決定する。スイッチ83が開いている場合に圧電素子59に印加される駆動信号の波形は、当該時点におけるノズルデューティーとして算出されたノズルデューティーに対応する負荷別駆動波形として読み出された負荷別駆動波形に決定される。
次に、ステップS6では、ワーク20などの描画対象物に向けて、描画吐出を実施する。描画吐出を実施するために、圧電素子59には、当該吐出を実施する時点におけるノズルデューティーとして算出されたノズルデューティーに対応して決定された負荷別駆動波形の駆動信号が印加される。
ステップS6を実施して、描画工程を終了する。
なお、ステップS1及びS2は、それぞれの液滴吐出ヘッド10において一回実施してデータを記憶させておけば充分で、描画吐出のたびに実施する必要はない。さらに、それぞれの液滴吐出ヘッド10の特性は、規格に適合する特性であり、許容誤差の範囲で同等であるため、一つの液滴吐出ヘッド10において求めた負荷別駆動波形を、他の液滴吐出ヘッド10の負荷別駆動波形として用いてもよい。
また、ステップS3は、描画する描画画像ごとに一回実施すればよい。
<液晶表示パネルの構成>
次に、描画装置を用いて描画を実施する描画対象物の一例であるカラーフィルタを備える液晶表示パネルについて説明する。
最初に、液晶表示パネル200の構成について、図10を参照して説明する。図10は、液晶表示パネルの概略構成を示す分解斜視図である。液晶表示パネル200は、駆動素子として薄膜トランジスタ(TFT(Thin Film Transistor)素子)を用いるアクティブマトリックス方式の液晶装置であり、図示省略したバックライトを用いる透過型の液晶装置である。
図10に示すように、液晶表示パネル200は、TFT素子215を有する素子基板210と、対向電極207を有する対向基板220と、シール材(図示省略)によって接着された素子基板210と対向基板220との隙間に充填された液晶230(図15(k)参照)とを備えている。貼り合わされた素子基板210と、対向基板220には、貼り合わされた面の反対側の面に、それぞれ偏光板231と偏光板232とが、配設されている。
素子基板210は、ガラス基板211の対向基板220と対向する面に、TFT素子215や、画素電極217や、走査線212及び信号線214が、形成されている。これらの素子や導電性膜の間を埋めるように、絶縁層216が形成されており、走査線212及び信号線214は、絶縁層216の部分を挟んで互いに交差する状態で形成されている。走査線212と信号線214とは、絶縁層216の部分を間に挟むことで互いに絶縁されている。これらの走査線212と信号線214とに囲まれた領域内には画素電極217が形成されている。画素電極217は方形状の一部の角部分が方形状に欠けた形状をしている。画素電極217の切欠部と走査線212と信号線214とに囲まれた部分には、ソース電極、ドレイン電極、半導体部、及びゲート電極を具備するTFT素子215が組み込まれて構成されている。走査線212と信号線214に信号を印加することによってTFT素子215をオン・オフして画素電極217への通電制御を実施する。
素子基板210の液晶230と接する面には、上記した走査線212や信号線214や画素電極217が形成された領域全体を覆う配向膜218が設けられている。
対向基板220は、ガラス基板201の素子基板210と対向する面に、カラーフィルタ(以降、「CF」と表記する。)層208が形成されている。CF層208は、隔壁204と、赤色フィルタ膜205Rと、緑色フィルタ膜205Gと、青色フィルタ膜205Bとを有している。ガラス基板201上に、格子状に隔壁204を構成するブラックマトリックス202が形成され、ブラックマトリックス202の上にバンク203が形成されている。ブラックマトリックス202とバンク203とで構成された隔壁204によって、方形のフィルタ膜領域225が形成されている。フィルタ膜領域225には、赤色フィルタ膜205R、緑色フィルタ膜205G、又は青色フィルタ膜205Bが形成されている。赤色フィルタ膜205R、緑色フィルタ膜205G、及び青色フィルタ膜205Bは、それぞれ上述した画素電極217のそれぞれと対向する位置及び形状に形成されている。
