JP2009150675A - モータ特性取得装置、モータ特性を用いる制御装置、およびパワーウィンド制御装置 - Google Patents

モータ特性取得装置、モータ特性を用いる制御装置、およびパワーウィンド制御装置 Download PDF

Info

Publication number
JP2009150675A
JP2009150675A JP2007326814A JP2007326814A JP2009150675A JP 2009150675 A JP2009150675 A JP 2009150675A JP 2007326814 A JP2007326814 A JP 2007326814A JP 2007326814 A JP2007326814 A JP 2007326814A JP 2009150675 A JP2009150675 A JP 2009150675A
Authority
JP
Japan
Prior art keywords
motor
rotation
period
edge
calculated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007326814A
Other languages
English (en)
Other versions
JP4964112B2 (ja
Inventor
Toru Tategami
徹 舘上
Toshihei Fujii
俊兵 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mabuchi Motor Co Ltd
Original Assignee
Mabuchi Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mabuchi Motor Co Ltd filed Critical Mabuchi Motor Co Ltd
Priority to JP2007326814A priority Critical patent/JP4964112B2/ja
Priority to US12/338,562 priority patent/US8188699B2/en
Publication of JP2009150675A publication Critical patent/JP2009150675A/ja
Application granted granted Critical
Publication of JP4964112B2 publication Critical patent/JP4964112B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05FDEVICES FOR MOVING WINGS INTO OPEN OR CLOSED POSITION; CHECKS FOR WINGS; WING FITTINGS NOT OTHERWISE PROVIDED FOR, CONCERNED WITH THE FUNCTIONING OF THE WING
    • E05F15/00Power-operated mechanisms for wings
    • E05F15/40Safety devices, e.g. detection of obstructions or end positions
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05FDEVICES FOR MOVING WINGS INTO OPEN OR CLOSED POSITION; CHECKS FOR WINGS; WING FITTINGS NOT OTHERWISE PROVIDED FOR, CONCERNED WITH THE FUNCTIONING OF THE WING
    • E05F15/00Power-operated mechanisms for wings
    • E05F15/40Safety devices, e.g. detection of obstructions or end positions
    • E05F15/41Detection by monitoring transmitted force or torque; Safety couplings with activation dependent upon torque or force, e.g. slip couplings
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES E05D AND E05F, RELATING TO CONSTRUCTION ELEMENTS, ELECTRIC CONTROL, POWER SUPPLY, POWER SIGNAL OR TRANSMISSION, USER INTERFACES, MOUNTING OR COUPLING, DETAILS, ACCESSORIES, AUXILIARY OPERATIONS NOT OTHERWISE PROVIDED FOR, APPLICATION THEREOF
    • E05Y2400/00Electronic control; Electrical power; Power supply; Power or signal transmission; User interfaces
    • E05Y2400/10Electronic control
    • E05Y2400/32Position control, detection or monitoring
    • E05Y2400/334Position control, detection or monitoring by using pulse generators
    • E05Y2400/336Position control, detection or monitoring by using pulse generators of the angular type
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES E05D AND E05F, RELATING TO CONSTRUCTION ELEMENTS, ELECTRIC CONTROL, POWER SUPPLY, POWER SIGNAL OR TRANSMISSION, USER INTERFACES, MOUNTING OR COUPLING, DETAILS, ACCESSORIES, AUXILIARY OPERATIONS NOT OTHERWISE PROVIDED FOR, APPLICATION THEREOF
    • E05Y2400/00Electronic control; Electrical power; Power supply; Power or signal transmission; User interfaces
    • E05Y2400/10Electronic control
    • E05Y2400/52Safety arrangements associated with the wing motor
    • E05Y2400/53Wing impact prevention or reduction
    • E05Y2400/54Obstruction or resistance detection
    • E05Y2400/55Obstruction or resistance detection by using load sensors
    • E05Y2400/554Obstruction or resistance detection by using load sensors sensing motor load
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES E05D AND E05F, RELATING TO CONSTRUCTION ELEMENTS, ELECTRIC CONTROL, POWER SUPPLY, POWER SIGNAL OR TRANSMISSION, USER INTERFACES, MOUNTING OR COUPLING, DETAILS, ACCESSORIES, AUXILIARY OPERATIONS NOT OTHERWISE PROVIDED FOR, APPLICATION THEREOF
    • E05Y2900/00Application of doors, windows, wings or fittings thereof
    • E05Y2900/50Application of doors, windows, wings or fittings thereof for vehicles
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES E05D AND E05F, RELATING TO CONSTRUCTION ELEMENTS, ELECTRIC CONTROL, POWER SUPPLY, POWER SIGNAL OR TRANSMISSION, USER INTERFACES, MOUNTING OR COUPLING, DETAILS, ACCESSORIES, AUXILIARY OPERATIONS NOT OTHERWISE PROVIDED FOR, APPLICATION THEREOF
    • E05Y2900/00Application of doors, windows, wings or fittings thereof
    • E05Y2900/50Application of doors, windows, wings or fittings thereof for vehicles
    • E05Y2900/53Type of wing
    • E05Y2900/55Windows

Landscapes

  • Power-Operated Mechanisms For Wings (AREA)
  • Control Of Ac Motors In General (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

【課題】マグネットの着磁誤差、回転検出センサの取り付け誤差を取り除きながらも、モータの回転周期の変化に鋭敏に反応できる装置を提供する。
【解決手段】モータの回転周期がエッジ間隔時間により細分化され、各エッジ検出時に、そのとき算出されたエッジ間隔時間とその1周期前に算出された対応するエッジ間隔時間との変化率が算出される。そして、設定された基準周期にその変化率を乗算することにより、モータの回転周期を算出する。
【選択図】図3

