JP2009043195A - データ送信装置、データ受信装置、データ転送装置、及び電子機器 - Google Patents

データ送信装置、データ受信装置、データ転送装置、及び電子機器 Download PDF

Info

Publication number
JP2009043195A
JP2009043195A JP2007210368A JP2007210368A JP2009043195A JP 2009043195 A JP2009043195 A JP 2009043195A JP 2007210368 A JP2007210368 A JP 2007210368A JP 2007210368 A JP2007210368 A JP 2007210368A JP 2009043195 A JP2009043195 A JP 2009043195A
Authority
JP
Japan
Prior art keywords
clock
data
flip
flop
transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007210368A
Other languages
English (en)
Other versions
JP5056262B2 (ja
Inventor
Wataru Shibata
渉 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP2007210368A priority Critical patent/JP5056262B2/ja
Publication of JP2009043195A publication Critical patent/JP2009043195A/ja
Application granted granted Critical
Publication of JP5056262B2 publication Critical patent/JP5056262B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Information Transfer Systems (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)

Abstract

【課題】回路規模を縮小することができるデータ送信装置、データ受信装置、及びデータ転送装置、並びに当該装置を備える電子機器を提供する。
【解決手段】データ転送装置1は、データ送信装置10とデータ受信装置20とを備え、2ビットのデータD11,D12を、転送クロックCLKに同期してデータ送信装置10からデータ受信装置20に転送する。データ送信装置10,20は、転送クロックCLKと周波数が同じ第1クロックCLK1と、第1クロックCLK1に対して周波数が1/2倍の第2クロックCLK2とを生成するクロック生成部11,21をそれぞれ備える。また、データ送信装置10は4つのDフリップフロップ13,14,15a,15bからなる送信部12を備え、データ受信装置20は4つのDフリップフロップ23,24a,24b,26及びセレクタ25からなる受信部22を備える。
【選択図】図1

Description

本発明は、ディジタルデータ等の各種データの送信・受信・転送を行うデータ送信装置、データ受信装置、及びデータ転送装置、並びに当該装置を備える電子機器に関する。
近年、データの転送速度の向上を図るために転送クロックの周波数が高められている。転送クロックの周波数が高められることにより転送クロックの1周期が短くなるが、転送されたデータを受信する受信装置の遅延時間はその時間に対して小さくならないため、受信装置の遅延時間の長さによってはデータ転送自体ができなくなる虞がある。このため、近年においては、周波数が転送クロックの周波数の1/n(nは1よりも大きな整数)である第2転送クロックを用意するとともにデータ線の数をn倍にして、データ幅をnビットとしたデータを第2転送クロックに同期して転送するデータ転送装置が実現されている。
図6は、従来のデータ転送装置の概略構成を示す図である。尚、以下では、上記のnの値が「2」であるデータ転送装置を例に挙げて説明する。図6に示す通り、従来のデータ転送装置100は、データ送信装置110とデータ受信装置120とを備えており、2ビットのデータD101,D102を、周波数が転送クロックCLKの周波数の半分である第2転送クロックCLK2に同期してデータ送信装置110からデータ受信装置120に転送する。データ送信装置110は送信すべきデータD100を2ビットのデータD101,D102に変換して送信する送信部110aを備えており、受信部120は2ビットのデータD101,D102を受信してデータD100を再生する受信部120aを備えている。
図7は、送信部110aの内部構成を示すブロック図である。図7に示す通り、送信部110aは、Dフリップフロップ111,112、書き込み制御部113、FIFO(First-In First-Out:先入れ先出し)メモリ114a,114b、タイミング調整部115、読み出し制御部116、及びDフリップフロップ117a,117bを備える。書き込み制御部113は、転送クロックCLKに同期してアドレス信号A100と選択信号SL100とを出力し、Dフリップフロップ112から出力されるデータをFIFOメモリ114a,114bに交互に書き込む制御を行う。タイミング調整部115は、メタステーブルの発生を防止するために、第2転送クロックCLK2に同期したタイミング信号T100を出力する。読み出し制御部116は、タイミング信号T100が入力されてから第2転送クロックCLK2に同期してアドレス信号A101を出力し、FIFOメモリ114a,114bからのデータの読み出し制御を行う。これにより、FIFOメモリ114a,114bの各々からデータが読み出され、第2転送クロックCLK2に同期してデータD101,D102が送信される。
図8は、受信部120aの内部構成を示すブロック図である。図8に示す通り、受信部120aは、Dフリップフロップ121a,121b,122a,122b、書き込み制御部123、FIFOメモリ124a,124b、タイミング調整部125、読み出し制御部126、セレクタ127、及びDフリップフロップ128を備える。書き込み制御部123は、第2転送クロックCLK2に同期してアドレス信号A200を出力し、Dフリップフロップ122a,122bから出力されるデータをFIFOメモリ124a,124bにそれぞれ書き込む制御を行う。タイミング調整部125は、メタステーブルの発生を防止するために、転送クロックCLKに同期したタイミング信号T200を出力する。読み出し制御部126は、タイミング信号T200が入力されてから転送クロックCLKに同期してアドレス信号A201と選択信号SL200とを出力し、FIFOメモリ124a,124bから交互にデータを読み出す制御を行う。セレクタ127は、選択信号SL200に基づいてFIFOメモリ124a,124bから読み出されたデータを交互に選択して出力する。これにより、Dフリップフロップ128からは再生されたデータD100が出力される。
尚、従来のデータ転送装置の他の例については、例えば以下の特許文献1を参照されたい。
特開2006−011495号公報
ところで、従来のデータ転送装置100の送信部110a及び受信部120aは、図7及び図8に示す通り、共にFIFOメモリを備えている。このため、送信部110aにおいては、FIFOメモリ114a,114bに対する書き込みの制御を行う書き込み制御部113と読み出しの制御を行う読み出し制御部116が必須となり、受信部120aにおいては、FIFOメモリ124a,124bに対する書き込みの制御を行う書き込み制御部123と読み出しの制御を行う読み出し制御部126が必須となる。このため、送信部110a及び受信部120aの回路規模が大きくなって、コスト上昇の一因になっている。
また、図7を用いて説明した通り、送信部110aにおいては、FIFOメモリ114a,114bに対する書き込みは転送クロックCLKに同期して交互に行い、読み出しは第2転送クロックCLK2に同期して行う必要があるため、メタステーブルの発生を防止する観点からタイミング調整部115を設ける必要がある。同様に、図8を用いて説明した通り、受信部120aにおいては、FIFOメモリ124a,124bに対する書き込みは第2転送クロックCLK2に同期して行い、読み出しは転送クロックCLKに同期して交互に行う必要があるため、メタステーブルの発生を防止する観点からタイミング調整部125を設ける必要がある。かかるタイミング調整部115,125を設けれることでメタステーブルの発生を防止することができるが、データ転送装置100の回路規模が益々増大してしまう。
本発明は上記事情に鑑みてなされたものであり、回路規模を縮小することができるデータ送信装置、データ受信装置、及びデータ転送装置、並びに当該装置を備える電子機器を提供することを目的とする。
上記課題を解決するために、本発明のデータ送信装置は、転送クロック(CLK)に同期してデータを送信するデータ送信装置(10、30)において、前記転送クロックに対して周波数がk倍(kは1以上の整数)である第1クロック(CLK1)と、当該第1クロックに対して周波数が1/n倍(nは2以上の整数)である第2クロック(CLK2、CLK3)とを生成するクロック生成部(11、31)と、前記クロック生成部で生成される前記第1,第2クロックを用いて前記第1クロックをn進法で計数する計数部(14、34)と、送信すべきデータ(D1)を入力とし、前記計数部の計数結果に応じて当該データを前記第2クロックの周期で送信するn個のDフリップフロップ(15s、15b、36a〜36c)とを備えることを特徴としている。
この発明によると、転送クロックがクロック生成部に入力されると、転送クロックのk倍の周波数を有する第1クロックと、第1クロックに対して周波数が1/n倍である第2クロックとが生成され、これらのクロックを用いて計数部において第1クロックがn進法で計数され、この計数部の計数結果に応じて、送信すべきデータが第2クロックの周期でn個のDフリップフロップからnビットのデータ幅で送信される。
ここで、本発明のデータ送信装置は、前記第1クロックに対する前記第2クロックの周波数が1/2である場合には、前記計数部が、クロック端に前記第1クロックが入力されるとともにD入力端に前記第2クロックが入力され、前記第1クロックに同期して交互にレベルが変化する信号(SL1)を出力するフリップフロップ(14)を備えており、前記Dフリップフロップ(15a、15b)のうちの一方は前記フリップフロップから出力される前記信号に基づいて動作し、他方は前記フリップフロップから出力される前記信号を反転した信号に基づいて動作することを特徴としている。
上記課題を解決するために、本発明のデータ受信装置は、転送クロック(CLK)に同期して送信されてくるnビット幅(nは2以上の整数)のデータ(D11、D12、D21〜D23)を受信するデータ受信装置(20、40)において、前記転送クロックに対して周波数がk倍(kは1以上の整数)である第1クロック(CLK1)と、当該第1クロックに対して周波数が1/n倍である第2クロック(CLK2、CLK3)とを生成するクロック生成部(21、41)と、前記クロック生成部で生成される前記第1,第2クロックを用いて前記第1クロックをn進法で計数する計数部(23、43)と、前記nビット幅のデータのそれぞれのビットを入力とし、前記計数部の計数結果に応じて入力される前記ビットに係るデータを前記第1クロックに同期して出力するn個のDフリップフロップ(24a、24b、45a〜45c)と、前記計数部の計数結果に応じて前記Dフリップフロップの出力を選択する選択部(25、46)とを備えることを特徴としている。
