JP2009060005A - 発光素子およびその製造方法 - Google Patents

発光素子およびその製造方法 Download PDF

Info

Publication number
JP2009060005A
JP2009060005A JP2007227572A JP2007227572A JP2009060005A JP 2009060005 A JP2009060005 A JP 2009060005A JP 2007227572 A JP2007227572 A JP 2007227572A JP 2007227572 A JP2007227572 A JP 2007227572A JP 2009060005 A JP2009060005 A JP 2009060005A
Authority
JP
Japan
Prior art keywords
oxide single
single crystal
gallium oxide
crystal substrate
gallium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007227572A
Other languages
English (en)
Inventor
Tasuku Inoue
翼 井上
Satoshi Takeda
聡 竹田
Shigeo Ohira
重男 大平
Naoki Arai
直樹 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shizuoka University NUC
Nippon Light Metal Co Ltd
Original Assignee
Shizuoka University NUC
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shizuoka University NUC, Nippon Light Metal Co Ltd filed Critical Shizuoka University NUC
Priority to JP2007227572A priority Critical patent/JP2009060005A/ja
Publication of JP2009060005A publication Critical patent/JP2009060005A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Led Devices (AREA)

Abstract

【課題】 高効率な紫外線発生源として用いられ得るとともに、導電性基板を採用することにより、プロセスコストも顕著に低減可能である発光素子およびその製造方法を提供すること
【解決手段】 酸化ガリウム単結晶基板上に、窒化ガリウム柱状結晶を形成してなることを特徴とする発光素子。酸化ガリウム単結晶基板上に、温度650〜750℃、ガス流量80〜120sccm、時間1〜30分の条件でアンモニアをフローさせ、前記酸化ガリウム単結晶基板表面を窒化させる窒化工程と、前記窒化工程後、800〜1000℃の表面温度の前記酸化ガリウム単結晶基板上で金属ガリウムとアンモニアとを反応させ、前記酸化ガリウム単結晶基板上に窒化ガリウム柱状結晶を成長させる工程とを有することを特徴とする発光素子の製造方法。
【選択図】 図4