CF層208の上(素子基板210側)には、平坦化膜206が設けられている。平坦化膜206の上には、ITOなどの透明な導電性材料で形成された対向電極207が設けられている。平坦化膜206を設けることによって、対向電極207を形成する面を略平坦な面にしている。対向電極207は、上述した画素電極217が形成された領域全体を覆う大きさの連続した膜である。対向電極207は、図示省略した導通部を介して、素子基板210に形成された配線に接続されている。
対向基板220の液晶230と接する面には、画素電極217の全面を覆う配向膜228が設けられている。液晶230は、素子基板210と対向基板220とが貼り合わされた状態において、対向基板220の配向膜228と、素子基板210の配向膜218と、対向基板220と素子基板210とを貼り合わせるシール材とに囲まれた空間に充填されている。
なお、液晶表示パネル200は、透過型の構成としたが、反射層あるいは半透過反射層を設けて、反射型の液晶装置あるいは半透過反射型の液晶装置とすることもできる。
<マザー対向基板>
次に、マザー対向基板201Aについて、図11を参照して説明する。対向基板220は、分割されてガラス基板201となるマザー対向基板201A上に上述したCF層208などを形成した後、マザー対向基板201Aを個別の対向基板220(ガラス基板201)に分割して形成される。図11(a)は、対向基板の平面構造を示す模式図であり、図11(b)は、マザー対向基板の平面構造を示す模式図である。
対向基板220は、厚みおよそ1.0mmの透明な石英ガラスからなるガラス基板201を用いて形成されている。図11(a)に示すように、対向基板220は、ガラス基板201の周囲の僅かな額縁領域を除く部分に、CF層208が形成されている。CF層208は、方形状のガラス基板201の表面に複数のフィルタ膜領域225をドットパターン状、本実施形態ではドット・マトリクス状に形成し、当該フィルタ膜領域225にフィルタ膜205を形成することによって形成されている。ガラス基板201のCF層208が形成される領域にかからない位置には、図示省略したアライメントマークが形成されている。アライメントマークは、CF層208などを形成する諸工程を実行するためにガラス基板201を、液滴吐出装置1などの製造装置に取り付ける際などに位置決め用の基準マークとして用いられる。
図11(b)に示すように、マザー対向基板201Aには、対向基板220のCF層208が、分割されてガラス基板201となる部分のそれぞれに形成されている。
<カラーフィルタ>
次に、対向基板220に形成されているCF層208及びCF層208におけるフィルタ膜205(赤色フィルタ膜205R、緑色フィルタ膜205G、及び青色フィルタ膜205B)の配列について、図12を参照して説明する。図12は、3色カラーフィルタのフィルタ膜の配列例を示す模式平面図である。
図12に示すように、フィルタ膜205は、透光性のない樹脂材料によって格子状のパターンに形成された隔壁204によって区画されてドット・マトリクス状に並んだ複数の例えば方形状のフィルタ膜領域225を色材で埋めることによって形成される。例えば、フィルタ膜205を構成する色材を含む機能液をフィルタ膜領域225に充填し、当該機能液の溶媒を蒸発させて機能液を乾燥させることで、フィルタ膜領域225を埋める膜状のフィルタ膜205を形成する。
3色カラーフィルタにおける赤色フィルタ膜205R、緑色フィルタ膜205G、及び青色フィルタ膜205Bの配列としては、例えば、ストライプ配列、モザイク配列、デルタ配列などが知られている。ストライプ配列は、図12(a)に示したように、マトリクスの縦列が全て同色の赤色フィルタ膜205R、緑色フィルタ膜205G、又は青色フィルタ膜205Bになる配列である。モザイク配列は、図12(b)に示したように、横方向の各行ごとにフィルタ膜205一つ分だけ色をずらした配列で、3色フィルタの場合、縦横の直線上に並んだ任意の3つのフィルタ膜205が3色となる配列である。デルタ配列は、図12(c)に示したように、フィルタ膜205の配置を段違いにし、3色フィルタの場合、任意の隣接する3つのフィルタ膜205が異なる色となる配色である。
図12(a),(b),(c)に示した3色フィルタにおいて、フィルタ膜205は、それぞれが、R(赤色)、G(緑色)、B(青色)のうちのいずれか1色の色材によって形成されている。隣り合って形成された赤色フィルタ膜205R、緑色フィルタ膜205G、及び青色フィルタ膜205Bを各1個ずつ含むフィルタ膜205の組で、画像を構成する最小単位である絵素のフィルタ(以降、「絵素フィルタ254」と表記する。)を形成している。一つの絵素フィルタ254内の赤色フィルタ膜205R、緑色フィルタ膜205G、及び青色フィルタ膜205Bのいずれか一つ又はそれらの組み合わせに光を選択的に通過させることにより、フルカラー表示を行う。
<液晶表示パネルの形成>
次に、液晶表示パネル200を形成する工程について、図13、図14、及び図15を参照して説明する。図13は、液晶表示パネルを形成する過程を示すフローチャートである。図14は、液晶表示パネルを形成する過程におけるフィルタ膜を形成する工程などを示す断面図であり、図15は、液晶表示パネルを形成する過程における配向膜を形成する工程などを示す断面図である。液晶表示パネル200は、それぞれ別々に形成した素子基板210と対向基板220とを、貼り合わせて形成する。
図13に示したステップS21からステップS25を実行することで、対向基板220を形成する。
図13のステップS21では、ガラス基板201の上に、フィルタ膜領域225を区画形成するための隔壁部を形成する。隔壁部は、ブラックマトリックス202を格子状に形成し、その上にバンク203を形成して、ブラックマトリックス202とバンク203とで構成された隔壁204を格子状に配置することによって形成する。これにより、図14(a)に示すように、フィルタ膜領域225が形成される。フィルタ膜領域225は、ガラス基板201の表面に、隔壁204によって区画された方形の領域である。
次に、図13のステップS22では、フィルタ膜領域225に、赤色フィルタ膜205R、緑色フィルタ膜205G、又は青色フィルタ膜205Bを構成する材料をそれぞれ充填して、赤色フィルタ膜205R、緑色フィルタ膜205G、及び青色フィルタ膜205Bを形成して、CF層208を形成する。
より詳細には、図14(b)に示すように、隔壁204によって区画されたフィルタ膜領域225が形成されたガラス基板201の表面に赤色吐出ヘッド10Rを対向させる。当該赤色吐出ヘッド10Rが有する吐出ノズル42から、赤色フィルタ膜205Rを形成するべきフィルタ膜領域225Rに向けて、赤色機能液252Rを吐出することによって、フィルタ膜領域225Rに赤色機能液252Rを配置する。同時に、ガラス基板201に対して赤色吐出ヘッド10Rを矢印aで示したように相対移動させることによって、ガラス基板201に形成された全てのフィルタ膜領域225Rに赤色機能液252Rを配置する。配置した赤色機能液252Rを乾燥させることによって、図14(c)に示すように、フィルタ膜領域225Rに赤色フィルタ膜205Rを形成する。
同様にして、図14(c)に示すように、緑色フィルタ膜205G又は青色フィルタ膜205Bを形成するべきフィルタ膜領域225G又はフィルタ膜領域225Bに、緑色機能液252G又は青色機能液252Bを配置する。緑色機能液252G及び青色機能液252Bを乾燥させることによって、図14(d)に示すように、フィルタ膜領域225G及びフィルタ膜領域225Bに緑色フィルタ膜205G又は青色フィルタ膜205Bを形成する。赤色フィルタ膜205Rと合せて、赤色フィルタ膜205R、緑色フィルタ膜205G、及び青色フィルタ膜205Bからなる3色カラーフィルタが形成される。
上述したように、赤色フィルタ膜205Rと、緑色フィルタ膜205Gと、青色フィルタ膜205Bと、の配列としては、例えば、ストライプ配列、モザイク配列、デルタ配列などが知られている。
次に、図13のステップS23では、平坦化層を形成する。図14(e)に示すように、CF層208を構成する赤色フィルタ膜205R、緑色フィルタ膜205G、青色フィルタ膜205B、及び隔壁204の上に、平坦化層としての平坦化膜206を形成する。平坦化膜206は、少なくともCF層208の全面を覆う領域に形成する。平坦化膜206を設けることによって、対向電極207を形成する面を略平坦な面にしている。
次に、図13のステップS24では、対向電極207を形成する。図14(f)に示すように、平坦化膜206の上の、少なくともCF層208のフィルタ膜205が形成された領域の全面を覆う領域に、透明な導電材料を用いて、薄膜を形成する。この薄膜が、上述した対向電極207である。
