JP2009105231A - 半導体基板およびその製造方法、ならびに半導体装置 - Google Patents

半導体基板およびその製造方法、ならびに半導体装置 Download PDF

Info

Publication number
JP2009105231A
JP2009105231A JP2007275880A JP2007275880A JP2009105231A JP 2009105231 A JP2009105231 A JP 2009105231A JP 2007275880 A JP2007275880 A JP 2007275880A JP 2007275880 A JP2007275880 A JP 2007275880A JP 2009105231 A JP2009105231 A JP 2009105231A
Authority
JP
Japan
Prior art keywords
layer
strain
inp
buffer layer
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007275880A
Other languages
English (en)
Inventor
Nobuhiro Suzuki
伸洋 鈴木
Osamu Taniguchi
理 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2007275880A priority Critical patent/JP2009105231A/ja
Publication of JP2009105231A publication Critical patent/JP2009105231A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)
  • Bipolar Transistors (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

【課題】圧縮歪層と引張歪層とを利用して、InP系半導体デバイスを成長させるメタモルフィック基板の欠陥(例えば転位)の低減を可能にする。
【解決手段】ガリウムヒ素基板100と、前記ガリウムヒ素基板100上に形成されたバッファ層101と、前記バッファ層101上に、前記バッファ層101よりも面内方向の格子定数が小さい材料からなる引張歪層105aと、前記バッファ層101よりも面内方向の格子定数大きい材料からなる圧縮歪層105bとを積層して形成された歪補償構造層105とを有することを特徴とする。
【選択図】図1

Description

本発明は、半導体基板およびその製造方法、ならびに半導体装置に関する。
インジウムリン(以下、InPと記す)系材料を用いた半導体電子デバイスは、次世代高速デバイス用途として期待されている。このInP系半導体デバイスは、InP基板の価格が高いこと、大口径基板が得られないことが問題となっている。InP系半導体デバイス低コスト化のために安価、大口径なガリウムヒ素(以下、GaAsと記す)基板上にInP系半導体デバイスを成長させるメタモルフィック技術が提案されている。このメタモルフィック技術では、基板とデバイス層との間の格子定数差に起因して発生する欠陥の密度を低減することが重要である。この欠陥密度を低減する技術として、歪超格子層を導入することが提案されている(例えば、特許文献1参照。)。特許文献1には、10nmの厚さのInGaP(Ga=0.1)と、10nmの厚さのInPを交互に5周期積層した構造が記載されている。しかしながら、この歪超格子では、欠陥低減効果が不十分であった。
特開平3−255617号公報
解決しようとする問題点は、InP系半導体デバイスを成長させるメタモルフィック技術において、欠陥低減効果が不十分な点である。
本発明は、圧縮歪層と引張歪層とを利用して、InP系半導体デバイスを成長させるメタモルフィック基板の欠陥(例えば転位)の低減を可能にする。
請求項1に係る本発明の半導体基板は、ガリウムヒ素基板と、前記ガリウムヒ素基板上に形成されたバッファ層と、前記バッファ層上に、前記バッファ層よりも面内方向の格子定数が小さい材料からなる引張歪層と、前記バッファ層よりも面内方向の格子定数大きい材料からなる圧縮歪層とを積層して形成された歪補償構造層とを有することを特徴とする。
請求項1に係る本発明の半導体基板では、バッファ層とインジウムリン層との間に、バッファ層よりも面内方向の格子定数が小さい材料からなる引張歪層と、バッファ層よりも面内方向の格子定数大きい材料からなる圧縮歪層とを積層して形成された歪補償構造層を有することから、バッファ層に対する引張歪層と圧縮歪層の歪の方向が互いに逆方向となり、かつ互いの歪を補償しあうので、厚膜化による歪緩和を防ぐことができる。その結果、厚膜化に限界があるという従来の歪超格子の問題を回避しつつ、欠陥を屈曲させる機会を増やし、欠陥密度を低減することができる。
請求項6に係る本発明の半導体装置は、半導体基板上に半導体層を積層して形成される半導体装置であって、前記半導体基板は、ガリウムヒ素基板と、前記ガリウムヒ素基板上に形成されたバッファ層と、前記バッファ層上に、前記バッファ層よりも面内方向の格子定数が小さい材料からなる引張歪層と、前記バッファ層よりも面内方向の格子定数大きい材料からなる圧縮歪層とを積層して形成された歪補償構造層とを有することを特徴とする。
請求項6に係る本発明の半導体装置では、厚膜化による歪緩和を防ぐことができるので、厚膜化に限界があるという従来の歪超格子の問題を回避しつつ、欠陥を屈曲させる機会を増やし、欠陥密度を低減することができる。
請求項1に係る本発明の半導体基板によれば、欠陥低減効果が高い歪補償構造層を導入したので、欠陥密度の少ない半導体基板(メタモルフィック基盤)を提供することができる。しかも低コストのGaAs基板を用いることからコストを上昇させることなく、半導体基板を提供することができる。
請求項5に係る本発明の半導体基板の製造方法によれば、欠陥低減効果が高い歪補償構造層を導入したので、欠陥密度の少ない半導体基板(メタモルフィック基盤)を提供することができる。しかも低コストのGaAs基板を用いることからコストを上昇させることなく、半導体基板を製造することができる。
請求項6に係る本発明の半導体装置によれば、欠陥の少ない半導体層を用いて半導体装置を形成することができるため、特性劣化のない、信頼性の高い半導体装置を提供できるという利点がある。
(第1実施例)
本発明の第1実施例の半導体基板を、概略構成断面図によって説明する。この図1では、本発明のメタモルフィック基板の一例を示す。なお、図面では、半導体基板1の断面構造をわかりやすくするために、縦方向に大幅に拡大して示した。
図1に示すように、ガリウムヒ素(以下GaAsと記す)基板100上には、バッファ層101、引張歪層105aと圧縮歪層105bとを交互に積層した歪補償構造層105、およびインジウムリン(以下InPと記す)層106が順次積層されている。上記バッファ層101は、例えば下層よりGaAsバッファ層102、低温バッファ層103、InPバッファ層104を順に積層した構成となっている。
上記GaAsバッファ層102は、例えば厚さ450nmのGaAs層からなる。上記低温バッファ層103は、例えば厚さ30nmのInP層からなる。上記InPバッファ層104は、例えば厚さ6μmのInP層からなる。
上記引張歪層105aは、上記バッファ層101の最上層のInPバッファ層104よりも面内方向の格子定数が小さい材料からなり、例えばGa=0.10のインジウムガリウムリン(以下InGaPと記す)層からなり、50nmの厚さに形成されている。上記圧縮歪層105bは、上記バッファ層101の最上層のInPバッファ層104よりも面内方向の格子定数が大きい材料からなり、例えばIn=0.63のインジウムガリウムヒ素(以下InGaAsと記す)層からなり、50nmの厚さに形成されている。そして、上記引張歪層105aと上記圧縮歪層105bとを交互に3周期積層して、上記歪補償構造層105を構成している。上記InP層106は、例えば300nmの厚さに形成されている。
上記InPバッファ層104は、6μmの厚膜であるため、上記GaAs基板100に対してほぼ完全緩和しており、格子定数はほぼ5.869Åになっている。これに対し、引張歪層105aを構成するInGaP(Ga=0.10)の格子定数は5.827Åである。したがって、引張歪層105aは、InPと約0.71%の格子不整がある。また、圧縮歪層105bを構成するInGaAs(In=0.63)の格子定数は5.909Åである。この圧縮歪層105bは、InPと0.68%の格子不整がある。本実施例の特徴の1つは、この引張歪層105aと圧縮歪層105bが、InPバッファ層104に対して、互いに逆方向の歪を受けている点である。これらの引張歪層105aと圧縮歪層105bとは、InPとの格子不整量の絶対値が近く、歪が逆方向で、膜厚が同じで、弾性定数に大きな差がない。このため、本実施例の歪補償構造層105では、引張歪層105aと圧縮歪層105bが歪を補償しあって、歪補償構造層105全体の歪を打ち消すことができるので、総歪がほぼ0になっている。
次に、本発明の上記半導体基板の製造方法を、前記図1の概略構成断面図によって説明する。
図1に示したメタモルフィック基板からなる半導体基板1は、MOCVD(Metal Organic Chemical Vapor Deposition )法により、以下のように製造する。
(1)GaAs基板100を加熱する。ここでは、上記GaAs基板100の基板温度が例えば740℃になるように加熱して保持し、アルシン(AsH 3 )とトリメチルガリウム(TMG:(CH 3 3 Ga)を原料ガスとして、GaAsを成長させ、バッファ層101のうちのGaAsバッファ層102を形成する。
(2)次に、上記GaAs基板101を冷却し、ホスフィン(PH 3 )とトリメチルインジウム(TMI:(CH 3 3 In)を原料ガスとして、InPを成長させ、バッファ層101のうちの低温バッファ層103を形成する。
(3)次に、上記GaAs基板101を加熱して、ホスフィン(PH 3 )とトリメチルインジウム(TMI:(CH 3 3 In)を原料ガスとして、InPを成長させ、バッファ層101のうちInPバッファ層104を成長する。
(4)次に、熱サイクルアニール処理を行なう。
(5)次に、ホスフィン(PH 3 )とトリメチルインジウム(TMI:(CH 3 3 In)とトリメチルガリウム(TMG:(CH 3 3 Ga)を原料ガスとして、Ga=0.1となるようにInGaPを成長させ、歪補償構造層105のうちの引張歪層105aを形成する。
(6)次に、上記GaAs基板100の基板温度を660℃に保ったまま、アルシン(AsH 3 )とトリメチルインジウム(TMI:(CH 3 3 In)とトリメチルガリウム(TMG:(CH 3 3 Ga)を原料ガスとして、InGaAsを成長させ、歪補償構造層105のうちの圧縮歪層105bを形成する。
(7)次に、上記(5)の工程で引張歪層105aを形成することと、上記(6)の工程で圧縮歪層105bを形成することを繰り返し行って、歪補償構造層105を完成させる。ここでは、繰り返しを3回行った。
(8)次に、上記GaAs基板100の基板温度を660℃に保ったまま、ホスフィン(PH 3 )とトリメチルインジウム(TMI:(CH 3 3 In)を原料ガスとして、InPを成長させ、InP層106を形成する。
以上説明した製造方法によって、図1に示した構成の半導体基板10が製造される。図1の半導体基板10におけるInP層106の欠陥密度は、EPD(Etch pit density)により評価することができる。EPDは、リン酸:シュウ酸を50:1に配合した溶液で1分間エッチングを行なうことにより測定できる。
上記のEPD測定を実施した結果、上記第1実施例の半導体基板10のInP層106のEPDは、2×10 6 /cm 2 になった。ここで、上記の(4)のサイクルアニールを終了したInPバッファ層104のEPDは、1×10 7 /cm 2 であった。このことから、本実施例では、歪補償構造層105により、EPDが1/5に低減したことがわかる。
また、本発明者は、従来の歪超格子層を用いたメタモルフィック基板も作製し、その欠陥密度低減効果の比較を行なった。
上記比較を行った比較例の構造の一例を、図2の概略構成断面図によって説明する。なお、図面では、半導体基板410の断面構造をわかりやすくするために、縦方向に大幅に拡大して示した。
図2に示すように、GaAs基板400上には、GaAsからなる厚さ450nmのGaAsバッファ層402、InPからなる厚さ30nmの低温バッファ層403、InPからなる厚さ6μmのInPバッファ層404、InGaP(Ga=0.10)からなる厚さ10nmのInGaP層405aとInPからなる厚さ10nmのInP層405bとを交互に5ずつ積層した歪超格子層405、InPからなる厚さ300nmのInP層406、が順次積層されている。この歪超格子層405の構造は、例えば、前記特許文献1に記載されている構成である。
上記比較例の半導体基板40のInP層406のEPD測定を実施した。その結果、EPDは、5×10 6 /cm 2 になった。ここで、InPバッファ層404のEPDは、1×10 7 /cm 2 であった。つまり、従来の歪超格子層405では、EPDは1/2に低減した。なお、前記特許文献1では、同一構造の歪超格子でEPDが約3×10 7 /cm 2 から約1×10 7 /cm 2 に減少しており、本発明者の比較例に近い減少率となっている。
さらに、上記比較例の半導体基板40において、InGaP層405aとInP層405bの2層を1ペア層として、InGaP層405aとInP層405bのペア層数を変えて、EPDの変化を調べた。その結果を図3に示す。図3中、横軸にペア層数yを、縦軸にEPDを示している。
図3に示すように、ペア層数が5ペア層になるまでは、EPDは減少する。そして、5ペア層で、EPDは5×10 6 /cm 2 となる。しかし、ペア層数を5ペア層より増やしても、EPDの減少は見られなくなる。このことから、従来の歪超格子層405では、EPDを5×10 6 /cm 2 未満にすることができないことが分かる。
上記図3から分かるように、従来の歪超格子層405ではInGaP層405aの総膜厚を50nm以上にしてもEPDが減少しなかった。これに対し、上記第1実施例の歪補償構造層105ではInGaP層の引張歪層105aの総膜厚を50nm以上にしてもEPDが減少し続ける。例えば、上記第1実施例では、引張歪層105aの総膜厚を150nmにすることで、5×10 6 /cm 2 未満のEPDが得られる。そして、上記第1実施例の歪補償構造105では、従来の歪超格子405に比べ、高い欠陥減少率を得ることができる。
上記第1実施例による欠陥密度の低減は、次のようなメカニズムによると考えられる。すなわち、上記第1実施例の歪補償構造層105では、従来の歪超格子層405と同様に、1番目の50nmのInGaP層の引張歪層105aにより、EPDが5×10 6 /cm 2 に減少する。その次の1番目の50nmのInGaAs層の圧縮歪層105bでは、1番目の引張歪層105aとの間で歪補償が行なわれ、トータルの歪がほぼ0になる。その次の2番目の引張歪層105aでは、歪により再び欠陥が横方向に曲げられ、EPDが減少する。その次の2番目のInGaAs層の圧縮歪層105bでは、再び歪補償が行なわれ、トータルの歪がほぼ0になる。そして、次の3番目のInGaP層の引張歪層105aで、歪により再び欠陥が横方向に曲げられ、EPDが2×10 6 /cm 2 未満に減少する。
これに対し、従来の歪超格子405では、InGaP層405aの総膜厚が50nmを超えると、InGaP層405aの格子緩和が進んでInGaP層405aの歪が少なくなり、歪により欠陥を曲げるという歪超格子の効果がなくなると考えられる。
以上説明した第1実施例1の半導体基板(メタモルフィック基板)10では、バッファ層101のInPバッファ層104とInP層106との間に、InPバッファ層104よりも面内方向の格子定数が小さい材料からなる引張歪層105aと、InPバッファ層104よりも面内方向の格子定数大きい材料からなる圧縮歪層105bとを積層して形成された歪補償構造層105を有することから、InPバッファ層104に対する引張歪層105aと圧縮歪層105bの歪の方向が互いに逆方向となり、かつ互いの歪を補償しあうので、歪補償構造層105全体の歪を打ち消し、厚膜化による歪緩和を防ぐことができる。その結果、厚膜化に限界があるという従来の歪超格子405問題を回避しつつ、欠陥を屈曲させる機会を増やし、欠陥密度を低減することができる。また、第1実施例における歪補償構造層105は、膜厚が300nmと薄いため、従来の歪超格子層405と比較して、成長時間の増加や原料コストの増加はほとんどない。このため、コストをほとんど増加させることなく、欠陥低減効果を高めることができる。
以上説明した、第1の実施例の半導体基板(メタモルフィック基板)10では、引張歪層105aをGaAs基板200側に先に配置した例を示したが、圧縮歪層205bをGaAs基板200側に先に配置することもできる。すなわち、引張歪層105aと圧縮歪層205bは交互に積層されていれば、どちらを先に形成したものであってもよい。
また、上記圧縮歪層105bはInGaAsで形成されているが、例えば、インジウムアルミニウムヒ素(InAlAs)、もしくはインジウムヒ素リン(InAsP)で形成することも可能である。また、上記圧縮歪層105bを、インジウムとヒ素を含む他の混晶層とすることもできる。この場合も、InPバッファ層104に対して、互いに逆方向の歪を受けていて、これらの引張歪層105aと圧縮歪層105bとは、InPとの格子不整量の絶対値が近く、歪が逆方向で、膜厚が同じで、弾性定数に大きな差がないことが好ましい
また、第1の実施例の半導体基板10では、歪補償構造層105の上にInP層106を設けたが、これを設けないこともできる。この場合でも、歪補償構造層105の横方向の格子定数はInPバッファ層104を構成するInPとほぼ等しくなっているので、半導体基板10をInP基板の代用として用いることが可能である。
(第2実施例)
次に、本発明の第2実施例の半導体装置を、図4の概略構成断面図によって説明する。図4では、半導体装置の一例としてヘテロ接合バイポーラトランジスタ(以下、HBTと記す)について示す。
図4に示すように、前記第1実施例の半導体基板(メタモルフィック基板)10上にHBT1が形成されている。このHBT1は、格子不整合のGaAs基板100上にInP系HBTを積層した構造であり、InP系メタモルフィックHBTと呼ばれる。
半導体基板(メタモルフィック基板)10上には、InPバッファ層111、InPサブコレクタ層112、InGaAsサブコレクタ層113、コレクタ層114、ベース層115、エミッタ層116、エミッタキャップ層117が順次積層されている。
上記InPバッファ層111は、例えば厚さ150nmのInPからなる。上記InPサブコレクタ層112は、例えば高濃度のSiがドープされた厚さ300nmのInP:Siからなる。上記InGaAsサブコレクタ層113は、例えば高濃度のSiがドープされた厚さ50nmのInGaAs:Siからなる。上記コレクタ層114は、例えば厚さ450nmの低濃度のSiがドープされたInP:Siからなる。上記ベース層115は、例えば高濃度のCがドープされた厚さ75nmのInGaAs:Cからなる。上記エミッタ層116は、例えば厚さ60nmのInP:Siからなる。上記エミッタキャップ層117は、例えば厚さ75nmのInGaAs:Siからなる。
上記HBT(InP系メタモルフィックHBT)1によれば、第1実施例で説明した歪補償構造層105を用いたので、EPDが5×10 6 /cm 2 未満になる。本発明者の実験によれば、InP系メタモルフィックHBTのDC特性は、EPDが5×10 6 /cm 2 以下であれば、InP基板上に形成したInP系格子整合HBTと同等になる。本実施例のInP系メタモルフィックHBTでは、この値を十分に下回ることができるので、InP系格子整合HBTと同等のDC特性を得ようとした場合、高い歩留まりで低コストのInP系メタモルフィックHBTを提供することができる。
これに対し、従来のInP系メタモルフィックHBTでは、前記図2に示した歪超格子層405の効果が不十分であるため、例えば前記図2に示した基板構造をそのまま用いると、InP系格子整合HBTと同等のDC特性を得ようとした場合、歩留まりが低下した。また、歩留まりを上げるためにEPDを減少させようとすると、InPバッファ層404の欠陥密度を低減させるための別種の技術が必要となり、成長時間が長くなる、原料コストが上がる等により、コストが高くなった。
上述したEPDとデバイス特性の関係を、図5に示す。図5は、ベース・コレクタ出力電圧(横軸)とベース電流(縦軸)の関係を示すものである。図5に示すように、EPDが5×10 6 /cm 3 までならばベース・コレクタ(BC)間リーク電流の増加がないことがわかる。他方、EPDが2×10 7 /cm 3 になると、BC間リーク電流が増加する。この図5から分かるように、本実施例のInP系メタモルフィックHBTでは、EPDが5×10 6 /cm 3を十分に下回ることができるので、InP系格子整合HBTと同等のDC特性を得ようとした場合、高い歩留まりで低コストのInP系メタモルフィックHBTを提供することができる。
以上説明した第2実施例では、半導体装置1としてHBTを形成した例を示したが、上記半導体基板(メタモルフィック基板)10上に半導体層を積層して形成される半導体装置はHBTに限定される必要はなく、高電子移動度トランジスタ(HEMT)や他の電子デバイス、または半導体レーザ発光装置、発光ダイオードのような発光デバイスを形成することも可能である。
(第3実施例)
次に、本発明の第3実施例の半導体基板を、図6の概略構成断面図によって説明する。この図6では、本発明のメタモルフィック基板の一例を示す。なお、図面では、半導体基板20の断面構造をわかりやすくするために、縦方向に大幅に拡大して示した。
図6に示すように、GaAs基板200上には、バッファ層201、引張歪層205aと圧縮歪層205bとを積層した歪補償構造層205、およびInP層206が順次積層されている。上記バッファ層201は、例えば下層よりGaAsバッファ層202、低温バッファ層203、InPバッファ層204を順に積層した構成となっている。
上記GaAsバッファ層202は、例えば厚さ450nmのGaAs層からなる。上記低温バッファ層203は、例えば厚さ30nmのInP層からなる。上記InPバッファ層204は、例えば厚さ6μmのInP層からなる。上記引張歪層205aは、例えばGa=0.10のInGaP層からなり、50nmの厚さに形成されている。上記圧縮歪層205bは、例えばAs=0.22のインジウムヒ素リン(以下InAsPと記す)層からなり、50nmの厚さに形成されている。そして、上記引張歪層205aを1層と上記圧縮歪層205bを1層を形成して、上記歪補償構造層205を構成している。上記InP層206は、例えば300nmの厚さに形成されている。
上記半導体基板(メタモルフィック基板)20の引張歪層205aは、第1実施例と同様に、InPと約0.71%の格子不整がある。また、圧縮歪層205bを構成するInAsP(As=0.22)の格子定数は5.910Åである。この圧縮歪層205bは、InPと0.71%の格子不整がある。この第2実施例の特徴の一つは、この引張歪層205aと圧縮歪層205bが、InPバッファ層204に対して、互いに逆方向の歪を受けている点である。これらの引張歪層205aと圧縮歪層205bとは、InPとの格子不整量の絶対値が近く、歪が逆方向で、膜厚が同じで、弾性定数に大きな差がない。このため、第2実施例の歪補償構造層205では、引張歪層205aと圧縮歪層205bが歪を補償しあっていて、歪補償構造層205全体の歪を打ち消しあい、歪補償構造層205の総歪がほぼ0になっている。
上記第3実施例の半導体基板の製造方法は以下のとおりである。まず、前記第1実施例の製造方法と同様に、GaAs基板200上にGaAsを成長させてバッファ層201のうちのGaAsバッファ層202を形成する。次にInPを成長させてバッファ層201のうちの低温バッファ層203を形成する。次にInPを成長させてバッファ層201のうちInPバッファ層204を成長する。この結果、GaAsバッファ層202、低温バッファ層203、InPバッファ層204を順に積層したバッファ層201が形成される。
次に、熱サイクルアニール処理を行なう。
次に、InGaPを成長させ、歪補償構造層205のうちの引張歪層205aを形成する。次にInAsPを成長させ、歪補償構造層205のうちの圧縮歪層205bを形成する。第2実施例では、第1実施例と異なり、引張歪層205aと圧縮歪層205bとを1層のみ形成する。
次に、InPを成長させ、InP層206を形成する。このように、GaAs基板200上に順次成長させていくことで、前記図6によって説明した半導体基板20が形成される。
以上説明した製造方法によって製造された図6に示した構成の半導体基板20では、InP層206のEPDは、5×10 6 /cm 2 未満となる。
また、第3実施例の半導体基板(メタモルフィック基板)20では、InGaPからなる引張歪層205aにより、欠陥が曲げられ、EPDが5×10 6 /cm 2 に減少する。さらに、InAsPからなる圧縮歪層205bによって、欠陥が曲げられ、EPDが5×10 6 /cm 2 未満になる。このように、引張歪層205aと圧縮歪層205bの両方に欠陥を曲げる効果が高い材料を用いることで、歪補償構造層205が1周期であっても、従来に比べ、欠陥密度を低減することができる。
上記半導体基板(メタモルフィック基板)20によれば、歪補償構造層205を用いたので、前記図2に示した従来の歪超格子層405よりも効果的に欠陥密度を低減することができる。これにより、欠陥密度の少ないメタモルフィック基板を提供することができる。また、第2実施例における歪補償構造層205は、膜厚が従来の歪超格子層405と同等もしく薄くすることができ、このため膜の成長時間の増加や原料コストの増加はほとんどなく、低減することも可能である。このため、コストをほとんど増加させることなく、欠陥低減効果を高めることができる。
以上説明した第3の実施例の半導体基板(メタモルフィック基板)20では、引張歪層205aとしてInGaPを用いたが、InPバッファ層204に対して引張歪を受ける材料であれば、必要に応じて、他の材料を用いることもできる。具体的には、InPバッファ層204の場合、インジウムガリウムヒ素(InGaAs)、インジウムアルミニウムヒ素(InAlAs)等を用いることができる。また、第3実施例とは組成が異なるInGaPを用いることもできる。ただし、引張歪層205aとして欠陥を曲げる効果が少ない材料を用いる場合は、引張歪層205aと圧縮歪層205bを交互に複数回に積層する構造とすることが望ましい。また、第3実施例の半導体基板(メタモルフィック基板)20では、圧縮歪層205bとしてInAsPを用いたが、InPバッファ層204に対して圧縮歪を受ける材料であれば、必要に応じて、他の材料とすることもできる。具体的には、InPバッファ層204の場合、InGaAs、InAlAs等が可能である。また、第2実施例とは組成が異なるInAsPとすることもできる。ただし、圧縮歪層205bとして欠陥を曲げる効果が少ない材料を用いる場合は、引張歪層205aと圧縮歪層205bを交互に複数回に積層する構造(例えば第1実施例の前記半導体基板10の構造)とすることが望ましい。
また、第3実施例の半導体基板(メタモルフィック基板)20では、引張歪層205aをGaAs基板200側に配置した例を示したが、引張歪層205aと圧縮歪層205bを逆にすることもできる。
また、第3実施例の半導体基板(メタモルフィック基板)20では、引張歪層205a、圧縮歪層205bの膜厚を共に50nmとしたが、必要に応じて膜厚を変えることができる。ただし、歪補償の観点から、引張歪層205aの格子不整(InPバッファ層204に対する格子不整)と膜厚の積と、圧縮歪層205bの格子不整(InPバッファ層204に対する格子不整)と膜厚の積と、できうる限り近い値にすることが好ましい。また、1層の引張歪層205aおよび圧縮歪層205bの膜厚は、欠陥が増加する膜厚より薄くすることが必要である。また、1層の膜厚を薄くして1層あたりの欠陥を曲げる効果が少なくなる場合は、引張歪層205aと圧縮歪層205bを交互に複数回に積層する構造(例えば第1実施例の前記半導体基板10の構造)にすることが望ましい。
さらに、第3実施例の半導体基板(メタモルフィック基板)20では、InPバッファ層204を他の材料、例えばインジウムアルミニウムヒ素(InAlAs)やインジウムガリウムヒ素(InGaAs)とすることもできる。
また、第3実施例の半導体基板(メタモルフィック基板)20では、歪補償構造層205を積層する前のInPバッファ層204のEPDが1×107/cm 2 になるようにしたが、InPバッファ層204の欠陥密度は限定されない。
また、以上説明した第1実施例、第3実施例の半導体基板10、20において、引張歪層105a、205aと圧縮歪層105b、205bを、インジウムガリウムヒ素(InGaAs)で形成することもできる。この場合、引張歪層105a、205aは、インジウム(In)の組成比がInPバッファ層104、204に格子整合する組成比よりも少なく、ガリウム(Ga)の組成比がInPバッファ層104、204に格子整合する組成比よりも多くなるようにする。また、圧縮歪層105b、205bは、インジウム(In)の組成比がInPバッファ層104、204に格子整合する組成比よりも多く、ガリウム(Ga)の組成比がInPバッファ層104、204に格子整合する組成比よりも少なくなるようにする。例えば、InPに対してIn0.53Ga0.47Asが格子整合するので、引張歪層105a、205aにIn0.43Ga0.57Asを用い、圧縮歪層105b、205bにIn0.63Ga0.37Asを用いることができる。また、InPに格子整合するIn0.52Al0.48Asを基準にして組成比をかえることで、例えば、格子整合する組成比に対してInを少なくし、Alを多くすることで上記引張歪層105a、205aとし、格子整合する組成比に対してInを多くし、Alを少なくすることで上記圧縮歪層105b、205bとすることができる。またInGaPについても同様である。
また、第2実施例の半導体装置1では、半導体基板10に第1実施例の半導体基板を用いた例を示したが、第3実施例の半導体基板を用いることもできる。
本発明の第1実施例の半導体基板を示した概略構成断面図である。 比較例の構造の一例を示した概略構成断面図である。 InGaP層とInP層のペア層数とEPDとの関係図である。 本発明の第2実施例の半導体装置を示した概略構成断面図である。 EPDとデバイス特性との関係図である。 本発明の第3実施例の半導体基板を示した概略構成断面図である。
符号の説明
10…半導体基板、100…ガリウムヒ素(GaAs)基板、101…バッファ層、105…歪補償構造層、105a…引張歪層、105b…圧縮歪層、106…インジウムリン(InP)層

Claims (6)

  1. ガリウムヒ素基板と、
    前記ガリウムヒ素基板上に形成されたバッファ層と、
    前記バッファ層上に、前記バッファ層よりも面内方向の格子定数が小さい材料からなる引張歪層と、前記バッファ層よりも面内方向の格子定数大きい材料からなる圧縮歪層とを積層して形成された歪補償構造層と
    を有することを特徴とする半導体基板。
  2. 前記歪補償構造層は、前記引張歪層と前記圧縮歪層とを交互に複数層に積層してなる
    ことを特徴とする請求項1記載の半導体基板。
  3. 前記引張歪層と前記圧縮歪層とは、前記バッファ層に対する歪の方向が互いに逆方向であり、かつ互いの歪を補償しあって、前記歪補償構造層全体の歪が打ち消されている
    ことを特徴とする請求項1記載の半導体基板。
  4. 前記引張歪層がイリジウムガリウムリンからなり、
    前記圧縮歪層がインジウムとヒ素を含む
    ことを特徴とする請求項1記載の半導体基板。
  5. ガリウムヒ素基板上にバッファ層を形成する工程と、
    前記バッファ層上に、前記バッファ層よりも面内方向の格子定数が小さい材料からなる引張歪層と、前記バッファ層よりも面内方向の格子定数大きい材料からなる圧縮歪層とを積層して歪補償構造層を形成する工程と
    を順に行うことを特徴とする半導体基板の製造方法。
  6. 半導体基板上に半導体層を積層して形成される半導体装置であって、
    前記半導体基板は、
    ガリウムヒ素基板と、
    前記ガリウムヒ素基板上に形成されたバッファ層と、
    前記バッファ層上に、前記バッファ層よりも面内方向の格子定数が小さい材料からなる引張歪層と、前記バッファ層よりも面内方向の格子定数大きい材料からなる圧縮歪層とを積層して形成された歪補償構造層と
    を有することを特徴とする半導体装置。
JP2007275880A 2007-10-24 2007-10-24 半導体基板およびその製造方法、ならびに半導体装置 Pending JP2009105231A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007275880A JP2009105231A (ja) 2007-10-24 2007-10-24 半導体基板およびその製造方法、ならびに半導体装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007275880A JP2009105231A (ja) 2007-10-24 2007-10-24 半導体基板およびその製造方法、ならびに半導体装置

Publications (1)

Publication Number Publication Date
JP2009105231A true JP2009105231A (ja) 2009-05-14

Family

ID=40706629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007275880A Pending JP2009105231A (ja) 2007-10-24 2007-10-24 半導体基板およびその製造方法、ならびに半導体装置

Country Status (1)

Country Link
JP (1) JP2009105231A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018516448A (ja) * 2014-12-23 2018-06-21 インテグレイテッド ソーラー 残留歪を相殺するiii−v族材料とシリコンウェハとの間の材料界面のエピタキシャル成長方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018516448A (ja) * 2014-12-23 2018-06-21 インテグレイテッド ソーラー 残留歪を相殺するiii−v族材料とシリコンウェハとの間の材料界面のエピタキシャル成長方法
JP2021073721A (ja) * 2014-12-23 2021-05-13 インテグレイテッド ソーラー 残留歪を相殺するiii−v族材料とシリコンウェハとの間の材料界面のエピタキシャル成長方法

Similar Documents

Publication Publication Date Title
JP5627649B2 (ja) 窒化物半導体結晶層の製造方法
US8790999B2 (en) Method for manufacturing nitride semiconductor crystal layer
TWI611576B (zh) 半導體基板及半導體基板之製造方法
JP5543103B2 (ja) 半導体基板、半導体基板の製造方法および電子デバイス
JP5543710B2 (ja) 半導体基板、半導体基板の製造方法および電子デバイス
US10818491B2 (en) Formation of a III-N semiconductor structure
JP6302254B2 (ja) 窒化物半導体素子、窒化物半導体ウェーハ、及び、窒化物半導体素子の製造方法
US8465997B2 (en) Manufacturing method of group III nitride semiconductor
JP2010225870A (ja) 半導体素子
JP2014067908A (ja) 窒化物半導体ウェーハ、窒化物半導体素子及び窒化物半導体ウェーハの製造方法
JP6770516B2 (ja) 六方格子結晶構造を有するiii−v族半導体層を含んだ半導体構造
US9245748B2 (en) Methods for growing III-V materials on a non III-V material substrate
US9905656B2 (en) Semiconductor substrate
US10304678B1 (en) Method for fabricating InGaP epitaxial layer by metal organic chemical vapor deposition (MOCVD)
JP2009105231A (ja) 半導体基板およびその製造方法、ならびに半導体装置
JP2015103665A (ja) 窒化物半導体エピタキシャルウエハおよび窒化物半導体
WO2016152106A1 (ja) 半導体ウエハ、半導体装置及び半導体ウエハの製造方法
JP2014175598A (ja) 化合物半導体積層体及び半導体装置
WO2019035274A1 (ja) テンプレート基板、電子デバイス,発光デバイス,テンプレート基板の製造方法および電子デバイスの製造方法
JP7120334B2 (ja) 半導体装置および半導体装置の製造方法
JP6287951B2 (ja) 化合物半導体装置
JPH0714785A (ja) 半導体エピタキシャル基板およびその製造方法
WO2011105066A1 (ja) 半導体基板、半導体デバイスおよび半導体基板の製造方法
JP6050595B2 (ja) 化合物半導体基板及びその製造方法
JP2016207734A (ja) 窒化物半導体発光素子及びその製造方法