JP2009027517A - 光送信回路 - Google Patents

光送信回路 Download PDF

Info

Publication number
JP2009027517A
JP2009027517A JP2007189469A JP2007189469A JP2009027517A JP 2009027517 A JP2009027517 A JP 2009027517A JP 2007189469 A JP2007189469 A JP 2007189469A JP 2007189469 A JP2007189469 A JP 2007189469A JP 2009027517 A JP2009027517 A JP 2009027517A
Authority
JP
Japan
Prior art keywords
phase
signal
light
modulator
clock signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007189469A
Other languages
English (en)
Other versions
JP4838775B2 (ja
Inventor
Mikio Yoneyama
幹夫 米山
Shigeru Ono
茂 小野
Fumiaki Saito
文昭 齋藤
Yosuke Takeuchi
洋祐 竹内
Kunimi Kusanagi
都巳 草薙
Kenji Fujita
健司 藤田
Kenji Kojima
研二 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTT Electronics Corp
Original Assignee
NTT Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTT Electronics Corp filed Critical NTT Electronics Corp
Priority to JP2007189469A priority Critical patent/JP4838775B2/ja
Publication of JP2009027517A publication Critical patent/JP2009027517A/ja
Application granted granted Critical
Publication of JP4838775B2 publication Critical patent/JP4838775B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Optical Communication System (AREA)

Abstract

【課題】リタイミング回路の遅延時間(クロック入力からデータ書き換えまでの時間)は温度、電源電圧及び経時劣化によって変動する。初期の遅延時間でオフセット電圧を調整しても、その後の変動要因によって遅延時間の変動で位相最適点からのずれを自動で補償できないため、出力パルスの波形品質が劣化するという課題があった。高速のタイミング抽出回路や位相比較器を不要とし、二つの変調器間の相対位相を自動で最適化できる光送信回路を提供することを目的とする。
【解決手段】本発明に係る光送信回路は、差動符号化回路からの出力で位相変調する位相変調器と、位相変調器からの位相変調光にクロック信号で強度変調する強度変調器を備え、強度変調器からの出力光の平均強度が最大となるように位相変調器と強度変調器との相対位相を最適化することとした。
【選択図】図1

Description

本発明は、位相変調符号を用いる光通信システムの光送信回路に関するものである。
海底光通信システムのように長距離を伝送するシステムにおいては、高感度な伝送符号が不可欠となる。従来の光通信システムでは、‘1’と‘0’の情報を光の有無によって検出する強度変調方式が広く用いられており、高感度が要求されるシステムでは光データ信号を短パルス化するRZ(Return−to−Zero)信号が用いられることが多い。RZ信号は、データを短パルス化しないNRZ(Non−Return−to−Zero)信号と比較しておよそ3dBの高感度化が図れるからである。しかしながら更なる高速大容量化に向けては、強度変調方式によるアプローチでは、高感度化に限界があった。
近年、強度変調方式に変わる新たな伝送方式として、光の位相で情報を伝送する差動位相シフトキーイング方式や差動4相位相シフトキーイング方式が注目されている。これら位相変調信号は、受信回路を差動のバランス構成にすることで、従来のNRZ信号と比較して3dBの感度改善が図れる。この位相変調光をRZ化することで更に3dBの感度向上が見込めるため、長距離の光通信システムには好適な伝送方式といえる。
RZ化された位相変調信号を発生するためには、図18に示すように、位相変調用の位相変調器12とRZ(強度)変調用の強度変調器14を直列に接続し、それぞれをデータ信号Dとクロック信号C1で変調する(例えば、特許文献1を参照。)。このとき強度変調器14を駆動するクロック信号C1は、強度変調器14に入力された位相変調光L1の各シンボルの位相遷移点ではなく、位相が確定した中央部(最適位相)に変調がかかるようなタイミングで強度変調器14に入力されなくてはならない。このため、クロック信号経路R1もしくはデータ信号経路R2の伝播遅延時間を調整し、強度変調器14における位相変調光L1とクロック信号C1との相対位相を最適にする必要がある。相対位相の最適化は以下に示す要求を満足する必要がある。
[要求1]
最近の光通信システムでは電話回線を多重化した信号以外にEtherをはじめとするコンピュータ間通信のデータなども収容する必要があり、システムがどの信号を収容するかによって動作速度が変わる。また、誤り訂正符号を採用したシステムでは、訂正利得の設計によっても動作速度が変わる。こうした複数の動作速度(マルチレート)に対応して相対位相を最適化できることが要求される。
[要求2]
温度変動や経年変動などにより信号経路の遅延時間が変動しても継続して最適状態を保つことが求められる。上記要求を満たすための手段として、クロック信号経路とデータ信号経路の絶対遅延を厳密に揃えることが挙げられる。しかし、実際の送信回路では、各々の信号経路には異なる電子回路及び光部品が挿入されており、信号経路も電気配線や光ファイバで構成されているため、個々のばらつきまで考慮すると量産に適用できる手段とは言えない。また、動作の初期に半固定の位相シフタなどを用いて手動で調整を行ったとしても、その後の温度や経年変動を補償することができない。そのため、相対位相の調整手段としては、初期の個体ばらつきや動作速度の切り替えに対応して位相最適化を行い、その後も継続して最適状態を保持し続ける機能が要求される。
図19に、RZ化された光信号を発生する手段の従来例を示す(例えば、特許文献2を参照。)。本構成では、光源71からの連続光L0を光入力とし、位相シフタ13を通過したクロック信号C1によって前記連続光に強度変調をかけてクロック信号C1と同一周波数の光パルス列L3を発生する第1の変調器92と、光パルス列L3を光入力とし、クロック信号C1に同期してデータ信号Dの書き換えを行うリタイミング回路96の出力によって光パルス列L3にデータ変調をかける第2の変調器94と、第1の変調器92の出力とクロック信号C1とを同期検波して得られた位相比較結果からクロック信号C1の位相を制御する信号を位相シフタ13に出力する制御回路17とから構成される。
本構成の動作原理は以下の通りである。第1の変調器92から出力された光パルス列L3を分岐して光電変換した後クロック再生することで前記クロック信号と同一周波数の再生クロック信号が得られる。同期検波回路22は、この再生クロック信号とクロック信号C1とを入力信号とし、両者の位相比較を行った結果を出力する。この位相比較結果の誤差がゼロとなるよう位相シフタ13の制御電圧を設定することで、光パルス列L3をクロック信号C1に同期させることができる。ここで同期検波回路22の出力に加算器を挿入し、前記出力にオフセット電圧を加算することで光パルス列L3とクロック信号C1との相対位相を所望の状態に設定することができる。
第2の変調器94に強度変調をかけるためのデータ信号Dは、クロック信号C1をクロック入力とするリタイミング回路96によってその位相が制御されるものの、光分配器15から第2の変調器94までの遅延時間と、クロック信号C1がリタイミング回路96に入力されてデータが書き換わり、第2の変調器94に入力されるまでの遅延時間は異なるため、第1の変調器92を駆動するクロック信号位相と第2の変調器94を駆動するデータ位相が一致しない。そこで本構成では、両者の位相が同期するよう、前記加算器のオフセット電圧を調整する構成となっている。
特許第3625726号 特許第3681865号
そのため、従来例では、第2の変調器94へ入力される光パルス列L3とリタイミング後のデータ信号との相対位相の調整をするため高速のタイミング抽出回路や位相比較器が必要となる。さらに、二つの変調器の位相を同期させるために前記加算器のオフセット電圧を調整する必要があるが、その方法は、オシロスコープを用いての波形観察や、受信回路と接続しての誤り率測定を行いながら手動で調整することが想定される。評価の対象が高速信号であり測定精度を保つため、対応する計測機器類も高精度のものに制限されるという課題があった。
また、リタイミング回路96の遅延時間(クロック入力からデータ書き換えまでの時間)は温度、電源電圧及び経時劣化によって変動する。初期の遅延時間でオフセット電圧を調整しても、その後の変動要因によって遅延時間の変動で位相最適点からのずれを自動で補償できないため、出力パルスの波形品質が劣化するという課題があった。
そこで、課題を解決するため、本発明は、高速のタイミング抽出回路や位相比較器を不要とし、二つの変調器間の相対位相を自動で最適化できる光送信回路を提供することを目的とする。
上記目的を達成するために、本発明に係る光送信回路は、差動符号化回路からの出力で位相変調する位相変調器と、位相変調器からの位相変調光にクロック信号で強度変調する強度変調器を備え、強度変調器からの出力光の平均強度が最大となるように位相変調器と強度変調器との相対位相を最適化することとした。
具体的には、本発明に係る光送信回路は、入力するクロック信号に同期したNRZの差動符号化信号に変換して差動出力する差動符号化回路と、光源からの連続光を2分岐し、前記差動符号化回路からの差動出力によって、(a)差動符号化信号の‘0’/‘1’に基づき前記2分岐した連続光の一方を+π相/0相に、他方を−π相/0相に位相変調し、(b)差動符号化信号の‘0’/‘1’に基づき前記2分岐した連続光の一方を0相/+π相に、他方を0相/−π相に位相変調し、(a)又は(b)のように位相変調させた連続光を合流することで、前記位相変調した連続光の位相遷移時の光強度を低下させた位相変調光を出力する位相変調器と、前記入力するクロック信号の位相を制御し、位相調整クロック信号を出力する位相シフタと、前記位相変調器からの位相変調光を前記位相シフタからの位相調整クロック信号で強度変調して出力光として出力する強度変調器と、前記強度変調器からの出力光をモニタし、出力光の強度が最大となるように前記位相シフタに前記クロック信号の位相をシフトさせる制御回路と、を備える。
差動符号化後の電気データ信号によって光位相を変調する位相変調器を用いることにより、光出力はデータの遷移点のみ減衰する出力が得られ、クロック位相が最適の場合に、強度変調器の光出力が最大となり、データとクロックの位相差が大きくなると光出力が減衰する特性が得られる。この特性を利用し、制御回路が、強度変調器からの出力光の平均強度が最大となるように位相シフタに強度変調器に入力クロック信号の位相を調整させることで、位相変調器と強度変調器との相対位相を自動的に最適化することができる。
従って、本発明は、高速のタイミング抽出回路や位相比較器を不要とし、二つの変調器間の相対位相を自動で最適化できる光送信回路を提供することができる。
本発明に係る光送信回路は、入力するクロック信号に同期したNRZの差動符号化信号に変換して差動出力する差動符号化回路と、光源からの連続光を2分岐し、前記差動符号化回路からの差動出力によって、(a)差動符号化信号の‘0’/‘1’に基づき前記2分岐した連続光の一方を+π相/0相に、他方を−π相/0相に位相変調し、(b)差動符号化信号の‘0’/‘1’に基づき前記2分岐した連続光の一方を0相/+π相に、他方を0相/−π相に位相変調し、(a)又は(b)のように位相変調させた連続光を合流することで、前記位相変調した連続光の位相遷移時の光強度を低下させた位相変調光を出力する位相変調器と、前記入力する前記クロック信号の位相を制御し、位相調整クロック信号を出力する位相シフタと、前記位相変調器からの位相変調光を前記位相シフタからの位相調整クロック信号で強度変調して出力光として出力する強度変調器と、発生させた基準周波数の基準信号を前記位相シフタに入力し、位相調整クロック信号の位相を前記基準信号の基準周波数で変動させる発振器と、前記発振器からの基準信号と前記強度変調器からの出力光の光強度とを同期検波して検波信号を出力する同期検波回路と、前記同期検波回路からの検波信号の周波数が前記発振器からの基準信号の基準周波数の2倍となるように、前記位相シフタに位相調整クロック信号の変動する位相の中心位相をシフトさせる制御回路と、を備える。
発振器からの基準信号と前記強度変調器からの出力光の光強度とを同期検波することで、強度変調器に入力クロック信号の位相が進んでいるか遅れているかを検出することができる。
本発明に係る光送信回路は、前記差動符号化回路からの差動符号化信号の符号が遷移する時間を調整して前記位相変調器に入力するローパスフィルタをさらに備えることが好ましい。
ローパスフィルタを備えることで、上述の効果の他に、最適位相ずれに対する光出力パワーの検出が困難な位相領域を狭めることができる。
本発明に係る光送信回路は、前記クロック信号の周波数を1/2倍及び振幅を2倍に変換して前記位相シフタに入力する1/2分周回路をさらに備えることが好ましい。
1/2分周回路を備えることで、上述の効果の他に、最適位相ずれに対する光出力パワーの検出が困難な位相領域を狭めることができる。
本発明によれば、高速のタイミング抽出回路や位相比較器を不要とし、二つの変調器間の相対位相を自動で最適化できる光送信回路を提供することができる。
添付の図面を参照して本発明の実施形態を説明する。以下に説明する実施形態は本発明の実施例であり、本発明は、以下の実施形態に制限されるものではない。なお、本明細書及び図面において符号が同じ構成要素は、相互に同一のものを示すものとする。
(第1の実施の形態)
図1は、第1の実施形態の光送信回路101のブロック図である。光送信回路101は、入力するデータ信号Dをクロック信号発生器72からのクロック信号C1に同期したNRZの差動符号化信号に変換して差動出力する差動符号化回路11と、光源71からの連続光L0を2分岐し、差動符号化回路11からの差動出力によって、(a)差動符号化信号の‘0’/‘1’に基づき2分岐した連続光の一方を+π相/0相に、他方を−π相/0相に位相変調し、(b)差動符号化信号の‘0’/‘1’に基づき2分岐した連続光の一方を0相/+π相に、他方を0相/−π相に位相変調し、(a)又は(b)のように位相変調させた連続光を合流することで、位相変調した連続光の位相遷移時の光強度を低下させた位相変調光L1を出力する位相変調器12と、クロック信号発生器72からのクロック信号C1の位相を制御し、位相調整クロック信号C2を出力する位相シフタ13と、位相変調器12からの位相変調光L1を位相シフタ13からの位相調整クロック信号C2で強度変調して出力光L2として出力する強度変調器14と、光分配器15で抽出した強度変調器14からの出力光L2の一部を受光素子16でモニタし、出力光L2の強度が最大となるようにクロック信号C1の位相をずらした位相調整クロック信号C2を位相シフタ13が出力するように制御する制御回路17と、を備える。
差動符号化回路11は、入力するデータ信号Dを差動符号化して差動符号化信号を出力する。差動符号化とは、‘1’の入力毎に出力する符号を‘1’から‘0’へ又は‘0’から‘1’へ反転する符号化処理のことである。‘0’の入力毎に出力する符号を反転させてもよい。さらに、差動符号化回路11は、差動符号化した信号を差動駆動して差動符号化信号を出力する。具体的には、差動符号化した符号が‘1’の場合、差動符号化回路11の+出力には‘+1’を出力し、−出力には‘−1’を出力する。また、差動符号化した符号が‘0’の場合、差動符号化回路11の+出力及び−出力ともに‘0’を出力する。
図2は、位相変調器12における位相変調の動作を示したものである。位相変調器12の光入力は、光源71からの連続光L0であり、連続光L0を図示しない差動符号化回路11からの差動符号化信号で変調する。
図3は、図1及び図2の位相変調器12の動作を説明した図である。図3に示すように差動符号化信号の‘1’/‘0’の電圧が、位相変調器12の透過特性の近接する二つの透過最大点のバイアス電圧に一致するよう設定する。位相変調器12が出力する位相変調光L1は、差動符号化データ信号が‘1’から‘0’または‘0’から‘1’に遷移する瞬間に消光する以外は常に透過状態であり、その光位相は差動符号化信号の‘1’/‘0’に対応して、‘0’/‘π’(又は‘π’/‘0’)となり、位相変調が完了する。
具体的には、図1及び図2の位相変調器12は、光源71からの連続光L0を2分岐する。位相変調器12は、差動符号化回路11からの差動出力によって、以下の(a)又は(b)のように位相変調する。
(a)差動符号化信号の‘0’/‘1’に基づき前記2分岐した連続光の一方を+π相/0相に、他方を−π相/0相に位相変調する。
(b)差動符号化信号の‘0’/‘1’に基づき前記2分岐した連続光の一方を0相/+π相に、他方を0相/−π相に位相変調する。
例えば、一方の連続光には、図3のように差動符号化信号の‘0’/‘1’で光位相を‘0’/‘π’(又は‘π’/‘0’)に進相させる。他方の連続光には、差動符号化信号の‘0’/‘1’で光位相を‘0’/‘−π’(又は‘−π’/‘0’)に遅相させる。この後、位相変調器12は、位相変調させた連続光を合流する。
上記(b)の場合について説明する。差動符号化回路11に入力する符号が‘1’であり、差動符号化した結果出力符号が‘0’から‘1’へ変わった場合、差動符号化回路11の+出力は‘+1’、−出力は‘−1’を出力する。位相変調器12の一方の導波路には差動符号化回路11の+出力が対応し、他方の導波路には差動符号化回路11の−出力が対応している。そのため、位相変調器12の一方の導波路を伝搬する連続光は0相から+π相へ、他方の導波路を伝搬する連続光は0相から−π相へ位相変調される。
逆に、差動符号化回路11に入力する符号が‘1’であり、差動符号化した結果出力符号が‘1’から‘0’へ変わった場合、差動符号化回路11の+出力も−出力も‘0’を出力する。そのため、位相変調器12の一方の導波路を伝搬する連続光も他方を伝搬する連続光も0相のままである。
位相変調器12は、このように位相変調された連続光を合流するため、一方の導波路を伝搬する連続光が+π相であり、他方の導波路を伝搬する連続光が−π相のとき及び両者とも0相のとき出力は加算される。
ところが、差動符号化信号が‘1’から‘0’へ又は‘0’から‘1’へ遷移するときに、一方の導波路を伝搬する連続光の位相が‘π/2’となる瞬間がある。同様に他方の導波路を伝搬する連続光の位相が‘−π/2’となる瞬間がある。このとき、一方の導波路を伝搬する連続光と他方の導波路を伝搬する連続光とで打ち消しあうため、位相変調器12が出力する位相変調光L1の光強度は低下する。
従って、差動符号化回路11に入力する符号が‘1’毎に、その遷移過程で位相変調器12が出力する位相変調光L1の光強度は低下する。
一方、上記(a)の場合は以下のようになる。差動符号化回路11に入力する符号が‘1’であり、差動符号化した結果出力符号が‘1’から‘0’へ変わった場合、差動符号化回路11の+出力は‘+1’、−出力は‘−1’を出力し、位相変調器12の一方の導波路を伝搬する連続光は0相から+π相へ、他方の導波路を伝搬する連続光は0相から−π相へ位相変調される。
逆に、差動符号化回路11に入力する符号が‘1’であり、差動符号化した結果出力符号が‘0’から‘1’へ変わった場合、差動符号化回路11の+出力も−出力も‘0’を出力し、位相変調器12の一方の導波路を伝搬する連続光も他方を伝搬する連続光も0相のままである。
従って、上記(a)の場合も同様に差動符号化回路11に入力する符号が‘1’毎に、位相の遷移過程で、‘π/2’の連続光と‘−π/2’の連続光とが打ち消しあうため、位相変調器12が出力する位相変調光L1の光強度は低下する。
図4は、位相変調光41を図1で説明した強度変調器14の光入力とし、クロック信号42によってRZの強度変調をかけた場合に、位相変調光41に対するクロック信号42の相対位相と出力光43との関係を計算した結果である。図4(a)はクロック信号42の位相が最適な状態の計算結果である。図4(b)はクロック信号42の位相が位相変調光41の位相とずれを生じている状態の計算結果である。図4(a)及び図4(b)において、横軸は時刻を示し、縦軸は光強度又は振幅を示す。図2及び図3で説明したように位相変調器を用いて発生した位相変調光41は光位相が遷移する消光点以外は常に光が存在する。そのため、クロック信号42の位相が最適な場合には、図4(a)のように、強度変調器14の出力光43は、クロック信号42と同一周波数の光パルス列となる。一方、クロック信号42の位相が最適点からずれた場合には、図4(b)のように、強度変調器14の出力光43は、消光点とクロック信号42のピークが重なった部分が透過しないため、一部の光パルスが削られた光パルス列となる。図4(b)において、光パルスが削られた部分を丸印で示している。光パルスが削られることで出力パワーが減衰するので、クロック信号42の位相のずれを強度変調器14の出力光43の平均パワーとして検出できる。
図5は、強度変調器14における強度変調の動作を示したものである。強度変調器14は、位相変調光L1を位相調整クロック信号C2で強度変調する。強度変調器14が出力する出力光L2を光分配器15で分配し、受光素子16で光強度を測定する。
図6は、図1で説明した強度変調器14における位相変調光L1に対する位相調整クロック信号C2の相対位相と強度変調器14が出力する出力光L2の光強度との関係を計算した結果である(以下、「位相調整クロック信号C2の相対位相」を「クロック位相」と略記し、「強度変調器14が出力する出力光L2の光強度」を「出力パワー」と略記する。)。クロック位相最適点で出力パワーが最大となり、クロック位相が位相最適点から半周期ずれた点で出力パワー最小となる。この出力パワー変動はクロック信号の周期で繰り返す。受光素子16で出力光L2の出力パワーをモニタし、その結果により制御回路17は位相シフタ13を制御する。具体的には、出力パワーを最大となるように、位相シフタ13はクロック信号C1の位相をずらし、位相調整クロック信号C2を出力する。
従って、光送信回路101は、高速のタイミング抽出回路や位相比較器を備えることなく、位相変調光L1に対するクロック位相最適点を保つことができる。また、光送信回路101は、二つの変調器の相対位相を自動で調整できるため、従来のように相対位相を手動で調整する必要がなく、相対位相が経時変化しても自動で最適化することができる。
(第2の実施形態)
図7は、第2の実施形態の光送信回路102のブロック図である。光送信回路102は、入力するデータ信号Dをクロック信号発生器72からのクロック信号C1に同期したNZRの差動符号化信号に変換して差動出力する差動符号化回路11と、光源71からの連続光L0を2分岐し、差動符号化回路11からの差動出力によって、(a)差動符号化信号の‘0’/‘1’に基づき2分岐した連続光の一方を+π相/0相に、他方を−π相/0相に位相変調し、(b)差動符号化信号の‘0’/‘1’に基づき2分岐した連続光の一方を0相/+π相に、他方を0相/−π相に位相変調し、(a)又は(b)のように位相変調させた連続光を合流することで、位相変調した連続光の位相遷移時の光強度を低下させた位相変調光L1を出力する位相変調器12と、クロック信号発生器72からのクロック信号C1の位相を制御し、位相調整クロック信号C2を出力する位相シフタ13と、位相変調器12からの位相変調光L1を位相シフタ13からの位相調整クロック信号C2で強度変調して出力光L2として出力する強度変調器14と、発生させた基準周波数の基準信号S1を加算器24を介して位相シフタ13に入力し、クロック位相を基準信号S1の基準周波数で変動させる発振器23と、光分配器15で抽出した強度変調器14からの出力光L2の光強度の一部を受光素子16で測定した測定信号と発振器23からの基準信号S1とを同期検波して検波信号を出力する同期検波回路22と、ローパスフィルタ21を通過した同期検波回路22からの検波信号の周波数が発振器23からの基準信号S1の基準周波数の2倍となるように、位相シフタ13に位相調整クロック信号C2の変動する位相の中心位相をシフトさせる制御回路27と、を備える。
図7の光送信回路102と図1の光送信回路101との違いは、受光素子16の測定信号を発振器23からの基準信号S1で同期検波している点である。図8は、同期検波回路22の原理を説明するため、基準信号S1による強度変調器14の出力パワーの変動を模式的に説明したものである。図中、位相変調光L1に対するクロック位相をαからγの3つの状態で示している。このうちβが出力パワー最大となる位相最適点であり、αとγはそれぞれ相対位相が進みと遅れを示している。それぞれの状態において基準信号S1によって位相シフタ13の位相に変調をかけると、クロック位相の変化によって出力パワーが変動する。βの位相最適点では出力パワー最大点を中心に左右にクロック位相が変調されるので出力パワー変動は基準信号S1の倍周期で変動する。αの状態ではクロック位相に対して出力パワーが右上がりに変化する状態でクロック位相が変調されるので、基準信号S1と同相の出力パワー変動を生じる。同様に、γの状態では基準信号S1と逆相の出力パワー変動が生じることになる。
従って、出力パワーを基準信号S1で同期検波して位相比較することで、クロック位相が進んでいるか遅れているかを検出することができる。図9は、クロック位相に対する同期検波回路22からの検波信号出力を示したものである。クロック位相が進んでいる場合には検波信号出力は正に、逆にクロック位相が遅れている場合には検波信号出力は負となり、位相最適点では右下がりのゼロ点となる。制御回路27は、検波信号出力がゼロからのずれを誤差信号として検出し、誤差信号の正であればクロック位相を遅らせ、誤差信号の負であればクロック位相を進めるという制御をする。
従って、光送信回路102は、高速のタイミング抽出回路や位相比較器を備えることなく、位相変調光L1に対するクロック位相最適点を保つことができる。また、光送信回路102は、二つの変調器の相対位相を自動で調整できるため、従来のように相対位相を手動で調整する必要がなく、相対位相が経時変化しても自動で最適化することができる。
(第3の実施形態)
図10は、第3の実施形態の光送信回路103のブロック図である。光送信回路103と図1の光送信回路101との違いは、位相シフタ13の前段に1/2分周回路31が挿入されている点である。1/2分周回路31は、クロック信号C1の周波数を1/2倍及び振幅を2倍に変換して位相シフタ13に入力する。図1の光送信回路101におけるクロック位相と出力パワーとの関係は図6で説明したように、位相最適点付近で平坦になるため、クロック位相のずれを測定することが困難となる。光送信回路103は1/2分周回路31を備えることで、位相最適点付近であってもクロック位相のずれの測定を可能としている。
以下に、その理由を説明する。図11(a)〜(c)は、強度変調器14の透過特性と駆動信号(位相調整クロック信号C2)との関係を示したものである。図11(a)は、クロック信号と強度変調器14を透過する出力パワーとの関係を示した図である。クロック信号の波形のうち、50%RZ用クロック信号が図1で示した位相調整クロック信号C2に対応し、強度変調器14の半波長電圧に一致する振幅で駆動する状態を表している。このとき強度変調器14の出力光L2は、図11(c)に示すようにデューティ50%のパルスとなる。一方、図11(a)のクロック信号の波形のうち、67%RZ用クロック信号が図10の1/2分周回路31を通過した位相調整クロック信号C2に対応している。67%RZ用クロック信号の中点を強度変調器14の消光点に設定し、半波長電圧の2倍の振幅で駆動させる。強度変調器14の出力光L2には折り返しが生じ、図11(b)に示すように駆動周波数の2倍の周期で光パルスが発生し、そのデューティは67%となる。
図12は、67%RZ用クロック信号の位相と強度変調器14の出力パワーとの関係を計算した結果である。図12には、図6で説明した50%RZ用クロック信号の位相と強度変調器14の出力パワーとの関係も示す。67%RZ用クロック信号の場合、50%RZ用クロック信号の場合と比較してクロック位相最適点付近でのパワー変動が急峻になっている。図13は、クロック位相が最適点からずれ始めたときのパルスの裾と位相変調信号の消光点との関係を示したものである。図13(a)は67%RZ用クロック信号であり、図13(b)は50%RZ用クロック信号である。67%RZ用クロック信号は、クロック位相が最適点からのずれが小さい状態から位相変調信号の消光点にパルスの裾がかかり、図13の裾G1が削られて出力パワーが減衰するため、図12のようにクロック位相最適点付近でのパワー変動が急峻になる。
従って、光送信回路103は、図1の光送信回路101で説明した効果のほかに、位相最適点付近であってもクロック位相のずれを測定することが可能という効果もある。
1/2分周回路31は、図7の光送信回路102にも組み込むことができる。また、本実施形態では、1/2分周回路31は、クロック信号を1/2分周し、半波長電圧の2倍の振幅にする構成としたが、1/1周波数のクロック信号を用い、その振幅を強度変調器14の半波長電圧より若干大きめに設定し、かつ、強度変調器14のDCバイアスを透過側に若干シフトさせるなどしてデューティを大きくとることでも同様の効果が得られる。
(第4の実施形態)
図14は、第4の実施形態の光送信回路104のブロック図である。光送信回路104と図7の光送信回路102との違いは、ローパスフィルタ21の後段にリミッタアンプ26が挿入されている点である。
リミッタアンプ26は、ローパスフィルタ21を通過した同期検波回路22の検波信号を増幅する。図6で説明したように、クロック位相と出力パワーとの関係は位相最適点付近で平坦になる。このため、同期検波回路22の同期検波も困難になる傾向がある。光送信回路104は、同期検波回路22からの検波信号をLPFで帯域制限し、高利得のリミッタアンプで増幅する。さらに、その出力振幅をある電圧でクランプすることでクロック位相のずれの検出感度が困難である位相範囲を狭めることができる。
従って、光送信回路104は、図1の光送信回路101で説明した効果のほかに、位相最適点付近であってもクロック位相のずれを測定することが可能という効果もある。
(第5の実施形態)
図15は、第5の実施形態の光送信回路105のブロック図である。光送信回路105と図1の光送信回路101との違いは、差動符号化回路11と位相変調器12との間にローパスフィルタ51を挿入した点である。ローパスフィルタ51は、差動符号化回路11からの差動符号化信号の符号が遷移する時間を調整して位相変調器12に入力する。具体的には、ローパスフィルタ51は差動符号化信号の‘0’から‘1’へ遷移する立ち上がり時間Tr及び‘1’から‘0’へ遷移する立ち下がり時間Tfを調整する。
図16は、差動符号化信号の立ち上がり時間Tr/立ち下がり時間Tfを20%から40%に変化させた場合の、クロック位相と強度変調器14の出力パワーの関係を示したものである。立ち上がり時間Tr/立ち下り時間Tfを大きくすることで、図16のようにクロック位相最適点付近でのパワー変動が急峻になる。そのため、クロック位相のずれの検出感度が困難である位相領域を狭めることができる。
従って、光送信回路105は、図1の光送信回路101で説明した効果のほかに、位相最適点付近であってもクロック位相のずれを測定することが可能という効果もある。
ローパスフィルタ51は、図7の光送信回路102にも組み込むことができる。
(第6の実施形態)
図17は、第6の実施形態の光送信回路106のブロック図である。光送信回路106と図7の光送信回路102との違いは、受光素子16と同期検波回路22との間に増幅器61及び第2のバンドパスフィルタ64が挿入されている点及び増幅器61の出力を第1のバンドパスフィルタ62及び自動バイアス制御回路63を介して強度変調器14へフィードバックしている点である。光送信回路106は、受光素子16の出力を分岐し、一方を位相シフタ13の制御に、他方を強度変調器14の制御に用いている。
光伝送用の強度変調器にはLINb0変調器が広く用いられている。この変調器は動作バイアス点がドリフトするため、自動バイアス制御回路によってドリフトを補償するのが一般的である。光送信回路106は、自動バイアス制御回路63を備える。図17に図示していないが、自動バイアス回路63にも同期検波回路を用いることができる。
光送信回路106は、クロック位相制御回路及び自動バイアス制御回路63の入力を共通の受光素子16から得ることを特徴とする。クロック位相制御回路は、第2のバンドパスフィルタ64、同期検波回路22、ローパスフィルタ21、制御回路27、発振器23及び加算器24からなる。各々の制御回路に異なる周波数の基準信号を割り当て、受光素子16の出力を分岐した後、第1のバンドパスフィルタ62及び第2のバンドパスフィルタ64でそれぞれの透過周波数の基準信号を取り出し同期検波をかける。このような構成とすることで、主要部品を共有できる上、基準信号同士の干渉を抑圧でき個別の制御が可能となる。
光送信回路101から光送信回路106では、位相シフタ13をクロック信号C1の経路に挿入する構成になっているが、データ信号Dの経路における差動符号化回路11の前段又は後段に挿入しても同様の効果が得られる。また、光送信回路101から光送信回路106では、光源71側に位相変調器12があるが、光源71側に強度変調器14を配置しても同様の効果が得られる。
本発明に係る光送信回路は、差動4相位相シフトキーイング方式にも適用することができる。
本発明に係る光通信回路のブロック図である。 位相変調器における位相変調の動作を示した図である。 位相変調器の動作を説明した図である。 位相変調光に対するクロック信号の相対位相と出力光との関係を示した図である。(a)は、クロック信号の位相が最適な状態の計算結果を示した図である。(b)は、クロック信号の位相が位相変調光の位相とずれを生じている状態の計算結果を示した図である。 強度変調器の動作を説明した図である。 位相変調光に対するクロック位相と強度変調器14の出力パワーとの関係を示した図である。 本発明に係る光通信回路のブロック図である。 同期検波回路の原理を説明する図である。 クロック位相に対する同期検波回路からの検波信号出力を示した図である。 本発明に係る光通信回路のブロック図である。 強度変調器の透過特性と駆動信号との関係を示したものである。(a)は、クロック信号と強度変調器14の出力パワーとの関係を示した図である。(b)は、デューティ67%のパルスである強度変調器の出力光を示した図である。(c)は、デューティ50%のパルスである強度変調器の出力光を示した図である。 クロック信号の位相と強度変調器の出力パワーとの関係を計算した結果を示した図である。 クロック位相が最適点からずれ始めたときのパルスの裾と位相変調信号の消光点との関係を示した図である。(a)は、67%RZ用クロック信号の場合を説明した図である。(b)は、50%RZ用クロック信号の場合を説明した図である。 本発明に係る光通信回路のブロック図である。 本発明に係る光通信回路のブロック図である。 差動符号化信号の立ち上がり時間Tr/立ち下がり時間Tfを20%から40%に変化させた場合の、クロック位相と強度変調器14の出力パワーの関係を示した図である。 本発明に係る光通信回路のブロック図である。 従来の光通信回路のブロック図である。 従来の光通信回路のブロック図である。
符号の説明
101〜106 光送信回路
11 差動符号化回路
12 位相変調器
13 位相シフタ
14 強度変調器
15 光分配器
16 受光素子
17、27 制御回路
21 ローパスフィルタ
22 同期検波回路
23 発振器
24 加算器
26 リミッタアンプ
31 1/2分周回路
41 位相変調光
42 クロック信号
43 出力光
51 ローパスフィルタ
61 増幅器
62 第1のバンドパスフィルタ
63 自動バイアス制御回路
64 第2のバンドパスフィルタ
71 光源
72 クロック信号発生器
92 第1の変調器
94 第2の変調器
96 リタイミング回路
L0 連続光
L1 位相変調光
L2 出力光
L3 光パルス列
L4 出力光
D データ信号
C1 クロック信号
C2 位相調整クロック信号
S1 基準信号
R1 クロック信号経路
R2 データ信号経路

Claims (4)

  1. 入力するクロック信号に同期したNRZの差動符号化信号に変換して差動出力する差動符号化回路と、
    光源からの連続光を2分岐し、前記差動符号化回路からの差動出力によって、
    (a)差動符号化信号の‘0’/‘1’に基づき前記2分岐した連続光の一方を+π相/0相に、他方を−π相/0相に位相変調し、
    (b)差動符号化信号の‘0’/‘1’に基づき前記2分岐した連続光の一方を0相/+π相に、他方を0相/−π相に位相変調し、
    (a)又は(b)のように位相変調させた連続光を合流することで、前記位相変調した連続光の位相遷移時の光強度を低下させた位相変調光を出力する位相変調器と、
    前記入力するクロック信号の位相を制御し、位相調整クロック信号を出力する位相シフタと、
    前記位相変調器からの位相変調光を前記位相シフタからの位相調整クロック信号で強度変調して出力光として出力する強度変調器と、
    前記強度変調器からの出力光をモニタし、出力光の強度が最大となるように前記位相シフタに前記クロック信号の位相をシフトさせる制御回路と、
    を備える光送信回路。
  2. 入力するクロック信号に同期したNRZの差動符号化信号に変換して差動出力する差動符号化回路と、
    光源からの連続光を2分岐し、前記差動符号化回路からの差動出力によって、
    (a)差動符号化信号の‘0’/‘1’に基づき前記2分岐した連続光の一方を+π相/0相に、他方を−π相/0相に位相変調し、
    (b)差動符号化信号の‘0’/‘1’に基づき前記2分岐した連続光の一方を0相/+π相に、他方を0相/−π相に位相変調し、
    (a)又は(b)のように位相変調させた連続光を合流することで、前記位相変調した連続光の位相遷移時の光強度を低下させた位相変調光を出力する位相変調器と、
    前記入力する前記クロック信号の位相を制御し、位相調整クロック信号を出力する位相シフタと、
    前記位相変調器からの位相変調光を前記位相シフタからの位相調整クロック信号で強度変調して出力光として出力する強度変調器と、
    発生させた基準周波数の基準信号を前記位相シフタに入力し、位相調整クロック信号の位相を前記基準信号の基準周波数で変動させる発振器と、
    前記発振器からの基準信号と前記強度変調器からの出力光の光強度とを同期検波して検波信号を出力する同期検波回路と、
    前記同期検波回路からの検波信号の周波数が前記発振器からの基準信号の基準周波数の2倍となるように、前記位相シフタに位相調整クロック信号の変動する位相の中心位相をシフトさせる制御回路と、
    を備える光送信回路。
  3. 前記差動符号化回路からの差動符号化信号の符号が遷移する時間を調整して前記位相変調器に入力するローパスフィルタをさらに備える請求項2に記載の光送信回路。
  4. 前記クロック信号の周波数を1/2倍及び振幅を2倍に変換して前記位相シフタに入力する1/2分周回路をさらに備えることを特徴とする請求項1から3に記載のいずれかの光送信回路。
JP2007189469A 2007-07-20 2007-07-20 光送信回路 Active JP4838775B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007189469A JP4838775B2 (ja) 2007-07-20 2007-07-20 光送信回路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007189469A JP4838775B2 (ja) 2007-07-20 2007-07-20 光送信回路

Publications (2)

Publication Number Publication Date
JP2009027517A true JP2009027517A (ja) 2009-02-05
JP4838775B2 JP4838775B2 (ja) 2011-12-14

Family

ID=40398884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007189469A Active JP4838775B2 (ja) 2007-07-20 2007-07-20 光送信回路

Country Status (1)

Country Link
JP (1) JP4838775B2 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011001714A1 (ja) * 2009-07-01 2011-01-06 三菱電機株式会社 光送信装置および光送信方法
WO2011101919A1 (ja) * 2010-02-22 2011-08-25 三菱電機株式会社 光送信機
JP2013042531A (ja) * 2012-10-11 2013-02-28 Ntt Electornics Corp 位相変調装置
WO2013031786A1 (ja) * 2011-09-01 2013-03-07 日本電気株式会社 位相調整回路、光送信装置および位相調整方法
WO2013140482A1 (ja) * 2012-03-22 2013-09-26 日本電気株式会社 光変調器モジュール、光変調器及び光変調方法
WO2014103231A1 (ja) * 2012-12-25 2014-07-03 日本電気株式会社 マッハツェンダ型光変調器、光通信システム及びマッハツェンダ型光変調器の制御方法
WO2015087380A1 (ja) * 2013-12-09 2015-06-18 三菱電機株式会社 レーザレーダ装置
WO2015189915A1 (ja) * 2014-06-10 2015-12-17 三菱電機株式会社 レーザレーダ装置
JPWO2017126039A1 (ja) * 2016-01-20 2018-08-30 三菱電機株式会社 光送信器、光通信システム、及び光通信方法
US11736201B2 (en) 2021-07-14 2023-08-22 Fujitsu Limited Optical transmitter for transmitting multilevel optical signals

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10336154A (ja) * 1997-03-31 1998-12-18 Mitsubishi Electric Corp 光パルス位置検出回路及び光パルス発生装置及びそれらの方法
JP2003087201A (ja) * 2001-06-29 2003-03-20 Nippon Telegr & Teleph Corp <Ntt> 光送信器および光伝送システム
JP2004070130A (ja) * 2002-08-08 2004-03-04 Toshiba Corp 光送信装置
JP2004254242A (ja) * 2003-02-21 2004-09-09 Mitsubishi Electric Corp 光送信機および光送信装置
JP2007158415A (ja) * 2005-11-30 2007-06-21 Fujitsu Ltd 光送信装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10336154A (ja) * 1997-03-31 1998-12-18 Mitsubishi Electric Corp 光パルス位置検出回路及び光パルス発生装置及びそれらの方法
JP2003087201A (ja) * 2001-06-29 2003-03-20 Nippon Telegr & Teleph Corp <Ntt> 光送信器および光伝送システム
JP2004070130A (ja) * 2002-08-08 2004-03-04 Toshiba Corp 光送信装置
JP2004254242A (ja) * 2003-02-21 2004-09-09 Mitsubishi Electric Corp 光送信機および光送信装置
JP2007158415A (ja) * 2005-11-30 2007-06-21 Fujitsu Ltd 光送信装置

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011001714A1 (ja) * 2009-07-01 2011-01-06 三菱電機株式会社 光送信装置および光送信方法
JP5340388B2 (ja) * 2009-07-01 2013-11-13 三菱電機株式会社 光送信装置および光送信方法
CN102763349B (zh) * 2010-02-22 2016-04-13 三菱电机株式会社 光发送机
WO2011101919A1 (ja) * 2010-02-22 2011-08-25 三菱電機株式会社 光送信機
US20120230679A1 (en) * 2010-02-22 2012-09-13 Mitsubishi Electric Corporation Optical transmitter
CN102763349A (zh) * 2010-02-22 2012-10-31 三菱电机株式会社 光发送机
KR101389810B1 (ko) * 2010-02-22 2014-04-29 미쓰비시덴키 가부시키가이샤 광 송신기
JP5484556B2 (ja) * 2010-02-22 2014-05-07 三菱電機株式会社 光送信機
WO2013031786A1 (ja) * 2011-09-01 2013-03-07 日本電気株式会社 位相調整回路、光送信装置および位相調整方法
WO2013140482A1 (ja) * 2012-03-22 2013-09-26 日本電気株式会社 光変調器モジュール、光変調器及び光変調方法
JP2013042531A (ja) * 2012-10-11 2013-02-28 Ntt Electornics Corp 位相変調装置
WO2014103231A1 (ja) * 2012-12-25 2014-07-03 日本電気株式会社 マッハツェンダ型光変調器、光通信システム及びマッハツェンダ型光変調器の制御方法
WO2015087380A1 (ja) * 2013-12-09 2015-06-18 三菱電機株式会社 レーザレーダ装置
WO2015189915A1 (ja) * 2014-06-10 2015-12-17 三菱電機株式会社 レーザレーダ装置
JPWO2015189915A1 (ja) * 2014-06-10 2017-04-20 三菱電機株式会社 レーザレーダ装置
JPWO2017126039A1 (ja) * 2016-01-20 2018-08-30 三菱電機株式会社 光送信器、光通信システム、及び光通信方法
US11736201B2 (en) 2021-07-14 2023-08-22 Fujitsu Limited Optical transmitter for transmitting multilevel optical signals

Also Published As

Publication number Publication date
JP4838775B2 (ja) 2011-12-14

Similar Documents

Publication Publication Date Title
JP4838775B2 (ja) 光送信回路
US8244138B2 (en) Polarization-multiplexing optical transmitter polarization-multiplexing optical receiver, polarization-multiplexing optical transceiving system, and controlling method thereof
JP4983466B2 (ja) 光変調装置および光変調方法ならびに光送信装置
JP3681865B2 (ja) 光パルス位置検出回路及び光パルス位置検出方法
US7394992B2 (en) Control of an optical modulator for desired biasing of data and pulse modulators
JP2008066849A (ja) 光送信機およびその駆動方法
JP5353387B2 (ja) 光変調器の駆動方法および駆動装置、並びに、それを用いた光送信器
JP2002023124A (ja) 光送信器および光伝送システム
JP5487547B2 (ja) 光変調装置および光変調方法
US20090022498A1 (en) Optical transmission system
JP2007329886A (ja) 光送信装置
JP2008197639A (ja) 光送信装置およびその制御方法
EP2709293A1 (en) Synchronous signal transmission system, synchronous drive system for optical modulator, synchronous signal transmission method, and non-temporary computer-readable medium storing program therefor
JP2007158600A (ja) 信号再生装置,光受信装置および信号処理方法
US8325410B2 (en) Modulation system and method for generating a return-to-zero (RZ) optical data signal
JP5068240B2 (ja) 光伝送方式、送信器及び受信器
JP4554519B2 (ja) 光送信器
AU2003240411B8 (en) Method and arrangement for reducing the signal degradation in an optical polarisation-multiplex signal
KR20120104369A (ko) 광 송신기
JP5088174B2 (ja) 復調回路
US7783203B2 (en) System and method for controlling a difference in optical phase and an optical signal transmitter
JP2010002775A (ja) 光送信器
JP4789847B2 (ja) 光受信器およびそれに用いる光干渉計の動作点安定化方法
JP4148036B2 (ja) 光時分割多重送信装置
EP1716650B1 (en) System for generating optical return-to-zero signals with alternating bi-phase shift

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090825

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100413

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110831

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110930

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141007

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4838775

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250