この発明によると、転送クロックがクロック生成部に入力されると、転送クロックのk倍の周波数を有する第1クロックと、第1クロックに対して周波数が1/n倍である第2クロックとが生成され、これらのクロックを用いて計数部において第1クロックがn進法で計数され、この計数部の計数結果に応じて、送信されてきたデータがDフリップフロップから第1クロックに同期して出力されるとともに選択部において選択されることによりデータが再生される。
ここで、本発明のデータ受信装置は、転送クロックに同期して送信されてくる前記データのビット幅が2であって、前記第1クロックに対する前記第2クロックの周波数が1/2である場合には、前記計数部が、クロック端に前記第1クロックが入力されるとともにD入力端に前記第2クロックが入力され、前記第1クロックに同期して交互にレベルが変化する信号(SL2)を出力するフリップフロップ(23)を備えており、前記Dフリップフロップ(24a、24b)のうちの一方は前記フリップフロップから出力される前記信号に基づいて動作し、他方は前記フリップフロップから出力される前記信号を反転した信号に基づいて動作することを特徴としている。
本発明のデータ転送装置は、転送クロック(CLK)に同期してデータを送信する送信装置と、前記転送クロックに同期して前記送信装置から送信されたデータを受信する受信装置とを備えるデータ転送装置(1、2)において、前記送信装置として、上記の何れかに記載のデータ送信装置を備えており、前記受信装置として、上記の何れかに記載のデータ受信装置を備えていることを特徴としている。
本発明の電子機器は、上記の何れかに記載のデータ送信装置、上記の何れかに記載のデータ受信装置、又は上記のデータ転送装置を備えることを特徴としている。
本発明によれば、転送クロックに対して周波数がk倍である第1クロックと、第1クロックに対して周波数が1/n倍である第2クロックとを生成し、これら第1,第2クロックを用いて第1クロックをn進法で計数し、この計数部の計数結果に応じて送信すべきデータを第2クロックの周期で送信している。このため、従来のように、FIFOメモリを使用する場合に必要であった書き込み制御部、読み出し制御部等が不要になり、回路規模を縮小することができる。
また、本発明によれば、転送クロックに対して周波数がk倍である第1クロックと、第1クロックに対して周波数が1/n倍である第2クロックとを生成し、これら第1,第2クロックを用いて第1クロックをn進法で計数し、この計数部の計数結果に応じて、送信されてきたデータを第1クロックに同期して出力するとともに選択している。このため、従来のように、FIFOメモリを使用する場合に必要であった書き込み制御部、読み出し制御部等が不要になり、回路規模を縮小することができる。
以下、図面を参照して本発明の実施形態によるデータ送信装置、データ受信装置、データ転送装置、及び電子機器について詳細に説明する。
〔第1実施形態〕
図1は、本発明の第1実施形態によるデータ送信装置、データ受信装置、及びデータ転送装置の要部構成を示すブロック図である。図1に示す通り、データ転送装置1は、データ送信装置10とデータ受信装置20とを備えており、2ビットのデータD11,D12を、転送クロックCLKに同期してデータ送信装置10からデータ受信装置20に転送する。ここで、転送クロックCLKの周波数は、例えば250MHzである。
データ送信装置10は、クロック生成部11と送信部12とを備えており、送信すべきデータD1からデータD11,D12を生成し、これらをデータ受信装置20に送信する。クロック生成部11は、転送クロックCLKを入力としており、この転送クロックCLKと周波数が同じ第1クロックCLK1と、第1クロックCLK1に対して周波数が1/2倍の第2クロックCLK2とを生成する。
図2は、クロック生成部11の内部構成例を示すブロック図である。図2(a)に示す通り、クロック生成部11は、分周器11aを備えており、入力される転送クロックCLKをそのまま出力して第1クロックCLK1とし、且つ転送クロックCLKを分周器11aで分周(2分周)することで第2クロックCLK2を生成する。尚、本実施形態では、転送クロックCLKと第1クロックCLK1との周波数が同じ場合を例に挙げて説明するが、第1クロックCLK1の周波数を転送クロックCLKの周波数の2倍としてもよい。かかる場合には、図2(b)に示す通り、クロック生成部11に逓倍器11bを設けた構成とし、逓倍器11bで転送クロックCLKを逓倍(2逓倍)することで第1クロックCLK1を生成し、入力される転送クロックCLKをそのまま出力することで第2クロックCLK2とすれば良い。
送信部12は、4つのDフリップフロップ13,14,15a,15bを備える。Dフリップフロップ13は、クロック生成部11で生成された第1クロックCLK1がクロック端に入力されるとともに送信すべきデータD1が入力端に入力され、第1クロックCLK1に同期してデータD1をデータD2として出力する。Dフリップフロップ14は、第1クロックCLK1がクロック端に入力されるとともにクロック生成部11で生成された第2クロックCLK2が入力端に入力されており、第1クロックCLK1に同期して第1クロックCLK1の1周期毎に交互にレベルが変化する選択信号SL1を出力する。つまり、Dフリップフロップ14は、1ビットのバイナリカウンタということができる。
Dフリップフロップ15a,15bは、第1クロックCLK1がクロック端に入力されるとともに、Dフリップフロップ13から出力されるデータD2が入力端に入力されており、第1クロックCLK1に同期して、入力端に入力されるデータD2をデータD11,D12としてそれぞれ出力する。ここで、Dフリップフロップ15a,15bはイネーブル信号入力端を備えており、Dフリップフロップ15aのイネーブル信号入力端のみ反転入力端とされている。これらのイネーブル信号入力端には、Dフリップフロップ14から出力される選択信号SL1が入力される。
このため、選択信号SL1が「H(ハイ)」レベルのときにはDフリップフロップ15aがディスエーブルになる一方でDフリップフロップ15bがイネーブルになり、選択信号SL1が「L(ロー)」レベルのときにはDフリップフロップ15aがイネーブルになる一方でDフリップフロップ15bがディスエーブルになる。即ち、Dフリップフロップ15aは選択信号SL1に基づいて動作し、Dフリップフロップ15bは選択信号SL1を反転した信号に基づいて動作する。ここで、選択信号SL1は第2クロックCLK2から生成された信号であるため、Dフリップフロップ15a,15bは、第2クロックCLK2の周期でデータD11,D12をそれぞれ出力する。
データ受信装置20は、クロック生成部21と受信部22とを備えており、データ送信装置10から転送クロックCLKに同期して送信されてくるデータD11,D12を受信してデータD1を再生する。クロック生成部21は、転送クロックCLKを入力としており、この転送クロックCLKと周波数が同じ第1クロックCLK1と、第1クロックCLK1に対して周波数が1/2倍の第2クロックCLK2とを生成する。ここで、クロック生成部21の内部構成は、データ送信装置10が備えるクロック生成部11の内部構成(図2参照)と同様の構成である。
受信部22は、4つのDフリップフロップ23,24a,24b,26及びセレクタ25を備える。Dフリップフロップ23は、クロック生成部21で生成された第1クロックCLK1がクロック端に入力されるとともにクロック生成部21で生成された第2クロックCLK2が入力端に入力されており、第1クロックCLK1に同期して第1クロックCLK1の1周期毎に交互にレベルが変化する選択信号SL2を出力する。つまり、Dフリップフロップ23は、1ビットのバイナリカウンタということができる。
Dフリップフロップ24a,24bは、第1クロックCLK1がクロック端に入力されるとともに、データ送信装置10から送信されてくるデータD11,D12が入力端にそれぞれ入力されており、第1クロックCLK1に同期して、入力端に入力されるデータD11,D12をそれぞれ出力する。ここで、Dフリップフロップ24a,24bは、データ送信装置10の送信部12に設けられたDフリップフロップ15a,15bと同様に、イネーブル信号入力端を備えている。尚、Dフリップフロップ24aのイネーブル信号入力端のみ反転入力端とされている。これらのイネーブル信号入力端には、Dフリップフロップ23から出力される選択信号SL2が入力される。
このため、選択信号SL2が「H」レベルのときにはDフリップフロップ24aがディスエーブルになる一方でDフリップフロップ24bがイネーブルになり、選択信号SL2が「L」レベルのときにはDフリップフロップ24aがイネーブルになる一方でDフリップフロップ24bがディスエーブルになる。即ち、Dフリップフロップ24aは選択信号SL2に基づいて動作し、Dフリップフロップ24bは選択信号SL2を反転した信号に基づいて動作する。ここで、選択信号SL2は第2クロックCLK2から生成された信号であるため、Dフリップフロップ24a,24bは、第2クロックCLK2の周期でデータD3a,D3bをそれぞれ出力する。
セレクタ25は、Dフリップフロップ23から出力される選択信号SL2に応じて、Dフリップフロップ24aから出力されるデータD3a又はDフリップフロップ24bから出力されるデータD3bを択一的に選択する。具体的には、選択信号SL2が「H」レベルのときにはデータD3bを選択し、選択信号SL2が「L」レベルのときにはデータD3aを選択する。Dフリップフロップ26は、クロック生成部21で生成された第1クロックCLK1がクロック端に入力されるとともにセレクタ25で選択されたデータが入力端に入力され、第1クロックCLK1に同期して入力されるデータをデータD1として出力する。
次に、上記構成におけるデータ転送装置1(データ送信装置10及びデータ受信装置20)の動作について説明する。図3は、本発明の第1実施形態によるデータ送信装置、データ受信装置、及びデータ転送装置で生成される主な信号の波形を示すタイミングチャートである。転送クロックCLKがデータ送信装置10に入力されると、データ送信装置10が備えるクロック生成部11に入力され、転送クロックCLKと周波数が同じ第1クロックCLK1と、第1クロックCLK1に対して周波数が1/2倍の第2クロックCLK2とが生成される(図3中のCLK1,CLK2参照)。ここで、転送クロックCLKの周波数が250MHzの場合には、第1クロックCLK1の周波数は250MHzであり、第2クロックCLK2の周波数は125MHzである。クロック生成部11で生成された第1クロックCLK1及び第2クロックCLK2は、データ送信装置10が備える送信部12に入力される。
第1クロックCLK1が送信部12に入力されると、送信部12に設けられた4つのDフリップフロップ13,14,15a,15bの全てが、第1クロックCLK1に同期して動作する。これにより、Dフリップフロップ14からは第1クロックCLK1の1周期毎(第2クロックCLK2の半周期毎)に交互にレベルが変化する選択信号SL1が出力される(図3中のSL1参照)。この選択信号SL1はDフリップフロップ15a,15bに入力され、これにより選択信号SL1が「H」レベルのときにはDフリップフロップ15aがディスエーブルになる一方でDフリップフロップ15bがイネーブルになり、選択信号SL1が「L」レベルのときにはDフリップフロップ15aがイネーブルになる一方でDフリップフロップ15bがディスエーブルになる。以下、この動作が繰り返される。
いま、送信すべきデータD1が送信部12に入力されると、第1クロックCLK1に同期して送信部12に設けられたDフリップフロップ13からデータD2として出力される(図3中のD1,D2参照)。Dフリップフロップ13から出力されたデータD2は、Dフリップフロップ15a,15bの入力端にそれぞれ入力されるが、上述した通り、Dフリップフロップ15a,15bは、第1クロックCLK1の1周期毎に交互にイネーブル・ディスエーブルとなる。このため、例えばDフリップフロップ15aにはデータD2のうちの第1クロックCLK1の奇数番目の周期のデータのみが入力され、Dフリップフロップ15bにはデータD2のうちの第1クロックCLK1の偶数番目の周期のデータのみが入力される。
ここで、Dフリップフロップ15a,15bは、第1クロックCLK1に同期して動作しているが、各々のイネーブル信号入力端には、第1クロックCLK1の1周期毎(第2クロックCLK2の半周期毎)に交互にレベルが変化する選択信号SL1が入力される。このため、Dフリップフロップ15a,15bからは、入力されたデータが第2クロックCLK2の1周期の間だけ維持される信号D11,D12が出力される(図3中のD11,D12参照)。このようにして、2ビットのデータD11,D12が第2クロックCLK2の周期で送信部12から送信される。
他方、上記の転送クロックCLKは、データ受信装置20が備えるクロック生成部21にも入力される。そして、データ受信装置20内においても転送クロックCLKと周波数が同じ第1クロックCLK1と、第1クロックCLK1に対して周波数が1/2倍の第2クロックCLK2とが生成される。クロック生成部21で生成された第1クロックCLK1及び第2クロックCLK2は、データ受信装置20が備える受信部22に入力される。
第1クロックCLK1が受信部22に入力されると、4つのDフリップフロップ23,24a,24b,26にそれぞれ入力され、これらは第1クロックCLK1に同期して動作する。これにより、Dフリップフロップ23からは第1クロックCLK1の1周期毎(第2クロックCLK2の半周期毎)に交互にレベルが変化する選択信号SL2が出力される(図3中のSL2参照)。
この選択信号SL2はDフリップフロップ24a,24bに入力され、これにより選択信号SL2が「H」レベルのときにはDフリップフロップ24aがディスエーブルになる一方でDフリップフロップ24bがイネーブルになり、選択信号SL2が「L」レベルのときにはDフリップフロップ24aがイネーブルになる一方でDフリップフロップ24bがディスエーブルになる。また、Dフリップフロップ23からの選択信号SL2はセレクタ25にも入力され、選択信号SL2が「H」レベルのときにはDフリップフロップ24bから出力されるデータD3bが選択され、選択信号SL2が「L」レベルのときにはDフリップフロップ24aから出力されるデータD3aが選択される。以下、この動作が繰り返される。
いま、データ送信装置10から送信されたデータD11,D12が受信部22に入力されると、データD11はDフリップフロップ24aに入力されて第1クロックCLK1に同期してデータD3aとして出力され、データD12はDフリップフロップ24bに入力されて第1クロックCLK1に同期してデータD3bとして出力される(図3中のD3a,D3b参照)。これらのデータD3a,D3bはセレクタ25に入力され、Dフリップフロップ23から出力される選択信号SL2に応じて択一的に選択される。つまり、選択信号SL2が「H」レベルのときにはデータD3bが選択され、選択信号SL2が「L」レベルのときにはデータD3aが選択される(図3中のSL2参照)。
セレクタ25で選択されたデータはDフリップフロップ26に入力され、第1クロックCLK1に同期してデータD1として出力される。以上説明した処理がデータ受信装置20で行われることにより、データ送信装置10から送信されてくるデータD11,D12からデータD1が再生される。
以上の通り、本実施形態によるデータ送信装置10は、送信部12が4つのDフリップフロップ13,14,15a,15bにより構成されており、従来のようにFIFOメモリを使用する場合に必要であった書き込み制御部、読み出し制御部等が不要になるため、回路規模を縮小することができる。同様に、本実施形態によるデータ受信装置20は、受信部22が4つのDフリップフロップ23,24a,24b,26及びセレクタ25により構成されており、従来のようにFIFOメモリを使用する場合に必要であった書き込み制御部、読み出し制御部等が不要になるため、回路規模を縮小することができる。このように、データ送信装置10及びデータ受信装置20の何れも回路規模が縮小されるため、本実施形態のデータ転送装置1は全体的に回路規模を縮小することができる。また、以上の通り回路規模を縮小することができるため、データ送信装置10、データ受信装置20、及びデータ転送装置1のコストを低減することができるとともに、レイテンシ(遅延時間)を短縮することができる。
また、本実施形態によるデータ送信装置10、データ受信装置20、及びデータ転送装置1は、外部から入力される1つの転送クロックCLKから第1クロックCLK1と第2クロックCLK2とを内部で生成することでメタステーブルの発生を防止している。このため、従来のように外部から入力される2つのクロックを用いる場合に必須となるタイミング調整部115,125が不要になり、これによっても回路規模を縮小することができる。
〔第2実施形態〕
図4は、本発明の第2実施形態によるデータ送信装置、データ受信装置、及びデータ転送装置の要部構成を示すブロック図である。図4に示す通り、データ転送装置2は、データ送信装置30とデータ受信装置40とを備えており、3ビットのデータD21〜D23を、転送クロックCLKに同期してデータ送信装置30からデータ受信装置40に転送する。
データ送信装置30は、クロック生成部31と送信部32とを備えており、送信すべきデータD1から3ビットのデータD21〜D23を生成し、これらをデータ受信装置40に送信する。クロック生成部31は、転送クロックCLKを入力としており、この転送クロックCLKと周波数が同じ第1クロックCLK1を生成する点が図1に示すクロック生成部11と共通するが、第1クロックCLK1に対して周波数が1/3倍の第2クロックCLK3を生成する点がクロック生成部11とは相違する。尚、クロック生成部31は、例えば図2(a)に示すクロック生成部11と同様に分周器を備えた構成であるが、3分周する分周器を備える点においてクロック生成部11と異なる。
送信部32は、Dフリップフロップ33、3進カウンタ34、判定部35a〜35c、及びDフリップフロップ36a〜36cを備える。Dフリップフロップ33は、図1に示すDフリップフロップ13に相当する構成であり、クロック生成部31で生成された第1クロックCLK1がクロック端に入力されるとともに送信すべきデータD1が入力端に入力され、第1クロックCLK1に同期してデータD1をデータD6として出力する。
3進カウンタ34は、図1に示すDフリップフロップ14に相当する構成であり、第1クロックCLK1がクロック端に入力されるとともにクロック生成部31で生成された第2クロックCLK3が入力端に入力されている。この3進カウンタ34は、第2クロックCLK3の立ち上がりでリセットされ、入力される第1クロックCLK1を3進法によりカウントし、そのカウント値CN1を出力する。尚、カウント値CN1は第1クロックCLK1が入力される度に、「0」,「1」,「2」,「0」,「1」,「2」,「0」,…と順に繰り返し変化する。
判定部35a〜35cは、3進カウンタ34のカウント値CN1が予め設定された値に等しいか否かをそれぞれ判定し、等しいと判定した場合に「H」レベルの信号をDフリップフロップ36a〜36cにそれぞれ出力する。具体的には、判定部35aはカウント値CN1が「0」の場合に「H」レベルの信号をDフリップフロップ36aに出力し、判定部35bはカウント値CN1が「1」の場合に「H」レベルの信号をDフリップフロップ36bに出力し、判定部35cはカウント値CN1が「2」の場合に「H」レベルの信号をDフリップフロップ36cに出力する。
Dフリップフロップ36a〜36cは、図1に示すDフリップフロップ15a,15bに相当する構成であり、第1クロックCLK1がクロック端に入力されるとともに、Dフリップフロップ33から出力されるデータD6が入力端に入力されており、第1クロックCLK1に同期して、入力端に入力されるデータD6をデータD21〜D23としてそれぞれ出力する。ここで、Dフリップフロップ36a〜36cはイネーブル信号入力端を備えており、各々のイネーブル信号入力端には判定部35a〜35cから出力される信号がそれぞれ入力されている。従って、Dフリップフロップ36a〜36cは判定部35a〜35cから出力される信号に基づいてそれぞれイネーブル又はディスエーブルになる。
データ受信装置40は、クロック生成部41と受信部42とを備えており、データ送信装置30から転送クロックCLKに同期して送信されてくるデータD21〜D23を受信してデータD1を再生する。クロック生成部41は、転送クロックCLKを入力としており、この転送クロックCLKと周波数が同じ第1クロックCLK1と、第1クロックCLK1に対して周波数が1/3倍の第2クロックCLK3とを生成する。尚、クロック生成部41の内部構成は、データ送信装置30が備えるクロック生成部31の内部構成と同様の構成である。
受信部42は、3進カウンタ43、判定部44a〜44c、Dフリップフロップ45a〜45c、セレクタ46、及びDフリップフロップ47を備える。3進カウンタ43は、図1に示すDフリップフロップ23に相当する構成であり、クロック生成部41で生成された第1クロックCLK1がクロック端に入力されるとともにクロック生成部41で生成された第2クロックCLK3が入力端に入力されている。この3進カウンタ43は、入力される第2クロックCLK3の立ち上がりでリセットされ、入力される第1クロックCLK1を3進法によりカウントし、そのカウント値CN2を出力する。尚、カウント値CN2は第1クロックCLK1が入力される度に、「0」,「1」,「2」,「0」,「1」,「2」,「0」,…と順に繰り返し変化する。
判定部44a〜44cは、3進カウンタ43のカウント値CN2が予め設定された値に等しいか否かをそれぞれ判定し、等しいと判定した場合に「H」レベルの信号をDフリップフロップ45a〜45cにそれぞれ出力する。具体的には、判定部44aはカウント値CN2が「0」の場合に「H」レベルの信号をDフリップフロップ45aに出力し、判定部44bはカウント値CN2が「1」の場合に「H」レベルの信号をDフリップフロップ45bに出力し、判定部44cはカウント値CN2が「2」の場合に「H」レベルの信号をDフリップフロップ45cに出力する。
Dフリップフロップ45a〜45cは、図1に示すDフリップフロップ24a,24bに相当する構成であり、第1クロックCLK1がクロック端に入力されるとともに、データ送信装置30から送信されてくるデータD21〜D23が入力端にそれぞれ入力されており、第1クロックCLK1に同期して、入力端に入力されるデータをデータD7a〜D7cとしてそれぞれ出力する。ここで、Dフリップフロップ45a〜45cはイネーブル信号入力端を備えており、各々のイネーブル信号入力端には判定部44a〜44cから出力される信号がそれぞれ入力されている。従って、Dフリップフロップ45a〜45cは判定部44a〜44cから出力される信号に基づいてそれぞれイネーブル又はディスエーブルになる。
セレクタ46は、図1に示すセレクタ25に相当する構成であり、3進カウンタ43のカウント値CN2に応じて、Dフリップフロップ45aから出力されるデータD7a、Dフリップフロップ45bから出力されるデータD7b、又はDフリップフロップ45cから出力されるデータD7cを択一的に選択する。具体的には、カウント値CN2が「0」のときにはデータD7aを選択し、カウント値CN2が「1」のときにはデータD7bを選択し、カウント値CN2が「2」のときにはデータD7cを選択する。Dフリップフロップ47は、図1に示すDフリップフロップ26に相当する構成であり、クロック生成部41で生成された第1クロックCLK1がクロック端に入力されるとともにセレクタ46で選択されたデータが入力端に入力され、第1クロックCLK1に同期して入力されるデータをデータD1として出力する。
次に、上記構成におけるデータ転送装置2(データ送信装置30及びデータ受信装置40)の動作について説明する。図5は、本発明の第2実施形態によるデータ送信装置、データ受信装置、及びデータ転送装置で生成される主な信号の波形を示すタイミングチャートである。転送クロックCLKがデータ送信装置30に入力されると、データ送信装置30が備えるクロック生成部31に入力され、転送クロックCLKと周波数が同じ第1クロックCLK1と、第1クロックCLK1に対して周波数が1/3倍の第2クロックCLK3とが生成される(図5中のCLK1,CLK3参照)。クロック生成部31で生成された第1クロックCLK1及び第2クロックCLK3は、データ送信装置30が備える送信部32に入力される。
第1クロックCLK1が送信部32に入力されると、送信部32に設けられたDフリップフロップ33、3進カウンタ34、及びDフリップフロップ36a〜36cが、第1クロックCLK1に同期して動作する。これにより、3進カウンタ34からは、第1クロックCLK1が入力される度に値が「0」,「1」,「2」,「0」,「1」,「2」,「0」,…と順に繰り返し変化するカウント値CN1が出力される(図5中のCN1参照)。このカウント値CN1は判定部35a〜35cに入力され、カウント値CN1が「0」の場合にはDフリップフロップ36aに「H」レベルの信号が出力され、カウント値CN1が「1」の場合にはDフリップフロップ36bに「H」レベルの信号が出力され、カウント値CN1が「2」の場合にはDフリップフロップ36cに「H」レベルの信号が出力される。このように、Dフリップフロップ36a〜36cは、判定部35a〜35cから出力される信号に基づいてイネーブル又はディスエーブルになる。以下、この動作が繰り返される。
いま、送信すべきデータD1が送信部32に入力されると、第1クロックCLK1に同期して送信部32に設けられたDフリップフロップ33からデータD6として出力される(図5中のD1,D6参照)。Dフリップフロップ33から出力されたデータD6は、Dフリップフロップ36a〜36cの入力端にそれぞれ入力されるが、上述した通り、Dフリップフロップ36a〜36cは、判定部35a〜35cから出力される信号に基づいてイネーブル・ディスエーブルとなる。そして、Dフリップフロップ36a〜36cからは、入力されたデータが第1クロックCLK1の3周期の間(第2クロックCLK3の1周期の間)だけ維持される信号D21〜D23がそれぞれ出力される(図5中のD21〜D23参照)。このようにして、3ビットのデータD21〜D23が第2クロックCLK3の周期で送信部32から送信される。
他方、上記の転送クロックCLKは、データ受信装置40が備えるクロック生成部41にも入力される。そして、データ受信装置40内においても転送クロックCLKと周波数が同じ第1クロックCLK1と、第1クロックCLK1に対して周波数が1/3倍の第2クロックCLK3とが生成される。クロック生成部41で生成された第1クロックCLK1及び第2クロックCLK3は、データ受信装置40が備える受信部42に入力される。
第1クロックCLK1が受信部42に入力されると、3進カウンタ43、Dフリップフロップ45a〜45c、及びDフリップフロップ47にそれぞれ入力され、これらは第1クロックCLK1に同期して動作する。これにより、3進カウンタ43からは、第1クロックCLK1が入力される度に値が「0」,「1」,「2」,「0」,「1」,「2」,「0」,…と順に繰り返し変化するカウント値CN2が出力される(図5中のCN2参照)。このカウント値CN2は判定部44a〜44cに入力され、カウント値CN2が「0」の場合にはDフリップフロップ45aに「H」レベルの信号が出力され、カウント値CN2が「1」の場合にはDフリップフロップ45bに「H」レベルの信号が出力され、カウント値CN2が「2」の場合にはDフリップフロップ45cに「H」レベルの信号が出力される。このように、Dフリップフロップ45a〜45cは、判定部35a〜35cから出力される信号に基づいてイネーブル又はディスエーブルになる。以下、この動作が繰り返される。
いま、データ送信装置30から送信されたデータD21〜D23が受信部42に入力されると、データD21はDフリップフロップ45aに入力されて第1クロックCLK1に同期してデータD7aとして出力され、データD22はDフリップフロップ45bに入力されて第1クロックCLK1に同期してデータD7bとして出力され、データD23はDフリップフロップ45cに入力されて第1クロックCLK1に同期してデータD7cとして出力される(図5中のD7a,D7b,D7c参照)。これらのデータD7a,D7b,D7cはセレクタ46に入力され、3進カウンタ43から出力されるカウント値CN2に応じて択一的に選択される。つまり、カウント値CN2が「0」のときにはデータD7aが選択され、カウント値CN2が「1」のときにはデータD7bが選択され、カウント値CN2が「2」のときにはデータD7cが選択される。
セレクタ46で選択されたデータはDフリップフロップ47に入力され、第1クロックCLK1に同期してデータD1として出力される。以上説明した処理がデータ受信装置40で行われることにより、データ送信装置30から送信されてくるデータD21〜D23からデータD1が再生される。
以上の通り、本実施形態によるデータ送信装置30は、送信部32がDフリップフロップ33、3進カウンタ34、判定部35a〜35c、及びDフリップフロップ36a〜36cにより構成されており、従来のようにFIFOメモリを使用する場合に必要であった書き込み制御部、読み出し制御部等が不要になるため、回路規模を縮小することができる。同様に、本実施形態によるデータ受信装置40は、受信部42が3進カウンタ43、判定部44a〜44c、Dフリップフロップ45a〜45c、セレクタ46、及びDフリップフロップ47により構成されており、従来のようにFIFOメモリを使用する場合に必要であった書き込み制御部、読み出し制御部等が不要になるため、回路規模を縮小することができる。このように、データ送信装置30及びデータ受信装置40の何れも回路規模が縮小されるため、本実施形態のデータ転送装置2は全体的に回路規模を縮小することができる。また、以上の通り回路規模を縮小することができるため、データ送信装置30、データ受信装置40、及びデータ転送装置2のコストを低減することができるとともに、レイテンシ(遅延時間)を短縮することができる。
また、本実施形態によるデータ送信装置30、データ受信装置40、及びデータ転送装置2においても、外部から入力される1つの転送クロックCLKから第1クロックCLK1と第2クロックCLK3とを内部で生成することでメタステーブルの発生を防止している。このため、従来のように外部から入力される2つのクロックを用いる場合に必須となるタイミング調整部115,125が不要になり、これによっても回路規模を縮小することができる。
尚、以上説明した第2実施形態では、データ幅が3ビットであるデータD21〜D23を転送する場合を例に挙げて説明したが、本発明はデータ幅が3ビット以外の場合であっても適用することができる。具体的には、データ幅がnビットのデータの場合には、周波数が転送クロックの周波数に対して1/n倍である第2クロック信号を生成するクロック生成部をデータ送信装置及びデータ受信装置に設けるとともに、送信部及び受信部の双方にn進法でカウントするn進カウンタを設け、ビット幅に応じた数の判定部とDフリップフロップとを設ければよい。
以上、本発明の実施形態によるデータ送信装置、データ受信装置、及びデータ転送装置について説明したが、本発明は上述した実施形態に制限されることなく、本発明の範囲内で自由に変更が可能である。例えば、上記実施形態では、転送クロックCLKの周波数が250MHzである場合を例に挙げて説明したが、転送クロックはこれよりも低い周波数であっても高い周波数であっても本発明を適用することができる。
また、図2(b)に示す例では、クロック生成部11に逓倍器11bを設け、逓倍器11bで転送クロックCLKを逓倍(2逓倍)することで第1クロックCLK1を生成し、入力される転送クロックCLKをそのまま出力することで第2クロックCLK2としていた。しかしながら、本発明は、2逓倍に限定される訳ではなく、転送クロックCLKに対する周波数がk倍(kは1以上の整数)の第1クロックCLK1を生成することが可能である。
また、送信側のデバイス(チップ)にデータ送信装置が設けられ、受信側のデバイス(チップ)にデータ送信装置が設けられる態様であっても、1つのデバイス(チップ)内にデータ送信装置及びデータ送信装置の双方が設けられる態様であっても、本発明を適用することができる。
本発明のデータ送信装置、データ受信装置、及びデータ転送装置は、メモリテスタやロジックテスタ等の半導体試験装置、ディジタルオシロスコープ等の波形観測装置、その他の種々の電子機器に適用することが可能である。具体的には、例えば本発明のデータ転送装置等を半導体試験装置内に設けることで、転送クロックを引き上げることなく高速なデータ転送が可能となり、試験に要する時間の短縮等を図ることができる。
本発明の第1実施形態によるデータ送信装置、データ受信装置、及びデータ転送装置の要部構成を示すブロック図である。 クロック生成部11の内部構成例を示すブロック図である。 本発明の第1実施形態によるデータ送信装置、データ受信装置、及びデータ転送装置で生成される主な信号の波形を示すタイミングチャートである。 本発明の第2実施形態によるデータ送信装置、データ受信装置、及びデータ転送装置の要部構成を示すブロック図である。 本発明の第2実施形態によるデータ送信装置、データ受信装置、及びデータ転送装置で生成される主な信号の波形を示すタイミングチャートである。 従来のデータ転送装置の概略構成を示す図である。 送信部110aの内部構成を示すブロック図である。 受信部120aの内部構成を示すブロック図である。
符号の説明
1,2 データ転送装置
10 データ送信装置
11 クロック生成部
14 Dフリップフロップ
15a,15b Dフリップフロップ
20 データ受信装置
21 クロック生成部
23 Dフリップフロップ
24a,24b Dフリップフロップ
25 セレクタ
30 データ送信装置
31 クロック生成部
34 3進カウンタ
36a〜36c Dフリップフロップ
40 データ受信装置
41 クロック生成部
43 3進カウンタ
45a〜45c Dフリップフロップ
46 セレクタ
CLK 転送クロック
CLK1 第1クロック
CLK2 第2クロック
CLK3 第2クロック
D1 データ
D11,D12 データ
D21〜D23 データ
SL1,SL2 選択信号

Claims (6)

  1. 転送クロックに同期してデータを送信するデータ送信装置において、
    前記転送クロックに対して周波数がk倍(kは1以上の整数)である第1クロックと、当該第1クロックに対して周波数が1/n倍(nは2以上の整数)である第2クロックとを生成するクロック生成部と、
    前記クロック生成部で生成される前記第1,第2クロックを用いて前記第1クロックをn進法で計数する計数部と、
    送信すべきデータを入力とし、前記計数部の計数結果に応じて当該データを前記第2クロックの周期で送信するn個のDフリップフロップと
    を備えることを特徴とするデータ送信装置。
  2. 前記第1クロックに対する前記第2クロックの周波数が1/2である場合には、
    前記計数部は、クロック端に前記第1クロックが入力されるとともにD入力端に前記第2クロックが入力され、前記第1クロックに同期して交互にレベルが変化する信号を出力するフリップフロップを備えており、
    前記Dフリップフロップのうちの一方は前記フリップフロップから出力される前記信号に基づいて動作し、他方は前記フリップフロップから出力される前記信号を反転した信号に基づいて動作する
    ことを特徴とする請求項1記載のデータ送信装置。
  3. 転送クロックに同期して送信されてくるnビット幅(nは2以上の整数)のデータを受信するデータ受信装置において、
    前記転送クロックに対して周波数がk倍(kは1以上の整数)である第1クロックと、当該第1クロックに対して周波数が1/n倍である第2クロックとを生成するクロック生成部と、
    前記クロック生成部で生成される前記第1,第2クロックを用いて前記第1クロックをn進法で計数する計数部と、
    前記nビット幅のデータのそれぞれのビットを入力とし、前記計数部の計数結果に応じて入力される前記ビットに係るデータを前記第1クロックに同期して出力するn個のDフリップフロップと、
    前記計数部の計数結果に応じて前記Dフリップフロップの出力を選択する選択部と
    を備えることを特徴とするデータ受信装置。
  4. 転送クロックに同期して送信されてくる前記データのビット幅が2であって、前記第1クロックに対する前記第2クロックの周波数が1/2である場合には、
    前記計数部は、クロック端に前記第1クロックが入力されるとともにD入力端に前記第2クロックが入力され、前記第1クロックに同期して交互にレベルが変化する信号を出力するフリップフロップを備えており、
    前記Dフリップフロップのうちの一方は前記フリップフロップから出力される前記信号に基づいて動作し、他方は前記フリップフロップから出力される前記信号を反転した信号に基づいて動作する
    ことを特徴とする請求項3記載のデータ受信装置。
  5. 転送クロックに同期してデータを送信する送信装置と、前記転送クロックに同期して前記送信装置から送信されたデータを受信する受信装置とを備えるデータ転送装置において、
    前記送信装置として、請求項1又は請求項2記載のデータ送信装置を備えており、
    前記受信装置として、請求項3又は請求項4記載のデータ受信装置を備えている
    ことを特徴とするデータ転送装置。
  6. 請求項1若しくは請求項2記載のデータ送信装置、請求項3若しくは請求項4記載のデータ受信装置、又は請求項5記載のデータ転送装置を備えることを特徴とする電子機器。
JP2007210368A 2007-08-10 2007-08-10 データ送信装置、データ受信装置、データ転送装置、及び電子機器 Expired - Fee Related JP5056262B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007210368A JP5056262B2 (ja) 2007-08-10 2007-08-10 データ送信装置、データ受信装置、データ転送装置、及び電子機器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007210368A JP5056262B2 (ja) 2007-08-10 2007-08-10 データ送信装置、データ受信装置、データ転送装置、及び電子機器

Publications (2)

Publication Number Publication Date
JP2009043195A true JP2009043195A (ja) 2009-02-26
JP5056262B2 JP5056262B2 (ja) 2012-10-24

Family

ID=40443848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007210368A Expired - Fee Related JP5056262B2 (ja) 2007-08-10 2007-08-10 データ送信装置、データ受信装置、データ転送装置、及び電子機器

Country Status (1)

Country Link
JP (1) JP5056262B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011097354A (ja) * 2009-10-29 2011-05-12 Oki Semiconductor Co Ltd 伝送装置、信号送信装置、信号受信装置及び伝送方法、信号送信方法、信号受信方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05250316A (ja) * 1992-03-05 1993-09-28 Nec Eng Ltd 装置間インタフェース方式
JPH10233697A (ja) * 1997-02-19 1998-09-02 Hitachi Denshi Ltd シリアル/パラレルデータ変換回路
JPH10233698A (ja) * 1997-02-19 1998-09-02 Hitachi Denshi Ltd シリアル/パラレルデータ変換回路
JP2004258871A (ja) * 2003-02-25 2004-09-16 Matsushita Electric Ind Co Ltd バス調停回路
JP2007172628A (ja) * 2005-12-22 2007-07-05 Thomson Licensing 制御システムの出力値を更新する数値制御の制御システムにおけるシリアルデータ転送

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05250316A (ja) * 1992-03-05 1993-09-28 Nec Eng Ltd 装置間インタフェース方式
JPH10233697A (ja) * 1997-02-19 1998-09-02 Hitachi Denshi Ltd シリアル/パラレルデータ変換回路
JPH10233698A (ja) * 1997-02-19 1998-09-02 Hitachi Denshi Ltd シリアル/パラレルデータ変換回路
JP2004258871A (ja) * 2003-02-25 2004-09-16 Matsushita Electric Ind Co Ltd バス調停回路
JP2007172628A (ja) * 2005-12-22 2007-07-05 Thomson Licensing 制御システムの出力値を更新する数値制御の制御システムにおけるシリアルデータ転送

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011097354A (ja) * 2009-10-29 2011-05-12 Oki Semiconductor Co Ltd 伝送装置、信号送信装置、信号受信装置及び伝送方法、信号送信方法、信号受信方法
US8804887B2 (en) 2009-10-29 2014-08-12 Lapis Semiconductor Co., Ltd. Transmission and receiving apparatus and method having different sending and receiving clocks

Also Published As

Publication number Publication date
JP5056262B2 (ja) 2012-10-24

Similar Documents

Publication Publication Date Title
CA2658561C (en) Low output skew double data rate serial encoder
US7409005B2 (en) High speed data transmitter and transmitting method thereof
US20100180143A1 (en) Techniques for improved timing control of memory devices
WO2009091577A2 (en) Data bus inversion apparatus, systems, and methods
JP4672194B2 (ja) 受信回路
US9214200B2 (en) Methods and apparatus for transmitting data in a phase modulated signal derived from early and late timing signals
JP5365132B2 (ja) 直列信号の受信装置、直列伝送システム、直列伝送方法、直列信号の送信装置
US10237053B2 (en) Semiconductor device and data synchronization method
US9311975B1 (en) Bi-synchronous electronic device and FIFO memory circuit with jump candidates and related methods
JP5056262B2 (ja) データ送信装置、データ受信装置、データ転送装置、及び電子機器
JP5610540B2 (ja) シリアル通信用インターフェース回路及びパラレルシリアル変換回路
US20100201409A1 (en) Frequency Divider Circuit
US7369957B2 (en) Method and system for generating test pulses to test electronic elements
KR20070038898A (ko) 시리얼 데이터 입력 시스템
US8106798B2 (en) Circuit and method for parallel to serial conversion
JP2010199725A (ja) データ送信装置及び半導体試験装置
JP2008191792A (ja) データ送信装置及びデータ転送装置
KR100921003B1 (ko) 신호 전송 장치 및 신호 전송 방법
US6040723A (en) Interface circuit with high speed data transmission
US10170166B1 (en) Data transmission apparatus for memory and data transmission method thereof
US7526017B2 (en) Transmitting device, receiving device, transmission system, and transmission method
US8050310B2 (en) Semiconductor device
JP2002131394A (ja) 半導体試験装置のテスト波形生成装置
JP2010141703A (ja) 並列データ伝送回路及び並列データ伝送方法
JP2010034938A (ja) 通信装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100514

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120703

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120716

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150810

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees