JP2020142663A - 車両の制御装置 - Google Patents

車両の制御装置 Download PDF

Info

Publication number
JP2020142663A
JP2020142663A JP2019040989A JP2019040989A JP2020142663A JP 2020142663 A JP2020142663 A JP 2020142663A JP 2019040989 A JP2019040989 A JP 2019040989A JP 2019040989 A JP2019040989 A JP 2019040989A JP 2020142663 A JP2020142663 A JP 2020142663A
Authority
JP
Japan
Prior art keywords
torque
engine
gear
change
transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019040989A
Other languages
English (en)
Inventor
金井 理
Osamu Kanai
理 金井
健太 熊▲崎▼
Kenta Kumazaki
健太 熊▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2019040989A priority Critical patent/JP2020142663A/ja
Publication of JP2020142663A publication Critical patent/JP2020142663A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Abstract

【課題】有段変速機のコーストダウン変速に際して、エンジンブレーキトルクの変化に適切に対応する。【解決手段】有段変速部20のコーストダウンシフト中のイナーシャ相開始後に生じるエンブレトルクの変化が増加側である場合には、エンブレトルクの変化量に基づいて係合側係合装置のイナーシャ相中における係合トルクTcbが増大補正されるので、係合側係合装置のイナーシャ相中における係合トルクTcbが不足してしまうことを抑制することができて、有段変速部20のコーストダウンシフトの進行が停滞してしまうことを抑制することができる。よって、有段変速部20のコーストダウンシフトに際して、エンブレトルクの変化に適切に対応することができる。【選択図】図8