次に、図13のステップS25では、対向電極207の上に、対向基板220の配向膜228を形成する。配向膜228は、少なくともCF層208の全面を覆う領域に形成する。
図15(g)に示すように、対向電極207が形成されたガラス基板201の表面に液滴吐出ヘッド10を対向させて、液滴吐出ヘッド10からガラス基板201の表面に向けて配向膜液242を吐出する。同時に、ガラス基板201に対して液滴吐出ヘッド10を矢印aで示したように相対移動させることによって、ガラス基板201の配向膜228を形成する領域の全面に配向膜液242を配置する。配置された配向膜液242を乾燥させることで、図15(h)に示すように、配向膜228を形成する。ステップS25を実施して、対向基板220が形成される。
配向膜液242は、溶剤に溶解又は分散されたポリイミドを含む液状体である。溶剤としては、N−メチル−2−ピロリドン、γ−ブチルラクトン、ブチルセルソルブ、又はこれらの混合液などを用いる。
図13に示したステップS26からステップS28を実行することで、素子基板210を形成する。
図13のステップS26では、ガラス基板211の上に導電層や絶縁層や半導体層を形成することで、TFT素子215などの素子や、走査線212や、信号線214や、絶縁層216などを形成する。走査線212及び信号線214は、素子基板210と対向基板220とが、貼り合わされた状態で、隔壁204に対向する位置に、即ち画素の周辺の位置に形成する。TFT素子215は、画素の端に位置するように形成し、1画素に1個のTFT素子215を形成する。
次に、ステップS27では、画素電極217を形成する。画素電極217は、素子基板210と対向基板220とが、貼り合わされた状態で、赤色フィルタ膜205R、緑色フィルタ膜205G、又は青色フィルタ膜205Bに対向する位置に、形成する。画素電極217は、TFT素子215のドレイン電極と電気的に接続させる。
次に、ステップS28では、画素電極217などの上に、素子基板210の配向膜218を形成する。配向膜218は、少なくとも全ての画素電極217の全面を覆う領域に形成する。
図15(i)に示すように、画素電極217が形成されたガラス基板211の表面に液滴吐出ヘッド10を対向させて、液滴吐出ヘッド10からガラス基板211の表面に向けて配向膜液242を吐出する。同時に、ガラス基板211に対して液滴吐出ヘッド10を矢印aで示したように相対移動させることによって、ガラス基板211の配向膜218を形成する領域の全面に配向膜液242を配置する。配置された配向膜液242を乾燥させることで、図15(j)に示すように、配向膜218を形成する。ステップS28を実施して、素子基板210が形成される。
ステップS25及びステップS28の次に、ステップS29では、形成された対向基板220と素子基板210とを貼り合わせ、図15(k)に示すように、間に液晶230を充填する。さらに、偏光板231と偏光板232とを貼りつけるなどして、液晶表示パネル200を組立てる。複数のガラス基板201やガラス基板211からなるマザー基板に、複数の対向基板220や素子基板210を形成する場合には、複数の液晶表示パネル200が形成されたマザー基板を個別の液晶表示パネル200に分割する。あるいは、マザー対向基板やマザー素子基板を、対向基板220や素子基板210に分割する工程を実施した後にステップS29を実施する。ステップS29を実施して、液晶表示パネル200を形成する工程を終了する。
以下、実施形態の効果を記載する。本実施形態によれば、以下の効果が得られる。
(1)ノズルデューティーを求めるために、取得した画像データに基づいて描画吐出を実施する際のノズルデューティーを算出する。ノズルデューティーは、各吐出ノズル42に対応するノズルデータから算出する。ノズルデータは、画像データを取得すれば求めることができるため、実際の吐出を実施する前にノズルデューティーを求めることができる。これにより、CPU74が情報を処理する速度が遅くても充分対応できるため、ノズルデューティーを算出するCPU74の負荷を軽くすることができる。
(2)負荷別駆動波形を予め求めて、対応するノズルデューティーと対応させて記憶しており、算出されたノズルデューティーに対応する負荷別駆動波形を選択して読み出すことで適用する負荷別駆動波形を決定する。負荷別駆動波形を予め求めるため、充分な時間及び検証工程を費やして負荷別駆動波形を求めることが可能となり、短時間で負荷別駆動波形を求める場合に比べて、より適切な負荷別駆動波形を求めることができる。また、描画吐出を実施する時点で負荷別駆動波形を形成する場合に比べて、負荷別駆動波形を形成するCPU74の負荷を軽減することができる。
(3)負荷別駆動波形の入力データは、基本波形を構成する直線の部分を、基本波形に対して変更して形成している。基本波形では直線で構成されている部分を、複数の時点における電圧を規定することでより詳細に規定して、直線で規定される波形とは異なる波形を規定している。これにより、駆動波形を構成する直線の一部分の歪を、当該部分的な歪に対応して修正することができる。
以上、添付図面を参照しながら好適な実施形態について説明したが、好適な実施形態は、前記実施形態に限らない。実施形態は、要旨を逸脱しない範囲内において種々変更を加え得ることは勿論であり、以下のように実施することもできる。
(変形例1)前記実施形態においては、液滴吐出ヘッド10は、圧電素子59が振動板52の面に対して略直角方向に伸縮することによって圧力室58の容積を変える構造であったが、液滴吐出ヘッドにおける圧電素子の構成はこのような構成に限らない。例えば、振動板の面に沿って板状の圧電素子を貼り付けて、当該板状の圧電素子を反らせるように変形させることによって圧力室58の容積を変える構造であってもよい。
(変形例2)前記実施形態においては、液滴吐出ヘッド10は、圧電素子59に印加する駆動信号の電圧を昇圧することで圧力室58の容積を増加させることによって給液させ、降圧することで圧力室58の容積を急激に減少させることによって吐出させる構成であった。しかし、駆動素子の構成が昇圧することで給液させ、降圧することでと吐出させる構成であることは必須ではない。駆動素子と圧力室との構成が、圧電素子に印加する駆動信号の電圧を降圧することで圧力室の容積を増加させて給液させ、昇圧することで圧力室の容積を急激に減少させて吐出させる構成であってもよい。この場合、駆動信号の波形は、例えば図6を参照して説明した駆動波形における昇圧及び降圧が、降圧及び昇圧になった駆動波形を用いる。
(変形例3)前記実施形態においては、液滴吐出装置1を使用して機能液を配置することで描画を実施する描画対象物の一例としてカラーフィルタを備える液晶表示パネルについて説明したが、描画対象物は液晶表示パネルに限らない。上述した描画装置及び描画方法は、様々な液状体を用いる様々な加工対象物の加工装置及び加工方法として利用できる。例えば、液状の色要素材料を吐出する、液状カラー液晶装置のカラーフィルタ膜や有機エレクトロルミネセンス装置のカラーフィルタ膜の加工装置及び加工方法、液状の発光層形成材料を吐出する、有機エレクトロルミネセンス装置の発光膜の加工装置及び加工方法、液状の導電材料を吐出する、回路基板の配線導電パターンの加工装置及び加工方法、液状の絶縁材料を吐出する、回路基板の絶縁膜パターンの加工装置及び加工方法、液状の導電材料を吐出する、半導体装置の配線導電膜の加工装置及び加工方法、液状の絶縁材料を吐出する、半導体装置の絶縁層の加工装置及び加工方法などとして、利用することもできる。
液滴吐出装置の概略構成を示す外観斜視図。 液滴吐出ヘッドをノズルプレート側から見た外観斜視図。 (a)は、液滴吐出ヘッドの圧力室周りの構造を示す斜視断面図。(b)は、液滴吐出ヘッドの吐出ノズル部の構造を示す断面図。 液滴吐出装置の電気的構成を示す電気構成ブロック図。 液滴吐出ヘッドの電気的構成と信号の流れを示す説明図。 (a)は、圧電素子に印加する駆動信号の駆動波形の基本波形を示す図。(b)は、駆動波形に対応した圧電素子の動作による液滴吐出ヘッドの吐出動作を示す模式断面図。 (a)は、駆動信号の基本波形の入力データを示す図。(b)は、基本波形を印加したときの圧電素子に印加される駆動波形の実測値を示す図。 (a)は、駆動信号の負荷別駆動波形の入力データを示す図。(b)は、負荷別駆動波形を印加したときの圧電素子に印加される駆動波形の実測値を示す図。(c)は、駆動波形ごとの吐出重量の実測値を示す表。 描画工程を示すフローチャート。 液晶表示パネルの概略構成を示す分解斜視図。 (a)は、対向基板の平面構造を示す模式図。(b)は、マザー対向基板の平面構造を示す模式図。 3色カラーフィルタのフィルタ膜の配列例を示す模式平面図。 液晶表示パネルを形成する過程を示すフローチャート。 液晶表示パネルを形成する過程におけるフィルタ膜を形成する工程などを示す断面図。 液晶表示パネルを形成する過程における配向膜を形成する工程などを示す断面図。
符号の説明
1…液滴吐出装置、2…ヘッド機構部、3…ワーク機構部、6…吐出装置制御部、10…液滴吐出ヘッド、20…ワーク、21…ヘッドユニット、41…ノズルプレート、42…吐出ノズル、52…振動板、58…圧力室、59…圧電素子、66…ホストコンピュータ、68…入出力装置、74…CPU、75…ROM、76…RAM、80…シフトレジスタ、81…ラッチ回路、82…レベルシフタ、83…スイッチ、200…液晶表示パネル、201…ガラス基板、201A…マザー対向基板、205…フィルタ膜、220…対向基板、225…フィルタ膜領域。

Claims (15)

  1. 液状体を吐出する複数の吐出ノズルと、該複数の吐出ノズルのそれぞれの吐出ノズルに対応して設けられており、駆動信号を印加されることによって変形することで前記吐出ノズルから前記液状体を吐出させる複数の駆動素子と、を備える描画装置を用いる描画方法であって、
    前記液状体を吐出することで描画する描画画像の描画パターン情報を取得する描画パターン情報取得工程と、
    前記描画パターン情報から、前記描画画像を描画する際の、前記複数の駆動素子の中で、略同時に駆動される駆動素子の数である負荷数を算出する負荷数算出工程と、
    前記駆動素子に印加する前記駆動信号の波形形状である駆動波形を、算出された前記負荷数に対応する負荷別駆動波形に決定する駆動波形決定工程と、を有することを特徴とする描画方法。
  2. 前記負荷別駆動波形を予め求める負荷別駆動波形取得工程と、
    前記負荷別駆動波形取得工程で取得された前記負荷別駆動波形を、対応する前記負荷数と対応させて記憶する負荷別駆動波形記憶工程と、をさらに有し、
    前記駆動波形決定工程では、前記負荷別駆動波形記憶工程において記憶された前記負荷別駆動波形の中から、前記負荷数算出工程において算出された前記負荷数に対応した前記負荷別駆動波形を読み出して、前記駆動素子に印加する前記駆動波形を、当該負荷別駆動波形に決定することを特徴とする、請求項1に記載の描画方法。
  3. 前記駆動波形の基本波形が台形波を組み合わせた波形であり、該台形波の立上り曲線、立下り曲線、又は上底の曲線の少なくとも一つの形状を前記基本波形から修正することによって、前記負荷別駆動波形を形成することを特徴とする請求項1又は2に記載の描画方法。
  4. 前記駆動波形を、時間軸における規定点の時点に対応する駆動信号の電圧を規定することによって規定し、前記規定点の数を、前記基本波形における勾配の変曲点の数より多くすることを特徴とする、請求項1乃至3のいずれか一項に記載の描画方法。
  5. 前記複数の吐出ノズルは、複数の吐出ヘッドのそれぞれの吐出ヘッドが有する第一の複数の吐出ノズルで構成されており、
    前記負荷数算出工程及び前記駆動波形決定工程において、前記負荷数又は前記駆動波形を、前記吐出ヘッドごとにそれぞれ算出又は規定することを特徴とする、請求項1乃至4のいずれか一項に記載の描画方法。
  6. 液状体を吐出する複数の吐出ノズルと、該複数の吐出ノズルのそれぞれの吐出ノズルに対応して設けられており、駆動信号を印加されることによって変形することで前記吐出ノズルから前記液状体を吐出させる複数の駆動素子と、を備える描画装置であって、
    前記液状体を吐出することで描画する描画画像の描画パターン情報を取得する描画情報取得部と、
    取得された前記描画パターン情報から、前記描画画像を描画する際の、前記複数の駆動素子の中で略同時に駆動される駆動素子の数である負荷数を算出する負荷数算出部と、
    前記駆動素子に印加する前記駆動信号の波形形状である駆動波形を、算出された前記負荷数に対応する負荷別駆動波形に決定する駆動波形決定部と、を備えることを特徴とする描画装置。
  7. 予め求められた前記負荷別駆動波形を取得する負荷別駆動波形取得部と、
    前記負荷別駆動波形取得部によって取得された前記負荷別駆動波形を、対応する前記負荷数と対応させて記憶する負荷別駆動波形記憶部と、をさらに備え、
    前記駆動波形決定部は、前記負荷別駆動波形記憶部に記憶された前記負荷別駆動波形の中から、前記負荷数算出部が算出し前記負荷数に対応した前記負荷別駆動波形を読み出して、前記駆動素子に印加する前記駆動波形を、当該負荷別駆動波形に決定することを特徴とする、請求項6に記載の描画装置。
  8. 前記駆動波形の基本波形が台形波を組み合わせた波形であり、前記負荷別駆動波形は、前記台形波の立上がり曲線、立下り曲線、又は上底の曲線の少なくとも一つの形状を前記基本波形から修正することによって、規定されていることを特徴とする請求項6又は7に記載の描画装置。
  9. 前記駆動波形は、時間軸における規定点の時点に対応する駆動信号の電圧を規定することによって規定されており、前記規定点の数が、前記基本波形における勾配の変曲点の数より多いことを特徴とする、請求項6乃至8のいずれか一項に記載の描画装置。
  10. 前記複数の吐出ノズルは、複数の吐出ヘッドのそれぞれの吐出ヘッドが有する第一の複数の吐出ノズルで構成されており、
    前記負荷算出部、及び前記駆動波形決定部は、前記負荷数、又は前記駆動素子に印加する前記駆動波形を、前記吐出ヘッドごとにそれぞれ算出又は規定することを特徴とする、請求項6乃至9のいずれか一項に記載の描画装置。
  11. 請求項1乃至5のいずれか一項に記載の描画方法、又は請求項6乃至10のいずれか一項に記載の描画装置を用いて電気光学装置を構成する機能膜を形成することを特徴とする電気光学装置の製造方法。
  12. 電気光学装置の機能膜を構成する材料を含む機能液を吐出する複数の吐出ノズルと、該複数の吐出ノズルのそれぞれの吐出ノズルに対応して設けられており、駆動信号を印加されることによって変形することで前記吐出ノズルから前記機能液を吐出させる複数の駆動素子と、を備える電気光学装置の製造装置であって、
    前記機能液を吐出することで描画する描画画像の描画パターン情報を取得する描画情報取得部と、
    取得された前記描画パターン情報から、前記描画画像を描画する際の、前記複数の駆動素子の中で略同時に駆動される駆動素子の数である負荷数を算出する負荷数算出部と、
    前記駆動素子に印加する前記駆動信号の波形形状である駆動波形を、算出された前記負荷数に対応する負荷別駆動波形に決定する駆動波形決定部と、を備えることを特徴とする電気光学装置の製造装置。
  13. 予め求められた前記負荷別駆動波形を取得する負荷別駆動波形取得部と、
    前記負荷別駆動波形取得部によって取得された前記負荷別駆動波形を、対応する前記負荷数と対応させて記憶する負荷別駆動波形記憶部と、をさらに備え、
    前記駆動波形決定部は、前記負荷別駆動波形記憶部に記憶された前記負荷別駆動波形の中から、前記負荷数算出部が算出し前記負荷数に対応した前記負荷別駆動波形を読み出して、前記駆動素子に印加する前記駆動波形を、当該負荷別駆動波形に決定することを特徴とする、請求項12に記載の電気光学装置の製造装置。
  14. 前記駆動波形の基本波形が台形波を組み合わせた波形であり、前記負荷別駆動波形は、前記台形波の立上がり曲線、立下り曲線、又は上底の曲線の少なくとも一つの形状を前記基本波形から修正することによって、規定されていることを特徴とする請求項12又は13に記載の電気光学装置の製造装置。
  15. 前記駆動波形は、時間軸における規定点の時点に対応する駆動信号の電圧を規定することによって規定されており、前記規定点の数が、前記基本波形における勾配の変曲点の数より多いことを特徴とする、請求項12乃至14のいずれか一項に記載の電気光学装置の製造装置。
JP2008001892A 2008-01-09 2008-01-09 描画方法、及び描画装置、並びに電気光学装置の製造方法、及び電気光学装置の製造装置 Withdrawn JP2009160541A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008001892A JP2009160541A (ja) 2008-01-09 2008-01-09 描画方法、及び描画装置、並びに電気光学装置の製造方法、及び電気光学装置の製造装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008001892A JP2009160541A (ja) 2008-01-09 2008-01-09 描画方法、及び描画装置、並びに電気光学装置の製造方法、及び電気光学装置の製造装置

Publications (1)

Publication Number Publication Date
JP2009160541A true JP2009160541A (ja) 2009-07-23

Family

ID=40963765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008001892A Withdrawn JP2009160541A (ja) 2008-01-09 2008-01-09 描画方法、及び描画装置、並びに電気光学装置の製造方法、及び電気光学装置の製造装置

Country Status (1)

Country Link
JP (1) JP2009160541A (ja)

Similar Documents

Publication Publication Date Title
KR100807232B1 (ko) 토출량 측정 방법, 패턴 형성 방법, 디바이스, 전기 광학장치, 및 전자 기기
JP4962413B2 (ja) 液状体吐出装置、及び液状体吐出方法
JP2010101933A (ja) 電気光学装置の製造方法、及び電気光学装置の製造装置
JP5115400B2 (ja) 液状体吐出方法、及び液状体吐出装置
KR101021550B1 (ko) 머더 기재, 막 형성 영역의 배설 방법, 및 컬러 필터의 제조 방법
KR20080068567A (ko) 패턴 형성 방법
KR100912642B1 (ko) 액적 토출 장치, 액상체의 토출 방법, 컬러 필터의 제조 방법
JP2008126175A (ja) 液状体配置方法、デバイスの製造方法、液状体吐出装置
JP2007130536A (ja) 液滴吐出量測定方法、液滴吐出量測定用治具、液滴吐出量調整方法、液滴吐出量測定装置、描画装置、デバイス及び電気光学装置並びに電子機器
JP2009160541A (ja) 描画方法、及び描画装置、並びに電気光学装置の製造方法、及び電気光学装置の製造装置
JP2005221848A (ja) 膜形成方法、電気光学装置および電子機器
JP5266908B2 (ja) 液状体吐出方法、及び液状体吐出装置
JP2006320808A (ja) 液滴吐出装置、液晶表示装置の製造方法及び液晶表示装置
JP2009172524A (ja) 液滴吐出装置、及び液状体の配置方法、並びにカラーフィルタの製造装置、カラーフィルタの製造方法、電気光学装置の製造装置、及び電気光学装置の製造方法
JP2010054774A (ja) 液状体吐出方法、及び液状体吐出装置
KR20080061776A (ko) 잉크젯 헤드에서 분사된 잉크의 드롭량을 균일하게 하는방법, 표시 기판의 패턴 형성 방법 및 장치
JP2009233573A (ja) ヘッドユニット、吐出装置、及び吐出方法
JP2008149258A (ja) 液滴吐出方法、重量測定方法、液滴吐出装置
JP2009288278A (ja) 液状体吐出装置、液状体吐出方法、電気光学装置の製造装置、電気光学装置の製造方法、電子機器の製造装置、及び電子機器の製造方法
JP2010279874A (ja) 液状体吐出ヘッド、液状体吐出装置、液状体吐出方法、電気光学装置の製造方法、及び電子機器
JP4998236B2 (ja) 基材の被吐出領域配置方法、及びマザーパネルのパネル領域配置方法
JP2009101265A (ja) 液滴量測定方法、液滴吐出量測定方法、液滴量測定用治具、液滴吐出量測定用治具、液滴吐出量調整方法、液滴吐出量測定装置、描画装置、デバイス及び電気光学装置並びに電子機器
JP2008093570A (ja) 重量測定方法、液状体の吐出方法
JP5532579B2 (ja) 電気光学装置、カラーフィルタ及び液晶装置
JP2010145452A (ja) 液状体吐出装置、液状体吐出方法、基板の製造方法、及び電気光学装置の製造方法

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110405