Description

本発明は、発光素子およびその製造方法に関するものであり、詳しくは高効率な紫外線発生源として用いられ得る発光素子およびその製造方法に関するものである。本発明の発光素子は、LSIプロセス用光源、紫外線加工用光源、紫外線硬化材料用光源、光触媒用光源、メディカルまたはバイオ応用光源、光ディスク用光源などに幅広いニーズがある半導体製小型ランプとして利用可能である。
紫外線には、LSIプロセス用光源、紫外線加工用光源、紫外線硬化材料用光源、光触媒用光源、メディカルまたはバイオ応用光源、光ディスク用光源など、幅広いニーズがある。しかしながら、従来の紫外線ランプは水銀、重水素などが用いられ、大型・低効率・短寿命・危険という欠点などがあり、このため固体半導体発光素子を用いた紫外線光源の開発が重要な課題となっている。
上記半導体発光素子を用いた紫外線光源としては、従来から窒化ガリウム(GaN)系半導体薄膜を用いたデバイスが検討されている。GaN系半導体薄膜を成長させる基板としては、サファイアやSiC基板が用いられているが、異種基板であるため、膜中に欠陥や転位が多く含まれ、そのため充分な発光効率が得られていないのが現状である。これに対し、成長させる半導体薄膜を柱状にすると、結晶の転位密度が劇的に減少し、そのため非常に高効率の発光が期待できる。さらに、薄膜では光取り出し損失が大きいのに対し、柱状構造にすると多重反射により基板に対して垂直方向への光放出が大きくなり、結果として高効率発光の実現が期待できる。実際、柱状のGaNからは電子線励起により薄膜に比べ高強度の発光が観察され、紫外線光源としての応用が示唆されている(例えば特許文献1および非特許文献1参照)。
特開2005−260093号公報 Y.Inoue et al、 Appl. Phys. Lett., 85(2004)2340.
しかしながら、上記の特許文献1および非特許文献1に開示された技術で製造されたGaN系半導体発光素子は、Si基板を用いているため、光を透過しないほか、抵抗も高く、デバイス構造の作製が困難となり、発光効率の低下も予想される。一方、透明なサファイアや石英基板を用いてGaN系半導体発光素子を作製することも可能であるが、この場合、基板は絶縁体であり、透明電極が必要になり、プロセスコストがかかるといった問題点があった。
本発明は、上記従来の課題を解決し、高効率な紫外線発生源として用いられ得るとともに、導電性基板を採用することにより、プロセスコストも顕著に低減可能である発光素子およびその製造方法を提供することにある。
本発明は、以下のとおりである。
(1)酸化ガリウム単結晶基板上に、窒化ガリウム柱状結晶を形成してなることを特徴とする発光素子。
(2)前記酸化ガリウム単結晶基板と、窒化ガリウム柱状結晶との間に、窒化アルミニウム層を形成してなることを特徴とする前記1に記載の発光素子。
(3)前記窒化ガリウム柱状結晶が、六方晶窒化ガリウムであり、その径が0.05〜3μmであり、長さが0.5〜5μmである六角柱または六角錐の形状を有することを特徴とする前記1または2に記載の発光素子。
(4)前記酸化ガリウム単結晶基板が、Si、GeおよびSnから選択された少なくとも一種の元素を添加してなることを特徴とする前記1〜3のいずれかに記載の発光素子。
(5)前記窒化アルミニウム層の厚さが3〜100nmであることを特徴とする前記2に記載の発光素子。
(6)電子線励起により波長364〜390nmの紫外線を発光することを特徴とする前記1〜5のいずれかに記載の発光素子。
(7)酸化ガリウム単結晶基板上に、温度650〜750℃、ガス流量80〜120sccm、時間1〜30分の条件でアンモニアをフローさせ、前記酸化ガリウム単結晶基板表面を窒化させる窒化工程と、前記窒化工程後、800〜1000℃の表面温度の前記酸化ガリウム単結晶基板上で金属ガリウムとアンモニアとを反応させ、前記酸化ガリウム単結晶基板上に窒化ガリウム柱状結晶を成長させる工程とを有することを特徴とする発光素子の製造方法。
(8)酸化ガリウム単結晶基板上に、温度650〜750℃、ガス流量80〜120sccm、時間1〜30分の条件でアンモニアをフローさせ、前記酸化ガリウム単結晶基板表面を窒化させる窒化工程と、前記窒化工程後の酸化ガリウム単結晶基板上に、厚さ3〜100nmの窒化アルミニウム層を形成する工程と、800〜1000℃の表面温度の、前記窒化アルミニウム層を形成した酸化ガリウム単結晶基板上で金属ガリウムとアンモニアとを反応させ、前記酸化ガリウム単結晶基板上に窒化ガリウム柱状結晶を成長させる工程とを有することを特徴とする発光素子の製造方法。
(9)前記窒化アルミニウム層を形成する工程が、アンモニアおよびトリメチルアルミニウムを原料として、温度750〜850℃、時間1〜10分の条件で両者を加熱し、前記窒化工程後の酸化ガリウム単結晶基板上に、厚さ3〜100nmの窒化アルミニウム層を形成する工程であることを特徴とする前記8に記載の発光素子の製造方法。
(10)前記窒化工程を行う前記酸化ガリウム単結晶基板の結晶方位が、(100)面であることを特徴とする前記7〜9のいずれかに記載の発光素子の製造方法。
本発明の発光素子は、酸化ガリウム単結晶基板上に、窒化ガリウム柱状結晶を形成してなることを特徴としている。酸化ガリウム単結晶基板は導電性を有するために、発光デバイスを作製する際に透明電極等を必要とせず、プロセスコストがかかるという従来の課題を解決することができる。また酸化ガリウム単結晶基板は透明であるために、窒化ガリウム窒化ガリウム柱状結晶から発生した紫外線を基板背面から高効率で取り出すことができる。さらに本発明では、基板上に窒化ガリウム柱状結晶を形成させているため、発生した紫外線が多重反射し、基板に対して垂直方向への光放出が大きくなり、結果として高効率発光が達成される。
また本発明の製造方法は、酸化ガリウム単結晶基板上への窒化条件、窒化ガリウム柱状結晶の成長条件を特定している。この条件の特定により、基板に対して垂直方向に良好に整列した窒化ガリウム柱状結晶を形成することができ、高効率発光が達成される発光素子を得ることができる。
以下、本発明をさらに詳細に説明する。
(酸化ガリウム単結晶基板)
本発明の発光素子における基板は、酸化ガリウム(β-Ga2O3)単結晶を用いる。β-Ga2O3単結晶は、フローティングゾーン(FZ法)や引上げ(CZ法)などで作製されるが、るつぼを用いないFZ法で作製する方法が高品質の単結晶が得られるので好ましい。FZ法で得られた単結晶を切断、研磨して表面を鏡面にし、例えば厚さ0.4mmほどのウエハとする。このときの結晶方位は研磨が容易で製造しやすい(100)面とするのがよい。FZ法で作製したβ-Ga2O3単結晶は、無色透明であり、光学的透過率はおよそ80%ほどであり、光吸収端はおよそ260nmである。β-Ga2O3単結晶は、添加元素なしでも作製する雰囲気による酸素欠損から発生した電子がキャリアとなって導電性を有するが、さらに導電性を向上させるために、IV族元素のSi、GeおよびSnから選択された少なくとも一種の元素を添加してなることが好ましい。これらドーピングする元素量は、β-Ga2O3単結晶に対し、20〜100ppmが好ましい。
(本発明の発光素子の製造)
本発明の発光素子は、酸化ガリウム単結晶基板上に、温度650〜750℃、ガス流量80〜120sccm、時間1〜30分の条件でアンモニアをフローさせ、前記酸化ガリウム単結晶基板表面を窒化させる窒化工程と、前記窒化工程後、800〜1000℃の表面温度の前記酸化ガリウム単結晶基板上で金属ガリウムとアンモニアとを反応させ、前記酸化ガリウム単結晶基板上に窒化ガリウム柱状結晶を成長させる工程とを経て製造することができる。
窒化工程は、酸化ガリウム単結晶基板をアンモニアガスに曝して窒化させ、その後に形成させる窒化ガリウム柱状結晶との馴染みをよくするために行う。窒化工程において、温度が650℃未満であると、窒化が不十分であり、750℃を超えると、基板表面の凹凸が大きくなり好ましくない。アンモニアガスの流量が80sccm未満であると、窒化が不十分であり、120sccmを超えると、基板表面の凹凸が大きくなり好ましくない。窒化時間が1分未満であると、窒化が不十分であり、30分を超えると、基板表面の凹凸が大きくなりとなり好ましくない。
さらに好ましい窒化工程の条件は、温度700〜720℃、ガス流量90〜100sccm、時間1〜5分である。
続いて、800〜1000℃の表面温度の前記酸化ガリウム単結晶基板上で金属ガリウムとアンモニアとを反応させ、前記酸化ガリウム単結晶基板上に窒化ガリウム柱状結晶を成長させる。
この工程は、当業界で公知のHot Wall Epitaxy法を採用することができ、装置としては、例えば上記特許文献1に記載されている。
上記条件により作製された窒化ガリウム柱状結晶は、六方晶窒化ガリウムであって、その径が3μm以下、例えば0.05〜3μm、長さが0.5〜5μmである六角柱または六角錐の形状を有する柱状結晶である。また、基板に対して垂直方向に良好に整列した窒化ガリウム柱状結晶を形成することができ、高効率発光が達成される。
酸化ガリウム単結晶基板の表面温度が800℃未満では、柱状結晶ではなく、薄膜状の窒化ガリウム結晶が成長するため、本発明の目的を達成することができない。なお、該表面温度が1000℃を超えても柱状結晶は得られるが、アンモニアの分解により水素が激しく発生し、酸化ガリウム単結晶基板を還元、分解するので好ましくない。
さらに好ましい酸化ガリウム単結晶基板の表面温度は、880〜940℃である。
また、金属ガリウムとアンモニアとの反応は、上記Hot Wall Epitaxy法において、例えば金属ガリウムを900℃程度に加熱することにより達成される。反応時間は30〜120分、好ましくは60〜90分であるのがよい。30分未満であると、柱状結晶の成長する高さが不十分となる場合がある。逆に120分を超えると、柱状結晶が成長しすぎる傾向にあり、柱状結晶同士が結合し、著しく結晶品質が低下するため好ましくない。
このようにして得られた本発明の発光素子は、電子線励起により波長364〜390nmの紫外線を、窒化ガリウムから発生させることができ、この発光を透明な酸化ガリウム基板背面から高効率に取り出すことができる。
(本発明の発光素子のさらに好ましい製造方法)
上記の酸化ガリウム単結晶基板上に窒化ガリウム柱状結晶を成長させる工程においては、基板の表面温度を800〜1000℃と高温に設定しているので、アンモニアの分解による水素の発生により、酸化ガリウム単結晶基板を還元、分解する恐れがあり、窒化ガリウム柱状結晶が基板から剥離する可能性がある。そこで本発明では、酸化ガリウム単結晶基板と、窒化ガリウム柱状結晶との間に、窒化アルミニウム層を形成するのがとくに好ましい。
窒化アルミニウム(AlN)層は、酸化ガリウム基板表面のブロック層として機能し、発生した水素の悪影響を抑制することができる。また、窒化アルミニウム層の厚さを調整することにより、導電性も維持することができる。
窒化アルミニウム層は、アンモニアおよびトリメチルアルミニウム(TMA)を原料とし、750〜850℃の温度で、1〜10分加熱することにより、酸化ガリウム基板表面上に設けることができる。
当該反応は、上記と同様に、当業界で公知のHot Wall Epitaxy法を採用して達成され、装置としては、例えば上記特許文献1に記載されたものを用いて行うことができる。
上記加熱温度が750℃未満であると、アンモニアの分解による反応が不純分となり、逆に850℃を超えると、アンモニアの分解による水素の発生により、酸化ガリウム単結晶基板を還元、分解する恐れがあるので好ましくない。また、上記加熱時間を1〜10分に設定することにより、表面が平坦な窒化アルミニウム層が得られる。図1は、窒化アルミニウム層形成の時間依存性を説明するための原子間力顕微鏡(AFM)写真である。図1に示すように、加熱時間が1分(1 min)から10分(10 min)の範囲において、表面が平坦な窒化アルミニウム層が得られることが分かるが、加熱時間が30分(30 min)の場合、表面が荒れてその後の窒化ガリウム柱状結晶を成長させる工程に適さなくなる。したがって、上記加熱時間は1〜10分であることが好ましい。
窒化アルミニウム層の形成において、アンモニアガスの流量は30〜50sccm、好ましくは38〜42sccmであり、トリメチルアルミニウムの流量は、2.0〜10.0μmol/min、好ましくは5.0〜5.4μmol/minとするのがよい。
窒化アルミニウム層の厚さは、3〜100nmであるのが好ましく、3〜10nmであるのがさらに好ましい。窒化アルミニウム層の厚さが3nm未満であると、上記水素のブロック効果が乏しく、逆に100nmを超えると、水素のブロック効果を発現するには十分な厚さであるが、窒化アルミニウムは絶縁体であるため導電性の酸化ガリウム単結晶基板を使うメリットが活かせない。そのためトンネル電流により電流が流れると考えられる100nm以下の膜厚とすることが好ましい。
なお、上記では、酸化ガリウム単結晶基板と窒化ガリウム柱状結晶との間に、窒化アルミニウム層を形成する形態について説明するが、窒化アルミニウム層の替わりに、GaN/AlN多層、AlGaN層、SiO2層、SiN層を用いた場合も同様の効果が奏されることを、本発明者は確認している。
以下、本発明を実施例によってさらに説明するが、本発明は下記例に限定されるものではない。
例1
無添加のβ-Ga2O3単結晶を育成しウエハ状に加工した。単結晶育成は、酸化ガリウム粉末(純度4N)を原料とし、静水圧プレスで成形した成形体を大気中1600℃、10時間で焼結し、この焼結体を原料棒としてFZ装置を用いて単結晶育成を行った。成長速度は7.5mm/hとし、雰囲気ガスにはドライエアを用いた。装置としては、市販の光FZ装置(キャノンマシナリー社製商品名iAce)を用いた。作製した単結晶を切断し、CMP(化学機械)研磨により厚さ0.4mmのウエハ状に加工した。この場合の研磨面の結晶方位は(100)面であり、透過率はおよそ80%、抵抗率は1.43×10-1Ωcmである。
得られた酸化ガリウム単結晶基板上に、基板表面温度700℃、アンモニア(NH3)流量100sccm、1分の条件でアンモニアをフローさせ、酸化ガリウム単結晶基板を窒化させた。次に、この窒化工程後の基板上に、基板表面温度800℃、アンモニア流量40sccm、トリメチルアルミニウム流量5.2μmol/min、加熱時間5分の条件で、窒化アルミニウム層を形成した。窒化アルミニウム層の厚さは、10nmであった、続いて、窒化アルミニウム層上に、基板表面温度750℃、アンモニア流量100sccm、金属Ga加熱900℃、反応時間60分の条件で、窒化ガリウム結晶を成長させ、発光素子を作製した。
図2は、例1の酸化ガリウム単結晶基板上に成長させた窒化ガリウム結晶のX線回折結果を示す図であり、図3は、例1の窒化ガリウム結晶のSEM観察結果を示す図である。図2の結果から、酸化ガリウム単結晶基板からのピークの他に六方晶窒化ガリウムの回折ピークが検出され、窒化ガリウムの形成が確認された。しかしながら、図3のSEM観察結果から、得られた窒化ガリウムは膜状であり、柱状結晶ではないことが認められた。
例2
例1において、基板表面温度を900℃にして窒化ガリウム結晶を成長させたこと以外は、例1を繰り返し、発光素子を作製した。図4は、例2の窒化ガリウム結晶のSEM観察結果を示す図である。図4の結果から、窒化ガリウム結晶は、六角柱状の柱状結晶であることが認められた。該柱状結晶の径は1μm、長さは2μmであった。
例3
例1および例2で作製した発光素子について、電子線励起によりカソードルミネッセンス(CL)測定を行い、発光効率の比較を行なった。その結果を図5に示す。図5から、例2のように窒化ガリウムを柱状結晶にすることで(Nanocrystal)、例1の膜状(Film)に比べ、発光強度が強くなることが分かる。図5において、波長390nm付近に窒化ガリウムに由来する発光を確認した。
本発明の発光素子は、LSIプロセス用光源、紫外線加工用光源、紫外線硬化材料用光源、光触媒用光源、メディカルまたはバイオ応用光源、光ディスク用光源などに幅広いニーズがある半導体製小型ランプとして利用可能である。
窒化アルミニウム層形成の時間依存性を説明するための原子間力顕微鏡(AFM)写真である。 例1の酸化ガリウム単結晶基板上に成長させた窒化ガリウム結晶のX線回折結果を示す図である。 例1の窒化ガリウム結晶のSEM観察結果を示す図である。 例2の窒化ガリウム結晶のSEM観察結果を示す図である。 例3の電子線励起によるカソードルミネッセンス(CL)測定の結果を示す図である。

Claims (10)

  1. 酸化ガリウム単結晶基板上に、窒化ガリウム柱状結晶を形成してなることを特徴とする発光素子。
  2. 前記酸化ガリウム単結晶基板と、窒化ガリウム柱状結晶との間に、窒化アルミニウム層を形成してなることを特徴とする請求項1に記載の発光素子。
  3. 前記窒化ガリウム柱状結晶が、六方晶窒化ガリウムであり、その径が0.05〜3μmであり、長さが0.5〜5μmである六角柱または六角錐の形状を有することを特徴とする請求項1または2に記載の発光素子。
  4. 前記酸化ガリウム単結晶基板が、Si、GeおよびSnから選択された少なくとも一種の元素を添加してなることを特徴とする請求項1〜3のいずれかに記載の発光素子。
  5. 前記窒化アルミニウム層の厚さが3〜100nmであることを特徴とする請求項2に記載の発光素子。
  6. 電子線励起により波長364〜390nmの紫外線を発光することを特徴とする請求項1〜5のいずれかに記載の発光素子。
  7. 酸化ガリウム単結晶基板上に、温度650〜750℃、ガス流量80〜120sccm、時間1〜30分の条件でアンモニアをフローさせ、前記酸化ガリウム単結晶基板表面を窒化させる窒化工程と、前記窒化工程後、800〜1000℃の表面温度の前記酸化ガリウム単結晶基板上で金属ガリウムとアンモニアとを反応させ、前記酸化ガリウム単結晶基板上に窒化ガリウム柱状結晶を成長させる工程とを有することを特徴とする発光素子の製造方法。
  8. 酸化ガリウム単結晶基板上に、温度650〜750℃、ガス流量80〜120sccm、時間1〜30分の条件でアンモニアをフローさせ、前記酸化ガリウム単結晶基板表面を窒化させる窒化工程と、前記窒化工程後の酸化ガリウム単結晶基板上に、厚さ3〜100nmの窒化アルミニウム層を形成する工程と、800〜1000℃の表面温度の、前記窒化アルミニウム層を形成した酸化ガリウム単結晶基板上で金属ガリウムとアンモニアとを反応させ、前記酸化ガリウム単結晶基板上に窒化ガリウム柱状結晶を成長させる工程とを有することを特徴とする発光素子の製造方法。
  9. 前記窒化アルミニウム層を形成する工程が、アンモニアおよびトリメチルアルミニウムを原料として、温度750〜850℃、時間1〜10分の条件で両者を加熱し、前記窒化工程後の酸化ガリウム単結晶基板上に、厚さ3〜100nmの窒化アルミニウム層を形成する工程であることを特徴とする請求項8に記載の発光素子の製造方法。
  10. 前記窒化工程を行う前記酸化ガリウム単結晶基板の結晶方位が、(100)面であることを特徴とする請求項7〜9のいずれかに記載の発光素子の製造方法。
JP2007227572A 2007-09-03 2007-09-03 発光素子およびその製造方法 Withdrawn JP2009060005A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007227572A JP2009060005A (ja) 2007-09-03 2007-09-03 発光素子およびその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007227572A JP2009060005A (ja) 2007-09-03 2007-09-03 発光素子およびその製造方法

Publications (1)

Publication Number Publication Date
JP2009060005A true JP2009060005A (ja) 2009-03-19

Family

ID=40555453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007227572A Withdrawn JP2009060005A (ja) 2007-09-03 2007-09-03 発光素子およびその製造方法

Country Status (1)

Country Link
JP (1) JP2009060005A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011129915A (ja) * 2009-12-18 2011-06-30 Lg Innotek Co Ltd 発光素子、発光素子パッケージ、及び照明システム
KR101697462B1 (ko) * 2016-07-04 2017-01-18 (주)유니드엘이디 수직형 자외선 발광소자, 이의 제조 방법, 수직형 자외선 발광소자용 AlN 템플릿 및 이의 제조 방법

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011129915A (ja) * 2009-12-18 2011-06-30 Lg Innotek Co Ltd 発光素子、発光素子パッケージ、及び照明システム
KR101697462B1 (ko) * 2016-07-04 2017-01-18 (주)유니드엘이디 수직형 자외선 발광소자, 이의 제조 방법, 수직형 자외선 발광소자용 AlN 템플릿 및 이의 제조 방법

Similar Documents

Publication Publication Date Title
JP6436538B2 (ja) ε−Ga2O3単結晶、ε−Ga2O3の製造方法、および、それを用いた半導体素子
JP6422159B2 (ja) α−Ga2O3単結晶、α−Ga2O3の製造方法、および、それを用いた半導体素子
US10125433B2 (en) Nitride semiconductor crystal, manufacturing method and manufacturing equipment
JP5307975B2 (ja) 窒化物系半導体自立基板及び窒化物系半導体発光デバイス用エピタキシャル基板
JP4631681B2 (ja) 窒化物系半導体基板及び半導体装置
US9574287B2 (en) Gallium nitride material and device deposition on graphene terminated wafer and method of forming the same
JP5638772B2 (ja) 酸化亜鉛系半導体の成長方法及び半導体発光素子の製造方法
WO2009090821A1 (ja) Al系III族窒化物単結晶層を有する積層体の製造方法、該製法で製造される積層体、該積層体を用いたAl系III族窒化物単結晶基板の製造方法、および、窒化アルミニウム単結晶基板
JP2007126320A (ja) 窒化物系半導体基板およびその製造方法
JP5931737B2 (ja) 光学素子の製造方法
KR20130113452A (ko) Iii족 질화물 반도체 소자 제조용 기판의 제조 방법, iii족 질화물 반도체 자립 기판 또는 iii족 질화물 반도체 소자의 제조 방법, 및 iii족 질화물 성장용 기판
JP6618216B2 (ja) α−Ga2O3単結晶、α−Ga2O3の製造方法、および、それを用いた半導体素子
JP2008207968A (ja) 酸化ガリウム−窒化ガリウム複合基板の製造方法、及び酸化ガリウム−窒化ガリウム複合基板
JP2009060005A (ja) 発光素子およびその製造方法
JP2010010572A (ja) 発光素子およびその製造方法
JP2007137728A (ja) 酸化ガリウム単結晶複合体の製造方法、及びこれを用いた窒化物半導体膜の製造方法
JP4699420B2 (ja) 窒化物膜の製造方法
JP2007137727A (ja) 酸化ガリウム単結晶複合体の製造方法、及びこれを用いた窒化物半導体膜の製造方法
JP2005104742A (ja) 単結晶育成用基板および半導体装置
JP2014172797A (ja) 窒化ガリウム(GaN)自立基板の製造方法及び製造装置
WO2016136446A1 (ja) 窒化物半導体テンプレート及びその製造方法
JP2009179505A (ja) 窒化物体の製造方法
JP4259414B2 (ja) Iii族窒化物単結晶の製造方法
JP2010010571A (ja) 発光素子およびその製造方法
JP2006135032A (ja) Iii族窒化物単結晶ウエハ、それを用いたiii族窒化物半導体デバイスの製造方法およびそれにより得られた半導体デバイス

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20101207