Description

本発明は、エンジンとそのエンジンの動力を伝達する動力伝達経路の一部を構成する有段変速機とを備えた車両の制御装置に関するものである。
エンジンと、前記エンジンと駆動輪との間の動力伝達経路の一部を構成すると共に複数の係合装置のうちの所定の係合装置の係合によって複数のギヤ段のうちの何れかのギヤ段が形成される有段変速機とを備えた車両の制御装置が良く知られている。例えば、特許文献1に記載された車両の変速制御装置がそれである。この特許文献1には、電気式無段変速部と機械式有段変速部とを備えた車両において、走行モードとして自動変速モードと手動変速モードとの複数の走行モードを有していること、又、機械式有段変速部の変速中のイナーシャ相開始前に、電気式無段変速部と機械式有段変速部とを合わせた全体の変速機にて成立させられる模擬ギヤ段の切替えが為された場合には、その模擬ギヤ段の切替えを遅延させ、前記イナーシャ相が開始されたときに模擬ギヤ段の切替えを行う技術が開示されている。
特開2017−198330号公報
ところで、走行モードとして自動変速モードと手動変速モードとの複数の走行モードを有するような車両において、例えば自動変速モードでのコースト走行中に手動変速モードに切り替えられて有段変速機のギヤ段が切り替えられたときは、エンジンブレーキトルクを変化させることが考えられる。特許文献1に記載された技術に重ねれば、例えば有段変速機のコーストダウン変速中のイナーシャ相開始前に走行モードが切り替えられて模擬ギヤ段を切り替えるに当たっては、その模擬ギヤ段の切替えが遅延させられ、コーストダウン変速中のイナーシャ相開始後にエンジンブレーキトルクの変化が生じるように制御されることになる。このような場合、イナーシャ相の開始前後でエンジンブレーキトルクが大きく変化することになる。この変化がエンジンブレーキトルクの増加側であると、係合側係合装置のイナーシャ相中における係合トルクが不足して変速の進行が停滞するおそれがある。
本発明は、以上の事情を背景として為されたものであり、その目的とするところは、有段変速機のコーストダウン変速に際して、エンジンブレーキトルクの変化に適切に対応することができる車両の制御装置を提供することにある。
第1の発明の要旨とするところは、(a)エンジンと、前記エンジンと駆動輪との間の動力伝達経路の一部を構成すると共に複数の係合装置のうちの所定の係合装置の係合によって複数のギヤ段のうちの何れかのギヤ段が形成される有段変速機とを備えた車両の、制御装置であって、(b)前記車両が有する複数の走行モードのうちの何れかの走行モードを単独で又は組み合わせて成立させることができる走行モード制御部と、(c)コースト走行中には、前記走行モードに基づいてエンジンブレーキトルクを設定するものであり、前記走行モードの各々において前記有段変速機のコーストダウン変速中に前記エンジンブレーキトルクが変化する場合には、前記エンジンブレーキトルクの変化が前記コーストダウン変速中のイナーシャ相開始後に生じるように制御するものであるエンブレトルク制御部と、(d)前記コーストダウン変速中のイナーシャ相開始後に生じる前記エンジンブレーキトルクの変化が増加側である場合には、前記エンジンブレーキトルクの変化に基づく前記エンジンブレーキトルクの変化量に基づいて、前記複数の係合装置のうちの前記コーストダウン変速の変速過渡において係合に向けて制御される係合側係合装置の前記イナーシャ相中における係合トルクを増大補正する変速制御部と、(e)前記コーストダウン変速中のイナーシャ相開始前に前記走行モードが切り替えられたときに、切替え後の走行モードにおける前記イナーシャ相開始前の前記エンジンブレーキトルクが切替え前の走行モードにおける前記エンジンブレーキトルクよりも減少する場合には、前記切替え前の走行モードにおける前記エンジンブレーキトルクを前記エンジンブレーキトルクの変化前の値として用いて、前記イナーシャ相開始後に生じる前記エンジンブレーキトルクの変化に基づく前記エンジンブレーキトルクの変化量を算出するエンブレトルク変化量算出部とを、含むことにある。
前記第1の発明によれば、有段変速機のコーストダウン変速中のイナーシャ相開始後に生じるエンジンブレーキトルクの変化が増加側である場合には、エンジンブレーキトルクの変化量に基づいて係合側係合装置のイナーシャ相中における係合トルクが増大補正されるので、係合側係合装置のイナーシャ相中における係合トルクが不足してしまうことを抑制することができて、有段変速機の変速の進行が停滞してしまうことを抑制することができる。よって、有段変速機のコーストダウン変速に際して、エンジンブレーキトルクの変化に適切に対応することができる。
ここで、前記第1の発明によれば、走行モードに基づいてエンジンブレーキトルクが設定され、又、有段変速機のコーストダウン変速中のイナーシャ相開始前に走行モードが切り替えられた際、切替え後の走行モードにおいてコーストダウン変速中にエンジンブレーキトルクが変化する場合には、そのエンジンブレーキトルクの変化はコーストダウン変速中のイナーシャ相開始後に生じるように制御される。ところで、切替え後の走行モードにおけるイナーシャ相開始前のエンジンブレーキトルクが切替え前の走行モードにおけるエンジンブレーキトルクよりも減少していると、イナーシャ相開始後に生じるエンジンブレーキトルクの変化に基づくエンジンブレーキトルクの変化量は、切替え後の走行モードにおけるイナーシャ相開始前のエンジンブレーキトルクからの変化量の方が、切替え前の走行モードにおけるエンジンブレーキトルクからの変化量よりも大きくされる場合がある。コーストダウン変速における係合側係合装置の補正前の係合トルクが、切替え前の走行モードにおけるエンジンブレーキトルクに基づく値となっていると、切替え後の走行モードにおけるイナーシャ相開始前のエンジンブレーキトルクからの変化量は、係合トルクの補正に用いるべき本来の変化量よりも大きくされることになる為、係合トルクの過補正が生じるおそれがある。これに対して、前記第1の発明によれば、有段変速機のコーストダウン変速中のイナーシャ相開始前に走行モードが切り替えられたときに、切替え後の走行モードにおけるイナーシャ相開始前のエンジンブレーキトルクが切替え前の走行モードにおけるエンジンブレーキトルクよりも減少する場合には、切替え前の走行モードにおけるエンジンブレーキトルクがエンジンブレーキトルクの変化前の値として用いられて、イナーシャ相開始後に生じるエンジンブレーキトルクの変化に基づくエンジンブレーキトルクの変化量が算出されるので、係合トルクの過補正を防止することができる。
本発明が適用される車両に備えられた車両用駆動装置の概略構成を説明する図であると共に、車両における各種制御の為の制御機能及び制御系統の要部を説明する図である。 図1で例示した機械式有段変速部の変速作動とそれに用いられる係合装置の作動の組み合わせとの関係を説明する作動図表である。 電気式無段変速部と機械式有段変速部とにおける各回転要素の回転速度の相対的関係を表す共線図である。 複数のATギヤ段に複数の模擬ギヤ段を割り当てたギヤ段割当テーブルの一例を説明する図である。 図3と同じ共線図上に有段変速部のATギヤ段と複合変速機の模擬ギヤ段とを例示した図である。 複数の模擬ギヤ段の変速制御に用いる模擬ギヤ段変速マップの一例を説明する図である。 手動変速モードとされているときの有段変速部のコーストダウンシフト中に運転者によるダウンシフト操作が為された場合の一例を示す図である。 電子制御装置の制御作動の要部すなわち有段変速部のコーストダウンシフトに際してエンブレトルクの変化に適切に対応する為の制御作動を説明するフローチャートである。 図8のフローチャートに示す制御作動を実行した場合のタイムチャートの一例を示す図である。
本発明の実施形態において、前記有段変速機などの変速機における変速比は、「入力側の回転部材の回転速度/出力側の回転部材の回転速度」である。この変速比におけるハイ側は、変速比が小さくなる側である高車速側である。変速比におけるロー側は、変速比が大きくなる側である低車速側である。例えば、最ロー側変速比は、最も低車速側となる最低車速側の変速比であり、変速比が最も大きな値となる最大変速比である。
以下、本発明の実施例を図面を参照して詳細に説明する。
図1は、本発明が適用される車両10に備えられた車両用駆動装置12の概略構成を説明する図であると共に、車両10における各種制御の為の制御系統の要部を説明する図である。図1において、車両用駆動装置12は、動力源として機能するエンジン14、車体に取り付けられる非回転部材としてのトランスミッションケース16内において共通の軸心上に直列に配設された、電気式無段変速部18及び機械式有段変速部20等を備えている。電気式無段変速部18は、直接的に或いは図示しないダンパーなどを介して間接的にエンジン14に連結されている。機械式有段変速部20は、電気式無段変速部18の出力側に連結されている。又、車両用駆動装置12は、機械式有段変速部20の出力回転部材である出力軸22に連結された差動歯車装置24、差動歯車装置24に連結された一対の車軸26等を備えている。車両用駆動装置12において、エンジン14や後述する第2回転機MG2から出力される動力は、機械式有段変速部20へ伝達され、その機械式有段変速部20から差動歯車装置24等を介して車両10が備える駆動輪28へ伝達される。車両用駆動装置12は、例えば車両10において縦置きされるFR(=フロントエンジン・リヤドライブ)型車両に好適に用いられるものである。尚、以下、トランスミッションケース16をケース16、電気式無段変速部18を無段変速部18、機械式有段変速部20を有段変速部20という。又、動力は、特に区別しない場合にはトルクや力も同意である。又、無段変速部18や有段変速部20等は上記共通の軸心に対して略対称的に構成されており、図1ではその軸心の下半分が省略されている。上記共通の軸心は、エンジン14のクランク軸、後述する連結軸34などの軸心である。
エンジン14は、車両10の走行用の動力源であり、ガソリンエンジンやディーゼルエンジン等の公知の内燃機関である。このエンジン14は、後述する電子制御装置80によって車両10に備えられたスロットルアクチュエータや燃料噴射装置や点火装置等のエンジン制御装置50が制御されることによりエンジン14の出力トルクであるエンジントルクTeが制御される。本実施例では、エンジン14は、トルクコンバータやフルードカップリング等の流体式伝動装置を介することなく無段変速部18に連結されている。
無段変速部18は、第1回転機MG1と、エンジン14の動力を第1回転機MG1及び無段変速部18の出力回転部材である中間伝達部材30に機械的に分割する動力分割機構としての差動機構32とを備えている。中間伝達部材30には第2回転機MG2が動力伝達可能に連結されている。無段変速部18は、第1回転機MG1の運転状態が制御されることにより差動機構32の差動状態が制御される電気式無段変速機である。第1回転機MG1は、エンジン14の回転速度であるエンジン回転速度Neを制御可能な回転機であって、差動用回転機に相当し、又、第2回転機MG2は、動力源として機能する回転機であって、走行駆動用回転機に相当する。車両10は、走行用の動力源として、エンジン14及び第2回転機MG2を備えたハイブリッド車両である。尚、第1回転機MG1の運転状態を制御することは、第1回転機MG1の運転制御を行うことである。
第1回転機MG1及び第2回転機MG2は、電動機(モータ)としての機能及び発電機(ジェネレータ)としての機能を有する回転電気機械であって、所謂モータジェネレータである。第1回転機MG1及び第2回転機MG2は、各々、車両10に備えられたインバータ52を介して、車両10に備えられた蓄電装置としてのバッテリ54に接続されており、後述する電子制御装置80によってインバータ52が制御されることにより、第1回転機MG1及び第2回転機MG2の各々の出力トルクであるMG1トルクTg及びMG2トルクTmが制御される。回転機の出力トルクは、加速側となる正トルクでは力行トルクであり、又、減速側となる負トルクでは回生トルクである。バッテリ54は、第1回転機MG1及び第2回転機MG2の各々に対して電力を授受する蓄電装置である。
差動機構32は、シングルピニオン型の遊星歯車装置にて構成されており、サンギヤS0、キャリアCA0、及びリングギヤR0を備えている。キャリアCA0には連結軸34を介してエンジン14が動力伝達可能に連結され、サンギヤS0には第1回転機MG1が動力伝達可能に連結され、リングギヤR0には第2回転機MG2が動力伝達可能に連結されている。差動機構32において、キャリアCA0は入力要素として機能し、サンギヤS0は反力要素として機能し、リングギヤR0は出力要素として機能する。
有段変速部20は、中間伝達部材30と駆動輪28との間の動力伝達経路の一部を構成する有段変速機としての機械式変速機構、つまり無段変速部18と駆動輪28との間の動力伝達経路の一部を構成する機械式変速機構である。中間伝達部材30は、有段変速部20の入力回転部材としても機能する。中間伝達部材30には第2回転機MG2が一体回転するように連結されているので、又は、無段変速部18の入力側にはエンジン14が連結されているので、有段変速部20は、動力源(第2回転機MG2又はエンジン14)と駆動輪28との間の動力伝達経路の一部を構成する変速機である。中間伝達部材30は、駆動輪28に動力源の動力を伝達する為の伝達部材である。有段変速部20は、例えば第1遊星歯車装置36及び第2遊星歯車装置38の複数組の遊星歯車装置と、ワンウェイクラッチF1を含む、クラッチC1、クラッチC2、ブレーキB1、ブレーキB2の複数の係合装置とを備えている、公知の遊星歯車式の自動変速機である。以下、クラッチC1、クラッチC2、ブレーキB1、及びブレーキB2については、特に区別しない場合は単に係合装置CBという。
係合装置CBは、油圧アクチュエータにより押圧される多板式或いは単板式のクラッチやブレーキ、油圧アクチュエータによって引き締められるバンドブレーキなどにより構成される、油圧式の摩擦係合装置である。係合装置CBは、車両10に備えられた油圧制御回路56内のソレノイドバルブSL1−SL4等から各々出力される調圧された係合装置CBの各係合圧としての各係合油圧PRcbによりそれぞれのトルク容量である係合トルクTcbが変化させられることで、各々、係合や解放などの状態である作動状態が切り替えられる。係合装置CBを滑らすことなく中間伝達部材30と出力軸22との間で、例えば有段変速部20に入力される入力トルクであるAT入力トルクTiを伝達する為には、そのAT入力トルクTiに対して係合装置CBの各々にて受け持つ必要がある伝達トルク分である係合装置CBの分担トルクが得られる係合トルクTcbが必要になる。但し、伝達トルク分が得られる係合トルクTcbにおいては、係合トルクTcbを増加させても伝達トルクは増加しない。つまり、係合トルクTcbは、係合装置CBが伝達できる最大のトルクに相当し、伝達トルクは、係合装置CBが実際に伝達するトルクに相当する。尚、係合装置CBを滑らせないことは、係合装置CBに差回転速度を生じさせないことである。又、係合トルクTcb(或いは伝達トルク)と係合油圧PRcbとは、例えば係合装置CBのパック詰めに必要な係合油圧PRcbを供給する領域を除けば、略比例関係にある。
有段変速部20は、第1遊星歯車装置36及び第2遊星歯車装置38の各回転要素が、直接的に或いは係合装置CBやワンウェイクラッチF1を介して間接的に、一部が互いに連結されたり、中間伝達部材30、ケース16、或いは出力軸22に連結されている。第1遊星歯車装置36の各回転要素は、サンギヤS1、キャリアCA1、リングギヤR1であり、第2遊星歯車装置38の各回転要素は、サンギヤS2、キャリアCA2、リングギヤR2である。
有段変速部20は、複数の係合装置のうちの何れかの係合装置である例えば所定の係合装置の係合によって、変速比(ギヤ比ともいう)γat(=AT入力回転速度Ni/出力回転速度No)が異なる複数の変速段(ギヤ段ともいう)のうちの何れかのギヤ段が形成される有段変速機である。つまり、有段変速部20は、複数の係合装置の何れかが係合されることで、ギヤ段が切り替えられるすなわち変速が実行される。有段変速部20は、複数のギヤ段の各々が形成される、有段式の自動変速機である。本実施例では、有段変速部20にて形成されるギヤ段をATギヤ段と称す。AT入力回転速度Niは、有段変速部20の入力回転部材の回転速度である有段変速部20の入力回転速度であって、中間伝達部材30の回転速度と同値であり、又、第2回転機MG2の回転速度であるMG2回転速度Nmと同値である。AT入力回転速度Niは、MG2回転速度Nmで表すことができる。出力回転速度Noは、有段変速部20の出力回転速度である出力軸22の回転速度であって、無段変速部18と有段変速部20とを合わせた全体の変速機である複合変速機40の出力回転速度でもある。複合変速機40は、エンジン14と駆動輪28との間の動力伝達経路の一部を構成する変速機である。
有段変速部20は、例えば図2の係合作動表に示すように、複数のATギヤ段として、AT1速ギヤ段(図中の「1st」)−AT4速ギヤ段(図中の「4th」)の4段の前進用のATギヤ段が形成される。AT1速ギヤ段の変速比γatが最も大きく、ハイ側のATギヤ段程、変速比γatが小さくなる。図2の係合作動表は、各ATギヤ段と複数の係合装置の各作動状態との関係をまとめたものである。すなわち、図2の係合作動表は、各ATギヤ段と、各ATギヤ段において各々係合される係合装置である所定の係合装置との関係をまとめたものである。図2において、「○」は係合、「△」はエンジンブレーキ時や有段変速部20のコーストダウンシフト時に係合、空欄は解放をそれぞれ表している。AT1速ギヤ段を成立させるブレーキB2には並列にワンウェイクラッチF1が設けられているので、発進時や加速時にはブレーキB2を係合させる必要は無い。有段変速部20のコーストダウンシフトは、例えばアクセル開度θaccがゼロ又は略ゼロであるアクセルオフの走行中に判断されたダウンシフトである。尚、複数の係合装置が何れも解放されることにより、有段変速部20は、何れのATギヤ段も形成されないニュートラル状態すなわち動力伝達を遮断するニュートラル状態とされる。ワンウェイクラッチF1は自動的に作動状態が切り替えられるクラッチであるので、係合装置CBが何れも解放されれば有段変速部20はニュートラル状態とされる。又、ダウンシフトが判断されることは、ダウンシフトが要求されることである。
有段変速部20は、後述する電子制御装置80によって、ドライバー(すなわち運転者)のアクセル操作や車速V等に応じて、変速前のATギヤ段を形成する所定の係合装置のうちの解放側係合装置の解放と変速後のATギヤ段を形成する所定の係合装置のうちの係合側係合装置の係合とが制御されることで、形成されるATギヤ段が切り替えられる、すなわち複数のATギヤ段が選択的に形成される。つまり、有段変速部20の変速制御においては、例えば係合装置CBの何れかの掴み替えにより変速が実行される、すなわち係合装置CBの係合と解放との切替えにより変速が実行される、所謂クラッチツゥクラッチ変速が実行される。例えば、AT2速ギヤ段からAT1速ギヤ段へのダウンシフトでは、図2の係合作動表に示すように、解放側係合装置となるブレーキB1が解放されると共に、係合側係合装置となるブレーキB2が係合させられる。この際、ブレーキB1の解放過渡油圧やブレーキB2の係合過渡油圧が調圧制御される。解放側係合装置は、係合装置CBのうちの有段変速部20の変速に関与する係合装置であって、有段変速部20の変速過渡において解放に向けて制御される係合装置である。係合側係合装置は、係合装置CBのうちの有段変速部20の変速に関与する係合装置であって、有段変速部20の変速過渡において係合に向けて制御される係合装置である。尚、2→1ダウンシフトは、2→1ダウンシフトに関与する解放側係合装置としてのブレーキB1の解放によってワンウェイクラッチF1が自動的に係合されることでも実行され得る。本実施例では、例えばAT2速ギヤ段からAT1速ギヤ段へのダウンシフトを2→1ダウンシフトと表す。他のアップシフトやダウンシフトについても同様である。又、ダウンシフトはダウン変速と同意であり、アップシフトはアップ変速と同意である。
図3は、無段変速部18と有段変速部20とにおける各回転要素の回転速度の相対的関係を表す共線図である。図3において、無段変速部18を構成する差動機構32の3つの回転要素に対応する3本の縦線Y1、Y2、Y3は、左側から順に第2回転要素RE2に対応するサンギヤS0の回転速度を表すg軸であり、第1回転要素RE1に対応するキャリアCA0の回転速度を表すe軸であり、第3回転要素RE3に対応するリングギヤR0の回転速度(すなわち有段変速部20の入力回転速度)を表すm軸である。又、有段変速部20の4本の縦線Y4、Y5、Y6、Y7は、左から順に、第4回転要素RE4に対応するサンギヤS2の回転速度、第5回転要素RE5に対応する相互に連結されたリングギヤR1及びキャリアCA2の回転速度(すなわち出力軸22の回転速度)、第6回転要素RE6に対応する相互に連結されたキャリアCA1及びリングギヤR2の回転速度、第7回転要素RE7に対応するサンギヤS1の回転速度をそれぞれ表す軸である。縦線Y1、Y2、Y3の相互の間隔は、差動機構32のギヤ比(歯車比ともいう)ρ0に応じて定められている。又、縦線Y4、Y5、Y6、Y7の相互の間隔は、第1、第2遊星歯車装置36,38の各歯車比ρ1,ρ2に応じて定められている。共線図の縦軸間の関係においてサンギヤとキャリアとの間が「1」に対応する間隔とされるとキャリアとリングギヤとの間が遊星歯車装置の歯車比ρ(=サンギヤの歯数Zs/リングギヤの歯数Zr)に対応する間隔とされる。
図3の共線図を用いて表現すれば、無段変速部18の差動機構32において、第1回転要素RE1にエンジン14(図中の「ENG」参照)が連結され、第2回転要素RE2に第1回転機MG1(図中の「MG1」参照)が連結され、中間伝達部材30と一体回転する第3回転要素RE3に第2回転機MG2(図中の「MG2」参照)が連結されて、エンジン14の回転を中間伝達部材30を介して有段変速部20へ伝達するように構成されている。無段変速部18では、縦線Y2を横切る各直線L0,L0Rにより、サンギヤS0の回転速度とリングギヤR0の回転速度との関係が示される。
又、有段変速部20において、第4回転要素RE4はクラッチC1を介して中間伝達部材30に選択的に連結され、第5回転要素RE5は出力軸22に連結され、第6回転要素RE6はクラッチC2を介して中間伝達部材30に選択的に連結されると共にブレーキB2を介してケース16に選択的に連結され、第7回転要素RE7はブレーキB1を介してケース16に選択的に連結されている。有段変速部20では、係合装置CBの係合解放制御によって縦線Y5を横切る各直線L1,L2,L3,L4,LRにより、出力軸22における「1st」,「2nd」,「3rd」,「4th」,「Rev」の各回転速度が示される。
図3中の実線で示す、直線L0及び直線L1,L2,L3,L4は、少なくともエンジン14を動力源として走行するハイブリッド走行が可能なハイブリッド運転モードでの前進走行における各回転要素の相対速度を示している。このハイブリッド運転モードでは、差動機構32において、キャリアCA0に入力されるエンジントルクTeに対して、第1回転機MG1による負トルクである反力トルクが正回転にてサンギヤS0に入力されると、リングギヤR0には正回転にて正トルクとなるエンジン直達トルクTd(=Te/(1+ρ0)=−(1/ρ0)×Tg)が現れる。そして、要求駆動力に応じて、エンジン直達トルクTdとMG2トルクTmとの合算トルクが車両10の前進方向の駆動トルクとして、AT1速ギヤ段−AT4速ギヤ段のうちの何れかのATギヤ段が形成された有段変速部20を介して駆動輪28へ伝達される。このとき、第1回転機MG1は正回転にて負トルクを発生する発電機として機能する。第1回転機MG1の発電電力Wgは、バッテリ54に充電されたり、第2回転機MG2にて消費される。第2回転機MG2は、発電電力Wgの全部又は一部を用いて、或いは発電電力Wgに加えてバッテリ54からの電力を用いて、MG2トルクTmを出力する。
図3に図示はしていないが、エンジン14を停止させると共に第2回転機MG2を動力源として走行するモータ走行が可能なモータ運転モードでの共線図では、差動機構32において、キャリアCA0はゼロ回転とされ、リングギヤR0には正回転にて正トルクとなるMG2トルクTmが入力される。このとき、サンギヤS0に連結された第1回転機MG1は、無負荷状態とされて負回転にて空転させられる。つまり、モータ運転モードでは、エンジン14は駆動されず、エンジン回転速度Neはゼロとされ、MG2トルクTmが車両10の前進方向の駆動トルクとして、AT1速ギヤ段−AT4速ギヤ段のうちの何れかのATギヤ段が形成された有段変速部20を介して駆動輪28へ伝達される。ここでのMG2トルクTmは、正回転の力行トルクである。
図3中の破線で示す、直線L0R及び直線LRは、モータ運転モードでの後進走行における各回転要素の相対速度を示している。このモータ運転モードでの後進走行では、リングギヤR0には負回転にて負トルクとなるMG2トルクTmが入力され、そのMG2トルクTmが車両10の後進方向の駆動トルクとして、AT1速ギヤ段が形成された有段変速部20を介して駆動輪28へ伝達される。車両10では、後述する電子制御装置80によって、複数のATギヤ段のうちの前進用のロー側のATギヤ段である例えばAT1速ギヤ段が形成された状態で、前進走行時における前進用のMG2トルクTmとは正負が反対となる後進用のMG2トルクTmが第2回転機MG2から出力させられることで、後進走行を行うことができる。ここでは、前進用のMG2トルクTmは正回転の正トルクとなる力行トルクであり、後進用のMG2トルクTmは負回転の負トルクとなる力行トルクである。このように、車両10では、前進用のATギヤ段を用いて、MG2トルクTmの正負を反転させることで後進走行を行う。前進用のATギヤ段を用いることは、前進走行を行うときと同じATギヤ段を用いることである。尚、ハイブリッド運転モードにおいても、直線L0Rのように第2回転機MG2を負回転とすることが可能であるので、モータ運転モードと同様に後進走行を行うことが可能である。
車両用駆動装置12では、エンジン14が動力伝達可能に連結された第1回転要素RE1としてのキャリアCA0と第1回転機MG1が動力伝達可能に連結された第2回転要素RE2としてのサンギヤS0と中間伝達部材30が連結された第3回転要素RE3としてのリングギヤR0との3つの回転要素を有する差動機構32を備えて、第1回転機MG1の運転状態が制御されることにより差動機構32の差動状態が制御される電気式変速機構としての無段変速部18が構成される。中間伝達部材30が連結された第3回転要素RE3は、見方を換えれば第2回転機MG2が動力伝達可能に連結された第3回転要素RE3である。つまり、車両用駆動装置12では、エンジン14が動力伝達可能に連結された差動機構32と差動機構32に動力伝達可能に連結された第1回転機MG1とを有して、第1回転機MG1の運転状態が制御されることにより差動機構32の差動状態が制御される無段変速部18が構成される。無段変速部18は、入力回転部材となる連結軸34の回転速度と同値であるエンジン回転速度Neと、出力回転部材となる中間伝達部材30の回転速度であるMG2回転速度Nmとの比の値である変速比γ0(=Ne/Nm)が変化させられる電気的な無段変速機として作動させられる。
例えば、ハイブリッド運転モードにおいては、有段変速部20にてATギヤ段が形成されたことで駆動輪28の回転に拘束されるリングギヤR0の回転速度に対して、第1回転機MG1の回転速度を制御することによってサンギヤS0の回転速度が上昇或いは下降させられると、キャリアCA0の回転速度つまりエンジン回転速度Neが上昇或いは下降させられる。従って、ハイブリッド走行では、エンジン14を効率の良い運転点にて作動させることが可能である。つまり、ATギヤ段が形成された有段変速部20と無段変速機として作動させられる無段変速部18とで、無段変速部18と有段変速部20とが直列に配置された複合変速機40全体として無段変速機を構成することができる。
又は、無段変速部18を有段変速機のように変速させることも可能であるので、ATギヤ段が形成される有段変速部20と有段変速機のように変速させる無段変速部18とで、複合変速機40全体として有段変速機のように変速させることができる。つまり、複合変速機40において、エンジン回転速度Neの出力回転速度Noに対する比の値を表す変速比γt(=Ne/No)が異なる複数のギヤ段を選択的に成立させるように、有段変速部20と無段変速部18とを制御することが可能である。本実施例では、複合変速機40にて成立させられるギヤ段を模擬ギヤ段と称する。変速比γtは、直列に配置された、無段変速部18と有段変速部20とで形成されるトータル変速比であって、無段変速部18の変速比γ0と有段変速部20の変速比γatとを乗算した値(γt=γ0×γat)となる。
模擬ギヤ段は、例えば有段変速部20の各ATギヤ段と1又は複数種類の無段変速部18の変速比γ0との組合せによって、有段変速部20の各ATギヤ段に対してそれぞれ1又は複数種類を成立させるように割り当てられる。例えば、図4は、ギヤ段割当テーブルの一例である。図4において、AT1速ギヤ段に対して模擬1速ギヤ段−模擬3速ギヤ段が成立させられ、AT2速ギヤ段に対して模擬4速ギヤ段−模擬6速ギヤ段が成立させられ、AT3速ギヤ段に対して模擬7速ギヤ段−模擬9速ギヤ段が成立させられ、AT4速ギヤ段に対して模擬10速ギヤ段が成立させられるように予め定められている。
図5は、図3と同じ共線図上に有段変速部20のATギヤ段と複合変速機40の模擬ギヤ段とを例示した図である。図5において、実線は、有段変速部20がAT2速ギヤ段のときに、模擬4速ギヤ段−模擬6速ギヤが成立させられる場合を例示したものである。複合変速機40では、出力回転速度Noに対して所定の変速比γtを実現するエンジン回転速度Neとなるように無段変速部18が制御されることによって、あるATギヤ段において異なる模擬ギヤ段が成立させられる。又、破線は、有段変速部20がAT3速ギヤ段のときに、模擬7速ギヤ段が成立させられる場合を例示したものである。複合変速機40では、ATギヤ段の切替えに合わせて無段変速部18が制御されることによって、模擬ギヤ段が切り替えられる。
図1に戻り、車両10は、エンジン14、無段変速部18、及び有段変速部20などの制御に関連する車両10の制御装置を含むコントローラとしての電子制御装置80を備えている。よって、図1は、電子制御装置80の入出力系統を示す図であり、又、電子制御装置80による制御機能の要部を説明する機能ブロック図である。電子制御装置80は、例えばCPU、RAM、ROM、入出力インターフェース等を備えた所謂マイクロコンピュータを含んで構成されており、CPUはRAMの一時記憶機能を利用しつつ予めROMに記憶されたプログラムに従って信号処理を行うことにより車両10の各種制御を実行する。電子制御装置80は、必要に応じてエンジン制御用、変速制御用等に分けて構成される。
電子制御装置80には、車両10に備えられた各種センサ等(例えばエンジン回転速度センサ60、MG1回転速度センサ62、MG2回転速度センサ64、出力回転速度センサ66、アクセル開度センサ68、スロットル弁開度センサ70、ブレーキペダルセンサ72、Gセンサ74、クルーズ制御スイッチ75、シフトポジションセンサ76、バッテリセンサ78、油温センサ79など)による検出値に基づく各種信号等(例えばエンジン回転速度Ne、第1回転機MG1の回転速度であるMG1回転速度Ng、AT入力回転速度NiであるMG2回転速度Nm、車速Vに対応する出力回転速度No、運転者の加速操作の大きさを表す運転者の加速操作量としてのアクセル開度θacc、電子スロットル弁の開度であるスロットル弁開度θth、ホイールブレーキを作動させる為のブレーキペダルが運転者によって操作されている状態を示す信号であるブレーキオン信号Bon、車両10の前後加速度G、クルーズ制御信号Scrs、車両10に備えられたシフト操作部材としてのシフトレバー58の操作ポジションPOSsh、バッテリ54のバッテリ温度THbatやバッテリ充放電電流Ibatやバッテリ電圧Vbat、係合装置CBの油圧アクチュエータへ供給される作動油すなわち係合装置CBの作動状態の切替えに用いられる作動油の温度である作動油温THoilなど)が、それぞれ供給される。
運転者の加速操作つまり加速要求の大きさを表す運転者の加速操作量は、例えばアクセルペダルなどのアクセル操作部材の操作量であるアクセル操作量であって、車両10に対する運転者の出力要求量である。この運転者の出力要求量としては、アクセル開度θaccの他に、スロットル弁開度θth、後述する要求駆動トルクTdemなどを用いることもできる。
クルーズ制御スイッチ75は、クルーズ制御によるクルーズ走行を実行したり解除したりする為に、又、クルーズ制御における各種設定を確定したり解除したりする為に、運転者により操作可能に設けられたスイッチである。クルーズ制御信号Scrsは、クルーズ制御の作動/非作動の切替え信号、クルーズ制御における車速Vの設定信号、クルーズ制御における先行車との車間距離の設定信号などを含んでいる。
シフトレバー58は、複数の操作ポジションPOSshのうちの何れかの操作ポジションへ運転者によって操作されるシフト操作部材である。操作ポジションPOSshは、シフトレバー58の操作位置であり、例えばP,R,N,D,M操作ポジションを含んでいる。
P操作ポジションは、複合変速機40がニュートラル状態とされ且つ機械的に出力軸22の回転が阻止された、複合変速機40のパーキングポジション(=Pポジション)を選択するパーキング操作ポジションである。N操作ポジションは、複合変速機40がニュートラル状態とされた、複合変速機40のニュートラルポジション(=Nポジション)を選択するニュートラル操作ポジションである。
複合変速機40のニュートラル状態は、例えば第1回転機MG1が無負荷状態で空転させられてエンジントルクTeに対する反力トルクを取らないことによって無段変速部18がエンジントルクTeを伝達不能な状態とされ且つ第2回転機MG2が無負荷状態で空転させられて複合変速機40における動力伝達が遮断されることで実現される。出力軸22の回転が阻止された状態は、出力軸22が回転不能に固定された状態である。出力軸22は、車両10に備えられた不図示のパーキングロック機構により回転不能に固定される。
R操作ポジションは、有段変速部20のAT1速ギヤ段が形成された状態で後進用のMG2トルクTmによる車両10の後進走行を可能とする、複合変速機40の後進走行ポジション(=Rポジション)を選択する後進走行操作ポジションである。D操作ポジションは、例えば模擬1速ギヤ段−模擬10速ギヤ段の総ての模擬ギヤ段を用いて自動変速制御を実行して前進走行を可能とする、複合変速機40の前進走行ポジション(=Dポジション)を選択する前進走行操作ポジションである。
M操作ポジションは、運転者によるシフト操作によって複合変速機40の模擬ギヤ段を切り替える手動変速を可能とする手動変速操作ポジションである。複合変速機40の模擬ギヤ段を切り替えることは、複合変速機40を変速することである。上記運転者によるシフト操作は、例えばM操作ポジションを挟むように設けられた「+」ポジション及び「−」ポジションの何れかへシフトレバー58を操作するシフト操作である。「+」ポジションへのシフト操作は、複合変速機40のアップシフトを要求するアップシフト操作である。「−」ポジションへのシフト操作は、複合変速機40のダウンシフトを要求するダウンシフト操作である。車両10は、例えばステアリングホイールに設けられた、アップシフトスイッチ「+」及びダウンシフトスイッチ「−」を有する不図示のパドルスイッチを備えている場合がある。このような場合、運転者によるシフト操作は、そのようなパドルスイッチを操作することによるシフト操作である。尚、車両10にパドルスイッチが設けられている場合には、シフトレバー58の操作ポジションPOSshとして必ずしもM操作ポジションが設けられている必要はない。車両10にパドルスイッチが設けられている場合には、操作ポジションPOSshがD操作ポジションにあるときであっても、パドルスイッチの操作によって複合変速機40の模擬ギヤ段を切り替えることが可能である。
電子制御装置80からは、車両10に備えられた各装置(例えばエンジン制御装置50、インバータ52、油圧制御回路56など)に各種指令信号(例えばエンジン14を制御する為のエンジン制御指令信号Se、第1回転機MG1及び第2回転機MG2を制御する為の回転機制御指令信号Smg、係合装置CBの作動状態を制御する為の油圧制御指令信号Satなど)が、それぞれ出力される。この油圧制御指令信号Satは、有段変速部20の変速を制御する為の油圧制御指令信号でもあり、例えば係合装置CBの各々の油圧アクチュエータへ供給される各係合油圧PRcbを調圧する各ソレノイドバルブSL1−SL4等を駆動する為の指令信号である。電子制御装置80は、係合装置CBの狙いの係合トルクTcbを得る為の、各油圧アクチュエータへ供給される各係合油圧PRcbの値に対応する油圧指示値を設定し、その油圧指示値に応じた駆動電流又は駆動電圧を油圧制御回路56へ出力する。
電子制御装置80は、例えばバッテリ充放電電流Ibat及びバッテリ電圧Vbatなどに基づいてバッテリ54の充電状態を示す値としての充電状態値SOC[%]を算出する。又、電子制御装置80は、例えばバッテリ温度THbat及びバッテリ54の充電状態値SOCに基づいて、バッテリ54のパワーであるバッテリパワーPbatの使用可能な範囲を規定する充放電可能電力Win,Woutを算出する。充放電可能電力Win,Woutは、バッテリ54の入力電力の制限を規定する入力可能電力としての充電可能電力Win、及びバッテリ54の出力電力の制限を規定する出力可能電力としての放電可能電力Woutである。充放電可能電力Win,Woutは、例えばバッテリ温度THbatが常用域より低い低温域ではバッテリ温度THbatが低い程小さくされ、又、バッテリ温度THbatが常用域より高い高温域ではバッテリ温度THbatが高い程小さくされる。又、充電可能電力Winは、例えば充電状態値SOCが高い領域では充電状態値SOCが高い程小さくされる。又、放電可能電力Woutは、例えば充電状態値SOCが低い領域では充電状態値SOCが低い程小さくされる。
電子制御装置80は、車両10における各種制御を実現する為に、変速制御手段としてのAT変速制御手段すなわち変速制御部としてのAT変速制御部82、ハイブリッド制御手段すなわちハイブリッド制御部84、走行モード制御手段すなわち走行モード制御部86、エンブレトルク制御手段すなわちエンブレトルク制御部88、及びエンブレトルク変化量算出手段すなわちエンブレトルク変化量算出部90を備えている。
AT変速制御部82は、予め実験的に或いは設計的に求められて記憶された関係すなわち予め定められた関係である例えばATギヤ段変速マップを用いて有段変速部20の変速判断を行い、必要に応じて有段変速部20の変速制御を実行する。AT変速制御部82は、この有段変速部20の変速制御では、有段変速部20のATギヤ段を自動的に切り替えるように、ソレノイドバルブSL1−SL4により係合装置CBの係合解放状態を切り替える為の油圧制御指令信号Satを油圧制御回路56へ出力する。上記ATギヤ段変速マップは、例えば出力回転速度No及びアクセル開度θaccを変数とする二次元座標上に、有段変速部20の変速が判断される為の変速線を有する所定の関係である。ここでは、出力回転速度Noに替えて車速Vなどを用いても良いし、又、アクセル開度θaccに替えて要求駆動トルクTdemやスロットル弁開度θthなどを用いても良い。上記ATギヤ段変速マップにおける各変速線は、アップシフトが判断される為のアップシフト線、及びダウンシフトが判断される為のダウンシフト線である。この各変速線は、あるアクセル開度θaccを示す線上において出力回転速度Noが線を横切ったか否か、又は、ある出力回転速度Noを示す線上においてアクセル開度θaccが線を横切ったか否か、すなわち変速線上の変速を実行すべき値である変速点を横切ったか否かを判断する為のものであり、この変速点の連なりとして予め定められている。
ハイブリッド制御部84は、エンジン14の作動を制御するエンジン制御手段すなわちエンジン制御部としての機能と、インバータ52を介して第1回転機MG1及び第2回転機MG2の作動を制御する回転機制御手段すなわち回転機制御部としての機能を含んでおり、それら制御機能によりエンジン14、第1回転機MG1、及び第2回転機MG2によるハイブリッド駆動制御等を実行する。ハイブリッド制御部84は、予め定められた関係である例えば駆動力マップにアクセル開度θacc及び車速Vを適用することで要求駆動パワーPdemを算出する。この要求駆動パワーPdemは、見方を換えればそのときの車速Vにおける要求駆動トルクTdemである。ハイブリッド制御部84は、バッテリ54の充放電可能電力Win,Wout等を考慮して、要求駆動パワーPdemを実現するように、エンジン14を制御する指令信号であるエンジン制御指令信号Seと、第1回転機MG1及び第2回転機MG2を制御する指令信号である回転機制御指令信号Smgとを出力する。エンジン制御指令信号Seは、例えばそのときのエンジン回転速度NeにおけるエンジントルクTeを出力するエンジン14のパワーであるエンジンパワーPeの指令値である。回転機制御指令信号Smgは、例えばエンジントルクTeの反力トルクとしての指令出力時のMG1回転速度NgにおけるMG1トルクTgを出力する第1回転機MG1の発電電力Wgの指令値であり、又、指令出力時のMG2回転速度NmにおけるMG2トルクTmを出力する第2回転機MG2の消費電力Wmの指令値である。
ハイブリッド制御部84は、例えば無段変速部18を無段変速機として作動させて複合変速機40全体として無段変速機として作動させる場合、エンジン最適燃費点等を考慮して、要求駆動パワーPdemを実現するエンジンパワーPeが得られるエンジン回転速度NeとエンジントルクTeとなるように、エンジン14を制御すると共に第1回転機MG1の発電電力Wgを制御することで、無段変速部18の無段変速制御を実行して無段変速部18の変速比γ0を変化させる。この制御の結果として、無段変速機として作動させる場合の複合変速機40の変速比γtが制御される。
ハイブリッド制御部84は、例えば無段変速部18を有段変速機のように変速させて複合変速機40全体として有段変速機のように変速させる場合、予め定められた関係である例えば模擬ギヤ段変速マップを用いて複合変速機40の変速判断を行い、AT変速制御部82による有段変速部20のATギヤ段の変速制御と協調して、複数の模擬ギヤ段を選択的に成立させるように無段変速部18の変速制御を実行する。複数の模擬ギヤ段は、それぞれの変速比γtを維持できるように出力回転速度Noに応じて第1回転機MG1によりエンジン回転速度Neを制御することによって成立させることができる。各模擬ギヤ段の変速比γtは、出力回転速度Noの全域に亘って必ずしも一定値である必要はなく、所定領域で変化させても良いし、各部の回転速度の上限や下限等によって制限が加えられても良い。このように、ハイブリッド制御部84は、エンジン回転速度Neを有段変速のように変化させる変速制御が可能である。
上記模擬ギヤ段変速マップは、ATギヤ段変速マップと同様に出力回転速度No及びアクセル開度θaccをパラメータとして予め定められている。図6は、模擬ギヤ段変速マップの一例であって、実線はアップシフト線であり、破線はダウンシフト線である。模擬ギヤ段変速マップに従って模擬ギヤ段が切り替えられることにより、無段変速部18と有段変速部20とが直列に配置された複合変速機40全体として有段変速機と同様の変速フィーリングが得られる。複合変速機40全体として有段変速機のように変速させる模擬有段変速制御は、例えば運転者によってスポーツ走行モード等の走行性能重視の走行モードが選択された場合や要求駆動トルクTdemが比較的大きい場合に、複合変速機40全体として無段変速機として作動させる無段変速制御に優先して実行するだけでも良いが、所定の実行制限時を除いて基本的に模擬有段変速制御が実行されても良い。
ハイブリッド制御部84による模擬有段変速制御と、AT変速制御部82による有段変速部20の変速制御とは、協調して実行される。本実施例では、AT1速ギヤ段−AT4速ギヤ段の4種類のATギヤ段に対して、模擬1速ギヤ段−模擬10速ギヤ段の10種類の模擬ギヤ段が割り当てられている。その為、模擬ギヤ段の変速タイミングと同じタイミングでATギヤ段の変速が行なわれるように、ATギヤ段変速マップが定められている。具体的には、図6における模擬ギヤ段の「3→4」、「6→7」、「9→10」の各アップシフト線は、ATギヤ段変速マップの「1→2」、「2→3」、「3→4」の各アップシフト線と一致している(図6中に記載した「AT1→2」等参照)。又、図6における模擬ギヤ段の「3←4」、「6←7」、「9←10」の各ダウンシフト線は、ATギヤ段変速マップの「1←2」、「2←3」、「3←4」の各ダウンシフト線と一致している(図6中に記載した「AT1←2」等参照)。又は、図6の模擬ギヤ段変速マップによる模擬ギヤ段の変速判断に基づいて、ATギヤ段の変速指令をAT変速制御部82に対して出力するようにしても良い。このように、有段変速部20のアップシフト時は、複合変速機40全体のアップシフトが行われる一方で、有段変速部20のダウンシフト時は、複合変速機40全体のダウンシフトが行われる。AT変速制御部82は、有段変速部20のATギヤ段の切替えを、模擬ギヤ段が切り替えられるときに行う。模擬ギヤ段の変速タイミングと同じタイミングでATギヤ段の変速が行なわれる為、エンジン回転速度Neの変化を伴って有段変速部20の変速が行なわれるようになり、その有段変速部20の変速に伴うショックがあっても運転者に違和感を与え難くされる。
ハイブリッド制御部84は、運転モードとして、モータ運転モード或いはハイブリッド運転モードを走行状態に応じて選択的に成立させる。例えば、ハイブリッド制御部84は、要求駆動パワーPdemが予め定められた閾値よりも小さなモータ走行領域にある場合には、モータ運転モードを成立させる一方で、要求駆動パワーPdemが予め定められた閾値以上となるハイブリッド走行領域にある場合には、ハイブリッド運転モードを成立させる。又、ハイブリッド制御部84は、要求駆動パワーPdemがモータ走行領域にあるときであっても、バッテリ54の充電状態値SOCが予め定められたエンジン始動閾値未満となる場合には、ハイブリッド運転モードを成立させる。モータ運転モードは、エンジン14を停止した状態で第2回転機MG2により駆動トルクを発生させて走行する走行状態である。ハイブリッド運転モードは、エンジン14を運転した状態で走行する走行状態である。前記エンジン始動閾値は、エンジン14を強制的に始動してバッテリ54を充電する必要がある充電状態値SOCであることを判断する為の予め定められた閾値である。
走行モード制御部86は、車両10が有する複数の走行モードのうちの何れかの走行モードを単独で又は組み合わせて成立させることができる。上記複数の走行モードは、例えば自動変速モード、手動変速モード、クルーズ走行モード、スポーツ走行モードなどを含んでいる。走行モード制御部86は、操作ポジションPOSshがD操作ポジションにあるときには、例えば模擬ギヤ段変速マップのような変速マップに従って複合変速機40を自動変速する自動変速モードを成立させる。走行モード制御部86は、操作ポジションPOSshがM操作ポジションにあるときには、運転者によるシフト操作により複合変速機40を変速することが可能な手動変速モードを成立させる。車両10にパドルスイッチが設けられている場合、走行モード制御部86は、操作ポジションPOSshがD操作ポジションにあるときであっても、パドルスイッチが操作されると手動変速モードを成立させる。走行モード制御部86は、例えば自動変速モード中に、クルーズ制御スイッチ75によりクルーズ制御を作動する為の切替え信号が出力されたときには、クルーズ制御を実行するクルーズ走行モードを成立させる。走行モード制御部86は、例えば自動変速モード中に、スポーツ走行モードを選択する為の不図示のスポーツモード選択スイッチが運転者の操作によりオン状態とされたときには、スポーツ走行モードを成立させる。スポーツ走行モードが成立させられていないときには、例えば燃費性能と走行性能とのバランスがとれたノーマル走行モードが成立させられている。
エンブレトルク制御部88は、アクセルオフによる減速走行中すなわちコースト走行中には、走行モード制御部86により成立させられている走行モードに基づいてエンジンブレーキトルクを設定する。以下、エンジンブレーキトルクをエンブレトルクという。
エンブレトルク制御部88は、走行モード毎に予め定められた関係である例えばエンブレトルクマップを用いてエンブレトルクを設定する。自動変速モードにおけるエンブレトルクマップは、例えば模擬ギヤ段に拘わらず、出力回転速度Noが高い程エンブレトルクが大きくされるように予め定められている。この自動変速モードにおけるエンブレトルクマップでは、例えばスポーツ走行モードの方がノーマル走行モードよりもエンブレトルクが大きくされるように予め定められている。手動変速モードにおけるエンブレトルクマップは、例えば模擬ギヤ段がロー側つまりダウンシフト側である程エンブレトルクが大きくされるように、且つ、出力回転速度Noが高い程エンブレトルクが大きくされるように予め定められている。クルーズ走行モードにおけるエンブレトルクマップは、例えば模擬ギヤ段がロー側である程エンブレトルクが大きくされるように予め定められている。このクルーズ走行モードにおけるエンブレトルクマップでは、例えばアクセルの戻し操作の速度の情報が加味されていても良い。
又、エンブレトルク制御部88は、走行モードの各々において有段変速部20のコーストダウンシフト中にエンブレトルクが変化する場合には、そのエンブレトルクの変化がそのコーストダウンシフト中のイナーシャ相開始後に生じるように制御する。具体的には、模擬ギヤ段毎に異なるエンブレトルクが設定されている手動変速モードやクルーズ走行モードの各々において、有段変速部20のコーストダウンシフト中のイナーシャ相開始前に模擬ギヤ段の切替えが要求された場合、ハイブリッド制御部84は、そのコーストダウンシフト中のイナーシャ相開始に合わせて模擬ギヤ段の切替えを実行し、エンブレトルク制御部88は、その模擬ギヤ段の切替えに伴うエンブレトルクの変化がそのコーストダウンシフト中のイナーシャ相開始に合わせて生じるように制御する。
ここで、有段変速部20のコーストダウンシフト中のイナーシャ相開始後に生じるエンブレトルクの変化が増加側である場合、この有段変速部20のコーストダウンシフトにおいて設定された係合側係合装置の係合油圧PRcbでは係合側係合装置の係合に必要な係合トルクTcbを得ることができない為、このコーストダウンシフトの進行が停滞するおそれがある。コーストダウンシフトの進行の停滞は、MG2回転速度Nmが変速後同期回転速度に一致していない状態での係合側係合装置の係合による係合ショックを招いたり、又は、手動変速モードにおける運転者によるダウンシフト操作に対する減速度の応答遅れを招く可能性がある。上述したようなコーストダウンシフトの進行が停滞する現象は、係合装置CBの作動状態の切替えにおける油圧応答性が悪くなるような作動油温THoilの低油温時に生じ易い。
そこで、エンブレトルク変化量算出部90は、有段変速部20のコーストダウンシフト中のイナーシャ相開始後に生じるエンブレトルクの変化に基づいてエンブレトルクの変化量を算出する。
AT変速制御部82は、有段変速部20のコーストダウンシフト中のイナーシャ相開始後に生じるエンブレトルクの変化が増加側である場合には、エンブレトルク変化量算出部90により算出されたそのエンブレトルクの変化に基づくエンブレトルクの変化量に基づいて、係合側係合装置のイナーシャ相中における係合トルクTcbを増大補正する。AT変速制御部82は、例えばエンブレトルクの変化量に応じた油圧補正量を係合側係合装置の係合油圧PRcbの油圧指示値に加算することで、係合側係合装置のイナーシャ相中における係合トルクTcbを増大補正する。上記油圧補正量は、例えばエンブレトルクの変化量が大きい程大きくされるように予め定められている。
図7は、手動変速モードとされているときの有段変速部20のコーストダウンシフト中に運転者によるダウンシフト操作が為された場合の一例を示す図である。図7において、t1a時点は、有段変速部20のコーストダウンシフトが開始された時点を示している。コーストダウンシフト中のイナーシャ相開始前に運転者によるダウンシフト操作が為されてもイナーシャ相開始までは模擬ギヤ段の切替えが為されない(t1a時点−t2a時点参照)。イナーシャ相開始が判定されると、有段変速部20のコーストダウンシフトやダウンシフト操作に応じた模擬ギヤ段の切替えが実行され、その模擬ギヤ段の切替えに応じてエンブレトルクが増加側に変化させられる(t2a時点以降参照)。この際のエンブレトルクの変化量に応じた係合側係合装置の油圧補正量がイナーシャ相中の係合側係合装置の係合油圧PRcbの油圧指示値に加算される(t2a時点−t3a時点参照)。イナーシャ相中の係合側係合装置の油圧補正量は、エンブレトルクの変化に合わせて変化させられる。尚、イナーシャ相の終了後も係合側係合装置の油圧補正量が算出されているが(t3a時点以降参照)、係合側係合装置の油圧指示値は、イナーシャ相の終了後には係合側係合装置を完全係合する為の係合油圧PRcbまで増大させられるので、油圧補正量の加算はイナーシャ相中にのみ行われる。
ところで、有段変速部20のコーストダウンシフト中のイナーシャ相開始前に走行モードが切り替えられると、その走行モードの切替えに合わせてエンブレトルクが変化させられる場合がある。この場合、切替え後の走行モードにおけるイナーシャ相開始前のエンブレトルクが切替え前の走行モードにおけるエンブレトルクよりも減少していると、イナーシャ相開始後に生じるエンブレトルクの変化に基づくエンブレトルクの変化量は、切替え後の走行モードにおけるイナーシャ相開始前のエンブレトルクからの変化量の方が、切替え前の走行モードにおけるエンブレトルクからの変化量よりも大きくされる。コーストダウンシフトにおける係合側係合装置の補正前の係合油圧PRcbの油圧指示値が、切替え前の走行モードにおけるエンブレトルクに基づく値となっていると、切替え後の走行モードにおけるイナーシャ相開始前のエンブレトルクからの変化量は、係合油圧PRcbの補正に用いるべき本来の変化量よりも大きくされることになる為、係合油圧PRcbの過補正が生じるおそれがある。
そこで、エンブレトルク変化量算出部90は、有段変速部20のコーストダウンシフト中のイナーシャ相開始前に走行モード制御部86により走行モードが切り替えられたときに、切替え後の走行モードにおけるそのイナーシャ相開始前のエンブレトルクが切替え前の走行モードにおけるエンブレトルクよりも減少する場合には、切替え前の走行モードにおけるエンブレトルクをエンブレトルクの変化前の値として用いて、有段変速部20のコーストダウンシフト中のイナーシャ相開始後に生じるエンブレトルクの変化に基づくエンブレトルクの変化量を算出する。
電子制御装置80は、有段変速部20のコーストダウンシフトに際してエンブレトルクの変化に適切に対応するという制御機能を実現する為に、更に、状態判定手段すなわち状態判定部92を備えている。
状態判定部92は、アクセル開度θaccや油圧制御指令信号Satなどに基づいて、アクセルオフ且つダウンシフト中であるか否か、すなわち有段変速部20のコーストダウンシフト中であるか否かを判定する。状態判定部92は、エンブレトルクの増加時であるか否かを判定する。
エンブレトルク変化量算出部90は、状態判定部92により有段変速部20のコーストダウンシフト中であると判定された場合には、エンブレトルクの変化量を算出するときに用いるエンブレトルクのベース値であるベーストルクを更新/保持する。具体的には、エンブレトルク変化量算出部90は、有段変速部20のコーストダウンシフト中のイナーシャ相開始前に走行モードが切り替えられていない場合には、又は、イナーシャ相開始前に走行モードが切り替えられたときに走行モードの切替えに伴ってエンブレトルクが増加する場合には、ベーストルクを、エンブレトルク制御部88によって設定されたそのときの走行モードに応じたエンブレトルクに更新する。又、エンブレトルク変化量算出部90は、有段変速部20のコーストダウンシフト中のイナーシャ相開始前に走行モードが切り替えられたときに走行モードの切替えに伴ってエンブレトルクが減少する場合には、ベーストルクを、エンブレトルク制御部88によって設定された走行モードの切替え直前のエンブレトルクに保持する。前述したような係合油圧PRcbの過補正が生じる現象は、模擬ギヤ段に拘わらず同じ値のエンブレトルクとされる自動変速モードにあるときに、模擬ギヤ段の違いによって異なる値のエンブレトルクとされる手動変速モード又はクルーズ走行モードへ移行したときに生じ易い。よって、上記走行モードの切替え直前のエンブレトルクとしては、自動変速モードにあるときにエンブレトルク制御部88によって設定された出力回転速度Noに応じたエンブレトルクが想定される。
エンブレトルク変化量算出部90は、状態判定部92によりエンブレトルクの増加時であると判定された場合には、ベーストルクと増加後のエンブレトルクとを用いてエンブレトルクの変化量(=|増加後のエンブレトルク|−|ベーストルク|)を算出する。
図8は、電子制御装置80の制御作動の要部すなわち有段変速部20のコーストダウンシフトに際してエンブレトルクの変化に適切に対応する為の制御作動を説明するフローチャートであり、例えば車両10の走行中に繰り返し実行される。図9は、図8のフローチャートに示す制御作動を実行した場合のタイムチャートの一例である。
図8において、先ず、状態判定部92の機能に対応するステップ(以下、ステップを省略する)S10において、アクセルオフ且つダウンシフト中であるか否かが判定される。このS10の判断が否定される場合は、本ルーチンが終了させられる。このS10の判断が肯定される場合はエンブレトルク変化量算出部90の機能に対応するS20において、エンブレトルクのベース値であるベーストルクが更新/保持される。次いで、状態判定部92の機能に対応するS30において、エンブレトルクの増加時であるか否かが判定される。このS30の判断が肯定される場合はエンブレトルク変化量算出部90及びAT変速制御部82の機能に対応するS40において、ベーストルクと増加後のエンブレトルクとを用いてエンブレトルクの変化量が算出され、そのエンブレトルクの変化量に基づいて、係合側係合装置の係合油圧PRcbの油圧指示値である係合指示油圧に加算される油圧補正量が算出される。上記S30の判断が否定される場合は、又は上記S40に次いで、AT変速制御部82の機能に対応するS50において、係合指示油圧が算出される。次いで、AT変速制御部82の機能に対応するS60において、油圧制御回路56の各ソレノイドバルブSL1−SL4に係合指示油圧に応じた駆動電流又は駆動電圧が出力される。
エンブレトルクの挙動を変化させるアクセル操作は、エンブレトルクの変化量に応じて係合油圧PRcbを補正する制御の前提条件を満たさない為、図8のフローチャートに示す制御作動に示されるように、アクセルオンとなるアクセル操作時は、係合油圧PRcbの補正制御自体が終了させられる。
図9は、自動変速モードとされているときの有段変速部20のコーストダウンシフト中に運転者によるダウンシフト操作が為されたことで手動変速モードへ切り替えられた場合の一例を示す図である。図9において、t1b時点は、有段変速部20のコーストダウンシフトが開始された時点を示している。コーストダウンシフト中のイナーシャ相開始前に運転者によるダウンシフト操作が為されたことで自動変速モードから手動変速モードへ切り替えられてエンブレトルクが減少側に変化されている(t1b時点−t2b時点参照)。この際、イナーシャ相開始までは模擬ギヤ段の切替えは為されない。イナーシャ相開始が判定されると、有段変速部20のコーストダウンシフトやダウンシフト操作に応じた模擬ギヤ段の切替えが実行され、その模擬ギヤ段の切替えに応じてエンブレトルクが増加側に変化させられる(t2b時点以降参照)。エンブレトルクの変化量に応じた係合側係合装置の油圧補正量がイナーシャ相中の係合側係合装置の係合油圧PRcbの油圧指示値に加算される(t2b時点−t3b時点参照)。破線で示す比較例では、エンブレトルクの変化量は手動変速モードへの切替え後のエンブレトルクからの変化量である為、係合油圧PRcbの油圧指示値は過補正となるおそれがある。一方で、実線で示す本実施例では、エンブレトルクの変化量は手動変速モードへの切替え前の自動変速モードにおけるエンブレトルクで保持されたベーストルクからの変化量であるので、係合油圧PRcbの油圧指示値は適切に補正され得る。
上述のように、本実施例によれば、有段変速部20のコーストダウンシフト中のイナーシャ相開始後に生じるエンブレトルクの変化が増加側である場合には、エンブレトルクの変化量に基づいて係合側係合装置のイナーシャ相中における係合トルクTcbが増大補正されるので、係合側係合装置のイナーシャ相中における係合トルクTcbが不足してしまうことを抑制することができて、有段変速部20のコーストダウンシフトの進行が停滞してしまうことを抑制することができる。よって、有段変速部20のコーストダウンシフトに際して、エンブレトルクの変化に適切に対応することができる。
また、本実施例によれば、有段変速部20のコーストダウンシフト中のイナーシャ相開始前に走行モードが切り替えられたときに、切替え後の走行モードにおけるイナーシャ相開始前のエンブレトルクが切替え前の走行モードにおけるエンブレトルクよりも減少する場合には、切替え前の走行モードにおけるエンブレトルクがエンブレトルクの変化前の値として用いられて、イナーシャ相開始後に生じるエンブレトルクの変化に基づくエンブレトルクの変化量が算出されるので、係合トルクTcbの過補正を防止することができる。
以上、本発明の実施例を図面に基づいて詳細に説明したが、本発明はその他の態様においても適用される。
例えば、前述の実施例において、無段変速部18は、差動機構32の回転要素に連結されたクラッチ又はブレーキの制御により差動作用が制限され得る変速機構であっても良い。又、差動機構32は、ダブルピニオン型の遊星歯車装置であっても良い。又、差動機構32は、複数の遊星歯車装置が相互に連結されることで4つ以上の回転要素を有する差動機構であっても良い。又、差動機構32は、エンジン14によって回転駆動されるピニオンと、そのピニオンに噛み合う一対のかさ歯車に第1回転機MG1及び中間伝達部材30が各々連結された差動歯車装置であっても良い。又、差動機構32は、2以上の遊星歯車装置がそれを構成する一部の回転要素で相互に連結された構成において、その遊星歯車装置の回転要素にそれぞれエンジン、回転機、駆動輪が動力伝達可能に連結される機構であっても良い。
また、前述の実施例では、4種類のATギヤ段に対して10種類の模擬ギヤ段を割り当てる実施態様を例示したが、この態様に限らない。好適には、模擬ギヤ段の段数はATギヤ段の段数以上であれば良く、ATギヤ段の段数と同じであっても良いが、ATギヤ段の段数よりも多いことが望ましく、例えば2倍以上が適当である。ATギヤ段の変速は、中間伝達部材30やその中間伝達部材30に連結される第2回転機MG2の回転速度が所定の回転速度範囲内に保持されるように行なうものであり、又、模擬ギヤ段の変速は、エンジン回転速度Neが所定の回転速度範囲内に保持されるように行なうものであり、それら各々の段数は適宜定められる。
また、前述の実施例において、車両10は、無段変速部18を備えず、有段変速部20を単独で備えるような車両であっても良い。要は、エンジンと、エンジンと駆動輪との間の動力伝達経路の一部を構成すると共に複数の係合装置のうちの所定の係合装置の係合によって複数のギヤ段のうちの何れかのギヤ段が形成される有段変速機とを備えた車両であっても、本発明を適用することができる。エンジンと駆動輪との間の動力伝達経路の一部を構成する有段変速機としては、有段変速部20のような遊星歯車式の自動変速機でも良いし、又は、同期噛合型平行2軸式自動変速機であって入力軸を2系統備えて各系統の入力軸に係合装置(クラッチ)がそれぞれつながり更にそれぞれ偶数段と奇数段へと繋がっている型式の変速機である公知のDCT(Dual Clutch Transmission)などの有段変速機であっても良い。DCTの場合には、複数の係合装置のうちの所定の係合装置は、2系統の各入力軸にそれぞれつながる係合装置が相当する。
尚、上述したのはあくまでも一実施形態であり、本発明は当業者の知識に基づいて種々の変更、改良を加えた態様で実施することができる。
10:車両
14:エンジン
20:機械式有段変速部(有段変速機)
28:駆動輪
80:電子制御装置(制御装置)
82:AT変速制御部(変速制御部)
86:走行モード制御部
88:エンブレトルク制御部
90:エンブレトルク変化量算出部
CB:係合装置

Claims (1)

  1. エンジンと、前記エンジンと駆動輪との間の動力伝達経路の一部を構成すると共に複数の係合装置のうちの所定の係合装置の係合によって複数のギヤ段のうちの何れかのギヤ段が形成される有段変速機とを備えた車両の、制御装置であって、
    前記車両が有する複数の走行モードのうちの何れかの走行モードを単独で又は組み合わせて成立させることができる走行モード制御部と、
    コースト走行中には、前記走行モードに基づいてエンジンブレーキトルクを設定するものであり、前記走行モードの各々において前記有段変速機のコーストダウン変速中に前記エンジンブレーキトルクが変化する場合には、前記エンジンブレーキトルクの変化が前記コーストダウン変速中のイナーシャ相開始後に生じるように制御するものであるエンブレトルク制御部と、
    前記コーストダウン変速中のイナーシャ相開始後に生じる前記エンジンブレーキトルクの変化が増加側である場合には、前記エンジンブレーキトルクの変化に基づく前記エンジンブレーキトルクの変化量に基づいて、前記複数の係合装置のうちの前記コーストダウン変速の変速過渡において係合に向けて制御される係合側係合装置の前記イナーシャ相中における係合トルクを増大補正する変速制御部と、
    前記コーストダウン変速中のイナーシャ相開始前に前記走行モードが切り替えられたときに、切替え後の走行モードにおける前記イナーシャ相開始前の前記エンジンブレーキトルクが切替え前の走行モードにおける前記エンジンブレーキトルクよりも減少する場合には、前記切替え前の走行モードにおける前記エンジンブレーキトルクを前記エンジンブレーキトルクの変化前の値として用いて、前記イナーシャ相開始後に生じる前記エンジンブレーキトルクの変化に基づく前記エンジンブレーキトルクの変化量を算出するエンブレトルク変化量算出部と
    を、含むことを特徴とする車両の制御装置。
JP2019040989A 2019-03-06 2019-03-06 車両の制御装置 Pending JP2020142663A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019040989A JP2020142663A (ja) 2019-03-06 2019-03-06 車両の制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019040989A JP2020142663A (ja) 2019-03-06 2019-03-06 車両の制御装置

Publications (1)

Publication Number Publication Date
JP2020142663A true JP2020142663A (ja) 2020-09-10

Family

ID=72355364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019040989A Pending JP2020142663A (ja) 2019-03-06 2019-03-06 車両の制御装置

Country Status (1)

Country Link
JP (1) JP2020142663A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114379536A (zh) * 2020-10-21 2022-04-22 丰田自动车株式会社 车辆的控制装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008169874A (ja) * 2007-01-09 2008-07-24 Toyota Motor Corp 車両用駆動装置の制御装置
JP2018135933A (ja) * 2017-02-21 2018-08-30 トヨタ自動車株式会社 車両の制御装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008169874A (ja) * 2007-01-09 2008-07-24 Toyota Motor Corp 車両用駆動装置の制御装置
JP2018135933A (ja) * 2017-02-21 2018-08-30 トヨタ自動車株式会社 車両の制御装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114379536A (zh) * 2020-10-21 2022-04-22 丰田自动车株式会社 车辆的控制装置
CN114379536B (zh) * 2020-10-21 2024-03-15 丰田自动车株式会社 车辆的控制装置

Similar Documents

Publication Publication Date Title
JP6885256B2 (ja) 車両の制御装置
JP7040363B2 (ja) 車両の制御装置
JP6791027B2 (ja) 車両の制御装置
CN108146429B (zh) 车辆的控制装置
JP6780610B2 (ja) 車両の制御装置
CN111422184B (zh) 车辆的控制装置
JP7000277B2 (ja) 車両の制御装置
JP6798448B2 (ja) 車両の制御装置
JP2018086975A (ja) 車両用駆動装置の制御装置
JP6853139B2 (ja) 車両の制御装置
JP6565884B2 (ja) 車両の変速制御装置
JP2020142663A (ja) 車両の制御装置
JP7107783B2 (ja) 車両の制御装置
JP6658490B2 (ja) 車両の制御装置
JP7068042B2 (ja) ハイブリッド車両
JP7201469B2 (ja) 車両の制御装置
JP7021005B2 (ja) ハイブリッド車両
JP7067345B2 (ja) 車両の制御装置
JP7164419B2 (ja) 車両の制御装置
JP7103890B2 (ja) 車両の制御装置
JP6950410B2 (ja) 車両の制御装置
JP7180968B2 (ja) 車両の制御装置
JP2019031206A (ja) 車両の制御装置
JP6981923B2 (ja) ハイブリッド車両
JP6729318B2 (ja) ハイブリッド車両の制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210624

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220510

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20221108