JP2009097543A - 車両用自動変速機の適合支援制御装置 - Google Patents

車両用自動変速機の適合支援制御装置 Download PDF

Info

Publication number
JP2009097543A
JP2009097543A JP2007267247A JP2007267247A JP2009097543A JP 2009097543 A JP2009097543 A JP 2009097543A JP 2007267247 A JP2007267247 A JP 2007267247A JP 2007267247 A JP2007267247 A JP 2007267247A JP 2009097543 A JP2009097543 A JP 2009097543A
Authority
JP
Japan
Prior art keywords
correction value
learning correction
shift
learning
automatic transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007267247A
Other languages
English (en)
Inventor
Masamitsu Kondo
真実 近藤
Toshimitsu Sato
利光 佐藤
Yukihito Moriya
如人 守屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2007267247A priority Critical patent/JP2009097543A/ja
Publication of JP2009097543A publication Critical patent/JP2009097543A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Of Transmission Device (AREA)

Abstract

【課題】自動変速機の修理などによって変速特性が変化した場合にも、適切に制御定数の適合が図られる車両用自動変速機の適合支援制御装置を提供する。
【解決手段】自動変速機10の修理などにより変速構成部品が変更等された場合において部品精度判定手段118が肯定的な判定を行った場合には、上記変速構成部品が変更される前の学習補正値dPGの記憶が維持され、かつ、上記変速構成部品が変更等された時から所定回数又は所定期間、高速学習補正値決定手段130により学習補正値dPGが決定されることが許可されその許可に基づき高速学習が行われる。従って、上記変速構成部品が変更等された場合に学習補正値dPGを早期に収束させることができる。その結果、例えば、自動変速機10の修理などによる上記変速構成部品の変更等によって一時的に変速ショックが大きくなってもその変速ショックを早期に小さくすることが可能である。
【選択図】図10

Description

本発明は、入力軸に伝達された回転を変速して出力軸から伝達する車両用自動変速機の適合支援制御装置に関するものである。
従来から、車両の自動変速機に備えられた油圧式摩擦係合要素を制御する電磁弁の駆動電流を決定するための制御定数を変速結果などに基づき学習補正する車両用自動変速機の適合支援制御装置が知られている。例えば、特許文献1の車両用自動変速機の適合支援制御装置がそれである。ここで、自動変速機に使用される部材(例えば油圧式摩擦係合要素、電磁弁など)が修理などで交換されると、上記制御定数が上記部材交換前には適正であったとしても、変速特性がその部材交換により変更され上記制御定数が適正でなくなる場合がある。このような場合、早い段階で上記制御定数が適正値に近付くようにするため上記適合支援制御装置は、上記部材交換前と比較して上記学習補正を行う頻度を高くし、上記制御定数を学習補正するときの1回の更新量が大きくなることを許容する制御を実施するものであった。
特開2006−242255号公報 特開2006−348985号公報
前記制御定数の学習補正では、その制御定数を補正するための学習補正値が変速結果などに基づき決定され変更されることにより、上記制御定数の適正化が図られる。例えば、上記学習補正が行われることを許可する所定の条件を満たした変速の変速結果などに基づき上記学習補正値が変更され、所定の基準値に対して上記学習補正値を加算又は減算等して上記制御定数が求められる。そして、上記学習補正を重ねるに従い上記学習補正値のばらつきは小さくなり収束していく。この点、前記特許文献1の車両用自動変速機の適合支援制御装置によれば、前記自動変速機に使用される部材が交換された場合において、その部材交換後、上記学習補正値を早期に収束させる一定の効果はあるものと思われる。しかし、上記自動変速機の部材である油圧式摩擦係合要素や電磁弁などが交換される場合は、上記自動変速機が車両から分離されたりして電源であるバッテリから上記適合支援制御装置への電力供給が遮断されるので、SRAMなどの揮発性メモリに記憶された前記学習補正値は初期値例えば零に戻ってしまう。従って、上記自動変速機の部材が交換された場合、前記特許文献1の適合支援制御装置では、その交換後、上記学習補正値が初期値に戻った状態から前記学習補正が行われることとなり、このことによって上記学習補正値を早期に収束させることが遅延されると考えられた。その結果、例えば、変速ショックが小さくなるまでに時間を要する等の課題が生じることがあった。
本発明は、以上の事情を背景としてなされたものであり、その目的とするところは、前記部材交換などによって前記変速特性が変化した場合にも、適切に前記制御定数の適合が図られる車両用自動変速機の適合支援制御装置を提供することにある。
かかる目的を達成するために、請求項1に係る発明は、(a)車両の自動変速機の変速制御に用いる制御定数を適合させるために、前記制御定数を学習補正するための学習補正値を記憶する学習補正値記憶手段と、その学習補正値を決定する学習補正値決定手段とを含む車両用自動変速機の適合支援制御装置であって、(b)前記学習補正値決定手段は、前記学習補正値を前記自動変速機の変速結果に基づき決定する通常学習補正値決定手段と、その通常学習補正値決定手段よりも早期に前記学習補正値が収束するように前記変速結果に基づきその学習補正値を決定する高速学習を行う高速学習補正値決定手段とを備え、(c)前記自動変速機の変速結果に影響する変速構成部品が変更された場合には、その変速構成部品が変更される前の前記学習補正値の記憶が維持され、かつ、前記変速構成部品が変更された時から所定回数又は所定期間、前記高速学習補正値決定手段が前記高速学習を行うことを特徴とする。
請求項2に係る発明は、前記変速構成部品の部品精度が所定のばらつき許容範囲内である場合に、前記変速構成部品が変更される前の前記学習補正値の記憶が維持されることを特徴とする。
請求項3に係る発明では、(a)前記学習補正値記憶手段は車両状態に応じた前記学習補正値を複数記憶しており、(b)前記複数の学習補正値の一部又は全部から構成され予め定められた学習補正値群が設けられており、(c)前記高速学習は、前記自動変速機の一の変速結果に基づき前記学習補正値群に属する前記複数の学習補正値がまとめて決定されることであることを特徴とする。
請求項4に係る発明では、前記変速構成部品が変更された場合とは、前記車両の外部からその変速構成部品が変更された旨の入力があった場合であることを特徴とする。
請求項1に係る発明によれば、前記学習補正値決定手段は、前記学習補正値を前記自動変速機の変速結果に基づき決定する通常学習補正値決定手段と、その通常学習補正値決定手段よりも早期に上記学習補正値が収束するように上記変速結果に基づきその学習補正値を決定する高速学習を行う高速学習補正値決定手段とを備え、前記変速構成部品が変更された場合には、その変速構成部品が変更される前の上記学習補正値の記憶が維持され、かつ、上記変速構成部品が変更された時から所定回数又は所定期間、上記高速学習補正値決定手段が上記高速学習を行うので、上記変速構成部品が変更された場合に上記学習補正値を早期に収束させることができる。その結果、例えば、前記自動変速機の修理などによる上記変速構成部品の変更又は交換によって一時的に変速ショックが大きくなってもその変速ショックを早期に小さくすることが可能である。
修理などにより変更乃至は交換される前記変速構成部品の部品精度が高いほど、すなわちその部品精度のばらつきが小さいほど、その変速構成部品の機械的特性は安定しており、上記変更乃至は交換後の学習補正値はその変更乃至は交換前の学習補正値に近い値に収束するものと考えられる。この点、請求項2に係る発明によれば、前記変速構成部品の部品精度が所定のばらつき許容範囲内である場合に、上記変速構成部品が変更される前の前記学習補正値の記憶が維持されるので、上記学習補正値を早期に収束させることができるという効果が一層高くなる。
ここで好適には、前記ばらつき許容範囲とは、前記変速構成部品の変更前の前記学習補正値がその変更後において維持された方が初期化されるよりも前記自動変速機の変速結果に与える影響が小さいと予測できる予め定められた許容範囲である。
請求項3に係る発明によれば、前記高速学習は、前記自動変速機の一の変速結果に基づき前記学習補正値群に属する前記複数の学習補正値がまとめて決定されることであるので、前記複数の学習補正値全体で見ると、前記変速構成部品が変更乃至は交換された後、早期にその複数の学習補正値の収束が図られるとともに、その学習補正値の1回の更新量を大きくする学習制御と比較して安定して上記学習補正値を収束させ得る。
請求項4に係る発明によれば、前記変速構成部品が変更された場合とは、前記車両の外部からその変速構成部品が変更された旨の入力があった場合であるので、その変速構成部品が変更されたことを自動的に検出する機能を上記車両が備える必要がない。
ここで好適には、前記通常学習補正値決定手段及び高速学習補正値決定手段は、前記変速制御に関係する車両状態が前記学習補正の実行可能な状態であるとする学習実行条件が成立した場合に前記学習補正値を決定し更新する。このようにすれば、上記学習補正値が決定されるのに適した車両状態のもとでの前記自動変速機の変速結果に基づいて適切に上記学習補正値が決定され更新される。
また好適には、前記自動変速機は油圧式摩擦係合要素を備え、前記車両はその油圧式摩擦係合要素に対する供給圧を制御する電磁弁を備え、前記変速構成部品とは前記油圧式摩擦係合要素、電磁弁、又はそれらの部品である。このようにすれば、上記自動変速機の修理などによってそれら油圧式摩擦係合要素等が変更され上記自動変速機の変速特性が変わっても前記制御定数の適合が適切に図られる。
また好適には、上記制御定数は、前記変速制御中に前記電磁弁を駆動するための駆動電流を決定するための定数である。このようにすれば、上記制御定数の適合が図られることにより前記変速制御が適正化される。
また好適には、変速時に前記油圧式摩擦係合要素の係合動作を速やかに進行させるために加えられる係合圧であって係合が開始されない程度の所定の係合圧である低圧待機圧が、前記制御定数に基づいて決定される。このようにすれば、上記低圧待機圧によって変化する変速ショックをその制御定数の適合により低減できる。
また好適には、前記変速構成部品の部品精度が前記ばらつき許容範囲内であるか否かは前記車両の外部からの入力に基づき判断される。このようにすれば、上記変速構成部品の部品精度を自動的に検出する機能を上記車両が備える必要がない。
以下、本発明の実施例を図面を参照しつつ詳細に説明する。
図1は、本発明が好適に適用される車両用自動変速機(以下、「自動変速機」と表す)10の構成を説明する骨子図であり、図2は複数の変速段を成立させる際の油圧式摩擦係合要素(以下、「係合要素」と表す)の作動を説明する作動表である。この自動変速機10は、車体に取り付けられる非回転部材としてのトランスミッションケース(以下、「ケース」と表す)26内において、ダブルピニオン型の第1遊星歯車装置12を主体として構成されている第1変速部14と、シングルピニオン型の第2遊星歯車装置16およびダブルピニオン型の第3遊星歯車装置18を主体として構成されている第2変速部20とを共通の軸心上に有し、入力軸22の回転を変速して出力軸24から出力する。入力軸22は入力回転部材に相当するものであり、本実施例では走行用の動力源であるエンジン30によって回転駆動されるトルクコンバータ32のタービン軸である。出力軸24は出力回転部材に相当するものであり、例えば図示しない差動歯車装置(終減速機)や一対の車軸等を順次介して左右の駆動輪を回転駆動する。なお、この自動変速機10はその軸心に対して略対称的に構成されており、図1の骨子図においてはその軸心の下半分が省略されている。
上記第1遊星歯車装置12は、サンギヤS1、互いに噛み合う複数対のピニオンギヤP1、そのピニオンギヤP1を自転および公転可能に支持するキャリヤCA1、ピニオンギヤP1を介してサンギヤS1と噛み合うリングギヤR1を備え、サンギヤS1、キャリアCA1、およびリングギヤR1によって3つの回転要素が構成されている。キャリヤCA1は入力軸22に連結されて回転駆動され、サンギヤS1は回転不能にケース26に一体的に固定されている。リングギヤR1は中間出力部材として機能し、入力軸22に対して減速回転させられて、回転を第2変速部20へ伝達する。本実施例では、入力軸22の回転をそのままの速度で第2変速部20へ伝達する経路が、予め定められた一定の変速比(=1.0)で回転を伝達する第1中間出力経路PA1であり、第1中間出力経路PA1には、入力軸22から第1遊星歯車装置12を経ることなく第2変速部20へ回転を伝達する直結経路PA1aと、入力軸22から第1遊星歯車装置12のキャリヤCA1を経て第2変速部20へ回転を伝達する間接経路PA1bとがある。また、入力軸22からキャリヤCA1、そのキャリヤCA1に配設されたピニオンギヤP1、およびリングギヤR1を経て第2変速部20へ伝達する経路が、第1中間出力経路PA1よりも大きい変速比(>1.0)で入力軸22の回転を変速(減速)して伝達する第2中間出力経路PA2である。
前記第2遊星歯車装置16は、サンギヤS2、ピニオンギヤP2、そのピニオンギヤP2を自転および公転可能に支持するキャリヤCA2、ピニオンギヤP2を介してサンギヤS2と噛み合うリングギヤR2を備えている。また、前記第3遊星歯車装置18は、サンギヤS3、互いに噛み合う複数対のピニオンギヤP2およびP3、そのピニオンギヤP2およびP3を自転および公転可能に支持するキャリヤCA3、ピニオンギヤP2およびP3を介してサンギヤS3と噛み合うリングギヤR3を備えている。
上記第2遊星歯車装置16および第3遊星歯車装置18では、一部が互いに連結されることによって4つの回転要素RM1〜RM4が構成されている。具体的には、第2遊星歯車装置16のサンギヤS2によって第1回転要素RM1が構成され、第2遊星歯車装置16のキャリヤCA2および第3遊星歯車装置のキャリヤCA3が互いに一体的に連結されて第2回転要素RM2が構成され、第2遊星歯車装置16のリングギヤR2および第3遊星歯車装置18のリングギヤR3が互いに一体的に連結されて第3回転要素RM3が構成され、第3遊星歯車装置18のサンギヤS3によって第4回転要素RM4が構成されている。この第2遊星歯車装置16および第3遊星歯車装置18は、キャリアCA2およびCA3が共通の部材にて構成されているとともに、リングギヤR2およびR3が共通の部材にて構成されており、且つ第2遊星歯車装置16のピニオンギヤP2が第3遊星歯車装置18の第2ピニオンギヤを兼ねているラビニヨ型の遊星歯車列とされている。
上記第1回転要素RM1(サンギヤS2)は、第1ブレーキB1を介してケース26に選択的に連結されて回転停止され、第3クラッチC3を介して中間出力部材である第1遊星歯車装置12のリングギヤR1(すなわち第2中間出力経路PA2)に選択的に連結され、さらに第4クラッチC4を介して第1遊星歯車装置12のキャリヤCA1(すなわち第1中間出力経路PA1の間接経路PA1b)に選択的に連結されている。第2回転要素RM2(キャリヤCA2およびCA3)は、第2ブレーキB2を介してケース26に選択的に連結されて回転停止させられるとともに、第2クラッチC2を介して入力軸22(すなわち第1中間出力経路PA1の直結経路PA1a)に選択的に連結されている。第3回転要素RM3(リングギヤR2およびR3)は、出力軸24に一体的に連結されて回転を出力するようになっている。第4回転要素RM4(サンギヤS3)は、第1クラッチC1を介してリングギヤR1に連結されている。なお、第2回転要素RM2とケース26との間には、第2回転要素RM2の正回転(入力軸22と同じ回転方向)を許容しつつ逆回転を阻止する一方向クラッチF1が第2ブレーキB2と並列に設けられている。
図3は、上記第1変速部14および第2変速部20の各回転要素の回転速度を直線で表すことができる共線図であり、下の横線が回転速度「0」を示し、上の横線が回転速度「1.0」すなわち入力軸22と同じ回転速度を示している。また、第1変速部14の各縦線は、左側から順番にサンギヤS1、リングギヤR1、キャリヤCA1を表しており、それ等の間隔は第1遊星歯車装置12のギヤ比ρ1(=サンギヤS1の歯数/リングギヤR1の歯数)に応じて定められる。第2変速部20の4本の縦線は、左側から右端へ向かって順番に第1回転要素RM1(サンギヤS2)、第2回転要素RM2(キャリヤCA2およびキャリヤCA3)、第3回転要素RM3(リングギヤR2およびリングギヤR3)、第4回転要素RM4(サンギヤS3)を表しており、それ等の間隔は第2遊星歯車装置16のギヤ比ρ2および第3遊星歯車装置18のギヤ比ρ3に応じて定められる。
そして、この図3に示す共線図から明らかなように、第1クラッチC1および第2ブレーキB2が係合させられて、第4回転要素RM4が第1変速部14を介して入力軸22に対して減速回転させられるとともに、第2回転要素RM2が回転停止させられると、出力軸24に連結された第3回転要素RM3は「1st」で示す回転速度で回転させられ、最も大きい変速比(=入力軸22の回転速度/出力軸24の回転速度)の第1変速段「1st」が成立させられる。
第1クラッチC1および第1ブレーキB1が係合させられて、第4回転要素RM4が第1変速部14を介して入力軸22に対して減速回転させられるとともに、第1回転要素RM1が回転停止させられると、第3回転要素RM3は「2nd」で示す回転速度で回転させられ、第1変速段「1st」よりも変速比が小さい第2変速段「2nd」が成立させられる。
第1クラッチC1および第3クラッチC3が係合させられて、第4回転要素RM4および第1回転要素RM1が第1変速部14を介して入力軸22に対して減速回転させられて第2変速部20が一体回転させられると、第3回転要素RM3は「3rd」で示す回転速度で回転させられ、第2変速段「2nd」よりも変速比が小さい第3変速段「3rd」が成立させられる。
第1クラッチC1および第4クラッチC4が係合させられて、第4回転要素RM4が第1変速部14を介して入力軸22に対して減速回転させられるとともに、第1回転要素RM1が入力軸22と一体回転させられると、第3回転要素RM3は「4th」で示す回転速度で回転させられ、第3変速段「3rd」よりも変速比が小さい第4変速段「4th」が成立させられる。
第1クラッチC1および第2クラッチC2係合させられて、第4回転要素RM4が第1変速部14を介して入力軸22に対して減速回転させられるとともに、第2回転要素RM2が入力軸22と一体回転させられると、第3回転要素RM3は「5th」で示す回転速度で回転させられ、第4変速段「4th」よりも変速比が小さい第5変速段「5th」が成立させられる。
第2クラッチC2および第4クラッチC4が係合させられて、第2変速部20が入力軸22と一体回転させられると、第3回転要素RM3は「6th」で示す回転速度すなわち入力軸22と同じ回転速度で回転させられ、第5変速段「5th」よりも変速比が小さい第6変速段「6th」が成立させられる。この第6変速段「6th」の変速比は1である。
第2クラッチC2および第3クラッチC3が係合させられて、第1回転要素RM1が第1変速部14を介して入力軸22に対して減速回転させられるとともに、第2回転要素RM2が入力軸22と一体回転させられると、第3回転要素RM3は「7th」で示す回転速度で回転させられ、第6変速段「6th」よりも変速比が小さい第7変速段「7th」が成立させられる。
第2クラッチC2および第1ブレーキB1が係合させられて、第2回転要素RM2が入力軸22と一体回転させられるとともに、第1回転要素RM1が回転停止させられると、第3回転要素RM3は「8th」で示す回転速度で回転させられ、第7変速段「7th」よりも変速比が小さい第8変速段「8th」が成立させられる。
また、第3クラッチC3および第2ブレーキB2が係合させられると、第1回転要素RM1が第1変速部14を介して減速回転させられるとともに、第2回転要素RM2が回転停止させられて、第3回転要素RM3は「Rev1」で示す回転速度で逆回転させられ、逆回転方向で変速比が最も大きい第1後進変速段「Rev1」が成立させられる。第4クラッチC4および第2ブレーキB2が係合させられると、第1回転要素RM1が入力軸22と一体回転させられるとともに、第2回転要素RM2が回転停止させられ、第3回転要素RM3は「Rev2」で示す回転速度で逆回転させられ、第1後進変速段「Rev1」よりも変速比が小さい第2後進変速段「Rev2」が成立させられる。第1後進変速段「Rev1」、第2後進変速段「Rev2」は、それぞれ逆回転方向の第1変速段、第2変速段に相当する。
図2の作動表は、上記各変速段を成立させる際のクラッチC1〜C4、ブレーキB1、B2の作動状態を説明する図表であり、「○」は係合状態を、「(○)」はエンジンブレーキ時のみ係合状態を、空欄は解放状態をそれぞれ表している。第1変速段「1st」を成立させるブレーキB2には並列に一方向クラッチF1が設けられているため、発進時(加速時)には必ずしもブレーキB2を係合させる必要は無い。また、各変速段の変速比は、第1遊星歯車装置12、第2遊星歯車装置16、および第3遊星歯車装置18の各ギヤ比ρ1、ρ2、ρ3によって適宜定められる。
このように本実施例の自動変速機10は、変速比が異なる2つの中間出力経路PA1、PA2を有する第1変速部14および2組の遊星歯車装置16、18を有する第2変速部20により、4つのクラッチC1〜C4および2つのブレーキB1、B2の係合切換えで前進8速の変速ギヤ段が達成されるため、小型に構成され、車両への搭載性が向上する。また、図2の作動表から明らかなように、クラッチC1〜C4およびブレーキB1、B2の何れか2つを掴み替えるだけで各変速段の変速を行うことができる。また、上記クラッチC1〜C4、およびブレーキB1、B2(以下、特に区別しない場合は単に「クラッチC」、「ブレーキB」と表す)は、多板式のクラッチやブレーキなど油圧アクチュエータによって係合制御される係合要素すなわち油圧式摩擦係合要素である。
図4は、図1の自動変速機10などを制御するために車両に設けられた制御系統の要部を説明するブロック線図である。本発明の適合支援制御装置に対応する電子制御装置90は、CPU、RAM、ROM、入出力インターフェース等を備えた所謂マイクロコンピュータを含んで構成されており、CPUはRAMの一時記憶機能を利用しつつ予めROMに記憶されたプログラムに従って信号処理を行うことにより、エンジン30の出力制御や自動変速機10の変速制御等を実行するようになっており、必要に応じてエンジン制御用や変速制御用等に分けて構成される。
図4において、アクセルペダル50の操作量Accがアクセル操作量センサ52により検出されるとともに、そのアクセル操作量Accを表す信号が電子制御装置90に供給されるようになっている。アクセルペダル50は、運転者の出力要求量に応じて大きく踏み込み操作されるものであることからアクセル操作部材に相当し、アクセル操作量Accは出力要求量に相当する。
また、エンジン30の回転速度Nを検出するためのエンジン回転速度センサ58、エンジン30の吸入空気量Qを検出するための吸入空気量センサ60、吸入空気の温度Tを検出するための吸入空気温度センサ62、エンジン30の電子スロットル弁の全閉状態(アイドル状態)およびその開度θTHを検出するためのアイドルスイッチ付スロットル弁開度センサ64、車速V(出力軸24の回転速度NOUTに対応)を検出するための車速センサ66、エンジン30の冷却水温Tを検出するための冷却水温センサ68、常用ブレーキであるフットブレーキの操作の有無を検出するためのブレーキスイッチ70、シフトレバー72のレバーポジション(操作位置)PSHを検出するためのレバーポジションセンサ74、タービン回転速度N(=入力軸22の回転速度NIN)を検出するためのタービン回転速度センサ76、油圧制御回路98内の作動油の温度であるAT油温TOILを検出するためのAT油温センサ78、車両の加速度(減速度)Gを検出するための加速度センサ80などが設けられており、それらのセンサやスイッチなどから、エンジン回転速度N、吸入空気量Q、吸入空気温度T、スロットル弁開度θTH、車速V、エンジン冷却水温T、ブレーキ操作の有無、シフトレバー72のレバーポジションPSH、タービン回転速度N、AT油温TOIL、車両の加速度(減速度)Gなどを表す信号が電子制御装置90に供給されるようになっている。
上記シフトレバー72は例えば運転席の近傍に配設され、図5に示すように、5つのレバーポジション「P」、「R」、「N」、「D」、または「S」へ手動操作されるようになっている。「P」ポジションは自動変速機10内の動力伝達経路を解放し且つメカニカルパーキング機構によって機械的に出力軸24の回転を阻止(ロック)するための駐車位置であり、「R」ポジションは自動変速機10の出力軸24の回転方向を逆回転とするための後進走行位置であり、「N」ポジションは自動変速機10内の動力伝達経路を解放するための動力伝達遮断位置であり、「D」ポジションは自動変速機10の第1速乃至第8速の変速を許容する変速範囲(Dレンジ)で自動変速制御を実行させる前進走行位置であり、「S」ポジションは変速可能な高速側の変速段が異なる複数の変速レンジ或いは異なる複数の変速段を切り換えることにより手動変速が可能な前進走行位置である。この「S」ポジションにおいては、シフトレバー72の操作毎に変速範囲或いは変速段をアップ側にシフトさせるための「+」ポジション、シフトレバー72の操作毎に変速範囲或いは変速段をダウン側にシフトさせるための「−」ポジションが備えられている。前記レバーポジションセンサ74はシフトレバー72がどのレバーポジション(操作位置)PSHに位置しているかを検出する。
また、前記油圧制御回路98には、例えば上記シフトレバー72にケーブルやリンクなどを介して連結されたマニュアルバルブが備えられ、シフトレバー72の操作に伴ってそのマニュアルバルブが機械的に作動させられることにより油圧制御回路98内の油圧回路が切り換えられる。例えば、「D」ポジションおよび「S」ポジションでは前進油圧Pが出力されて前進用回路が機械的に成立させられ、前進変速段である第1変速段「1st」〜第8変速段「8th」で変速しながら前進走行することが可能となる。電子制御装置90は、シフトレバー72が「D」ポジションへ操作された場合は、そのことをレバーポジションセンサ74の信号から判断して自動変速モードを成立させ、第1変速段「1st」〜第8変速段「8th」の総ての前進変速段を用いて変速制御を行う。
上記電子制御装置90は、例えば図6に示す車速Vおよびアクセル操作量Accをパラメータとして予め記憶された関係(マップ、変速線図)から実際の車速Vおよびアクセル操作量Accに基づいて変速判断を行い、その判断した変速段が得られるように変速制御を行う変速制御手段110(図10参照)を機能的に備えており、例えば車速Vが低くなったりアクセル操作量Accが大きくなったりするに従って変速比が大きい低速側の変速段が成立させられる。この変速制御においては、その変速判断された変速段が成立させられるように変速用の油圧制御回路98内のリニアソレノイドバルブSL1〜SL6の励磁、非励磁や電流制御が実行されてクラッチCやブレーキBの係合、解放状態が切り換えられるとともに変速過程の過渡油圧などが制御される。すなわち、電磁弁である前記リニアソレノイドバルブSL1〜SL6の励磁、非励磁をそれぞれ制御することによりクラッチCおよびブレーキBの係合、解放状態を切り換えて第1変速段「1st」〜第8変速段「8th」の何れかの前進変速段を成立させる。なお、スロットル弁開度θTHや吸入空気量Q、路面勾配などに基づいて変速制御を行うなど、種々の態様が可能である。
上記図6の変速線図において、実線はアップシフトが判断されるための変速線(アップシフト線)であり、破線はダウンシフトが判断されるための変速線(ダウンシフト線)である。また、この図6の変速線図における変速線は、実際のアクセル操作量Acc(%)を示す横線上において実際の車速Vが線を横切ったか否かすなわち変速線上の変速を実行すべき値(変速点車速)Vを越えたか否かを判断するためのものであり、上記値Vすなわち変速点車速の連なりとして予め記憶されていることにもなる。なお、図6の変速線図は自動変速機10で変速が実行される第1変速段乃至第8変速段のうちで第1変速段乃至第6変速段における変速線が例示されている。
図7は、油圧制御回路98のうちリニアソレノイドバルブSL1〜SL6に関する部分を示す回路図で、クラッチC1〜C4、およびブレーキB1、B2の各油圧アクチュエータ(油圧シリンダ)34、36、38、40、42、44には、油圧供給装置46から出力されたライン油圧PLがそれぞれリニアソレノイドバルブSL1〜SL6により調圧されて供給されるようになっている。油圧供給装置46は、前記エンジン30によって回転駆動される機械式のオイルポンプ48(図1参照)や、ライン油圧PLを調圧するレギュレータバルブ等を備えており、エンジン負荷等に応じてライン油圧PLを制御するようになっている。リニアソレノイドバルブSL1〜SL6は、基本的には何れも同じ構成で、電子制御装置90(図4参照)により独立に励磁、非励磁され、各油圧アクチュエータ34〜44の油圧が独立に調圧制御されるようになっている。そして、自動変速機10の変速制御においては、例えば変速に関与するクラッチCやブレーキBの解放と係合とが同時に制御される所謂クラッチ・ツウ・クラッチ変速が実行される。例えば、図2の係合作動表に示すように5速→4速のダウンシフトでは、クラッチC2が解放されると共にクラッチC4が係合され、変速ショックを抑制するようにクラッチC2の解放過渡油圧とクラッチC4の係合過渡油圧とが適切に制御される。なお、以下の説明ではリニアソレノイドバルブSL1〜SL6を個々に区別して説明する必要がない場合には単に「リニアソレノイドバルブSL」と表現する。
ところで、一般に自動変速機10の変速制御では、自動変速機10の変速結果に影響する変速構成部品、例えば係合要素(クラッチC又はブレーキB)、リニアソレノイドバルブ(電磁弁)SL、又はそれらの部品の個々の機械的ばらつき等を吸収し最適な変速制御が実施されるようにするため、上記変速制御に用いる制御定数CSBの適合が行われる。
制御定数CSBは制御定数CSBを学習補正するための学習補正値dPGが変更又は更新されることにより適合される。具体的に下記式(1)のように制御定数CSBは基準値A1と学習補正値dPGとの和で定義され、後述の変速制御手段110(図10参照)が制御定数CSBを用いて自動変速機10の変速制御を実施することにより、学習補正値dPGが上記変速制御に反映される。そして学習補正値dPGは、例えば、図8の自動変速機10の入力トルクTINとAT油温TOILとをパラメータとする学習補正値マップとして後述の学習補正値記憶手段122(図10参照)に記憶されており、それぞれパラメータにより異なった値とされることで、制御定数CSBはAT油温TOIL、自動変速機10の入力トルクTINなどに基づき異なって設定される。つまり、上記入力トルクTINやAT油温TOILなどの車両状態に応じた学習補正値dPGが図8の学習補正値マップとして学習補正値記憶手段122に複数記憶されている。なお、以下の説明では図8の学習補正値をdPG11,dPG12などと個々に区別して説明する必要がない場合には添え字を省略し単に「学習補正値dPG」と表現する。
SB=A1+dPG ・・・(1)
また、学習補正値dPGは無制限に変化可能というものではなく学習補正値dPGの変化を規制する補正値許容範囲があり、後述の学習補正値決定手段126(図10参照)は、学習補正値dPGの上限を定める上限許容値LT1及び学習補正値dPGの下限を定める下限許容値LT2から構成された補正値許容範囲すなわち学習ガード範囲を記憶している。例えば図9のように係合要素にかかる油圧150kPaに対応するECU指示(基準値A1)に対し、工場での調整前では学習補正値dPGが油圧―50kPa〜油圧50kPaに対応する値でばらつき、それを工場で各個体ごとに調整されて油圧―15kPa〜油圧15kPaに対応する値にまでばらつきが抑えられて出荷される。そのような場合には、その学習補正値dPGのばらつきに対し少し余裕をとった油圧―20kPa〜油圧20kPaに対応する値の補正値許容範囲(学習ガード範囲)が記憶されている。
上記制御定数CSBは入力軸22の回転速度NIN変化などの自動変速機10の変速結果に基づき学習補正され適合されるが、上記変速結果に影響する変速構成部品が変更乃至は交換された場合、その変更等が行われる前であれば適切であった制御定数CSBが適切とは言えなくなる場合があり、上記変更後の変速構成部品による変速特性に合わせて制御定数CSBの適合が図られる。以下、上記変速構成部品が変更や交換された場合に制御定数CSBが適合される制御作動について説明する。
図10は、上記制御定数CSBを適合させるための適合支援制御装置としても機能する電子制御装置90の制御機能の要部すなわち自動変速機10の修理などにより前記変速構成部品が変更や交換された場合に制御定数CSBが適合される制御作動を説明する機能ブロック線図である。そして制御定数CSBは変速パターン、AT油温TOIL、自動変速機10の入力トルクTINなどに基づき異なって設定され自動変速機10の変速制御中にリニアソレノイドバルブSLを駆動するための駆動電流を決定するための定数であるが、具体的な説明とするため以下では、「3rd」→「2nd」のダウンシフトにおいて、変速時に自動変速機10の係合要素(クラッチC又はブレーキB)の係合動作を速やかに進行させるために加えられる係合圧であって係合が開始されない程度の所定の係合圧である低圧待機圧を決定する係合側指令値(第1ブレーキB1用リニアソレノイドバルブSL5の駆動電流)に対応する制御定数CSBがどのように適合されるかを説明する。
図10において、変速制御手段110は、例えば図6に示す予め記憶された変速線図から実際の車速Vおよびアクセル操作量Accに基づいて変速判断を実行し、判断された変速を実行させるための変速出力を油圧制御回路98に対して行うことにより、自動変速機10のギヤ段を自動的に切り換える。例えば、自動変速機10の変速段が第3変速段とされているときにおいて、実際の車速Vが図6の点aから点bへと低下し変速制御手段110が「3rd」→「2nd」のダウンシフトを実行すべき変速点車速V3−2を越えたと判断した場合には、変速制御手段110は第3クラッチC3を解放開始させ、その係合トルクがある程度維持されているときに第1ブレーキB1の係合を開始させてその係合トルクを発生させ、この状態で第3変速段の変速比γから第2変速段の変速比γへ移行させつつ、第3クラッチC3の解放と第1ブレーキB1の係合とを完了させる指令を油圧制御回路98に出力する。
修理判定手段112は、自動変速機10の修理などにより前記変速構成部品が変更乃至は交換されたか否か、具体的に言えば、係合要素(クラッチC又はブレーキB)、リニアソレノイドバルブ(電磁弁)SL、又はそれらの部品の修理が実施されたか否かを判定する。ここで、上記変速構成部品が変更乃至は交換されたか否かを修理判定手段112がどのように情報取得をして判定するかは特に限定されないが、例えば、修理判定手段112は車両の外部、具体的には修理時に車両に接続されるサービスツールとしての外部接続コンピュータから上記変速構成部品が変更された旨の入力があった場合に上記変速構成部品が変更乃至は交換されたと判定する。また、修理判定手段112は上記変速構成部品が変更乃至は交換されたか否かの情報を非接触のICタグなどから自動的に取得し上記判定を行ってもよい。
自動変速機10の完成時からの前記学習補正がなされた回数である学習実行回数NLRNが所定の学習実行回数判定値N1未満である場合、或いは、修理判定手段112によって前記変速構成部品が変更乃至は交換されたと判定された場合に切換手段114は、上記変速構成部品が変更乃至は交換された時から所定回数又は所定期間後述の高速学習補正値決定手段130により学習補正値dPGが決定されることを、学習補正値決定手段126に対し許可する。なお、上記所定回数及び所定期間は、早期に学習補正値dPGが収束するように予め実験等により求められた条件である。また、学習補正値決定手段126に対する上記許可について切換手段114が上記所定回数で限定する場合には、切換手段114は上記変速構成部品が変更乃至は交換された時から学習補正値dPGが高速学習補正値決定手段130によって決定された回数を数える。一方、学習補正値決定手段126に対する上記許可について切換手段114が上記所定期間で限定する場合には、切換手段114は上記変速構成部品が変更乃至は交換された時からの経過時間を取得する。
学習条件判定手段116は、自動変速機10の変速制御に関係する車両状態が前記学習補正の実行可能な状態であるとする学習実行条件CLNが成立したか否かを判定する。制御定数CSBは「3rd」→「2nd」のダウンシフトの変速制御に用いる制御定数であるので「3rd」→「2nd」のダウンシフトが行われたことが学習実行条件CLNが成立するためには必要である。その上で例えば、上記車両状態であるアクセルペダル50の操作量Accの変化が所定量以内であること及び自動変速機10が故障していないこと等の予め定められた条件を満たした場合すなわち安定したダウンシフトである場合に、学習条件判定手段116は学習実行条件CLNが成立したことを肯定する判定を行う。
部品精度判定手段118は、変更乃至は交換された前記変速構成部品の部品精度が所定のばらつき許容範囲内であるか否かを判定する。上記変速構成部品の種類、具体的に言えばリニアソレノイドバルブSLであるか係合要素の摩擦板であるかによって上記部品精度は定まっているので、例えば、変更された変速構成部品がリニアソレノイドバルブSLであれば、部品精度判定手段118は上記部品精度が上記ばらつき許容範囲内であることを肯定する判定を行い、変更された変速構成部品が上記摩擦板であれば否定的な判定を行うようにする。或いは、修理後の変速構成部品の部品精度検査結果に基づいて予め定められた対応条件に従い学習補正値dPGを求め、その学習補正値dPGと上記変速構成部品の変更前の学習補正値dPGとの差が所定の許容範囲内であれば、部品精度判定手段118が肯定的な判定をするようにしてもよい。或いは、修理前後の変速構成部品の部品精度検査結果を対比しその差が修理された変速構成部品の種類ごとに予め定められた許容範囲内であれば、部品精度判定手段118が肯定的な判定をするようにしてもよい。ここで、上記変速構成部品の部品精度が前記ばらつき許容範囲内であるか否かを部品精度判定手段118がどのように情報取得をして判定するかは特に限定されないが、例えば、部品精度判定手段118は車両の外部、具体的には前記外部接続コンピュータからの入力に基づいて上記判定を行う。また、部品精度判定手段118は上記入力を非接触のICタグなどから自動的に取得し上記判定を行ってもよい。なお、修理判定手段112によって前記変速構成部品が変更乃至は交換された旨を肯定する判定がなされたときに部品精度判定手段118が上記判定を行うようにしてもよい。また、前記ばらつき許容範囲は、上記変速構成部品の変更前の学習補正値dPGがその変更後にも維持されるべきか否かを判定するための予め実験等により求められた許容範囲であり、言い換えれば、上記変速構成部品の変更前の学習補正値dPGがその変更後において維持された方が初期化されるよりも自動変速機10の変速結果に与える影響が小さいと予測できる予め定められた許容範囲である。
学習補正値記憶手段122は、学習補正値dPGを図8ような学習補正値マップとしてSRAMなどの揮発性メモリに記憶している。この記憶は、イグニッションキーがOFFにされても車両電源であるバッテリ(蓄電装置)92からの電力供給により維持されているが、自動変速機10の修理などにによりバッテリ92からの電力供給が遮断されると上記学習補正値dPGの記憶は失われる。
学習補正値維持手段124は、バッテリ92からの電力供給が遮断されたときのバックアップとして、学習補正値記憶手段122が記憶している学習補正値dPGを電源が遮断されても記憶を失わないEEPROMなどの不揮発性メモリ94に記憶させ更新する。このバックアップは、例えば、前記学習補正が所定回数実行される度に、所定時間が経過する度に、又は、イグニッションキーがOFFにされる度に行われる。
更に学習補正値維持手段124は、自動変速機10の修理などにより前記変速構成部品が変更乃至は交換されたことを肯定する判定が修理判定手段112によってなされた場合において、部品精度判定手段118が肯定的な判定を行った場合には、前記変速構成部品の変更前つまり自動変速機10の修理前の不揮発性メモリ94に記憶された学習補正値dPGを上記変速構成部品変更後であって前記学習補正開始前に学習補正値記憶手段122に記憶させる。すなわち、学習補正値維持手段124によって上記変速構成部品が変更される前の学習補正値dPGの記憶が維持されることになる。
一方、学習補正値維持手段124は、部品精度判定手段118が否定的な判定を行った場合には、不揮発性メモリ94に記憶された学習補正値dPGを学習補正値記憶手段122に記憶させることを行わない。すなわち、自動変速機10の修理などにより前記変速構成部品が変更乃至は交換された場合、バッテリ92が外され電源供給が遮断され学習補正値記憶手段122は学習補正値dPGの記憶を失ったままとなるので、学習補正値記憶手段122の学習補正値dPGは例えば零などの初期値とされる初期化がなされることになる。
学習補正値dPGを決定する学習補正値決定手段126は、学習補正値dPGを自動変速機10の変速結果に基づき決定する通常学習補正値決定手段128と、その通常学習補正値決定手段128よりも早期に学習補正値dPGが収束するように上記変速結果に基づき学習補正値dPGを決定する高速学習を行う高速学習補正値決定手段130とを備えている。そして、学習条件判定手段116が肯定的な判定をした場合すなわち学習実行条件CLNが成立した場合において、切換手段114が高速学習補正値決定手段130により学習補正値dPGが決定されることを許可している場合には高速学習補正値決定手段130が学習補正値dPGを決定し、切換手段114の上記許可が無い場合には通常学習補正値決定手段128が学習補正値dPGを決定する。
学習補正値dPGが決定される点について具体的な説明をすると、切換手段114の前記許可が無い場合において通常学習補正値決定手段128は、学習条件判定手段116が肯定的な判定をした場合に、自動変速機10の変速結果に基づき且つ前記補正値許容範囲内になるように学習補正値dPGを決定し更新する。詳細に言うと上記の場合に通常学習補正値決定手段128は、まず上記補正値許容範囲に関係なく学習補正量暫定値dPtmpを自動変速機10の変速結果に基づき暫定的に決定し、学習補正量暫定値dPtmpが上記補正値許容範囲内であれば学習補正量暫定値dPtmpをそのまま学習補正値dPGとして決定する。また、通常学習補正値決定手段128は学習補正量暫定値dPtmpが上限許容値LT1を超えた場合には上限許容値LT1を学習補正値dPGとして決定し、学習補正量暫定値dPtmpが下限許容値LT2を下回った場合には下限許容値LT2を学習補正値dPGとして決定する。
上述の通常学習補正値決定手段128が学習補正量暫定値dPtmpを自動変速機10の変速結果に基づき暫定的に決定する点について図11のタイムチャートを用いて説明する。図11は、自動変速機10が第3変速段「3rd」から第2変速段「2nd」へとダウンシフトされるときに学習補正量暫定値dPtmpがどのように決定されるかを説明するためのタイムチャートである。
図11のt時点は、自動変速機10を第3変速段「3rd」から第2変速段「2nd」へ変速(ダウンシフト)させるための変速出力が出されたことを示している。これにより、第3クラッチC3が解放され第1ブレーキB1が係合されるクラッチツウクラッチ変速(「3rd」→「2nd」)が行われるが、このとき変速進行に伴いタービン回転速度N(入力軸22の回転速度NIN)が図11のように上昇する。そして、上昇しているタービン回転速度Nが駆動輪(車速V)に拘束された一定回転速度に変化するところでそのタービン回転速度Nが一時的に上記一定回転速度に対してオーバーシュートする。このオーバーシュートした回転速度であるオーバーシュート量NOVは滑らかな変速実現のため予め適正なオーバーシュート目標値AOVが求められ通常学習補正値決定手段128はそのオーバーシュート目標値AOVを記憶しており、自動変速機10の変速結果であるオーバーシュート量NOVとオーバーシュート目標値AOVとの差に基づき学習補正量暫定値dPtmpを決定する。具体的に通常学習補正値決定手段128は、制御定数CSBが小さい程つまり前記低圧待機圧が小さい程オーバーシュート量NOVは大きくなるので、オーバーシュート量NOVの方がオーバーシュート目標値AOVよりも大きい場合には次回変速でオーバーシュート量NOVをより小さくする必要があるため、学習補正値更新量ΔPを予め設定された正の値ΔβPとし学習補正値更新量ΔPを学習補正値dPGに下記式(2)のように加えて学習補正量暫定値dPtmpを決定する。すなわち、その決定前の学習補正値dPGよりも大きい値が学習補正量暫定値dPtmpとされる。また、オーバーシュート量NOVの方がオーバーシュート目標値AOVよりも小さい場合には次回変速でオーバーシュート量NOVをより大きくする必要があるので学習補正値更新量ΔPを予め設定された負の値ΔγPとし学習補正値更新量ΔPを学習補正値dPGに下記式(2)のように加えて学習補正量暫定値dPtmpを決定する。すなわち、その決定前の学習補正値dPGよりも小さい値が学習補正量暫定値dPtmpとされる。
dPtmp=dPG+ΔP ・・・(2)
上述のように学習条件判定手段116が肯定的な判定をした場合に学習補正量暫定値dPtmp及び学習補正値dPGを決定する点については、高速学習補正値決定手段130は通常学習補正値決定手段128と同じである。しかし、通常学習補正値決定手段128は自動変速機10の一の変速結果に基づき図8の学習補正値マップの一の学習補正値dPGを決定する通常学習を行うのに対し、図8の複数の学習補正値dPGの一部又は全部から構成され実験等に基づき前記高速学習が実現するように例えば予め定められた学習補正値群GdPG,GdPGが設けられその学習補正値群GdPG,GdPGを高速学習補正値決定手段130は記憶しており、高速学習補正値決定手段130は、自動変速機10の一の変速結果に基づき図8の学習補正値群GdPG,GdPGの何れか1群に属する複数の学習補正値dPGをまとめて決定することにより前記高速学習を行うという点が異なる。図8を用いて具体的に説明すると、例えば前記車両状態である入力トルクTINが50NmでAT油温TOILが20℃である場合には、通常学習補正値決定手段128はその車両状態に対応する学習補正値dPG22を上記一の変速結果に基づき決定し更新する。これに対し、高速学習補正値決定手段130は上記車両状態に対応する学習補正値群GdPGに属する学習補正値dPG11,dPG21,dPG31,dPG41,dPG12,dPG22,dPG32,dPG42を上記一の変速結果に基づきまとめて決定し更新する。なお、以下の説明では図8の学習補正値群をGdPG,GdPGなどと個々に区別して説明する必要がない場合には添え字を省略し単に「学習補正値群GdPG」と表現する。
図12及び図13は、電子制御装置90の制御作動の要部すなわち前記変速構成部品が変更や交換された場合に制御定数CSBが適合される制御作動を説明するフローチャートであり、例えば数msec乃至数十msec程度の極めて短いサイクルタイムで繰り返し実行される。
先ず、ステップ(以下、「ステップ」を省略する)SA1においては、前記学習実行回数NLRNが前記学習実行回数判定値N1未満であるか否かが判定される。この判定が肯定的である場合、すなわち、学習実行回数NLRNが学習実行回数判定値N1未満である場合にはSA2に移る。一方、この判定が否定的である場合にはSA3に移る。なお、上記学習実行回数NLRNは自動変速機10の完成時には初期値である零とされている。
SA2においては前記高速学習が許可される。具体的には、「高速学習許可フラグXHILRN=OFF」であれば「高速学習許可フラグXHILRN=ON」と切り換えられ、「高速学習許可フラグXHILRN=ON」であればそれが継続される。そして、SA5へ移る。なお、上記高速学習許可フラグXHILRNは自動変速機10の完成時には初期値であるOFFとされている。
SA3においては、自動変速機10の修理などにより前記変速構成部品が変更乃至は交換されたか否か、具体的に言えば、係合要素(クラッチC又はブレーキB)、リニアソレノイドバルブ(電磁弁)SL、又はそれらの部品の修理が実施されたか否かが判定される。この判定が肯定的である場合、すなわち、上記変速構成部品が変更乃至は交換された場合にはSA4に移る。一方、この判定が否定的である場合にはSA5に移る。なお、図12に記載のピストンパックとは、上記係合要素(クラッチC又はブレーキB)の部品であってその係合要素の解放又は係合に関係する摩擦板、ピストン、バネなどの部品である。
SA4においては前記高速学習が許可される。具体的には、「高速学習許可フラグXHILRN=OFF」であれば「高速学習許可フラグXHILRN=ON」と切り換えられ、「高速学習許可フラグXHILRN=ON」であればそれが継続される。そして、SA5へ移る。
SA5においては、高速学習許可フラグXHILRNがOFFからONへと切り換えられたか否かが判定される。この判定が肯定的である場合、すなわち、高速学習許可フラグXHILRNがOFFからONへと切り換えられた場合にはSA6に移る。一方、この判定が否定的である場合にはSA11に移る。
SA6においては、前記高速学習が行われた回数である高速学習回数HNLRNがクリアすなわち初期値である零とされる。そして、SA7に移る。
SA7においては、自動変速機10の修理などにより前記変速構成部品が変更乃至は交換されたか否か、具体的に言えば、係合要素(クラッチC又はブレーキB)、リニアソレノイドバルブ(電磁弁)SL、又はそれらの部品の修理が実施されたか否かが判定される。この判定が肯定的である場合、すなわち、上記変速構成部品が変更乃至は交換された場合にはSA8に移る。一方、この判定が否定的である場合にはSA11に移る。なお、前記SA3及びSA7は修理判定手段112に対応する。
部品精度判定手段118に対応するSA8においては、変更乃至は交換された上記変速構成部品である修理部品の精度上のばらつきが予め定められた基準より小さいか否か、すなわち、その修理部品の部品精度が前記ばらつき許容範囲内であるか否かが判定される。この判定は、例えば、前記外部接続コンピュータからなどの車両の外部からの入力に基づいて行われる。この判定が肯定的である場合、すなわち、上記部品精度が上記ばらつき許容範囲内である場合にはSA9に移る。一方、この判定が否定的である場合にはSA10に移る。
SA9においては、上記変速構成部品が変更される前の学習補正値dPGの記憶が維持される。具体的には、自動変速機10の修理などによってバッテリ92が外され学習補正値dPGの決定毎に更新されるSRAMなどの揮発性メモリの記憶は失われるが、EEPROMなどの不揮発性メモリ94にバックアップとして記憶されていた前記変速構成部品の変更前つまり自動変速機10の修理前の学習補正値dPGが上記SRAMなどの揮発性メモリに戻されることで、上記変速構成部品が変更される前の学習補正値dPGの記憶が維持されるようになる。SA9の次はSA11に移る。
SA10においては、学習補正値dPGは例えば零などの初期値とされる初期化がなされる。具体的には、自動変速機10の修理などによってバッテリ92が外され上記SRAMなどの揮発性メモリの記憶は失われ、EEPROMなどの不揮発性メモリ94にバックアップとして記憶されていた学習補正値dPGが上記SRAMなどの揮発性メモリに戻されないということである。SA10の次はSA11に移る。なお、SA9及びSA10は学習補正値維持手段124に対応する。
学習条件判定手段116に対応するSA11においては、学習実行条件CLNが成立したか否かが判定される。この判定が肯定的である場合、すなわち、上記学習実行条件CLNが成立した場合にはSA12に移る。一方、この判定が否定的である場合には本フローチャートは終了する。
SA12においては、「高速学習許可フラグXHILRN=ON」であり、かつ、高速学習回数HNLRNが高速学習実行回数判定値N2未満であるか否かが判定される。この判定が肯定的である場合、すなわち、「高速学習許可フラグXHILRN=ON」であり、かつ、高速学習回数HNLRNが高速学習実行回数判定値N2未満である場合には前記高速学習が許可されるのでSA13に移る。一方、この判定が否定的である場合にはSA18に移る。なお、前記学習実行回数判定値N1と高速学習実行回数判定値N2とは同じ値であってもよいし、異なる値であってもよい。
学習補正値記憶手段122及び高速学習補正値決定手段130に対応するSA13においては、前記高速学習により学習補正値dPGが決定され、その決定された学習補正値dPGが前記SRAMなどの揮発性メモリに記憶され更新される。そして、SA14に移る。
SA14においては、高速学習回数HNLRNが1だけ加算される。そして、SA15に移る。
SA15においては、学習実行回数NLRNが1だけ加算される。そして、SA16に移る。
SA16においては、高速学習回数HNLRNが高速学習実行回数判定値N2以上であるか否かが判定される。この判定が肯定的である場合、すなわち、高速学習回数HNLRNが高速学習実行回数判定値N2以上である場合にはSA17に移る。一方、この判定が否定的である場合には本フローチャートは終了する。
SA17においては、「高速学習許可フラグXHILRN=OFF」とされる。
学習補正値記憶手段122及び通常学習補正値決定手段128に対応するSA18においては、前記通常学習により学習補正値dPGが決定され、その決定された学習補正値dPGが前記SRAMなどの揮発性メモリに記憶され更新される。そして、SA19に移る。
SA19においては、学習実行回数NLRNが1だけ加算される。なお、前記SA1、SA2、SA4乃至SA6、SA12、SA14乃至SA17、及びSA19は切換手段114に対応する。
本実施例の電子制御装置90には次のような効果(A1)乃至(A9)がある。(A1)学習補正値決定手段126は、学習補正値dPGを自動変速機10の変速結果に基づき決定する通常学習補正値決定手段128と、その通常学習補正値決定手段128よりも早期に学習補正値dPGが収束するように上記変速結果に基づき学習補正値dPGを決定する前記高速学習を行う高速学習補正値決定手段130とを備えている。そして、自動変速機10の修理などにより前記変速構成部品が変更乃至は交換されたことを肯定する判定が修理判定手段112によってなされた場合において、部品精度判定手段118が肯定的な判定を行った場合には、上記変速構成部品が変更される前の学習補正値dPGの記憶が学習補正値維持手段124によって維持され、かつ、上記変速構成部品が変更乃至は交換された時から所定回数又は所定期間、高速学習補正値決定手段130により学習補正値dPGが決定されることが許可されその許可に基づき高速学習補正値決定手段130が上記高速学習を行う。従って、上記変速構成部品が変更等された場合に学習補正値dPGを早期に収束させることができる。その結果、例えば、自動変速機10の修理などによる上記変速構成部品の変更又は交換によって一時的に変速ショックが大きくなってもその変速ショックを早期に小さくすることが可能である。
(A2)自動変速機10の修理などにより変更乃至は交換される前記変速構成部品の部品精度が高いほど、すなわちその部品精度のばらつきが小さいほど、その変速構成部品の機械的特性は安定しており、上記変更乃至は交換後の学習補正値dPGはその変更乃至は交換前の学習補正値dPGに近い値に収束するものと考えられる。この点、本実施例によれば、前記変速構成部品の部品精度が前記ばらつき許容範囲内である場合に、上記変速構成部品が変更される前の学習補正値dPGの記憶が学習補正値維持手段124によって維持されるので、学習補正値dPGを早期に収束させることができるという効果が高められる。
(A3)前記高速学習は、自動変速機10の一の変速結果に基づき学習補正値群GdPGに属する複数の学習補正値dPGがまとめて決定されることであるので、上記複数の学習補正値dPG全体で見ると、前記変速構成部品が変更乃至は交換された後、早期にその複数の学習補正値dPGの収束が図られるとともに、その学習補正値dPGの1回の更新量を大きくする学習制御と比較して安定して学習補正値dPGを収束させ得る。
(A4)修理判定手段112は、例えば、車両の外部からの入力である外部接続コンピュータからの前記変速構成部品が変更された旨の入力があった場合に上記変速構成部品が変更乃至は交換されたと判定する。そのようにした場合には、自動変速機10の修理などにより上記変速構成部品が変更されたことを自動的に検出する機能を上記車両が備える必要がない。
(A5)学習条件判定手段116が肯定的な判定をした場合すなわち学習実行条件CLNが成立した場合に、通常学習補正値決定手段128又は高速学習補正値決定手段130は自動変速機10の変速結果に基づき学習補正値dPGを決定し更新する。従って、学習補正値dPGが決定されるのに適した車両状態のもとでの自動変速機10の変速結果に基づいて適切に学習補正値dPGが決定される。
(A6)前記変速構成部品とは例えば、係合要素(クラッチC又はブレーキB)、リニアソレノイドバルブ(電磁弁)SL、又はそれらの部品であるので、それら係合要素等が変更され自動変速機10の変速特性が変わっても制御定数CSBの適合が適切に図られる。
(A7)制御定数CSBは、自動変速機10の変速制御中にリニアソレノイドバルブSLを駆動するための駆動電流を決定するための定数であるので、制御定数CSBの適合が図られることにより上記変速制御が適正化される。
(A8)前記低圧待機圧が制御定数CSBに基づいて決定されるので、上記低圧待機圧によって変化する変速ショックを制御定数CSBの適合により低減できる。
(A9)変更乃至は交換された前記変速構成部品の部品精度が前記ばらつき許容範囲内であるか否かは、例えば前記車両の外部からの入力に基づき判定される。そのようにした場合には、上記部品精度を自動的に検出する機能を上記車両が備える必要がない。
以上、本発明の実施例を図面に基づいて詳細に説明したが、これはあくまでも一実施形態であり、本発明は当業者の知識に基づいて種々の変更、改良を加えた態様で実施することができる。
前述の実施例では、適合される制御定数CSBは前記低圧待機圧を決定する係合側指令値(第1ブレーキB1用リニアソレノイドバルブSL5の駆動電流)に対応する定数として説明されているが、適合される制御定数CSBが他の指令値に対応する定数であってもよい。例えば、図11における上記低圧待機圧を保持する指令時間T、係合完了に向けて係合圧を上昇させるときの指令値の上昇角度X、クイックアプライ指令時間TQA、又はクイックアプライ圧を決定する指令値PQAなどに対応する定数であってもよい。また、図11ではダウンシフト時の係合側指令値について説明しているが、解放側のリニアソレノイドバルブSLの駆動電流に対応する制御定数CSBが適合されてもよいし、アップシフト時に用いられる制御定数CSBが適合されてもよい。
また前述の実施例では自動変速機10の変速結果の具体例として図11に示すオーバーシュート量が挙げられているが、例えば、タービン回転速度Nの単位時間当たりの変化幅など他のパラメータであっても差し支えない。
また前述の実施例では、高速学習補正値決定手段130は、自動変速機10の一の変速結果に基づき学習補正値群GdPGに属する複数の学習補正値dPGをまとめて決定することにより前記高速学習を行うが、その高速学習はそのような方法に限定されるものではなく例えば、学習補正値dPGを変化させるゲインであるΔβ又はΔγの絶対値が、通常学習補正値決定手段128によって学習補正値dPGが決定される場合と比較して大きくされることにより上記高速学習が行われるようにしてもよい。
また前述の実施例では、部品精度判定手段118が肯定的な判定を行った場合に、学習補正値維持手段124によって前記変速構成部品が変更される前の学習補正値dPGの記憶が維持されることになるが、その変速構成部品の部品精度が向上すれば一律に上記学習補正値dPGの記憶が維持されるようにすればよいので、部品精度判定手段118は必須というわけではない。
また前述の実施例の制御定数CSBは、前記式(1)に示されるように基準値A1と学習補正値dPGとの和で定義されているが、制御定数CSBと学習補正値dPGとの関係はこの式(1)に限定されるわけではなく、例えば、制御定数CSBが基準値A1と学習補正値dPGとの積で定義されていてもよい。
また前述の実施例では、EEPROMなどの不揮発性メモリ94にバックアップとして記憶されていた修理前の学習補正値dPGが、バッテリ92が外され記憶を失ったSRAMなどの揮発性メモリに戻されることで、学習補正値dPGの記憶が維持されるようになるが、これは学習補正値dPGの記憶維持の一例であり、例えば、記憶維持用の専用電源を備えたSRAMなどの不揮発性メモリに学習補正値dPGが更新毎に記憶されるようにして、バッテリ92の接続の関わらず学習補正値dPGの記憶が維持されるようにしてもよい。そのようにした場合において自動変速機10の修理時に上記学習補正値dPGの記憶を初期化する場合には、上記記憶維持用の専用電源を備えたSRAMなどの不揮発性メモリに学習補正値dPGの初期値が書き込まれることにより初期化される。
また前述の実施例では、電子制御装置90が本発明の前記高速学習を行う適合支援制御装置としても機能するが、電子制御装置90が上記適合支援制御装置として機能せず、自動変速機10の修理などにより前記変速構成部品が変更等された場合にその修理時に車両に接続されるサービスツールとしての外部接続コンピュータなどが上記適合支援制御装置としての機能を有していてもよい。そのような場合には、例えば、上記変速構成部品が変更等された後の修理時に、上記外部接続コンピュータが接続された上記車両が、室内等で路上走行状態と同様の状態を再現できるシャシダイナモメータに載せられ上記外部接続コンピュータにより学習補正値dPGの前記高速学習が行われる。そして、その高速学習が完了した後、学習補正値dPGが上記外部接続コンピュータから電子制御装置90のSRAMなどの揮発性メモリに記憶される。その後の実際の走行においては、電子制御装置90の前記通常学習により学習補正値dPGが決定され更新される。
本発明が好適に適用される車両用自動変速機を説明する骨子図である。 図1の車両用自動変速機において複数の変速段を成立させる際の油圧式摩擦係合要素の作動を説明する作動表である。 図1の車両用自動変速機において、変速段毎に各回転要素の回転速度を直線で表すことができる共線図である。 図1の車両用自動変速機を制御するために車両に設けられた制御系統の要部を説明するブロック線図である。 図4のシフトレバーの操作位置を説明する図である。 図4の電子制御装置の変速制御において用いられる変速線図の一例を示す図である。 図4の油圧制御回路の要部を示す回路図である。 図4の電子制御装置に記憶された自動変速機の入力トルクとAT油温とをパラメータとする学習補正値マップの一例である。 図8の学習補正値について設定された学習ガード範囲を説明するための図である。 図4の電子制御装置の制御機能の要部を説明する機能ブロック線図である。 図1の車両用自動変速機が第3変速段「3rd」から第2変速段「2nd」へとダウンシフトされるときに学習補正量暫定値がどのように決定されるかを説明するためのタイムチャートである。 図4の電子制御装置の制御作動の要部すなわち変速構成部品が変更や交換された場合に制御定数が適合される制御作動を説明するフローチャートであって、2つのセット図面のうちの第1図目である。 図4の電子制御装置の制御作動の要部すなわち変速構成部品が変更や交換された場合に制御定数が適合される制御作動を説明するフローチャートであって、2つのセット図面のうちの第2図目である。
符号の説明
10:自動変速機(車両用自動変速機)
90:電子制御装置(適合支援制御装置)
122:学習補正値記憶手段
126:学習補正値決定手段
128:通常学習補正値決定手段
130:高速学習補正値決定手段
SB:制御定数
dPG:学習補正値
GdPG:学習補正値群

Claims (4)

  1. 車両の自動変速機の変速制御に用いる制御定数を適合させるために、前記制御定数を学習補正するための学習補正値を記憶する学習補正値記憶手段と、該学習補正値を決定する学習補正値決定手段とを含む車両用自動変速機の適合支援制御装置であって、
    前記学習補正値決定手段は、前記学習補正値を前記自動変速機の変速結果に基づき決定する通常学習補正値決定手段と、該通常学習補正値決定手段よりも早期に前記学習補正値が収束するように前記変速結果に基づき該学習補正値を決定する高速学習を行う高速学習補正値決定手段とを備え、
    前記自動変速機の変速結果に影響する変速構成部品が変更された場合には、該変速構成部品が変更される前の前記学習補正値の記憶が維持され、かつ、前記変速構成部品が変更された時から所定回数又は所定期間、前記高速学習補正値決定手段が前記高速学習を行う
    ことを特徴とする車両用自動変速機の適合支援制御装置。
  2. 前記変速構成部品の部品精度が所定のばらつき許容範囲内である場合に、前記変速構成部品が変更される前の前記学習補正値の記憶が維持される
    ことを特徴とする請求項1に記載の車両用自動変速機の適合支援制御装置。
  3. 前記学習補正値記憶手段は車両状態に応じた前記学習補正値を複数記憶しており、
    前記複数の学習補正値の一部又は全部から構成され予め定められた学習補正値群が設けられており、
    前記高速学習は、前記自動変速機の一の変速結果に基づき前記学習補正値群に属する前記複数の学習補正値がまとめて決定されることである
    ことを特徴とする請求項1又は2に記載の車両用自動変速機の適合支援制御装置。
  4. 前記変速構成部品が変更された場合とは、前記車両の外部から該変速構成部品が変更された旨の入力があった場合である
    ことを特徴とする請求項1乃至3のいずれか1項に記載の車両用自動変速機の適合支援制御装置。
JP2007267247A 2007-10-12 2007-10-12 車両用自動変速機の適合支援制御装置 Pending JP2009097543A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007267247A JP2009097543A (ja) 2007-10-12 2007-10-12 車両用自動変速機の適合支援制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007267247A JP2009097543A (ja) 2007-10-12 2007-10-12 車両用自動変速機の適合支援制御装置

Publications (1)

Publication Number Publication Date
JP2009097543A true JP2009097543A (ja) 2009-05-07

Family

ID=40700741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007267247A Pending JP2009097543A (ja) 2007-10-12 2007-10-12 車両用自動変速機の適合支援制御装置

Country Status (1)

Country Link
JP (1) JP2009097543A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013024111A (ja) * 2011-07-20 2013-02-04 Denso Corp 車載制御装置
JP2021082035A (ja) * 2019-11-19 2021-05-27 トヨタ自動車株式会社 車両の制御装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013024111A (ja) * 2011-07-20 2013-02-04 Denso Corp 車載制御装置
JP2021082035A (ja) * 2019-11-19 2021-05-27 トヨタ自動車株式会社 車両の制御装置

Similar Documents

Publication Publication Date Title
JP4488058B2 (ja) 車両の駆動力制御装置
JP4656206B2 (ja) 車両用自動変速機の制御装置
JP4826638B2 (ja) 車両用自動変速機の制御装置
JP2008128373A (ja) 自動変速機の変速制御装置
JP2008169874A (ja) 車両用駆動装置の制御装置
JP6225985B2 (ja) 自動変速機の制御装置
JP4162024B2 (ja) 車両用自動変速機の制御装置
JP4901716B2 (ja) 車両用リニアソレノイド弁異常判定装置
JP2008045676A (ja) 自動変速機の変速制御装置
JP2008128149A (ja) 車両用エンジン制御装置
JP4301235B2 (ja) 自動変速機の変速制御装置
JP4710566B2 (ja) 自動変速機の油圧制御装置
JP2009097543A (ja) 車両用自動変速機の適合支援制御装置
JP4211735B2 (ja) 車両用駆動装置の変速制御装置
JP2009097542A (ja) 車両用自動変速機の適合支援制御装置
JP2009041622A (ja) シフト制御装置
JP5035221B2 (ja) 自動変速機の変速制御装置
JP2007205431A (ja) 自動変速機の制御装置
JP2008133868A (ja) 車両用自動変速機の変速制御装置
JP4770658B2 (ja) 車両用自動変速機の制御装置
JP4952188B2 (ja) 車両用自動変速機の変速制御装置
JP2010043584A (ja) 車両の制御装置
JP2011163477A (ja) 自動変速機の制御装置
JP5083182B2 (ja) 自動変速機の学習制御装置
JP2008164121A (ja) 自動変速機の変速制御装置