Description

本発明は、駆動源となるモータの回転特性を取得する装置、およびそのモータ特性を用いて制御を行う制御装置に関する。
車両のなかには、パワーウィンドを作動させてドアガラスを閉じる際に異物を挟み込んだ場合、その挟み込みの発生を迅速に検知してドアガラスを開方向に反転動作させるものがある。挟み込み対象物に高い負荷をかけることを防止するものである。このドアガラスは、専用のモータの正転または逆転によって昇降駆動されるため、そのモータの回転数よってその動作速度が変化する。上述のようにドアガラスの上昇時に異物が挟み込まれた場合、異物に加わる負荷の反力によりドアガラスの動作速度が低下する。このため、モータの回転数が基準値よりも低下したことによりその挟み込みの発生を検出できる。
このモータの回転数は、モータの回転軸に設けられた回転検出センサにより検出される。この回転検出センサは、その回転軸上にN極およびS極が対向配置されたマグネットと、その周囲に配置されたホール素子とを含んで構成される。モータの回転軸とともにマグネットが回転することにより、ホール素子から磁束密度に比例したパルス状の検出信号(ホール電圧)が出力される。この検出信号のパルス幅からモータの回転周期を算出することにより、その回転数を取得することができる。その場合、例えば1つのマグネットに対して2つのホール素子を互いに位相をずらして配置し、両ホール素子から出力される検出信号のオン・オフ状態を比較すれば、モータの回転方向を検出することもできる。
ところが、このような回転検出センサにおいてマグネットのN極およびS極の着磁にばらつきがあると、その検出信号のパルス幅に誤差が生じ、正確な回転数が得られ難くなることがある。ホール素子を複数設けた場合には、さらにホール素子の取り付け誤差が発生することもある。
このような問題に対し、ホール素子から出力される検出信号に対してしきい値を設定し、得られた矩形パルス信号の対応するエッジ間の経過時間からモータの回転数を算出する方法が提案されている(例えば特許文献1参照)。
このようにしきい値の設定によるエッジの検出位置を基準にすることにより、常にマグネットの同一点を基準とした回転周期が算出され、着磁の誤差やホール素子の取り付け誤差による影響を実質的になくすことができる。さらに、複数のホール素子を設置したことにより、各パルス信号の上昇エッジおよび下降エッジの検出ごとに回転周期が算出されるため、例えば1/4周期ごとに回転周期を取得できるなど、回転数の算出タイミングを細かくしてその測定精度を向上させることができる。
特開平11−107624号公報
しかしながら、特許文献1に記載の方法においては、個々のホール素子のパルス信号について上昇エッジから次の上昇エッジまでの経過時間、下降エッジから次の下降エッジまでの経過時間が回転周期として算出される。つまり、演算対象となるエッジ間隔がそれぞれ1周期分あるため、モータが1回転する間にその回転周期に急な変化があった場合、これに鋭敏に反応できないといった問題がある。すなわち、演算周期の分解能を高めたにもかかわらず、各パルス信号の演算区間には時間的に重複する部分がある。このため、各回転周期の期間において局所的にその周期(つまり、モータの回転速度)が変化しても、その変化が演算上鈍ってしまうという問題がある。
このような回転検出センサをパワーウィンドに適用する場合、特に挟み込み対象物が硬い物質からなる場合には、モータの回転速度は急激に変化する。このため、そのような硬い対象物についても挟み込みによる高い負荷をかけないようにするためには、時々刻々変化するモータの回転周期を正確かつ鋭敏に取得する必要がある。なお、このような問題は、パワーウィンドのみならず、例えばスライティングルーフ、あるいは自動ドアやシャッタなど、モータに駆動され、そのモータの回転数を回転検出センサにより検出しつつ駆動制御が行われる装置であれば同様に発生する可能性がある。
本発明はこのような問題に鑑みてなされたものであり、マグネットの着磁誤差、回転検出センサの取り付け誤差を取り除きながらも、モータの回転周期の変化に鋭敏に反応できる装置を提供することを目的とする。
上記課題を解決するために、本発明のある態様は、モータ特性を取得するモータ特性取得装置において、モータの回転軸に固定されたマグネットと、回転軸の周囲に設けられ、モータの回転に伴ってマグネットが近傍を通過するときに信号を出力する少なくとも1つの磁気検出器と、磁気検出器から出力される信号のエッジを検出し、磁気検出器から順次出力される時間的に最も近接したエッジの間隔であるエッジ間隔時間を逐次算出して保持し、モータの複数の回転周期において対応するエッジ間隔時間を比較してその変化率を算出する演算部と、を備える。
ここで、「磁気検出器」は、モータの回転軸の周囲に1つ設けられていてもよいし、複数設けられていてもよい。後者の場合、複数の磁気検出器は、回転軸の周方向に対して所定の間隔で設けられる。各磁気検出器は、マグネットが近傍を通過するときにそれぞれ信号を出力する。演算部は、算出された変化率を所定の基準周期に乗算することにより、モータの回転周期を算出してもよいし、さらにその回転周期からモータの回転速度を算出してもよい。また、モータ特性を1つのパラメータとして制御対象を制御する制御装置に当該モータ特性取得装置が含まれる場合、演算部は、回転周期まで算出することなく、その制御装置の制御部にその変化率の情報を出力してもよい。つまり、制御部が基準周期を保持し、演算部から取得した変化率をその基準周期に乗算することによりモータの回転周期を算出してもよい。制御部は、さらにその回転周期からモータの回転速度を算出して制御に用いてもよい。
この態様によると、モータの回転周期がエッジ間隔時間により細分化され、各エッジ検出時に、そのとき算出されたエッジ間隔時間とそのモータの1回転以上前に算出された対応するエッジ間隔時間との変化率が算出される。この変化率はモータの回転位相が同じである同位相区間の経過時間の比率を表すため、その位相区間におけるモータの回転周期の変化率を反映する。したがって、この変化率を変化前の基準周期に乗算することにより、マグネットの着磁誤差や磁気検出器の取り付け誤差にかかわらず、モータの回転周期を正確に算出することができる。また、各位相区間ごとの変化率から回転周期を算出するため、他の位相区間を演算に含める場合のような演算上の鈍りが生じることもなく、モータの回転周期の変化に鋭敏に反応した演算結果が得られるようになる。
本発明によれば、マグネットの着磁誤差、回転検出センサの取り付け誤差を取り除きながらも、モータの回転周期の変化に鋭敏に反応する装置を提供できる。
本発明の一実施形態は、モータ特性を取得するモータ特性取得装置として構成される。このモータ特性取得装置は、モータの回転軸に固定されたマグネットと、回転軸の周囲に設けられ、モータの回転に伴ってマグネットが近傍を通過するときに信号を出力する少なくとも1つの磁気検出器と、磁気検出器から出力される信号のエッジを検出し、磁気検出器から順次出力される時間的に最も近接したエッジの間隔であるエッジ間隔時間を逐次算出して保持し、モータの複数の回転周期において対応するエッジ間隔時間を比較してその変化率を算出する演算部と、を備える。磁気検出器は、回転軸の周方向に対して所定の間隔で複数配置されてもよい。このように構成すれば、各磁気検出器から出力される複数の信号の状態を比較することにより、モータの回転方向を検出することもできる。
演算部は、逐次算出されるエッジ間隔時間と、そのモータの1回転前に算出された同位相区間のエッジ間隔時間との変化率を基準周期に乗算することにより、モータの回転周期を算出してもよい。このようにすれば、各位相区間において1周期ごとの回転周期の変化に鋭敏に反応した演算結果を得ることができる。
あるいは、演算部が、各位相区間ごとにエッジ間隔時間を逐次記憶し、各エッジ検出時に、所定期間における同位相区間のエッジ間隔時間の平均値である平均エッジ間隔時間を算出するようにしてもよい。そして、そのエッジ検出時に算出されたエッジ間隔時間と平均エッジ間隔時間との変化率を算出し、その変化率を基準周期に乗算することにより、モータの回転周期を算出してもよい。このような平均エッジ間隔時間は、各位相区間ごとの回転周期の平均値を反映するものでもあるため、各位相区間の平均エッジ間隔時間を1周期分合計すれば、モータの平均的な仮の回転周期を求めることができる。この仮の回転周期は、モータの通常時の動作特性を反映するものといえる。そこで、この仮の回転周期を仮の基準周期とし、上記変化率を乗算して回転周期を算出するようにしてもよい。
また、モータの回転開始直後は回転トルクが比較的大きくなるため、安定した回転特性が得られるまでに所定回転数を要することがある。また、モータが少なくとも1回転しなければ、本来回転周期を算出することはできない。このような期間においてもモータの回転数を検出する必要がある場合には、その回転開始直後の回転周期も何らかの方法で取得する必要がある。そこで、演算部が、モータの回転開始後の所定期間、エッジの検出ごとに、モータの回転が開始されてから取得した各エッジ間隔時間を積算した経過時間と、その経過時間に検出されたエッジ数とに基づいて仮の回転周期を算出するようにしてもよい。この仮の回転周期はエッジの検出ごとに算出されるため、各位相区間ごとにこれを保持してもよい。そして、その所定期間において最後に検出された各位相区間に対応する仮の回転周期を、所定期間経過後の各位相区間に対応する初回のエッジ検出時に仮の基準周期として回転周期を算出するようにしてもよい。その所定期間以降の各エッジ検出時には、前回算出された同位相区間についての回転周期を基準周期として用いてモータの回転周期を算出してもよい。
あるいは、演算部は、モータの回転開始後の所定期間は基準周期の算出のためのデータ取得期間として回転周期の算出は行わず、その所定期間の経過時間とその経過時間に検出されたエッジ数とに基づいて仮の基準周期を算出するようにしてもよい。そして、所定期間経過後の初回の各エッジ検出時にその仮の基準周期を用いてモータの回転周期を算出し、それ以降の各エッジ検出時には、前回算出された同位相区間についての回転周期を基準周期として用いてモータの回転周期を算出してもよい。
なお、以上の態様では、各位相区間において算出された回転周期が次回の同位相区間における回転周期の演算に基準周期として用いられるが、その回転周期はモータの回転に応じて時々刻々変化していく。そこで、演算部は、モータの回転停止により回転周期の取得情報をリセットし、モータの回転開始ごとに回転周期の演算を実行してもよい。
また、このように前回の回転周期を基準周期として用いるような相対比較による演算を行う場合、その演算の過程で算出された回転周期と実際の回転周期との間に誤差が生じると、その誤差が累積していく可能性がある。そこで、逐次算出される基準周期に絶対値による規制を行うようにしてもよい。すなわち、演算部は、回転周期について予め設定された算出許容範囲を参照し、算出された回転周期が算出許容範囲を外れたときには、その回転周期を次回の基準周期としては用いずに仮の基準周期を再度演算し、その仮の基準周期を用いてモータの回転周期を算出するようにしてもよい。この「算出許容範囲」については、例えばモータの設計仕様から想定しうる回転周期の範囲を設定してもよいし、予めモータの特性試験を行うなどして、正常時であれば可能性のある回転周期の範囲を設定してもよい。あるいは、このように回転周期が算出許容範囲を外れたとき、あるいは算出許容範囲とは無関係に、所定期間ごとに基準周期をリセットして算出しなおす処理を行うようにしてもよい。
以上に述べたモータ特性取得装置は、モータの回転速度などのモータ特性を1つのパラメータとして制御対象を制御する制御装置に、モータ特性取得部として組み込むことができる。例えば、パワーウィンド、スライティングルーフ、あるいは自動ドアやシャッタなど、モータに駆動され、そのモータの回転数を回転検出センサにより検出しつつ駆動制御が行われる装置に組み込んでもよい。制御装置は、モータ特性取得部が取得したモータの回転周期からその回転速度を算出し、その回転速度に応じて予め設定した制御モードへ移行して、モータの回転制御を実行するものでもよい。
以下、図面を参照しつつ本発明を具体化した実施例について詳細に説明する。以下の実施例は、本発明のモータ特性取得装置をパワーウィンド制御装置に組み込んで具現化したものである。
[第1実施例]
図1は、第1実施例に係るパワーウィンド制御装置の概略構成を表す図である。図2は、パワーウィンドを駆動させるモータの回転検出部の概略構成を表す図である。説明の便宜上、同図には運転席に設けられたパワーウィンド制御装置が示されている。
図1に示すように、本実施例のパワーウインド制御装置は、車両のドアガラス2を昇降させるレギュレータ4を駆動制御するものであり、そのレギュレータ4を駆動するモータアクチュエータ6と、モータアクチュエータ6を駆動する制御ユニット8を備える。
モータアクチュエータ6は、レギュレータ4を駆動するモータ10、そのモータ10を駆動するモータ駆動回路12、モータ10の回転状態を検出する回転検出センサ14を含む。モータ10は、その回転軸が減速ギヤを介してレギュレータ4の図示しないアームに接続されており、正転によりアームを伸長させてドアガラス2を閉じる方向に上昇させ、逆転によりアームを縮小させてドアガラス2を開く方向に下降させる。
モータ駆動回路12は、制御ユニット8からの指令信号に基づいてオン・オフ動作を行う複数のリレー回路を含む。各リレー回路はトランジスタを備えており、このトランジスタへの通電状態を切り替えることで各リレーの接続切替えが行われる。それにより、モータ10に正転方向または逆転方向の電圧が印加されるように構成されている。
回転検出センサ14は、モータ10の回転に応じたパルス信号を制御ユニット8に向けて出力する。すなわち、図2に示すように、モータ10の回転軸20には、N極およびS極が対向配置された2極のマグネット22が固定されている。本実施例では、N極とS極とが回転軸20に対して対称に設けられており、回転位相の約180度ごとにその境界が現れるように構成されている。回転検出センサ14は、そのマグネット22の周囲に配置された磁気検出器としての2つのホール素子24,26を含んで構成される。ホール素子24とホール素子26とは、回転軸20を中心に互いに90度ずれた位置にそれぞれ配置されている。各ホール素子は、モータ10の回転軸20とともにマグネット22が回転することにより、そのマグネット22から受ける磁束密度に比例したパルス状の検出信号(ホール電圧)を出力する。
図1に戻り、制御ユニット8は、マイクロコンピュータ(以下「マイコン」と表記する)30を中心に構成されており、電源回路32、スイッチ入力回路34、通信回路36を含んで構成される。電源回路32は、図示しないバッテリの電源電圧をマイコン30や回転検出センサ14の各ホール素子等の各部に供給する。また、イグニッションスイッチ(以下「IGスイッチ」と表記する)40からの入力信号が、電源回路32を介してマイコン30に入力される。
マイコン30は、各種演算処理を実行するCPU、各種制御プログラムを格納するROM、データ格納やプログラム実行のためのワークエリアとして利用されるRAM、入出力インターフェース、計時用のタイマ等を備える。
スイッチ入力回路34は、運転者によるパワーウィンドスイッチ(「PWスイッチ」と表記する)42の操作に応じた入力信号をマイコン30に入力する。スイッチ入力回路34はマニュアルスイッチおよびオートスイッチを含み、マニュアルスイッチは開スイッチおよび閉スイッチからなる。開スイッチは、運転者がPWスイッチ42を1段階押し下げたときにオンされ、その押し下げ操作の期間中のみドアガラス2を開方向に動作させるための信号を出力する。閉スイッチは、運転者がPWスイッチ42を1段階引き上げたときにオンされ、その引き上げ操作の期間中のみドアガラス2を閉方向に動作させるための信号を出力する。一方、オートスイッチは、PWスイッチ42が2段階操作されることによりオンし、運転者の操作解除後もドアガラス2の開方向または閉方向の動作を継続させるための信号を出力する。
通信回路36は、車両に搭載された図示しない電子制御装置(「ECU」という)との双方向通信を行うための回路であり、図示しない通信ラインを介してECUに接続されている。ECUは、運転席に設けられた制御ユニット8、助手席に設けられた制御ユニット、および左右後席にそれぞれ設けられた制御ユニットに接続されており、これらを統括的に管理する。運転席には、助手席および後席のドアガラスを駆動制御するためのPWスイッチも設けられており、運転者がこれらを操作することにより、その操作指令信号がECUを介して各席の制御ユニットに伝送される。
マイコン30は、各種センサ・スイッチや通信回路36からの入力信号に基づいて所定の演算処理を行い、モータ駆動回路12に向けて制御信号を出力する。また、必要に応じてECUとの通信を行う。
次に、本実施例に係るモータ10の回転速度の検出方法について説明する。図3および図4は、モータの回転周期の算出方法を表す説明図である。図3において、上段にはホール素子24から回転検出センサ14を介して出力されるパルス信号Aが示され、下段にはホール素子26から回転検出センサ14を介して出力されるパルス信号Bが示されている。同図の横軸は時間の経過を表している。図4には、その回転周期の演算過程で検出されるパルス信号のエッジと、演算に用いるパラメータとの関係が示されている。同図の横軸はエッジの検出数を表し、縦軸は回転周期とエッジ間隔時間とを表している。
上述のように、ホール素子24、26は、マグネット22から受ける磁束密度に比例したパルス状の検出信号を出力する。回転検出センサ14は、各ホール素子の出力信号(ホール電圧)に対して図示しないしきい値THS,THNを設定しており、磁束密度がそのしきい値を超えて変化したときに、検出信号の出力レベルがHレベルとLレベルの間で切り替わる。しきい値THSは、マグネット22がN極とS極との境界線からS極側に回転するときに出力レベルを切り替える基準とされる検出信号の値である。一方、しきい値THNは、マグネット22がN極とS極との境界線からN極側に回転するときに出力レベルを切り替える基準とされる検出信号の値である。本実施例では、しきい値THS,THNがともにゼロに設定されており、検出される磁束の向きにより出力レベルが切り替わり、図3に示すような矩形のパルス信号A,Bとなってマイコン30へ入力される。
すなわち、各ホール素子がマグネット22のS極に対向した状態からN極に対向する状態に切り替わって磁束の向きが正の方向に変化したとき、各パルス信号はLレベルからHレベルに切り替わる。逆に、各ホール素子がマグネット22のN極に対向した状態からS極に対向する状態に切り替わって磁束の向きが負の方向に変化したとき、各パルス信号はHレベルからLレベルに切り替わる。言い換えれば、マグネット22のN極とS極との境界線が通過するごとに出力レベルが切り替わり、マイコン30において各パルス信号の上昇エッジまたは下降エッジが検出される。
図示の例では、時刻t1においてホール素子24によるパルス信号Aの下降エッジが検出され、時刻t2においてホール素子26によるパルス信号Bの下降エッジが検出されている。そして、時刻t3においてパルス信号Aの上昇エッジが検出され、時刻t4においてパルス信号Bの上昇エッジが検出されている。
本実施例では、まず、この2つのパルス信号の上昇エッジおよび下降エッジのうち、いずれのパルス信号であるかにかかわらず時間的に順次検出されるエッジ間のエッジ間隔時間a1,b1,c1,d1,a2,・・・を逐次算出する。すなわち、マイコン30は、最初のエッジが検出されてからタイマを駆動して各エッジをトリガとしてその時間間隔を算出する。このタイマは例えばフリーランニングカウンタを用いて構成することができ、そのカウント値の差分からエッジ間隔時間を算出することができる。なお、このようなカウント処理自体は、例えば特許文献1にも示されるように公知の技術であるため、その詳細な説明については省略する。各エッジ間隔時間は、モータ10の回転周期のほぼ1/4周期に対応するが、その1周期の期間においても回転周期が変化しうるため、同じ値をとるとは限らない。実際には、マグネット22のN極およびS極の着磁誤差や各ホール素子の取り付け誤差があるため、異なる値をとるといえる。図示の例では、エッジ間隔時間a1よりもエッジ間隔時間c1のほうが短くなっている。
そして、前後の周期における同位相区間のエッジ間隔時間の変化率αを、予め算出された基準周期に乗算することにより、時々刻々変化するリアルタイムのモータ10の回転周期を算出する。例えば時刻t6においてパルス信号Bの下降エッジが検出されたときに、その下降エッジと、これと時間的に隣接するパルス信号Aの下降エッジとのエッジ間隔時間a2を算出する。続いて、このエッジ間隔時間a2と、1周期前の同位相区間のエッジ間隔時間a1との変化率αa(=a2/a1)を算出する。そして、図4にも示すように、その1周期前の同位相区間のエッジ検出時に算出された基準周期Ta1に対してこの変化率αaを乗算することにより、今回のエッジ検出時の回転周期Ta2を算出する。この回転周期Ta2は、次回の同位相区間のエッジ検出時に基準周期として用いられる。なお、ここでいう「位相区間」とは、エッジにより区切られる回転位相の各区間を意味する。エッジは、各ホール素子からみて回転軸20の回転位相が同じ位置にて検出されるため、各エッジ間の位相区間はモータ10の回転速度によらず一定である。「同位相区間」とは、その位相区間が同じである区間を意味する。図示の例では、エッジ間隔時間a1の位相区間とエッジ間隔時間a2の位相区間、エッジ間隔時間b1の位相区間とエッジ間隔時間b2の位相区間、エッジ間隔時間c1の位相区間とエッジ間隔時間c2の位相区間、エッジ間隔時間d1の位相区間とエッジ間隔時間d2の位相区間が、それぞれ同位相区間ということになる。
同様に、時刻t7のエッジ検出時にエッジ間隔時間b2が算出されたときには、1周期前の同位相区間のエッジ間隔時間b1との変化率αb(=b2/b1)を算出する。そして、その1周期前の同位相区間のエッジ検出時に算出された基準周期Tb1に対してこの変化率αbを乗算することにより、今回のエッジ検出時の回転周期Tb2を算出する。このように、基準周期には、前回の同位相区間に対応するエッジ検出時に算出された回転周期が用いられ、今回のリアルタイムの回転周期が算出される。ただし、その前回の回転周期が確定するまでの所定期間においては、その所定期間のエッジ間隔時間の積算値に基づいて平均的な回転周期を算出する。その詳細については後述する。
このような回転周期の算出方法は、約1/4周期ごとの周期の変化を算出するため、従来技術のように1周期分の回転時間を算出する場合に比べて演算上の分解能が高くなる。また、1周期を細分化した同じ位相区間のエッジ間隔時間の変化率を算出し、回転周期についても同じ変化率で変化すると仮定して算出することで、その細分化された位相区間における変化に鋭敏に対応することができる。
図5は、比較例としてモータの回転周期を1周期を単位に算出する方法を表す説明図であり、図3に対応する。
図示の比較例のように1周期を単位に回転周期を算出する場合、時刻t6において算出される回転周期はTa2=b1+c1+d1+a2となる。すなわち、理想的には時刻t6の直近のエッジ間隔時間a2に対応するリアルタイムの回転周期を算出したいところ、そのエッジ間隔時間a2とは位相区間が異なるエッジ間隔時間b1,c1,d1によってその値が鈍ることになる。これに対し、エッジ間隔時間a2の位相区間が概ね1/4周期であることから、エッジ間隔時間a2を単純に4倍して回転周期とする方法も考えられるが、マグネット22の着磁誤差や各ホール素子の取り付け誤差があるため、正確な値は期待できない。そこで、本実施例では、同じ位相区間のエッジ間隔時間a2,a1の変化率αa(=a2/a1)を用いる。同じ位相区間での比較はその着磁誤差や取り付け誤差の影響が及ばないため、仮にモータ10の回転速度が急変しても、その変化率で換算することで正確かつ鋭敏な回転周期を得ることができる。
次に、モータ10の回転周期の算出処理の具体例について説明する。図6は、回転周期算出処理の流れを表すフローチャートである。以下の処理は、IGスイッチ40がオンにされた後、マイコン30が所定の割り込みタイミングにて実行するものである。
マイコン30は、運転者によってPWスイッチ42が操作され、スイッチ入力回路34からドアガラス2の駆動要求を表す信号が入力されると、それにしたがった通常のパワーウィンド制御を実行する。すなわち、マニュアルスイッチの開スイッチがオンにされると、ドアガラス2を開方向に駆動するための制御信号をモータ駆動回路12に向けて出力する。これにより、モータ10が正転してドアガラス2を開方向に動作させる。閉スイッチがオンにされると、ドアガラス2を閉方向に駆動するための制御信号をモータ駆動回路12に向けて出力する。これにより、モータ10が逆転してドアガラス2を閉方向に動作させる。オートスイッチがオンにされると、運転者によるPWスイッチ42の操作解除後もドアガラス2の開閉動作を継続させるための制御信号をモータ駆動回路12に向けて出力する。これにより、モータ10がそのドアガラス2の開閉動作を継続する。また、ドアガラス2の閉動作時に、全閉状態に到る前にその動作速度が基準速度よりも低下した場合には、異物が挟み込まれた可能性があるため、緊急避難的にモータ10の回転を反転させてドアガラス2を開方向に制御する。このとき、ドアガラス2を全開状態まで開くことなく、所定位置まで開くように制御してもよい。なお、この通常のパワーウィンド制御については一般的な手法が用いられるため、その詳細な説明については省略する。
本実施例では、このような異物の挟み込み等の判定に際してモータ10の回転速度の低下を鋭敏に検出するために、このパワーウィンド制御に並行して以下の回転周期算出処理が行われる。
すなわち、回転検出センサ14にてパルス信号が出力されると、マイコン30は、図6に示すエッジ割り込みルーチンを実行する。このとき、マイコン30は、タイマの値を参照して前エッジ検出時からの経過時間であるエッジ間隔時間Tを算出するとともに(S14)、エッジ検出数Nを1インクリメントする(S16)。すなわち、マイコン30は、モータ10の起動時からパルス信号A,Bの上昇エッジおよび下降エッジが順次入力されるごとに、その起動時からのエッジの検出数と前後に検出されたエッジのエッジ間隔時間とを算出し、RAMの所定の記憶領域に記憶していく。なお、最初のエッジの検出時にはエッジ間隔時間は算出されないので、S14の算出はされないことになる。
続いて、マイコン30は、現在のエッジ検出数Nが予め設定した基準検出数Nset以上であれば(S18のY)、後述する周期演算・記憶処理を実行する(S20)。この基準検出数Nsetについては、後述する回転周期の算出基準となる基準周期が安定して得られるエッジの検出数が予め設定される。図3にも示したように、ここではパルス信号Aの下降エッジ、パルス信号Bの下降エッジ、パルス信号Aの上昇エッジ、パルス信号Bの上昇エッジ、・・・といった具合に検出されるため、基準検出数Nsetは一周期分のエッジ数である4以上の値が設定される。本実施例では、モータの定常回転時の回転周期を基準周期とするために8周期分のエッジ数である32が設定される。つまり、モータ回転開始直後は慣性力が小さいために定常回転時の回転周期が得られ難いため、複数周期の余裕をもって基準周期を設定するようにしている。ただし、その基準検出数Nsetについては適宜設定変更可能である。一方、エッジ検出数Nが基準検出数Nset未満であれば(S18のN)、後述する仮周期設定処理を実行する(S22)。
図7は、図6におけるS22の仮周期設定処理の流れを表すフローチャートである。
マイコン30は、モータ10の回転周期に用いる基準周期が定まるまでの間、この仮周期設定処理において仮の回転周期を算出し、現在の回転速度の算出に用いる。
すなわち、マイコン30は、まず、今回算出されたエッジ間隔時間TをメモリバッファSBUに記憶する(S30)。続いて、それまでに算出されたエッジ間隔時間Tの積算値に対して今回算出されたエッジ間隔時間Tを加算し、モータ10の駆動開始からの経過時間STを算出する(S32)。マイコン30は、この経過時間STとS16にて記憶されたエッジ数Nを用いて、下記式(1)により仮の回転周期DCを算出する(S34)。
DC=ST×(M/N) ・・・(1)
ここで、Mはモータ10の1回転あたりに検出されるエッジ数であり、本実施例では4である。
続いて、マイコン30は、今回検出されたエッジがパルス信号Aの上昇エッジであれば(S36のY,S38のY)、今回算出されたエッジ間隔時間TをメモリバッファTAに記憶するとともに(S40)、メモリバッファSAに回転周期DCを記憶し(S42)、現在の回転周期とする(S44)。そのエッジがパルス信号Aの下降エッジであれば(S36のY,S38のN)、そのエッジ間隔時間TをメモリバッファTBに記憶するとともに(S46)、メモリバッファSBに回転周期DCを記憶し(S48)、現在の回転周期Sとする(S44)。そのエッジがパルス信号Bの上昇エッジであれば(S36のN,S50のY)、そのエッジ間隔時間TをメモリバッファTCに記憶するとともに(S52)、メモリバッファSCに回転周期DCを記憶し(S54)、現在の回転周期Sとする(S44)。そのエッジがパルス信号Bの下降エッジであれば(S36のN,S50のN)、そのエッジ間隔時間TをメモリバッファTDに記憶するとともに(S56)、メモリバッファSDに回転周期DCを記憶し(S58)、現在の回転周期Sとする(S44)。以上のように算出された回転周期Sは、エッジ検出数Nが基準検出数Nsetになるまで現在の回転周期としてパワーウィンド制御に用いられる。そして、エッジ検出数Nが基準検出数Nsetになったときに基準周期とされ、S20の当初の処理に用いられる。
図8は、図6におけるS20の周期演算・設定処理の流れを表すフローチャートである。
周期演算・設定処理において、マイコン30は、今回検出されたエッジがパルス信号Aの上昇エッジであれば(S60のY,S62のY)、メモリバッファTAから前回記憶されたエッジ間隔時間PTを取得する(S64)。そして、今回検出されたエッジ間隔時間Tとエッジ間隔時間PTとからその変化率α(=T/PT)を算出する(S66)。図4に示した例でいえば、変化率αb(=b2/b1)が算出されたりする。その一方、マイコン30は、メモリバッファSAからモータ10の1回転前の回転周期PSを取得する(S68)。そして、この回転周期PSと変化率αを用いて、下記式(2)により現在の回転周期Sを算出する(S70)。
S=PS×α ・・・(2)
そして、マイコン30は、メモリバッファTAにエッジ間隔時間Tを記憶するとともに(S72)、メモリバッファSAに回転周期Sを記憶する(S74)。
一方、今回検出されたエッジがパルス信号Aの下降エッジであれば(S60のY,S62のN)、メモリバッファTBから前回記憶されたエッジ間隔時間PTを取得する(S76)。そして、エッジ間隔時間Tとエッジ間隔時間PTとからその変化率α(=T/PT)を算出する(S78)。図4に示した例でいえば、例えば変化率αa(=a2/a1)が算出されたりする。その一方、マイコン30は、メモリバッファSBからモータ10の1回転前の回転周期PSを取得し(S80)、上記式(2)により現在の回転周期Sを算出する(S82)。そして、メモリバッファTBにエッジ間隔時間Tを記憶するとともに(S84)、メモリバッファSBに回転周期Sを記憶する(S86)。
今回検出されたエッジがパルス信号Bの上昇エッジであれば(S60のN,S88のY)、メモリバッファTCから前回記憶されたエッジ間隔時間PTを取得する(S90)。そして、エッジ間隔時間Tとエッジ間隔時間PTとからその変化率α(=T/PT)を算出する一方(S92)、メモリバッファSCからモータ10の1回転前の回転周期PSを取得し(S94)、上記式(2)により現在の回転周期Sを算出する(S96)。そして、メモリバッファTCにエッジ間隔時間Tを記憶するとともに(S98)、メモリバッファSCに回転周期Sを記憶する(S100)。
今回検出されたエッジがパルス信号Bの下降エッジであれば(S60のN,S88のN)、メモリバッファTDから前回記憶されたエッジ間隔時間PTを取得する(S102)。そして、エッジ間隔時間Tとエッジ間隔時間PTとからその変化率α(=T/PT)を算出する一方(S104)、メモリバッファSDからモータ10の1回転前の回転周期PSを取得し(S106)、上記式(2)により現在の回転周期Sを算出する(S108)。そして、メモリバッファTDにエッジ間隔時間Tを記憶するとともに(S110)、メモリバッファSDに回転周期Sを記憶する(S112)。
以上のように、本実施例の回転周期算出処理においては、エッジ検出数Nが基準検出数Nset以上となる所定期間が経過するまでは仮の回転周期を設定し、安定した回転周期が得られるようになってからこれを基準周期として次回の回転周期の算出に用いるようにしている。
図9および図10は、実施例の効果を定性的に表す図である。図9は、モータ10の回転周期が徐々に短くなった後、再度徐々に長くなるように変化した場合を仮定し、そのとき算出される回転周期の変化を表している。同図の横軸はある時点からのエッジの検出数を表し、縦軸が回転周期を表している。図中実線が本実施例の算出法(図3参照)による回転周期の算出結果を表し、破線が比較例の算出法(図5参照)による回転周期の算出結果を表している。一方、図10は、モータ10の回転周期が一定の状態からある時点を境に長くなるように変化した場合を仮定し、そのとき算出される回転周期の変化を表している。(A)は本実施例による回転周期の算出結果を表し、(B)は比較例による回転周期の算出結果を表している。各図の横軸はある時点からのエッジの検出数を表し、縦軸が回転周期を表している。
図9に示すようにモータ10の回転周期が変化した場合、例えばエッジの5検出目に本来得られるべき回転周期(周期真値)が2msecであるとすると、本実施例では上記式(2)によりS=5×2/5=2(msec)となって、その本来の値が得られる。なお、ここでは、対応するエッジ間隔時間における周期真値の比が、その対応するエッジ間隔時間そのものの比になるとして計算している。6検出目以降も同様に計算することで、本来得られるべき回転周期に一致した算出値が得られる。これに対し、比較例では例えば6検出目にS=(2+1+2+3)/4=2となるなど、それ以降も図示のように本来得られるべき値とは若干異なる値が算出される。一方、図10に示すようにモータ10の回転周期が変化した場合、本実施例では5検出目以降の回転周期の変化に応じて算出値も同じように変化する。これに対し、比較例では図示のように回転周期の変化に対して算出値の追従が遅れる。
このように比較例の演算方法では、今回のエッジ検出時の回転周期の演算に他の位相区間の回転周期の値が影響するため、全体として演算値が鈍り、算出結果の正確性や実際の回転周期に対する応答性に支障をきたしている。これに対し、本実施例では、今回のエッジ検出時の回転周期と、1周期前の同位相区間の回転周期とを用いた演算が行われるため、他の位相区間の回転周期の影響をうけず、正確で鋭敏な算出結果が得られていることが分かる。
以上に説明したように、本実施例においては、モータ10の回転周期がエッジ間隔時間により細分化され、各エッジ検出時に、そのとき算出されたエッジ間隔時間とその1周期前に算出された対応するエッジ間隔時間との変化率αが算出される。すなわち、この変化率αは、モータ10の回転位相が同じである同位相区間の経過時間の比率を表すため、モータ10の回転周期の変化率αを正確に表すことができる。したがって、この変化率αを変化前の回転周期に乗算することにより、マグネットの着磁誤差や磁気検出器の取り付け誤差にかかわらず、今回の回転周期を正確に算出することができる。また、そのように各位相区間ごとの変化率αから回転周期を算出すると、他の位相区間を演算に含める場合のような演算上の鈍りが生じることもなく、モータ10の短期間の回転周期の変化に対して鋭敏に反応した演算結果を得ることができる。
[第2実施例]
次に、本発明の第2実施例について説明する。本実施例は、モータ10の回転周期の算出処理において平均エッジ間隔時間を用いる点が異なる以外は第1実施例とほぼ同様である。このため、上記第1実施例と同様の構成部分については必要に応じて同一の符号を付す等して適宜その説明を省略する。
図11および図12は、本実施例の回転周期算出方法を表す概念図である。図11は、基準周期の算出方法を表している。図12は、エッジ検出ごとに算出されるエッジ間隔時間とモータ10の回転周期との関係を表している。
既に説明した第1実施例では、エッジ検出時に算出したエッジ間隔時間を1周期前(モータ10の1回転前)の対応する位相区間のエッジ間隔時間と比較して変化率αを算出した例を示した。本実施例では、図11に示すように、モータ10が回転するごとに各位相区間についてそれまで算出されたエッジ間隔時間の平均値である平均エッジ間隔時間ah,bh,ch,dhを算出する。また、これら各位相区間の平均エッジ間隔時間ah,bh,ch,dhを合計して平均的な回転周期を算出し、これを基準周期shとする。各平均エッジ間隔時間および基準周期shは、モータ10の回転とともに更新される。
図12に示すように、マイコン30は、エッジ検出ごとに取得されるエッジ間隔時間と平均エッジ間隔時間とを用いて変化率βを算出し、この平均エッジ間隔時間から算出した基準周期shに変化率βを乗算することにより、現在のモータ10の回転周期Sを算出する。
図13は、回転周期算出処理の流れを表すフローチャートである。以下の処理は、IGスイッチ40がオンにされた後、マイコン30が、パワーウィンド制御に並行して実行する。
回転検出センサ14にてパルス信号が出力されると、マイコン30は、図13に示すエッジ割り込みルーチンを実行する。すなわち、マイコン30は、回転検出センサ14からパルス信号のエッジが検出されると、タイマの値を参照して前回のエッジ検出時からの経過時間であるエッジ間隔時間tを算出する(S204)。
続いて、マイコン30は、今回検出されたエッジがパルス信号Aの上昇エッジであれば(S206のY,S208のY)、今回算出されたエッジ間隔時間tをメモリバッファtaに記憶するとともに(S210)、平均エッジ間隔時間ahを算出してメモリバッファsaに記憶する(S212)。このメモリバッファtaおよび以下に述べるメモリバッファtb,tc,tdは、直近の4周期分のエッジ間隔時間tを記憶できるいわゆるリングバッファなどのキュー型のバッファとして構成されている。平均エッジ間隔時間ahは、それまでに算出されてメモリバッファaに蓄積されたエッジ間隔時間tの合計を、それまでに検出されたエッジ数で除算した平均値であるが、直近の4周期分のエッジ間隔時間tの平均であるため、演算上、それ以前のエッジ間隔時間の影響はない。マイコン30は、今回検出されたエッジ間隔時間tと平均エッジ間隔時間ahとからその変化率β(=t/ah)を算出する(S214)。
一方、今回検出されたエッジがパルス信号Aの下降エッジであれば(S206のY,S208のN)、今回算出されたエッジ間隔時間tをメモリバッファtbに記憶する(S220)。そして、平均エッジ間隔時間bhを算出してメモリバッファsbに記憶し(S222)、今回検出されたエッジ間隔時間tと平均エッジ間隔時間bhとからその変化率β(=t/bh)を算出する(S224)。
また、今回検出されたエッジがパルス信号Bの上昇エッジであれば(S206のN,S230のY)、今回算出されたエッジ間隔時間tをメモリバッファtcに記憶する(S232)。そして、平均エッジ間隔時間chを算出してメモリバッファscに記憶し(S234)、今回検出されたエッジ間隔時間tと平均エッジ間隔時間chとからその変化率β(=t/ch)を算出する(S236)。
一方、今回検出されたエッジがパルス信号Bの下降エッジであれば(S206のN,S230のN)、今回算出されたエッジ間隔時間tをメモリバッファtdに記憶する(S240)。そして、平均エッジ間隔時間dhを算出してメモリバッファsdに記憶し(S242)、今回検出されたエッジ間隔時間tと平均エッジ間隔時間dhとからその変化率β(=t/dh)を算出する(S244)。
マイコン30は、このようにして得られた平均エッジ間隔時間ah,bh,ch,dhを合計して基準周期shとし(S216)、この基準周期shに変化率βを乗算することにより、モータ10の現在の回転周期S(=sh×β)を算出する(S218)。
以上に説明したように、本実施例においては、モータ10の回転周期がエッジ間隔時間により細分化され、各エッジ検出時に、そのとき算出されたエッジ間隔時間と、それ以前に算出された同位相区間のエッジ間隔時間の平均値との変化率βが算出される。すなわち、この変化率βも、モータ10の回転位相が同じである同位相区間の経過時間の比率を表すため、モータ10の回転周期の変化率αを正確に表すことができる。このため、モータ10の回転周期の変化に鋭敏に反応した演算結果を得ることができる。また、エッジが検出されるたびに毎回基準周期が算出されるため、モータ10の回転開始直後に第1実施例のような仮の回転周期を算出する工程は必要なく、その回転開始時点から同じ処理ルーチンにて演算を行うことができる。
本発明は上述の各実施例に限定されるものではなく、当業者の知識に基づいて各種の設計変更等の変形を各実施例に対して加えることも可能であり、そのような変形が加えられた実施例も本発明の範囲に含まれうる。
上記実施例においては、各ホール素子の出力信号に対するしきい値THS,THNをともにゼロに設定した例を示したが、例えば特許文献1に示されるように、そのしきい値については正または負の値を適宜設定することが可能である。
上記実施例では、N極およびS極を一つずつ配置した2極のマグネット22を例示したが、N極とS極がそれぞれ複数設けられて、周方向に順次配置される4極、6極・・・といったマグネットを採用することもできる。
上記実施例では、パワーウィンド制御装置がドアガラス2の閉動作時に異物の挟み込みを検出すると説明したが、ドアガラス2の開動作時の異物の挟み込み(巻き込み)を検出するものであってもよい。つまり、モータ10の回転周期の低下により、ドアガラス2の開動作時および閉動作時の少なくとも一方における異物の挟み込みを検出するものであってもよいし、その検出モードを切り替え可能としてもよい。上記実施例によるモータの回転周期の算出法は、少なくともそのいずれかのモードにてを利用することができる。
上記実施例では、そのモータの回転周期の算出法をパワーウィンド制御装置に適用したが、車両のスライティングルーフ、自動ドアやシャッタなど、モータに駆動され、そのモータの回転数を回転検出センサにより検出しつつ駆動制御が行われる制御装置であれば適用することが可能である。
第1実施例に係るパワーウィンド制御装置の概略構成を表す図である。 パワーウィンドを駆動させるモータの回転検出部の概略構成を表す図である。 モータの回転周期の算出方法を表す説明図である。 モータの回転周期の算出方法を表す説明図である。 比較例としてモータの回転周期を1周期を単位に算出する方法を表す説明図である。 回転周期算出処理の流れを表すフローチャートである。 図6におけるS22の仮周期設定処理の流れを表すフローチャートである。 図6におけるS20の周期演算・設定処理の流れを表すフローチャートである。 実施例の効果を定性的に表す図である。 実施例の効果を定性的に表す図である。 第2実施例の回転周期算出方法を表す概念図である。 第2実施例の回転周期算出方法を表す概念図である。 回転周期算出処理の流れを表すフローチャートである。
符号の説明
2 ドアガラス、 4 レギュレータ、 6 モータアクチュエータ、 8 制御ユニット、 10 モータ、 12 モータ駆動回路、 14 回転検出センサ、 20 回転軸、 22 マグネット、 24 ホール素子、 26 ホール素子、 30 マイコン、 32 電源回路、 34 スイッチ入力回路、 36 通信回路、 40 IGスイッチ、 42 PWスイッチ。

Claims (12)

  1. モータ特性を取得するモータ特性取得装置において、
    モータの回転軸に固定されたマグネットと、
    前記回転軸の周囲に設けられ、前記モータの回転に伴って前記マグネットが近傍を通過するときに信号を出力する少なくとも1つの磁気検出器と、
    前記磁気検出器から出力される信号のエッジを検出し、前記磁気検出器から順次出力される時間的に最も近接したエッジの間隔であるエッジ間隔時間を逐次算出して保持し、前記モータの複数の回転周期において対応するエッジ間隔時間を比較してその変化率を算出する演算部と、
    を備えたことを特徴とするモータ特性取得装置。
  2. 前記演算部は、算出された変化率を所定の基準周期に乗算することにより、前記モータの回転周期を算出することを特徴とする請求項1に記載のモータ特性取得装置。
  3. 前記演算部は、複数の回転周期にまたがる期間における同位相区間のエッジ間隔時間の変化率を前記基準周期に乗算することにより、前記モータの回転周期を算出することを特徴とする請求項2に記載のモータ特性取得装置。
  4. 前記演算部は、逐次算出されるエッジ間隔時間とそのモータの1回転前に算出された同位相区間のエッジ間隔時間との変化率を前記基準周期に乗算することにより、前記モータの回転周期を算出することを特徴とする請求項3に記載のモータ特性取得装置。
  5. 前記演算部は、
    各位相区間ごとに所定期間のエッジ間隔時間を逐次記憶し、
    各エッジ検出時に、同位相区間のエッジ間隔時間の平均値である平均エッジ間隔時間を算出するとともに、そのエッジ検出時に算出されたエッジ間隔時間と平均エッジ間隔時間との変化率を算出し、その変化率を前記基準周期に乗算することにより、前記モータの回転周期を算出することを特徴とする請求項3に記載のモータ特性取得装置。
  6. 前記演算部は、
    前記モータの回転開始後の所定期間、エッジの検出ごとに、前記モータの回転が開始されてから算出された各エッジ間隔時間の積算による経過時間と、その経過時間に検出されたエッジ数とに基づいて仮の回転周期を算出し、
    その所定期間において最後に検出された各位相区間に対応する仮の回転周期を、前記所定期間経過後の各位相区間に対応する初回のエッジ検出時に仮の基準周期として用いて前記モータの回転周期を算出し、
    それ以降の各エッジ検出時には、前回算出された同位相区間についての回転周期を前記基準周期として用いて前記モータの回転周期を算出することを特徴とする請求項3〜5のいずれかに記載のモータ特性取得装置。
  7. 前記演算部は、
    前記モータの回転開始後の所定期間は前記基準周期の算出のためのデータ取得期間として回転周期の算出は行わず、その所定期間の経過時間とその経過時間に検出されたエッジ数とに基づいて仮の基準周期を算出し、
    前記所定期間経過後の初回の各エッジ検出時に前記仮の基準周期を用いて前記モータの回転周期を算出し、
    それ以降の各エッジ検出時には、前回算出された同位相区間についての回転周期を前記基準周期として用いて前記モータの回転周期を算出することを特徴とする請求項3〜5のいずれかに記載のモータ特性取得装置。
  8. 前記演算部は、各エッジ検出時に、連続する位相区間について算出された平均エッジ間隔時間の1周期分の合計から仮の基準周期を取得し、その仮の基準周期を前記基準周期として用いることを特徴とする請求項5に記載のモータ特性取得装置。
  9. 前記演算部は、前記モータの回転停止により前記回転周期の取得情報をリセットし、モータの回転開始ごとに前記回転周期の演算を実行することを特徴とする請求項2〜8のいずれかに記載のモータ特性取得装置。
  10. 前記演算部は、前記回転周期について予め設定された算出許容範囲を参照し、算出された回転周期が前記算出許容範囲を外れたときには、その回転周期を次回の基準周期としては用いずに前記仮の基準周期を再度演算し、その仮の基準周期を用いて前記モータの回転周期を算出することを特徴とする請求項6〜8のいずれかに記載のモータ特性取得装置。
  11. モータの回転周期から所定のモータ特性を取得するモータ特性取得部を備え、取得されたモータ特性を1つのパラメータとして制御対象を制御する制御装置において、
    前記モータ特性取得部は、
    モータの回転軸に固定されたマグネットと、
    前記回転軸の周囲に設けられ、前記モータの回転に伴って前記マグネットが近傍を通過するときに信号を出力する少なくとも1つの磁気検出器と、
    前記磁気検出器から出力される信号のエッジを検出し、前記磁気検出器から順次出力される時間的に最も近接したエッジの間隔であるエッジ間隔時間を逐次算出して保持し、前記モータの複数の回転周期において前記エッジ間隔時間を比較して変化率を算出し、予め設定された基準周期にその変化率を乗算することにより前記モータの回転周期を算出する演算部と、
    を備えたことを特徴とする制御装置。
  12. モータの回転制御によりレギュレータを駆動して車両のドアガラスを開閉動作させるパワーウィンド制御装置において、
    モータの回転軸に固定されたマグネットと、
    前記回転軸の周囲に設けられ、前記モータの回転に伴って前記マグネットが近傍を通過するときに信号を出力する少なくとも1つの磁気検出器と、
    前記磁気検出器から出力される信号のエッジを検出し、前記磁気検出器から順次出力される時間的に最も近接したエッジの間隔であるエッジ間隔時間を逐次算出して保持し、前記モータの複数の回転周期において前記エッジ間隔時間を比較して変化率を算出し、予め設定された基準周期にその変化率を乗算することにより前記モータの回転周期を取得し、その回転周期から回転速度を算出する演算部と、
    前記モータの回転速度に応じて予め設定した制御モードへ移行し、前記モータの回転制御を実行する制御部と、
    を備えたことを特徴とするパワーウィンド制御装置。
JP2007326814A 2007-12-19 2007-12-19 モータ特性取得装置 Expired - Fee Related JP4964112B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007326814A JP4964112B2 (ja) 2007-12-19 2007-12-19 モータ特性取得装置
US12/338,562 US8188699B2 (en) 2007-12-19 2008-12-18 Motor characteristics acquiring apparatus, control apparatus using the acquired motor characteristics, and power window control apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007326814A JP4964112B2 (ja) 2007-12-19 2007-12-19 モータ特性取得装置

Publications (2)

Publication Number Publication Date
JP2009150675A true JP2009150675A (ja) 2009-07-09
JP4964112B2 JP4964112B2 (ja) 2012-06-27

Family

ID=40788763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007326814A Expired - Fee Related JP4964112B2 (ja) 2007-12-19 2007-12-19 モータ特性取得装置

Country Status (2)

Country Link
US (1) US8188699B2 (ja)
JP (1) JP4964112B2 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012065495A (ja) * 2010-09-17 2012-03-29 Sanken Electric Co Ltd ブラシレスモータの駆動装置
JP2013085418A (ja) * 2011-10-12 2013-05-09 Sharp Corp ブラシレスモータ用制御装置およびそれを備えた洗濯機
JP2015167469A (ja) * 2010-12-22 2015-09-24 マイクロスペース株式会社 モータ制御装置及び制御装置
JP2017080055A (ja) * 2015-10-27 2017-05-18 三星電子株式会社Samsung Electronics Co.,Ltd. 洗濯機
KR102151720B1 (ko) * 2019-08-30 2020-09-04 주식회사 세바 속도 변화량을 이용한 모터 제어장치 및 그 방법

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102158157B (zh) * 2010-02-12 2013-07-31 深圳兴奇宏科技有限公司 马达相电流自动补偿方法
EP3085868B1 (en) * 2015-04-20 2020-11-25 Volvo Car Corporation An arrangement and a method for operating vehicle windows
JP6393699B2 (ja) * 2016-01-28 2018-09-19 ミネベアミツミ株式会社 モータ駆動制御装置及びそのモータ駆動制御方法
CN105738642A (zh) * 2016-02-03 2016-07-06 上海新源工业控制技术有限公司 一种四路并行采样的t法电机测速方法
DE102016208596A1 (de) * 2016-05-19 2017-11-23 Robert Bosch Gmbh Verfahren zum Betreiben einer Schließvorrichtung sowie eine Schließvorrichtung
CN108627670B (zh) * 2017-03-20 2024-04-16 天津钕领节能科技有限公司 马达转速侦测方法及其装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11107624A (ja) * 1997-10-07 1999-04-20 Jidosha Denki Kogyo Co Ltd パワーウインド制御装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3978521A (en) * 1972-08-23 1976-08-31 U.S. Philips Corporation Recording and playback apparatus for video tape editing
NL7711634A (nl) * 1977-10-24 1979-04-26 Philips Nv Tachometerstelsel.
US4870333A (en) * 1986-10-03 1989-09-26 Jidosha Denki Kogyo Kabushiki Kaisha Automatic opening and closing device for a window
JP2523207Y2 (ja) 1991-01-11 1997-01-22 西芝電機株式会社 回転数検出装置
DE4135209A1 (de) * 1991-10-25 1993-04-29 Broadcast Television Syst Schaltungsanordnung zur regelung der drehgeschwindigkeit eines motors
DE19825722A1 (de) * 1998-06-09 1999-12-16 Philips Patentverwaltung Schaltungsanordnung zum Speisen eines Elektromotors
JP4679341B2 (ja) * 2005-11-11 2011-04-27 アスモ株式会社 開閉部材制御装置
JP4699247B2 (ja) * 2006-03-15 2011-06-08 株式会社マキタ モータの速度制御装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11107624A (ja) * 1997-10-07 1999-04-20 Jidosha Denki Kogyo Co Ltd パワーウインド制御装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012065495A (ja) * 2010-09-17 2012-03-29 Sanken Electric Co Ltd ブラシレスモータの駆動装置
JP2015167469A (ja) * 2010-12-22 2015-09-24 マイクロスペース株式会社 モータ制御装置及び制御装置
JP2013085418A (ja) * 2011-10-12 2013-05-09 Sharp Corp ブラシレスモータ用制御装置およびそれを備えた洗濯機
JP2017080055A (ja) * 2015-10-27 2017-05-18 三星電子株式会社Samsung Electronics Co.,Ltd. 洗濯機
KR102151720B1 (ko) * 2019-08-30 2020-09-04 주식회사 세바 속도 변화량을 이용한 모터 제어장치 및 그 방법

Also Published As

Publication number Publication date
JP4964112B2 (ja) 2012-06-27
US8188699B2 (en) 2012-05-29
US20090162038A1 (en) 2009-06-25

Similar Documents

Publication Publication Date Title
JP4964112B2 (ja) モータ特性取得装置
JP3524374B2 (ja) パワーウインド装置の挟み込み検知方法
JP6164449B2 (ja) 開閉体の挟み込み検知装置及び開閉体装置
JP4487588B2 (ja) 開閉体制御装置
US7095200B2 (en) Power window apparatus with pinch detecting function
TW574467B (en) Trapping detection device of opening/closing member
KR100362233B1 (ko) 파워윈도우장치의 끼임검지방법
JP2018003426A (ja) 開閉制御装置
JP2002147113A (ja) 開閉体の挟み込み検知装置
US10024095B2 (en) Openable and closable member control apparatus
JP4063094B2 (ja) 開閉体の挟み込み検知装置
JP2010188997A (ja) 開口覆材の開閉制御装置
JP2009262930A (ja) 開口覆材の開閉制御装置
JP2008150828A (ja) 車両用開閉体の制御装置
JP6119497B2 (ja) 車両用自動ドアの挟み込み検出装置及び検出方法
JP2008150830A (ja) 車両用開閉体の制御装置
WO2020028345A1 (en) Tracking a position of a motorized window treatment
JP3480082B2 (ja) ウィンドウ開閉制御装置
JP2000152677A (ja) ウインドウガラスの挟持有無検出装置
WO2017203821A1 (ja) 開閉部材制御装置
JP2004232280A (ja) 開閉体の挟み込み検知装置
JP2000008704A (ja) 開閉制御装置
JP2010110171A (ja) モータ制御装置及びモータ装置
JP4081253B2 (ja) アクチュエータ制御装置
JP2003113936A (ja) 自動変速機の電動式レンジ切換装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101102

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120321

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120327

R150 Certificate of patent or registration of utility model

Ref document number: 4964112

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150406

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150406

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees