JP2008169874A - 車両用駆動装置の制御装置 - Google Patents

車両用駆動装置の制御装置 Download PDF

Info

Publication number
JP2008169874A
JP2008169874A JP2007001621A JP2007001621A JP2008169874A JP 2008169874 A JP2008169874 A JP 2008169874A JP 2007001621 A JP2007001621 A JP 2007001621A JP 2007001621 A JP2007001621 A JP 2007001621A JP 2008169874 A JP2008169874 A JP 2008169874A
Authority
JP
Japan
Prior art keywords
torque
power source
inertia
shift
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007001621A
Other languages
English (en)
Inventor
Yasuhiro Maeda
泰広 前田
Toshinari Suzuki
俊成 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2007001621A priority Critical patent/JP2008169874A/ja
Priority to PCT/JP2007/074882 priority patent/WO2008084683A1/ja
Publication of JP2008169874A publication Critical patent/JP2008169874A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/04Smoothing ratio shift
    • F16H61/08Timing control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D31/00Use of speed-sensing governors to control combustion engines, not otherwise provided for
    • F02D31/001Electric control of rotation speed
    • F02D31/002Electric control of rotation speed controlling air supply
    • F02D31/006Electric control of rotation speed controlling air supply for maximum speed control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/12Introducing corrections for particular operating conditions for deceleration
    • F02D41/123Introducing corrections for particular operating conditions for deceleration the fuel injection being cut-off
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/04Smoothing ratio shift
    • F16H61/06Smoothing ratio shift by controlling rate of change of fluid pressure
    • F16H61/061Smoothing ratio shift by controlling rate of change of fluid pressure using electric control means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H63/00Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism
    • F16H63/40Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism comprising signals other than signals for actuating the final output mechanisms
    • F16H63/50Signals to an engine or motor
    • F16H63/502Signals to an engine or motor for smoothing gear shifts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D11/00Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated
    • F02D11/06Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance
    • F02D11/10Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type
    • F02D11/105Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type characterised by the function converting demand to actuation, e.g. a map indicating relations between an accelerator pedal position and throttle valve opening or target engine torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/1006Engine torque losses, e.g. friction or pumping losses or losses caused by external loads of accessories
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/68Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for stepped gearings
    • F16H61/684Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for stepped gearings without interruption of drive
    • F16H61/686Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for stepped gearings without interruption of drive with orbital gears

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Control Of Transmission Device (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

【課題】イナーシャ相で動力源の回転速度を引き上げる際に、その動力源側のイナーシャによって発生する負トルク(イナーシャトルク)により、動力源ブレーキが一時的に大きくなって運転者に違和感を生じさせることを防止する。
【解決手段】アクセルOFFのエンジンブレーキ状態におけるダウンシフトに際して、タービン回転速度NTやエンジン回転速度NEを引き上げるイナーシャ相で、エンジン10等のイナーシャによって発生する負トルク(イナーシャトルク)を低減するように、スロットル弁開度θTHをイナーシャトルク相殺開度θTHITだけ開き制御してポンピングロスによる回転抵抗を低下させる。これにより、イナーシャトルクに起因するエンジンブレーキの一時的な増大が抑制され、エンジンブレーキの変動による違和感が軽減されて乗り心地が向上する。
【選択図】図8

Description

本発明は車両用駆動装置の制御装置に係り、特に、動力源の回転抵抗で制動力を発生する動力源ブレーキ状態で、その動力源の回転速度を引き上げながら自動変速機をダウンシフトさせる際のトルク変動を抑制する技術に関するものである。
車輪側からの入力が動力源側からの入力を上回り、その動力源の回転抵抗で制動力を発生する動力源ブレーキ状態で、その動力源の回転速度を引き上げながら自動変速機をダウンシフトさせる車両用駆動装置の制御装置が知られている。特許文献1に記載の装置はその一例で、解放側摩擦係合装置が解放されるとともに係合側摩擦係合装置が係合させられることによってダウンシフトが行われる自動変速機を有し、パワーOFFダウンシフトすなわち動力源ブレーキ状態でのダウンシフトでは、係合側摩擦係合装置の係合トルクを速やかに立ち上げることにより、解放側摩擦係合装置の係合トルクの低下に伴って動力源の回転速度を引き上げ、ダウンシフトを速やかに進行させるようになっている。また、このように係合側摩擦係合装置の係合トルクを速やかに立ち上げると、係合側摩擦係合装置および解放側摩擦係合装置が一時的に重複(オーバーラップ)して係合トルクを持つようになるため、係合側摩擦係合装置および解放側摩擦係合装置が共に解放状態となって動力源ブレーキが低下するトルク抜けを回避できる。
特開平9−60717号公報
しかしながら、このようなオーバーラップ変速制御でトルク抜けを回避できても、その後のイナーシャ相で動力源の回転速度を引き上げる際に、動力源側のイナーシャによって発生する負トルク(イナーシャトルク)により、動力源ブレーキが一時的に大きくなって運転者に違和感を生じさせることがある。これに対し、イナーシャ相でアクセル操作とは無関係に動力源の出力を増大させることにより、動力源の回転速度を自力で上昇させてダウンシフトを速やかに進行させることが考えられるが、その場合には動力源ブレーキが得られなくなって却って運転者に違和感を生じさせる可能性がある。
本発明は以上の事情を背景として為されたもので、その目的とするところは、イナーシャ相で動力源の回転速度を引き上げる際に、その動力源側のイナーシャによって発生する負トルク(イナーシャトルク)により、動力源ブレーキが一時的に大きくなって運転者に違和感を生じさせることを防止することにある。
かかる目的を達成するために、第1発明は、車輪側からの入力が動力源側からの入力を上回り、その動力源の回転抵抗で制動力を発生する動力源ブレーキ状態で、その動力源の回転速度を引き上げながら自動変速機をダウンシフトさせる車両用駆動装置の制御装置において、前記動力源の回転速度を引き上げるイナーシャ相で、その動力源側のイナーシャによって発生する負トルクを低減するように、その負トルクの範囲内で所定の相殺トルクを付与するイナーシャトルク相殺手段を設けたことを特徴とする。
第2発明は、(a) 解放側摩擦係合装置が解放されるとともに係合側摩擦係合装置が係合させられることによってダウンシフトが行われる自動変速機を有し、(b) 車輪側からの入力が動力源側からの入力を上回り、その動力源の回転抵抗で制動力を発生する動力源ブレーキ状態で、その動力源の回転速度を引き上げながら前記自動変速機をダウンシフトさせる車両用駆動装置の制御装置において、(c) 前記ダウンシフト時に、前記解放側摩擦係合装置および前記係合側摩擦係合装置が一時的に重複して係合トルクを持つように変速制御を行うオーバーラップ変速制御手段と、(d) 前記係合側摩擦係合装置の係合トルクで前記動力源の回転速度を引き上げるイナーシャ相で、その動力源側のイナーシャによって発生する負トルクを低減するように、その負トルクの範囲内で所定の相殺トルクを付与するイナーシャトルク相殺手段と、を有することを特徴とする。
第3発明は、第1発明または第2発明の車両用駆動装置の制御装置において、前記イナーシャトルク相殺手段は、前記動力源の回転抵抗を低下させることにより相対的に前記相殺トルクを付与し、前記負トルクを低減することを特徴とする。
このような車両用駆動装置の制御装置においては、動力源ブレーキ状態におけるダウンシフトに際して、動力源の回転速度を引き上げるイナーシャ相で、その動力源側のイナーシャによって発生する負トルク(イナーシャトルク)を低減するように相殺トルクを付与するイナーシャトルク相殺手段を有するため、そのイナーシャトルクに起因する動力源ブレーキの一時的な増大が抑制され、動力源ブレーキの変動による違和感が軽減されて乗り心地が向上する。また、本発明はイナーシャトルクを低減するように、そのイナーシャトルクの範囲内で相殺トルクを付与するため、動力源の出力増大制御によって動力源の回転速度を自力で上昇させる場合のように、動力源ブレーキが低下したり反対に駆動状態になったりして却って運転者に違和感を生じさせる恐れがない。
第2発明は、実質的に第1発明の一実施態様に相当するもので、第1発明と同様の作用効果が得られる。しかも、この第2発明では、解放側摩擦係合装置および係合側摩擦係合装置が一時的に重複(オーバーラップ)して係合トルクを持つようにダウンシフトの変速制御が行われるため、イナーシャ相が開始する前のトルク相において係合側摩擦係合装置および解放側摩擦係合装置が共に解放状態となって動力源ブレーキが低下するトルク抜けが防止され、トルク相からイナーシャ相が終了するまでの一連の変速過渡時の動力源ブレーキの変動が抑制されて、乗り心地が一層向上する。
第3発明では、動力源の回転抵抗を低下させることにより相対的に相殺トルクを付与し、イナーシャトルクを相殺するため、動力源とは別に電動モータ等を設けて相殺トルクを付与する場合に比較して、既存の車両用駆動装置をそのまま用いて動力源ブレーキの変動を抑制することが可能で、装置が安価に構成される。
本発明は、燃料の燃焼によって動力を発生するガソリンエンジンやディーゼルエンジン等の内燃機関を走行用の動力源として備えているエンジン駆動車両や、電動モータを動力源として備えている電気自動車、或いはそれ等の両方を備えているハイブリッド車など、種々の車両用駆動装置に適用され得る。
自動変速機としては、例えば第2発明のように複数の摩擦係合装置の係合状態に応じて変速比が異なる複数のギヤ段が成立させられる遊星歯車式や平行軸式などの有段変速機が好適に用いられるが、第1発明の実施に際しては、ベルト式無段変速機など他の自動変速機を採用することもできる。
摩擦係合装置としては油圧式のものが好適に用いられ、例えばソレノイド弁等による油圧制御やアキュムレータの作用などで油圧(係合力)を所定の変化パターンで変化させたり、所定のタイミングで油圧を変化させたりすることによって変速制御が行われる。これ等の摩擦係合装置は、油圧シリンダ等のアクチュエータによって係合させられる単板式或いは多板式のクラッチやブレーキ、ベルト式のブレーキなどである。
動力源ブレーキ状態でのダウンシフトは、運転者の手動操作に従ってダウンシフトを行うマニュアルダウンシフトでも、アクセルOFFのコースト走行時に予め定められたコーストダウン車速を跨いで車速が低下することによって自動的にダウンシフトを行うコーストダウンシフトでも良く、少なくとも何れか一方で本発明のイナーシャトルク相殺制御が行われるようになっておれば良い。
動力源ブレーキ状態でのダウンシフトは、例えばアクセル操作されていないアクセルOFF時のダウンシフトであるが、高速走行時などではアクセル操作されていても動力源ブレーキ状態となる場合があり、そのようなアクセルON時のダウシンフトに適用することも可能である。
イナーシャトルク相殺手段は、イナーシャトルクを越えない範囲で相殺トルクを付与するもので、例えば第3発明のように動力源の回転抵抗を低下させることにより相対的に相殺トルクを付与するように構成されるが、動力源とは別に電動モータ等を設けて自動変速機の入力側或いは出力側に相殺トルクを付与するようにしても良いし、ECB(電子制御ブレーキシステム)等によりホイールブレーキの制動トルクを制御する場合は、その制動トルクを低下させることにより相対的に相殺トルク分だけ駆動トルクを増大させるようにしても良いなど、種々の態様が可能である。
動力源の回転抵抗を低下させる方法としては、例えば動力源として内燃機関を有する場合、燃料供給を停止しているフューエルカット時にスロットル弁開度を開き制御することにより、ポンピングロスを低下させて相殺トルク分だけ回転抵抗を低下させることが可能で、その分だけ入力トルクが増大してイナーシャトルクを相殺することができる。内燃機関がアイドル状態等で作動している場合には、燃料噴射量を増大させるなどして、イナーシャトルクを越えない範囲で相殺トルク分だけ動力源トルクを増大させるようにしても良く、動力源ブレーキ状態である限り、回転抵抗の低下に相当する。
動力源としてモータジェネレータを有し、アクセルOFF時等にモータジェネレータを回生制御或いは発電制御することにより、回転抵抗を発生させて動力源ブレーキ状態とする車両用駆動装置においては、その回生トルク或いは発電トルクを相殺トルク分だけ低下させて回転抵抗を低下させることが可能で、その分だけ入力トルクが増大してイナーシャトルクを相殺することができる。
上記イナーシャトルク相殺手段によって付与する相殺トルク、すなわちスロットル弁開度の開き量やモータトルク、回生トルクの低下幅、ECBによる制動トルクの低下幅などは、例えばどのギヤ段からどのギヤ段へのダウンシフトかを表す変速の種類や、自動変速かマニュアル変速か、或いは車速、動力源回転速度、入力軸回転速度等の車両状態、運転状態などをパラメータとして予めマップなどで設定される。必要に応じて逐次学習補正されるようにすることも可能である。また、モータトルクや回生トルクのように高い応答性が得られる場合には、動力源回転速度の変化率や入力軸回転速度の変化率を検出してイナーシャトルクを逐次算出し、そのイナーシャトルクに応じてリアルタイムで相殺トルクを制御することも可能である。
第2発明では、解放側摩擦係合装置および係合側摩擦係合装置が一時的に重複して係合トルクを持つように変速制御を行うオーバーラップ変速制御手段を備えており、トルク相でのトルク抜けが防止されるようになっているが、第1発明の実施に際しては、必ずしもこのようなオーバーラップ制御を行う必要はなく、アンダーラップ制御を用いることも可能である。また、必要に応じてECB等によるホイールブレーキの制動トルク制御で、動力源ブレーキのトルク抜けを補完することもできるなど、種々の態様が可能である。
以下、本発明の実施例を、図面を参照しつつ詳細に説明する。
図1は、本発明が適用された車両用駆動装置8の概略構成を制御系統と共に示すブロック線図で、FF(フロントエンジン・フロントドライブ)車両用のものであり、ガソリンエンジンやディーゼルエンジン等の内燃機関によって構成されている走行用の動力源としてのエンジン10の出力は、トルクコンバータ12、自動変速機14、差動歯車装置40、および左右の車軸44を経て左右の駆動輪46へ伝達される。
図2の(a) は、上記トルクコンバータ12および自動変速機14の構成を具体的に説明する骨子図で、トルクコンバータ12は、エンジン10の出力を流体を介してポンプ翼車からタービン翼車、更に入力軸(タービン軸)32に伝達する流体式動力伝達装置であるが、ロックアップクラッチ12cが係合させられることにより、流体を介することなく直接伝達することができる。また、トルクコンバータ12のポンプ翼車には、機械式のオイルポンプ18が連結されており、エンジン10によって回転駆動されるようになっている。なお、トルクコンバータ12および自動変速機14は中心線に対して略対称的に構成されており、図2の(a) では中心線の下半分が省略されている。
自動変速機14は、シングルピニオン型の第1遊星歯車装置20を主体として構成されている第1変速部22と、シングルピニオン型の第2遊星歯車装置26およびダブルピニオン型の第3遊星歯車装置28を主体として構成されている第2変速部30とを同軸線上に有し、入力軸32の回転を変速して出力歯車34から出力する。入力軸32は入力部材に相当する。また、出力歯車34は出力部材に相当するもので、前記差動歯車装置40に動力を伝達するためにそのデフドリブンギヤ(大径歯車)42と噛み合うデフドライブギヤとして機能している。
上記第1変速部22を構成している第1遊星歯車装置20は、サンギヤS1、キャリアCA1、およびリングギヤR1の3つの回転要素を備えており、サンギヤS1が入力軸32に連結されて回転駆動されるとともに、リングギヤR1が第3ブレーキB3を介して回転不能にケース36に固定されることにより、キャリアCA1が中間出力部材として入力軸32に対して減速回転させられて出力する。また、第2変速部30を構成している第2遊星歯車装置26および第3遊星歯車装置28は、一部が互いに連結されることによって4つの回転要素RM1〜RM4が構成されており、具体的には、第3遊星歯車装置28のサンギヤS3によって第1回転要素RM1が構成され、第2遊星歯車装置26のリングギヤR2および第3遊星歯車装置28のリングギヤR3が互いに連結されて第2回転要素RM2が構成され、第2遊星歯車装置26のキャリアCA2および第3遊星歯車装置28のキャリアCA3が互いに連結されて第3回転要素RM3が構成され、第2遊星歯車装置26のサンギヤS2によって第4回転要素RM4が構成されている。上記第2遊星歯車装置26および第3遊星歯車装置28は、キャリアCA2およびCA3が共通の部材にて構成されているとともに、リングギヤR2およびR3が共通の部材にて構成されており、且つ第2遊星歯車装置26のピニオンギヤが第3遊星歯車装置28の第2ピニオンギヤを兼ねているラビニヨ型の遊星歯車列とされている。
上記第1回転要素RM1(サンギヤS3)は第1ブレーキB1によって選択的にケース36に連結されて回転停止させられ、第2回転要素RM2(リングギヤR2、R3)は第2ブレーキB2によって選択的にケース36に連結されて回転停止させられ、第4回転要素RM4(サンギヤS2)は第1クラッチC1を介して選択的に前記入力軸32に連結され、第2回転要素RM2(リングギヤR2、R3)は第2クラッチC2を介して選択的に入力軸32に連結され、第1回転要素RM1(サンギヤS3)は中間出力部材である前記第1遊星歯車装置20のキャリアCA1に一体的に連結され、第3回転要素RM3(キャリアCA2、CA3)は前記出力歯車34に一体的に連結されて回転を出力するようになっている。
上記クラッチC1、C2およびブレーキB1、B2、B3(以下、特に区別しない場合は単にクラッチC、ブレーキBという)は、多板式のクラッチやバンドブレーキなど油圧アクチュエータによって係合制御される油圧式摩擦係合装置であり、油圧制御回路98(図1参照)のリニアソレノイド弁SL1〜SL5の励磁、非励磁やマニュアルバルブ104(図3参照)によって油圧回路が切り換えられることにより、図2の(b) に示すように係合、解放状態が切り換えられ、シフトレバー72(図1参照)の操作位置(ポジション)に応じて前進6段、後進1段の各ギヤ段が成立させられる。図2(b) の「1st」〜「6th」は前進の第1速ギヤ段〜第6速ギヤ段を意味しており、「Rev」は後進ギヤ段であり、それ等の変速比(=入力軸回転速度NIN/出力軸回転速度NOUT )は、前記第1遊星歯車装置20、第2遊星歯車装置26、および第3遊星歯車装置28の各ギヤ比ρ1、ρ2、ρ3によって適宜定められる。図2(b) の「○」は係合、空欄は解放を意味している。
図1において、アクセルペダル50の操作量(アクセル操作量)Accは、アクセル操作量センサ51により検出されるようになっており、そのアクセル操作量Accを表す信号が電子制御装置90に供給される。アクセルペダル50は、運転者の出力要求量に応じて大きく踏み込み操作されるもので、アクセル操作部材に相当し、アクセル操作量Accは出力要求量に相当する。また、エンジン10の吸気配管には、スロットルアクチュエータ54によってスロットル弁開度θTHが変化させられる電子スロットル弁56が設けられている。この他、エンジン10の回転速度NEを検出するためのエンジン回転速度センサ58、エンジン10の吸入空気量Qを検出するための吸入空気量センサ60、吸入空気の温度TA を検出するための吸入空気温度センサ62、上記電子スロットル弁56の全閉状態(アイドル状態)およびその開度θTHを検出するためのアイドルスイッチ付スロットルセンサ64、車速Vに対応する出力歯車34の回転速度(出力軸回転速度に相当)NOUT を検出するための車速センサ66、エンジン10の冷却水温TW を検出するための冷却水温センサ68、常用ブレーキ用のブレーキペダル52の操作の有無を検出するためのブレーキスイッチ70、シフトレバー72のレバーポジション(操作位置)PSHを検出するためのレバーポジションセンサ74、タービン回転速度NTを検出するためのタービン回転速度センサ76、油圧制御回路98内の作動油の温度であるAT油温TOIL を検出するためのAT油温センサ78、アップシフトスイッチ80、ダウンシフトスイッチ82などが設けられており、それらのセンサから、エンジン回転速度NE、吸入空気量Q、吸入空気温度TA 、スロットル弁開度θTH、車速V(出力軸回転速度NOUT )、エンジン冷却水温TW 、ブレーキペダル52の踏込み操作(オン)BON、シフトレバー72のレバーポジションPSH、タービン回転速度NT、AT油温TOIL 、変速レンジのアップシフト指令RUP、変速レンジのダウンシフト指令RDN、などを表す信号が電子制御装置90に供給されるようになっている。上記タービン回転速度NTは、入力部材である入力軸32の回転速度(入力軸回転速度NIN)と同じである。
上記シフトレバー72は、例えば運転席の近傍に配設され、5つのレバーポジション「P」、「R」、「N」、「D」、または「S」へ手動操作されるようになっている。「P」ポジションは、自動変速機14内の動力伝達経路を解放、すなわち自動変速機14内の動力伝達が遮断されるニュートラル状態(中立状態)とし、且つメカニカルパーキング機構によって機械的に出力歯車34の回転を阻止(ロック)するための駐車ポジション(位置)であり、「R」ポジションは自動変速機14を前記後進ギヤ段「Rev」として後進走行するための後進走行ポジション(位置)であり、「N」ポジションは自動変速機14内の動力伝達が遮断されるニュートラル状態とするための中立ポジション(位置)であり、「D」ポジションは自動変速機14の全変速範囲である第1速ギヤ段「1st」〜第6速ギヤ段「6th」の総ての前進ギヤ段を用いて変速制御を行う自動変速モード(Dレンジ)を成立させる前進走行ポジション(位置)であり、「S」ポジションは前進ギヤ段の変速範囲を制限した複数種類の変速レンジを切り換えることにより手動変速が可能なシーケンシャルモード(以下、Sモードという)を成立させる前進走行ポジション(位置)である。この「S」ポジションには、シフトレバー72の操作毎に変速レンジをアップ側にシフトさせるためのアップシフト位置「+」、シフトレバー72の操作毎に変速レンジをダウン側にシフトさせるためのダウンシフト位置「−」が備えられており、それ等の操作が前記アップシフトスイッチ80、ダウンシフトスイッチ82によって検出される。アップシフト位置「+」およびダウンシフト位置「−」は何れも不安定で、シフトレバー72はスプリング等の付勢手段により自動的に「S」ポジションへ戻されるようになっており、アップシフト位置「+」またはダウンシフト位置「−」への操作回数或いは保持時間などに応じて変速レンジが変更される。上記Sモードは、手動変速モードに相当する。
図3は、油圧制御回路98のうち自動変速機14の変速制御、すなわちクラッチC1、C2、およびブレーキB1〜B3の油圧制御に関する部分を説明する回路図で、オイルポンプ18から圧送された作動油は、リリーフ型の第1調圧弁100により調圧されることによって第1ライン圧PL1とされる。第1調圧弁100は、タービントルクTT すなわち自動変速機14の入力トルクTIN、或いはその代用値であるスロットル弁開度θTHに応じて第1ライン圧PL1を調圧するもので、その第1ライン圧PL1は、シフトレバー72に連動させられるマニュアルバルブ104に供給される。そして、シフトレバー72が「D」ポジションまたは「S」ポジションの前進走行ポジションへ操作されているときには、このマニュアルバルブ104から第1ライン圧PL1と同じ大きさの前進ポジション圧PD がリニアソレノイド弁SL1〜SL5へ供給される。リニアソレノイド弁SL1〜SL5は、それぞれ前記クラッチC1、C2、ブレーキB1〜B3に対応して配設されており、電子制御装置90から出力される駆動信号に従ってそれぞれ励磁状態が制御されることにより、それ等の係合油圧PC1、PC2、PB1、PB2、PB3がそれぞれ独立に制御され、これにより第1速ギヤ段「1st」〜第6速ギヤ段「6th」の何れかを択一的に成立させることができる。リニアソレノイド弁SL1〜SL5は何れも大容量型で、出力油圧がそのままクラッチC1、C2、ブレーキB1〜B3に供給され、それ等の係合油圧PC1、PC2、PB1、PB2、PB3を直接制御する直接圧制御が行われる。
前記電子制御装置90は、CPU、RAM、ROM、入出力インターフェース等を備えた所謂マイクロコンピュータを含んで構成されており、CPUはRAMの一時記憶機能を利用しつつ予めROMに記憶されたプログラムに従って信号処理を行うことにより、図4に示すようにエンジン制御手段110および変速制御手段120の各機能を実行するようになっており、必要に応じてエンジン制御用、変速制御用等に分けて構成される。
エンジン制御手段110は、エンジン10の出力制御を行うもので、前記スロットルアクチュエータ54により電子スロットル弁56を開閉制御する他、燃料噴射量制御のために燃料噴射弁92(図1参照)を制御し、点火時期制御のためにイグナイタ等の点火装置94を制御する。電子スロットル弁56の制御は、例えば図5に示す関係から実際のアクセル操作量Accに基づいてスロットルアクチュエータ54を駆動し、アクセル操作量Accが増加するほどスロットル弁開度θTHを増加させる。このエンジン制御手段110はまた、フューエルカット手段112を備えており、アクセル操作量Accが0のアクセルOFF時であって所定のフューエルカット条件を満足する場合に、燃費向上や排出ガス低減等のために燃料噴射弁92による燃料供給を停止し、エンジン10の作動を停止させる。
変速制御手段120は、自動変速機14の変速制御を行うもので、シフトレバー72が「D」ポジションへ操作されることにより前記自動変速モード(Dレンジ)を成立させ、例えば図6の(a) に示すように車速Vおよびアクセル操作量Accをパラメータとして予め設定された変速マップに従って、総ての前進ギヤ段「1st」〜「6th」を用いて自動変速を行う。前記図2(b) の作動表から明らかなように、本実施例の自動変速機14は、クラッチCおよびブレーキBの何れか1つを解放するとともに他の1つを係合させるクラッチツークラッチ変速により、連続するギヤ段の変速が行われるようになっている。図6の(a) の変速マップの実線はアップシフト線で、破線はダウンシフト線であり、車速Vが低くなったりアクセル操作量Accが大きくなったりするに従って、変速比が大きい低速側のギヤ段に切り換えられるようになっている。また、アクセル操作量Accが0のコースト走行時のダウンシフトに関しては、前記フューエルカット手段112によるフューエルカットが維持されるように、各ギヤ段毎にコーストダウン車速が別個に設定されており、そのコーストダウシ車速を跨いで車速Vが低下した場合にダウンシフトを行うようになっている。図中の「1」〜「6」は第1速ギヤ段「1st」〜第6速ギヤ段「6th」を意味している。
また、シフトレバー72が「S」ポジションへ操作されることにより前記Sモードを成立させ、アップシフト指令RUPやダウンシフト指令RDNに従って図6の(b) に示すように最高速段すなわち変速比が小さい高速側の変速範囲が異なる6つの変速レンジ「D」、「5」、「4」、「3」、「2」、「L」の何れかを電気的に成立させるとともに、各変速範囲内において前記図6(a) の変速マップに従って自動変速を行う。したがって、例えば下り坂などでシフトレバー72をダウンシフト位置「−」へ繰り返し操作すると、変速レンジが例えば「4」レンジから、「3」レンジ、「2」レンジ、「L」レンジへ切り換えられ、第4速ギヤ段「4th」から第3速ギヤ段「3rd」、第2速ギヤ段「2nd」、第1速ギヤ段「1st」へ順次ダウンシフトされて、エンジンンブレーキが増大させられる。
このような自動または手動による自動変速機14の変速制御は、前記複数のクラッチCおよびブレーキBのうちの所定の係合側摩擦係合装置および解放側摩擦係合装置の油圧を予め定められた変化パターンに従って変化させたり、所定の変化タイミングで変化させたりすることによって行われる。すなわち、前記油圧制御回路98のリニアソレノイド弁SL1〜SL5の励磁、非励磁を切り換えたり、その励磁状態を連続的に変化させたりするのであるが、この変化パターンや変化タイミング等の制御態様は、クラッチCおよびブレーキBの耐久性や変速応答性、変速ショック等を総合的に考慮して、どのギヤ段からどのギヤ段への変速かを表す変速の種類や、前記図6(a) の変速マップによる自動変速かシフトレバー操作によるマニュアル変速か、アップシフトかダウンシフトか、アクセルペダル50が踏込み操作されたパワーON状態か踏込み操作されていないパワーOFF状態か、或いは先の変速制御が終了する前に次の変速制御を開始する多重変速か単一変速か、等の変速の態様に応じて定められる。
上記変速制御手段120はまた、パワーOFFダウンシフト時オーバーラップ変速制御手段122を備えている一方、前記エンジン制御手段110は、パワーOFFダウンシフト時イナーシャトルク相殺手段114を備えている。これ等のパワーOFFダウンシフト時オーバーラップ変速制御手段122、パワーOFFダウンシフト時イナーシャトルク相殺手段114は、何れもアクセルペダル50が踏込み操作されていないアクセル操作量Acc=0のパワーOFF時で、前記フューエルカット手段112によりエンジン10に対する燃料供給が停止させられ、駆動輪46側からの入力がエンジン10側からの入力を上回り、エンジン10のポンピングロスやフリクションロスによる回転抵抗で制動力を発生するエンジンブレーキ状態において、エンジン回転速度NEを引き上げながら自動変速機14をダウンシフトさせる際の変速制御、エンジン制御に関するもので、図7のフローチャートに従って信号処理を行う。図7のステップS2〜S4、S6〜S9は、パワーOFFダウンシフト時オーバーラップ変速制御手段122に相当し、ステップS3、S5、S8、およびS10は、パワーOFFダウンシフト時イナーシャトルク相殺手段114に相当する。
図8は、このようなパワーOFFダウンシフト時に、図7のフローチャートに従って変速制御およびエンジン制御が行われた場合の係合側摩擦係合装置および解放側摩擦係合装置の油圧指令値の変化を、タービン回転速度NTや、自動変速機14の入力トルクTIN、出力トルクTOUT 、スロットル弁開度θTHと関連付けて示すタイムチャートの一例である。この中のタービン回転速度NTの欄の縦軸の「hidoki」は、ダウンシフト前のギヤ段の同期回転速度で、「lodoki」はダウンシフト後のギヤ段の同期回転速度であり、各ギヤ段の変速比γHI、γLOと車速Vに対応する出力軸回転速度NOUT とを掛け算した値である。そして、タービン回転速度NTがそれ等の同期回転速度と一致している間は各ギヤ段が成立しているが、それ等の同期回転速度から外れている間は変速途中(イナーシャ相)であることを意味している。また、係合側摩擦係合装置の油圧指令値および解放側摩擦係合装置の油圧指令値は、何れも前記リニアソレノイド弁SL1〜SL6に対する励磁電流に対応するもので、実際の油圧は、この指令値よりも遅れてなまされた形で変化する。また、入力トルクTINは、タービン回転速度NT等が一定の定常状態のもので、回転速度変化によって発生するイナーシャトルクは含まれていない。
図7のステップS1では、パワーOFFダウンシフトか否か、すなわちアクセル操作量Accが0のパワーOFF時に、予め定められたコーストダウン車速を跨いで車速Vが低下することにより、或いは運転者のシフトレバー操作により、ダウンシフトの変速指令が出力されたか否かを判断し、パワーOFFダウンシフトの場合はステップS2以下を実行する。この状態では、通常は前記フューエルカット手段112によりエンジン10に対する燃料供給が停止させられ、駆動輪46の回転が自動変速機14、トルクコンバータ12のロックアップクラッチ12c等を介してエンジン10に伝達されることにより、エンジン10が回転駆動されるとともに、フリクションロスやポンピングロスによる回転抵抗で所定のエンジンブレーキが発生させられる。図8の時間t0は、ステップS1の判断がYES(肯定)となり、ステップS2以下の実行が開始された時間である。
ステップS2では、予め定められた油圧制御パターンに従って係合側摩擦係合装置および解放側摩擦係合装置の油圧制御、すなわち前記リニアソレノイド弁SL1〜SL5に対する油圧指令値(励磁電流)の制御を開始する。具体的には、係合側摩擦係合装置については、ファーストフィルを行った後、時間t0からスウィープ開始時間timeAが経過した所定のタイミング(時間t1)で油圧指令値を予め定められた変化率でスウィープアップさせ、解放側摩擦係合装置については、ファーストドレンを行った後、係合側と同じタイミング(時間t1)で油圧指令値を予め定められた変化率でスウィープダウンさせる。このスウィープアップおよびスウィープダウンの開始油圧や変化率は、例えばどのギヤ段からどのギヤ段へのダウンシフトかを表す変速の種類や、自動変速かマニュアル変速か、或いはAT油温TOIL 、車速V等をパラメータとして予めマップなどで設定されているとともに、必要に応じて学習補正される。そして、このように係合側摩擦係合装置および解放側摩擦係合装置の油圧指令値をそれぞれスウィープアップ、スウィープダウンさせることにより、解放側摩擦係合装置および係合側摩擦係合装置が一時的に重複(オーバーラップ)して係合トルクを持つようにして変速制御が行われ、解放側摩擦係合装置の係合トルクが所定値以下になって滑り始めることにより、係合側摩擦係合装置の係合トルクによりタービン回転速度NTが引き上げられる。
ステップS3では、上記の油圧制御によりイナーシャ相が開始したか否か、具体的にはタービン回転速度NTがダウンシフト前の同期回転速度hidokiから変化し始めたか否かを判断する。そして、イナーシャ相の開始判定が為されたら、ステップS4で解放側摩擦係合装置の油圧指令値を0とし、解放側摩擦係合装置を速やかに解放する。これにより、イナーシャ相が開始する前のトルク相において、係合側摩擦係合装置および解放側摩擦係合装置が共に解放状態となってエンジンブレーキが低下するトルク抜けを防止しつつ、係合側摩擦係合装置の係合トルクでタービン回転速度NTを上昇させるイナーシャ相へ滑らかに移行することができる。図8の時間t2は、イナーシャ相の開始判定が為されてステップS3の判断がYES(肯定)となり、解放側摩擦係合装置の油圧指令値が0とされた時間である。この時、自動変速機14の出力トルクTOUT は、入力トルクTINにダウンシフト後のギヤ段の変速比γLOを掛け算した値となる。
ここで、タービン回転速度NTやエンジン回転速度NEが引き上げられるイナーシャ相では、エンジン10やトルクコンバータ12等の入力軸32よりもエンジン10側のイナーシャによって負トルク(イナーシャトルク)が発生し、図8の出力トルクTOUT の欄に破線で示すように、ダウンシフト後のギヤ段における出力トルク(γLO×TIN)よりもイナーシャトルク分だけ出力トルクTOUT が一時的に低くなる。すなわち、イナーシャトルク分だけエンジンブレーキが一時的に大きくなるのであり、これにより乗り心地が悪くなったり運転者に違和感を生じさせたりする。
これに対し、本実施例では次のステップS5で、イナーシャトルク相殺制御を開始し、上記イナーシャトルクを相殺するように電子スロットル弁56のスロットル弁開度θTHを予め定められたイナーシャトルク相殺開度θTHITだけ開き制御する。すなわち、フューエルカット状態でスロットル弁開度θTHを開き制御すると、ポンピングロスによるエンジン10の回転抵抗が低下し、相対的に入力トルクTINを所定の相殺トルクだけ増大させることができるのであり、これによりイナーシャトルクによるエンジンブレーキの増加が抑制される。イナーシャトルク相殺開度θTHITは相殺トルクに対応するもので、イナーシャ相におけるタービン回転速度NTの変化率ΔNT等に応じて定まるイナーシャトルクと略同じになるように、どのギヤ段からどのギヤ段へのダウンシフトかを表す変速の種類や、自動変速かマニュアル変速か、或いはAT油温TOIL 、車速V等をパラメータとして予めマップなどで設定されている。なお、イナーシャ相における出力トルクTOUT の変動が所定値以下になるように、イナーシャトルク相殺開度θTHITを逐次学習補正することも可能である。また、イナーシャトルクが大きい場合には、フューエルカットを中止して燃料噴射弁92による燃料供給を再開し、エンジン10を自力回転させるようにしても良い。
次のステップS6では、タービン回転速度NTの変化率ΔNTが予め定められた設定変化率ΔNT1に達したか否かを判断し、ΔNT≧ΔNT1になったら、ステップS7で係合側摩擦係合装置の油圧指令値のスウィープアップを終了し、その時の油圧指令値に固定する。これにより、タービン回転速度NTは設定変化率ΔNT1と略同じ変化率で上昇させられる。但し、タービン回転速度NTが設定変化率ΔNT1で上昇するように、係合側摩擦係合装置の油圧指令値をフィードバック制御することも可能である。この設定変化率ΔNT1は、前記イナーシャトルク相殺開度θTHITと同様に、どのギヤ段からどのギヤ段へのダウンシフトかを表す変速の種類や、自動変速かマニュアル変速か、或いはAT油温TOIL 、車速Vなどをパラメータとして予めマップなどで設定されている。図8の時間t3は、ΔNT≧ΔNT1になってステップS6の判断がYES(肯定)になった時間であり、スロットル弁開度θTHは、応答遅れを考慮してタービン回転速度NTの変化率ΔNTが設定変化率ΔNT1に達する少し前に前記イナーシャトルク相殺開度θTHITに達するように開き制御される。
ステップS8では、タービン回転速度NTがダウンシフト後のギヤ段の同期回転速度lodoki付近に達したか否か、具体的には同期回転速度lodokiよりも所定値αだけ低い回転速度(lodoki−α)に達したか否かを判断し、NT≧lodoki−αになったら(時間t4)、ステップS9で係合側摩擦係合装置の油圧制御の終了処理を行う。具体的には、係合側摩擦係合装置の急係合による変速ショックを防止するため、一時的に油圧指令値を低下させてタービン回転速度NTの上昇度合を緩和し、同期回転速度lodokiに滑らかに近づけるなどした後、変速終了判定(時間t5)に伴ってMAX圧(第1ライン圧PL1)まで一気に上昇させて完全係合させる。また、ステップS10では、イナーシャトルク相殺制御の終了処理を行い、スロットル弁開度θTHを滑らかに0まで低下させる。これにより、タービン回転速度NTの上昇終了に伴うイナーシャトルクの減少に合わせて、ポンピングロスによる回転抵抗が増大させられ、イナーシャトルクの変化に伴う出力トルクTOUT 、更には駆動トルク(エンジンブレーキ)の変動が抑制される。
このように、本実施例の車両用駆動装置の制御装置においては、アクセルOFFのエンジンブレーキ状態におけるダウンシフトに際して、タービン回転速度NTやエンジン回転速度NEを引き上げるイナーシャ相で、そのエンジン10等のイナーシャによって発生する負トルク(イナーシャトルク)を低減するように、スロットル弁開度θTHをイナーシャトルク相殺開度θTHITだけ開き制御してポンピングロスによる回転抵抗を低下させるパワーOFFダウンシフト時イナーシャトルク相殺手段114を有するため、そのイナーシャトルクに起因するエンジンブレーキの一時的な増大が抑制され、エンジンブレーキの変動による違和感が軽減されて乗り心地が向上する。特に、イナーシャトルクを低減するように、そのイナーシャトルクの範囲内でポンピングロスによる回転抵抗を低下させるため、エンジン10の出力増大制御などでエンジン回転速度NEを自力で上昇させる場合のように、エンジンブレーキが低下したり反対に駆動状態になったりして却って運転者に違和感を生じさせる恐れがない。
また、本実施例では、パワーOFFダウンシフト時オーバーラップ変速制御手段122を備えており、解放側摩擦係合装置および係合側摩擦係合装置が一時的に重複(オーバーラップ)して係合トルクを持つようにダウンシフトの変速制御が行われるため、イナーシャ相が開始する前のトルク相において係合側摩擦係合装置および解放側摩擦係合装置が共に解放状態となってエンジンブレーキが低下するトルク抜けが防止され、トルク相からイナーシャ相が終了するまでの一連の変速過渡時のエンジンブレーキの変動が抑制されて、乗り心地が一層向上する。
また、本実施例では、フューエルカット状態におけるエンジン10のスロットル弁開度θTHを開き制御することにより、ポンピングロスによる回転抵抗を低下させて相対的に相殺トルクを付与し、イナーシャトルクを低減するため、エンジン10とは別に電動モータ等を設けて相殺トルクを付与する場合に比較して、既存の車両用駆動装置8をそのまま用いてエンジンブレーキの変動を抑制することが可能で、装置が安価に構成される。
以上、本発明の実施例を図面に基づいて詳細に説明したが、これはあくまでも一実施形態であり、本発明は当業者の知識に基づいて種々の変更、改良を加えた態様で実施することができる。
本発明が好適に適用される車両用駆動装置を制御系統と共に示す概略構成図である。 図1の自動変速機の具体的構成を説明する図で、(a) は骨子図、(b) は複数のギヤ段における摩擦係合装置の作動状態を示す作動表である。 図1の油圧制御回路のうち自動変速機の変速制御に関連する部分の構成を説明する回路図である。 図1の電子制御装置が備えている機能の要部を説明するブロック線図である。 図4のエンジン制御手段によって行われるスロットル制御で用いられるアクセル操作量Accとスロットル弁開度θTHとの関係の一例を示す図である。 図4の変速制御手段によって行われる自動変速機の変速制御を説明する図で、(a) は運転状態に応じてギヤ段を自動的に切り換える際に用いられる変速マップの一例で、(b) は複数の変速レンジの変速範囲を示す図である。 図4のパワーOFFダウンシフト時オーバーラップ変速制御手段、およびパワーOFFダウンシフト時イナーシャトルク相殺手段によって行われる信号処理を具体的に説明するフローチャートである。 パワーOFFダウンシフト時に図7のフローチャートに従ってオーバーラップ変速制御、イナーシャトルク相殺制御が行われた場合のタービン回転速度NTや係合側および解放側の油圧指令値等の変化を示すタイムチャートの一例である。
符号の説明
8:車両用駆動装置 10:エンジン(動力源) 14:自動変速機 90:電子制御装置 114:パワーOFFダウンシフト時イナーシャトルク相殺手段(イナーシャトルク相殺手段) 122:パワーOFFダウンシフト時オーバーラップ変速制御手段(オーバーラップ変速制御手段) NT:タービン回転速度(入力軸回転速度) NE:エンジン回転速度(動力源回転速度) C1、C2:クラッチ(摩擦係合装置) B1〜B3:ブレーキ(摩擦係合装置) θTHIT:イナーシャトルク相殺開度(相殺トルク)

Claims (3)

  1. 車輪側からの入力が動力源側からの入力を上回り、該動力源の回転抵抗で制動力を発生する動力源ブレーキ状態で、該動力源の回転速度を引き上げながら自動変速機をダウンシフトさせる車両用駆動装置の制御装置において、
    前記動力源の回転速度を引き上げるイナーシャ相で、該動力源側のイナーシャによって発生する負トルクを低減するように、該負トルクの範囲内で所定の相殺トルクを付与するイナーシャトルク相殺手段を設けた
    ことを特徴とする車両用駆動装置の制御装置。
  2. 解放側摩擦係合装置が解放されるとともに係合側摩擦係合装置が係合させられることによってダウンシフトが行われる自動変速機を有し、
    車輪側からの入力が動力源側からの入力を上回り、該動力源の回転抵抗で制動力を発生する動力源ブレーキ状態で、該動力源の回転速度を引き上げながら前記自動変速機をダウンシフトさせる車両用駆動装置の制御装置において、
    前記ダウンシフト時に、前記解放側摩擦係合装置および前記係合側摩擦係合装置が一時的に重複して係合トルクを持つように変速制御を行うオーバーラップ変速制御手段と、
    前記係合側摩擦係合装置の係合トルクで前記動力源の回転速度を引き上げるイナーシャ相で、該動力源側のイナーシャによって発生する負トルクを低減するように、該負トルクの範囲内で所定の相殺トルクを付与するイナーシャトルク相殺手段と、
    を有することを特徴とする車両用駆動装置の制御装置。
  3. 前記イナーシャトルク相殺手段は、前記動力源の回転抵抗を低下させることにより相対的に前記相殺トルクを付与し、前記負トルクを低減する
    ことを特徴とする請求項1または2に記載の車両用駆動装置の制御装置。
JP2007001621A 2007-01-09 2007-01-09 車両用駆動装置の制御装置 Withdrawn JP2008169874A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007001621A JP2008169874A (ja) 2007-01-09 2007-01-09 車両用駆動装置の制御装置
PCT/JP2007/074882 WO2008084683A1 (ja) 2007-01-09 2007-12-25 車両用駆動装置の制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007001621A JP2008169874A (ja) 2007-01-09 2007-01-09 車両用駆動装置の制御装置

Publications (1)

Publication Number Publication Date
JP2008169874A true JP2008169874A (ja) 2008-07-24

Family

ID=39608579

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007001621A Withdrawn JP2008169874A (ja) 2007-01-09 2007-01-09 車両用駆動装置の制御装置

Country Status (2)

Country Link
JP (1) JP2008169874A (ja)
WO (1) WO2008084683A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010013573A1 (ja) * 2008-07-31 2010-02-04 アイシン・エィ・ダブリュ株式会社 変速機装置および動力出力装置並びに動力出力装置の制御方法
DE112010000436T5 (de) 2009-03-25 2012-08-30 Aisin Aw Co. Ltd. Fahrzeugsteuervorrichtung und Fahrzeugantriebssystem
JP2013032793A (ja) * 2011-08-01 2013-02-14 Aisin Seiki Co Ltd 自動変速機の変速制御装置
JP2013174358A (ja) * 2013-04-26 2013-09-05 Aisin Aw Co Ltd 変速機装置および動力出力装置並びに動力出力装置の制御方法
WO2014027505A1 (ja) * 2012-08-13 2014-02-20 日産自動車株式会社 車両の制御装置及び制御方法
US8864625B2 (en) 2011-06-01 2014-10-21 Nissan Motor Co., Ltd. Controller of stepped automatic transmission
JP2018131162A (ja) * 2017-02-17 2018-08-23 トヨタ自動車株式会社 車両の変速制御装置
JP2018145997A (ja) * 2017-03-02 2018-09-20 トヨタ自動車株式会社 車両の変速制御装置
JP2019503296A (ja) * 2015-12-22 2019-02-07 ツェットエフ、フリードリッヒスハーフェン、アクチエンゲゼルシャフトZf Friedrichshafen Ag 車両ドライブトレイン及び車両ブレーキを備える車両を操作する方法
JP2020142663A (ja) * 2019-03-06 2020-09-10 トヨタ自動車株式会社 車両の制御装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017222535A1 (de) * 2017-12-12 2019-06-27 Volkswagen Aktiengesellschaft Verfahren zur Steuerung eines Antriebsstrangs eines Hybridfahrzeugs

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03163265A (ja) * 1989-11-17 1991-07-15 Nissan Motor Co Ltd 自動変速機の締結要素調圧装置
JP3008684B2 (ja) * 1991-12-25 2000-02-14 トヨタ自動車株式会社 自動変速機の変速制御装置

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010013573A1 (ja) * 2008-07-31 2010-02-04 アイシン・エィ・ダブリュ株式会社 変速機装置および動力出力装置並びに動力出力装置の制御方法
JP2010038168A (ja) * 2008-07-31 2010-02-18 Aisin Aw Co Ltd 変速機装置および動力出力装置並びに動力出力装置の制御方法
US8246514B2 (en) 2008-07-31 2012-08-21 Aisin Aw Co., Ltd. Transmission device, power output device, and control method of power output device
DE112010000436T5 (de) 2009-03-25 2012-08-30 Aisin Aw Co. Ltd. Fahrzeugsteuervorrichtung und Fahrzeugantriebssystem
US8280599B2 (en) 2009-03-25 2012-10-02 Aisin Aw Co., Ltd. Vehicle control device and vehicle drive system for implementing a one-way transmission speed or engaging a first engaging element in an idle stop state
DE112010000436B4 (de) 2009-03-25 2017-08-10 Aisin Aw Co., Ltd. Fahrzeugsteuervorrichtung und Fahrzeugantriebssystem
US8864625B2 (en) 2011-06-01 2014-10-21 Nissan Motor Co., Ltd. Controller of stepped automatic transmission
JP2013032793A (ja) * 2011-08-01 2013-02-14 Aisin Seiki Co Ltd 自動変速機の変速制御装置
WO2014027505A1 (ja) * 2012-08-13 2014-02-20 日産自動車株式会社 車両の制御装置及び制御方法
JP5915752B2 (ja) * 2012-08-13 2016-05-11 日産自動車株式会社 車両の制御装置及び制御方法
JPWO2014027505A1 (ja) * 2012-08-13 2016-07-25 日産自動車株式会社 車両の制御装置及び制御方法
JP2013174358A (ja) * 2013-04-26 2013-09-05 Aisin Aw Co Ltd 変速機装置および動力出力装置並びに動力出力装置の制御方法
JP2019503296A (ja) * 2015-12-22 2019-02-07 ツェットエフ、フリードリッヒスハーフェン、アクチエンゲゼルシャフトZf Friedrichshafen Ag 車両ドライブトレイン及び車両ブレーキを備える車両を操作する方法
JP2018131162A (ja) * 2017-02-17 2018-08-23 トヨタ自動車株式会社 車両の変速制御装置
JP2018145997A (ja) * 2017-03-02 2018-09-20 トヨタ自動車株式会社 車両の変速制御装置
JP2020142663A (ja) * 2019-03-06 2020-09-10 トヨタ自動車株式会社 車両の制御装置

Also Published As

Publication number Publication date
WO2008084683A1 (ja) 2008-07-17

Similar Documents

Publication Publication Date Title
JP2008169874A (ja) 車両用駆動装置の制御装置
JP4155287B2 (ja) 車両用自動変速機の変速制御装置
JP4396631B2 (ja) 車両用自動変速機の変速制御装置
JP4200992B2 (ja) 車両用自動変速機の変速制御装置
JP4301232B2 (ja) 自動変速機の変速制御装置
JP4301235B2 (ja) 自動変速機の変速制御装置
JP4710566B2 (ja) 自動変速機の油圧制御装置
JP2010019407A (ja) 車両用自動変速機の制御装置
JP4690278B2 (ja) 自動変速機の変速制御装置
JP2008045676A (ja) 自動変速機の変速制御装置
JP4923547B2 (ja) 車両用自動変速機の変速制御装置
JP6377240B2 (ja) 自動変速機の制御装置
JP5035221B2 (ja) 自動変速機の変速制御装置
JP2007064464A (ja) 車両用自動変速機の変速制御装置
JP2008133868A (ja) 車両用自動変速機の変速制御装置
JP2009243492A (ja) 自動変速機の制御装置
JP4821525B2 (ja) 自動変速機の変速制御装置
JP4893168B2 (ja) 自動変速機の変速制御装置
JP2008164121A (ja) 自動変速機の変速制御装置
JP4952188B2 (ja) 車両用自動変速機の変速制御装置
JP5104092B2 (ja) 自動変速機の変速制御装置
JP4760308B2 (ja) 自動変速機の油圧制御装置
JP4760371B2 (ja) 自動変速機の変速制御装置
JP4984492B2 (ja) 自動変速機の変速制御装置
JP5083182B2 (ja) 自動変速機の学習制御装置

Legal Events

Date Code Title Description
A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090126