WO2015189915A1 - レーザレーダ装置 - Google Patents

レーザレーダ装置 Download PDF

Info

Publication number
WO2015189915A1
WO2015189915A1 PCT/JP2014/065351 JP2014065351W WO2015189915A1 WO 2015189915 A1 WO2015189915 A1 WO 2015189915A1 JP 2014065351 W JP2014065351 W JP 2014065351W WO 2015189915 A1 WO2015189915 A1 WO 2015189915A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
frequency
pulse
optical
speed
Prior art date
Application number
PCT/JP2014/065351
Other languages
English (en)
French (fr)
Inventor
隼也 西岡
英介 原口
俊行 安藤
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2014/065351 priority Critical patent/WO2015189915A1/ja
Priority to US15/316,253 priority patent/US20170153327A1/en
Priority to EP14894615.5A priority patent/EP3156823B1/en
Priority to JP2016527530A priority patent/JP6157735B2/ja
Publication of WO2015189915A1 publication Critical patent/WO2015189915A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/50Systems of measurement based on relative movement of target
    • G01S17/58Velocity or trajectory determination systems; Sense-of-movement determination systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P5/00Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/95Lidar systems specially adapted for specific applications for meteorological use
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/484Transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/497Means for monitoring or calibrating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01WMETEOROLOGY
    • G01W1/00Meteorology
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Definitions

  • the present invention relates to a laser radar device that measures a moving speed of an observation object in space by emitting laser light having a single frequency to the space, and more particularly to a laser radar device mounted on a moving object such as an aircraft. .
  • laser radar devices that measure the moving speed of an observation object from the Doppler shift of scattered light (scattered light of laser light scattered by the observation object) associated with the movement of the observation object in space, for example, spatial distribution such as wind speed
  • a laser radar device that can be observed from a remote location for weather observation and weather prediction.
  • detection of turbulent airflow that contributes to air traffic safety and investigation of suitable locations for wind power use.
  • by mounting a laser radar device on an aircraft it is possible to detect a clear-air turbulence existing in front of the aircraft, so that entry into the turbulence can be avoided, contributing to traffic safety of the aircraft.
  • a laser radar device used for wind speed measurement is called a coherent Doppler lidar (CDL), which emits laser light of a single frequency into the atmosphere, and then the object to be observed in the atmosphere (in wind measurement, aerosol is the object of observation).
  • the moving speed of the observation target can be obtained from the Doppler shift by detecting the back-scattered light of the laser light back-scattered in the optical heterodyne.
  • CDL in order to ensure a sufficient speed measurement range, it is necessary to frequency-analyze a received signal having a wide bandwidth.
  • the frequency analysis range required for measuring the range of wind speed ⁇ 30 m / s in the wavelength 1.5 um band is 100 MHz.
  • a / D analog / digital
  • Patent Document 1 discloses a Doppler shift frequency corresponding to the flight speed of a mobile object included in a received signal of an optical heterodyne receiver in order to eliminate the need for an A / D converter that operates at a high sampling frequency.
  • a voltage controlled oscillator (VCO) that generates a signal having a frequency equal to that of the VCO, and the mixer mixes the signal generated by the VCO and the received signal of the optical heterodyne receiver, and the difference frequency component of these signals
  • a laser radar device is disclosed that cancels out the Doppler shift frequency corresponding to the flight speed of the moving object by detecting. This makes it possible to detect the moving speed of the observation object without using an A / D converter that operates at a high sampling frequency.
  • Patent Document 2 a technique for correcting a flight speed component of a moving object with a configuration using a VCO having a narrow relative bandwidth is proposed in consideration of the feasibility and availability of the VCO.
  • the conventional laser radar device is configured as described above, if a VCO that generates a signal having a frequency equal to the Doppler shift frequency corresponding to the flight speed of the moving object is provided, an A / A that operates at a high sampling frequency is provided.
  • the D converter becomes unnecessary.
  • the fundamental wave and the harmonic signal of the signal generated by the VCO leak to the output side of the mixer, and spike noise appears on the frequency spectrum obtained from the reception signal of the optical heterodyne receiver.
  • the measurement accuracy of the moving speed deteriorated.
  • the component of the difference frequency between the harmonic signal component of the VCO and the received signal of the optical heterodyne receiver may appear as a false peak on the frequency spectrum. There was a problem that the measurement accuracy of speed deteriorated.
  • the present invention has been made to solve the above-described problems, and can measure the moving speed of an observation target by canceling the Doppler shift frequency corresponding to the moving speed of the moving body without mounting a VCO. It is an object of the present invention to obtain a laser radar device that can improve accuracy.
  • the laser radar device subtracts the Doppler shift frequency corresponding to the speed of the moving body equipped with the light source that oscillates the transmission seed light, and the frequency of the transmission seed light oscillated by the light source, Pulsed light output means for pulse-modulating the transmission seed light after subtracting the Doppler shift frequency, and pulsed light output from the pulsed light output means is emitted to the space, and then the observation object that exists in space
  • An optical antenna that receives the backscattered light of the backscattered pulse light, the backscattered light received by the optical antenna and the transmission seed light oscillated by the light source, and the backscattered light and the transmission seed
  • An optical heterodyne receiver that outputs a beat signal having a difference frequency of light. It is obtained by way.
  • the Doppler shift frequency corresponding to the speed of the moving body on which the device is mounted is subtracted from the frequency of the transmission seed light oscillated by the light source, and the transmission seed light after the Doppler shift frequency subtraction is pulse-modulated.
  • pulse light output means for outputting the pulsed light to the optical antenna is provided, and the optical heterodyne receiver combines the backscattered light received by the optical antenna and the transmission seed light oscillated by the light source, Since the beat signal of the difference frequency between the scattered light and the transmitted seed light is output to the moving speed calculation means, the Doppler shift frequency corresponding to the moving speed of the moving body can be canceled without mounting the VCO. As a result, the measurement accuracy of the moving speed of the observation target can be improved.
  • FIG. 6 is an explanatory diagram showing a waveform example of a drive signal (a sawtooth wave WF02 having a period T) that is a control signal for the optical phase modulation unit 24 and a beat signal obtained by the optical heterodyne receiver 8; It is explanatory drawing which shows the relationship between the transmission light in Embodiment 1 of this invention, reception light, and an optical heterodyne signal spectrum.
  • a drive signal a sawtooth wave WF02 having a period T
  • FIG. 1 is a block diagram showing a laser radar apparatus according to Embodiment 1 of the present invention.
  • an optical transmission unit 1 includes a reference light source 2, an optical path branching coupler 3, and a modulation unit 4, and is a unit that outputs pulsed light and local oscillation light.
  • the reference light source 2 continuously oscillates transmission seed light having a single frequency ⁇ (single wavelength) and outputs the transmission seed light to the optical path OF (1) with constant polarization.
  • the optical path branching coupler 3 splits the transmission seed light having the frequency ⁇ outputted from the reference light source 2 into two, outputs one transmission seed light to the optical path OF (2), and local oscillation of the other transmission seed light with the frequency ⁇ . It is an optical component that outputs light to the optical path OF (3).
  • the modulation unit 4 uses the offset frequency f ofs, which is a preset frequency, with respect to the frequency ⁇ of the transmission seed light output from the optical path branching coupler 3, and the speed of the mobile body (mobile body equipped with a laser radar device).
  • a frequency (f ofs ⁇ f move ) obtained by subtracting the Doppler shift frequency f move corresponding to is given, and the transmission seed light of the frequency ( ⁇ + f ofs ⁇ f move ) is pulse-modulated to output the pulsed light to the optical path OF (4).
  • the modulation unit 4 constitutes pulse light output means.
  • the optical amplifier 5 amplifies the pulsed light output from the modulation unit 4, and outputs the amplified pulsed light to the optical path OF (5).
  • the optical circulator 6 outputs the pulsed light amplified by the optical amplifier 5 to the optical antenna 7 via the optical path OF (6), and outputs the backscattered light received by the optical antenna 7 to the optical path OF (7).
  • the optical antenna 7 emits the pulsed light output from the optical circulator 6 to the space, while the observation target existing in the space (for example, when the laser radar device of FIG. 1 is used as a wind measurement lidar, the same speed as the wind speed).
  • the aerosol that travels in (1) is the backscattered light of the pulsed light that is backscattered to the object of observation).
  • the frequency of the backscattered light is a Doppler shift frequency f dop corresponding to the moving speed (for example, wind speed) of the observation target with respect to the frequency ( ⁇ + f ofs ⁇ f move ) of the pulsed light emitted from the optical antenna 7.
  • a Doppler shift frequency f move corresponding to the speed of the moving body.
  • the optical heterodyne receiver 8 optically combines the backscattered light having the frequency ( ⁇ + f ofs + f dop ) received by the optical antenna 7 and the local oscillation light having the frequency ⁇ output from the optical path branching coupler 3, and then A beat signal having a difference frequency (f ofs + f dop ) between the direction scattered light and the local oscillation light is obtained, the beat signal is photoelectrically converted, and a beat signal which is an electric signal is output to the signal processing unit 9.
  • the signal processing unit 9 is composed of, for example, a semiconductor integrated circuit on which a CPU is mounted, a one-chip microcomputer, or the like. By analyzing the frequency of the beat signal output from the optical heterodyne receiver 8, the signal processing unit 9 A process for calculating the moving speed is performed.
  • the signal processing unit 9 constitutes a moving speed calculation means.
  • the signal processing unit 9 performs AD conversion on the beat signal output from the optical heterodyne receiver 8 at a predetermined sampling rate, and the beat signal that is a digital signal corresponds to the pulse width of the pulsed light output from the modulation unit 4.
  • the received signal is divided for each reception gate width, and the power signal is calculated by performing fast Fourier transform on each of the divided beat signals.
  • the signal processing unit 9 calculates the peak value, spectrum width, SNR (Signal Noise Ratio), etc., of the power spectrum of the beat signal for each reception gate width, and calculates the moving speed of the observation target from the peak value of the power spectrum. Perform the process.
  • the signal processing unit 9 has a function of outputting a command value for the line-of-sight direction (radiation direction of pulsed light) to the optical antenna 7.
  • a command value for the line-of-sight direction radiation direction of pulsed light
  • the measurement result display unit 10 includes, for example, a GPU (Graphics Processing Unit), a liquid crystal display, and the like, and displays, for example, a moving speed of an observation target estimated by the signal processing unit 9 and a three-dimensional distribution of wind speed.
  • FIG. 2 is a block diagram showing the optical transmission unit 1 of the laser radar apparatus according to Embodiment 1 of the present invention.
  • the sawtooth wave generating unit 21 includes a self-machine speed information output unit 22 and a linear phase modulation signal generator 23, and is a device that generates a sawtooth wave having a period corresponding to the speed of the moving body on which the self-device is mounted. is there.
  • the own-machine speed information output unit 22 performs a process of outputting a sawtooth period T corresponding to the speed of the moving body on which the own apparatus is mounted.
  • the linear phase modulation signal generator 23 includes a function generator, an arbitrary waveform generator, or the like, and performs a process of generating a sawtooth wave WF02 having a period T output from the own machine speed information output unit 22. That is, the linear phase modulation signal generation unit 23 performs a process of driving the optical phase modulation unit 24 with the sawtooth wave WF02 having a period T in order to realize the modulation phase 2 ⁇ (360 degrees) by the optical phase modulation unit 24.
  • the sawtooth wave WF02 having the period T has an amplitude of 2 mV ⁇ corresponding to an integral multiple (m times) of the drive voltage 2V ⁇ necessary for realizing the modulation phase 2 ⁇ (360 degrees) in the optical phase modulator 24.
  • the linear phase modulation signal generator 23 constitutes sawtooth wave generating means.
  • the optical phase modulation unit 24 phase-modulates the transmission seed light having the frequency ⁇ output from the optical path branching coupler 3 in accordance with the sawtooth wave WF02 generated by the linear phase modulation signal generation unit 23, and shifts the frequency of the transmission seed light. Then, a process of outputting the transmission seed light having the frequency ( ⁇ + f ofs ⁇ f move ) to the light intensity modulation unit 26 is performed.
  • the optical phase modulator 24 constitutes a phase modulation means.
  • the pulse signal generator 25 performs a process of generating a pulse phase modulation drive signal WF01 necessary for transmission light of the pulse type laser radar device (repetitively generating a pulse signal).
  • the pulse signal generator 25 constitutes a pulse signal generator.
  • the light intensity modulator 26 is, for example, an intensity modulator such as a Mach-Zehnder type LN modulator or EA (Electro Absorption) modulator, an optical amplifier such as a semiconductor optical amplifier or an optical fiber amplifier, or an optical amplifier such as a MEMS optical switch.
  • the transmission seed light having a frequency ( ⁇ + f ofs ⁇ f move ) output from the optical phase modulation unit 24 according to the pulse phase modulation drive signal WF01 generated by the pulse signal generation unit 25 is pulse-modulated. Then, the process of outputting the pulsed light to the optical path OF (4) is performed.
  • the light intensity modulator 26 constitutes pulse modulation means.
  • the light intensity modulation unit 26 is configured by a Mach-Zehnder type LN modulator or the like, but the pulse width number required for the laser radar apparatus is 100 nsec to 1 usec, and the repetition frequency is several kHz to Any means that can respond at about several tens of kHz may be used.
  • FIG. 3 is a block diagram showing details of the own machine speed information output unit 22 in the sawtooth wave generation unit 21 of FIG.
  • the own machine speed measurement unit 22 a performs a process of measuring the speed of the moving body on which the own apparatus is mounted.
  • the own aircraft speed measurement unit 22a may be an instrument that can sufficiently measure the speed of the moving body (about 3000 km / h) numerically, for example, an airspeed meter mounted on an aircraft.
  • the own machine speed measurement unit 22a constitutes a speed measurement means.
  • the speed-saw wave period information conversion unit 22b performs a process of outputting a sawtooth period T corresponding to the speed of the moving body measured by the own speed measurement unit 22a.
  • the reference light source 2 continuously oscillates transmission seed light having a single frequency ⁇ , and outputs the transmission seed light to the optical path OF (1) with constant polarization.
  • the optical path branching coupler 3 branches the transmission seed light into two while maintaining the polarization state of the transmission seed light, and sends one transmission seed light to the optical path OF. (2), and the other transmission seed light is output to the optical path OF (3) as local oscillation light of frequency ⁇ .
  • the modulation unit 4 When the modulation unit 4 receives the transmission seed light having the frequency ⁇ from the optical path branching coupler 3, the modulation unit 4 moves the moving body (laser radar device from the offset frequency f ofs that is a preset frequency with respect to the frequency ⁇ of the transmission seed light. A frequency (f ofs -f move ) obtained by subtracting the Doppler shift frequency f move corresponding to the speed of the mounted mobile body) is given, and the transmission seed light of the frequency ( ⁇ + f ofs -f move ) is subjected to pulse modulation to generate a pulse. Light is output to the optical path OF (4).
  • the frequency ⁇ of transmission type light 195THz, offset frequency f ofs is 10 MHz ⁇ number 100 MHz, pulse width of the pulse light is set to about several 100 nsec ⁇ 1 .mu.sec.
  • the own machine speed measuring unit 22a of the sawtooth wave generating unit 21 measures the speed of the moving body on which the own apparatus is mounted, and outputs the speed of the moving body to the speed-saw wave period information converting unit 22b.
  • the speed-saw wave period information conversion unit 22b holds a table indicating the correspondence relationship between the speed of the moving body and the period T of the saw wave in advance, and receives the speed of the moving body from the own speed measurement unit 22a. By referring to the table, the period T of the sawtooth wave corresponding to the speed of the moving body is grasped, and the period T of the sawtooth wave is output to the linear phase modulation signal generator 23.
  • the speed-saw wave period information conversion unit 22b holds a table indicating the correspondence between the speed of the moving object and the period T of the saw wave in advance, but the present invention is not limited to this.
  • the sawtooth period T may be calculated from the speed of the moving object using a function indicating the correspondence between the speed of the moving object and the period T of the sawtooth.
  • the optical phase modulator 24 in the subsequent stage realizes the modulation phase 2 ⁇ (360 degrees).
  • a sawtooth wave WF02 having a period T having an amplitude of 2 mV ⁇ corresponding to an integral multiple (m times) of the driving voltage 2V ⁇ of the phase modulation unit 24 is generated.
  • the optical phase modulation unit 24 phase-modulates the transmission seed light having the frequency ⁇ output from the optical path branching coupler 3 according to the sawtooth wave WF02, and transmits the transmission light.
  • the frequency of the seed light is shifted, and the transmission seed light having the frequency ( ⁇ + f ofs ⁇ f move ) is output to the light intensity modulation unit 26.
  • phase ⁇ (t) of the transmission seed light having the frequency ( ⁇ + f ofs ⁇ f move ) output from the optical phase modulation unit 24 is constant with respect to time t as shown in the following equation (1).
  • the rate of change is 2 m ⁇ / T [rad / s].
  • mod (t, T) represents the remainder when time t is divided by the period T of the sawtooth wave.
  • the frequency f with respect to the phase ⁇ (t) can be defined by time differentiation of the phase ⁇ as shown in the following equation (2). Since the time change rate of the phase ⁇ (t) is 2m ⁇ / T [rad / s], the optical phase modulation unit 24 performs a frequency shift (f ofs ⁇ f move ) proportional to the inverse of the period T of the sawtooth wave. Can be realized.
  • FIG. 4 is an explanatory diagram showing an example of a waveform of a drive signal (saw wave WF02 having a period T) that is a control signal for the optical phase modulator 24 and a beat signal obtained by the optical heterodyne receiver 8.
  • a drive signal for realizing a frequency shift (f ofs ⁇ f move ) of 1 kHz is shown.
  • the drive signal has an amplitude of 7 V (2 V ⁇ voltage (360 degrees)) and a cycle T.
  • the beat signal obtained by the optical heterodyne receiver 8 is a sine wave having a fixed period of 1 msec, and a frequency shift of 1 kHz is obtained.
  • the pulse signal generator 25 generates a pulse phase modulation drive signal WF01 for ON / OFF control of the light intensity modulator 26.
  • the light intensity modulation unit 26 performs pulse modulation on the transmission seed light having the frequency ( ⁇ + f ofs ⁇ f move ) output from the optical phase modulation unit 24 in accordance with the pulse phase modulation drive signal WF01 generated by the pulse signal generation unit 25.
  • the pulsed light is output to the optical path OF (4). This pulsed light has a pulse width of several hundred nsec to 1 usec and a repetition frequency of several kHz to several tens kHz.
  • the optical amplifier 5 When receiving the pulsed light from the light intensity modulation unit 26 of the modulation unit 4, the optical amplifier 5 amplifies the pulsed light and outputs the amplified pulsed light to the optical path OF (5). That is, the optical amplifier 5 uses the accumulation action of the amplification medium to pulse the energy accumulated in the OFF period of the pulsed light output from the light intensity modulation unit 26 (period in which the signal level of the pulsed light is L level). By releasing in the light ON period (period in which the signal level of the pulsed light is H level), the pulsed light is optically amplified. When receiving the amplified pulse light from the optical amplifier 5, the optical circulator 6 outputs the pulse light to the optical antenna 7 via the optical path OF (6).
  • the optical antenna 7 When receiving the pulsed light from the optical circulator 6, the optical antenna 7 expands the beam diameter of the pulsed light to a predetermined beam diameter, and then radiates the pulsed light to a space in the direction indicated by the signal processing unit 9.
  • the pulsed light emitted from the optical antenna 7 is backscattered to an observation target existing in space (when the laser radar device is used as a wind measurement lidar, an aerosol moving at the same speed as the wind speed is an observation target).
  • the backscattered light of the pulsed light backscattered to the observation target is received by the optical antenna 7, and this backscattered light has undergone a Doppler frequency shift corresponding to the moving speed of the observation target.
  • the frequency of the backscattered light corresponds to the moving speed of the observation target with respect to the frequency of the pulsed light radiated from the optical antenna 7 ( ⁇ + f ofs ⁇ f move ) as shown in the following formula (3).
  • This is a frequency to which a Doppler shift frequency f dop and a Doppler shift frequency f move corresponding to the speed of the moving body are added.
  • ( ⁇ + f ofs ⁇ f move ) + (f dop + f move ) ⁇ + f ofs + f dop (3)
  • the optical circulator 6 outputs the backscattered light received by the optical antenna 7 to the optical path OF (7).
  • the optical heterodyne receiver 8 receives the backscattered light having the frequency ( ⁇ + f ofs + f dop ) received from the optical circulator 6 by the optical antenna 7, the backscattered light and the local portion of the frequency ⁇ output from the optical path branching coupler 3 are received.
  • Optically combine the oscillation light obtain a beat signal having a difference frequency (f ofs + f dop ) between the backscattered light and the local oscillation light, photoelectrically convert the beat signal, and obtain a beat signal that is an electric signal. Is output to the signal processing unit 9.
  • the frequency f of the beat signal obtained by the optical heterodyne receiver 8 is expressed as the following equation (4).
  • f f ofs + f dop (4) Therefore, assuming that the frequency f of the beat signal is, for example, the offset frequency f ofs is 50 MHz and the Doppler shift frequency f dop corresponding to the moving speed (for example, wind speed) to be observed is in the range of ⁇ 50 to +50 MHz. It becomes the following intermediate frequency.
  • FIG. 5 shows transmission light (pulse light radiated from the optical antenna 7), reception light (backscattered light received by the optical antenna 7), and optical heterodyne signal spectrum (first embodiment of the present invention). It is explanatory drawing which shows the relationship with the spectrum of the beat signal obtained by the optical heterodyne receiver 8.
  • the frequency of the transmission light 101 which is pulse light emitted from the optical antenna 7, is ( ⁇ + f ofs ⁇ f move ), and is repeatedly emitted with a predetermined pulse width.
  • the frequency shift given by the modulation unit 4 is (f ofs -f move ).
  • the reception light 102 of the optical antenna 7 is the backscattered light of the transmission light 101 backscattered to the observation target, and is continuously collected during the pulse OFF period of the transmission light 101.
  • the received light 102 corresponding to a specific distance range is shown for simplicity of explanation, but in actuality, it is continuously collected during the pulse OFF period of the transmitted light 101.
  • the moving speed of the observation target e.g., wind speed
  • the Doppler shift frequency f dop corresponding to a Doppler shift frequency f move corresponding to the movement speed of the moving body is applied, ( ⁇ + f ofs + f dop ).
  • the local oscillation light 103 output from the optical path branching coupler 3 is output continuously in time, and the frequency of the local oscillation light 103 matches the frequency ⁇ of the transmission seed light oscillated from the reference light source 2.
  • the optical heterodyne receiver 8 optically multiplexes the received light 102 and the local oscillation light 103 to generate a beat signal (frequency (f ofs + f dop)) of the difference frequency between the received light 102 and the local oscillation light 103. ) Beat signal).
  • the time-series data of the optical heterodyne signal spectrum that is the spectrum of the beat signal is obtained as a spectrum that is detuned by the Doppler shift frequency f dop corresponding to the moving speed of the observation target from the offset frequency f ofs that is the center frequency.
  • reference numeral 104 denotes a wind speed Doppler existence band (frequency range where the wind speed Doppler exists) in a specific distance range
  • 105 denotes a Doppler shift frequency f dop corresponding to the moving speed (wind speed) of the observation target.
  • a peak frequency observed when non-zero (wind speed ⁇ 0) is shown
  • the center frequency of the beat signal matches the offset frequency f ofs , which is an intermediate frequency.
  • the transmission light 101 is ideally turned ON / OFF and there is no leakage light when the pulse is OFF, the beat signal obtained by the optical heterodyne receiver 8 is accompanied by the leakage light. There is no unnecessary beat component. Therefore, the signal processing unit 9 at the subsequent stage may perform signal processing by cutting out only the existing band 104 of the wind speed Doppler with a filter.
  • the signal processing unit 9 When the signal processing unit 9 receives the beat signal from the optical heterodyne receiver 8, the time t 1 when the pulse light is radiated from the optical antenna 7 and the beat from the optical heterodyne receiver 8, as shown in the following equation (5).
  • the distance L from the arrival time ⁇ t ( t2 ⁇ t1), which is the time difference from the time t2 when the signal (beat signal obtained from the backscattered light of the pulsed light emitted at the time t1) is output, to the observation target Is calculated.
  • c is the speed of light.
  • the signal processing unit 9 AD-converts the beat signal output from the optical heterodyne receiver 8 at a predetermined sampling rate, and converts the beat signal, which is a digital signal, to the pulse width of the pulsed light output from the modulation unit 4.
  • the power spectrum is calculated by dividing each corresponding reception gate width and performing fast Fourier transform on the divided beat signals.
  • the signal processing unit 9 calculates the peak value, spectrum width, SNR (Signal Noise Ratio), etc. of the power spectrum, and from the peak value of the power spectrum. Calculate the moving speed of the observation target.
  • Each reception gate width corresponds to the time from when the pulsed light is radiated from the optical antenna 7 until the backscattered light is received, and to the distance L to the observation target. . For this reason, for each distance L to the observation target, a distribution of the Doppler shift frequency fdop due to the wind speed in the line-of-sight direction (pulse light emission direction) can be obtained.
  • the signal processing unit 9 has a function of outputting a command value for the line-of-sight direction to the optical antenna 7 and controls the optical antenna 7 to scan, for example, pulsed light in one or two dimensions.
  • the signal processing unit 9 stores the measured values of the distance L to the observation target and the wind speed (the wind speed is obtained from the peak value of the power spectrum) for each line-of-sight direction obtained according to the command value, thereby performing vector calculation.
  • the signal processing unit 9 stores various calculation results in a memory which is an internal data storage unit, and also measures necessary information (for example, a moving speed (wind speed) of an observation target, a three-dimensional distribution of wind speed, etc.) as a measurement result. It is displayed on the display unit 10.
  • necessary information for example, a moving speed (wind speed) of an observation target, a three-dimensional distribution of wind speed, etc.
  • the moving speed of the moving body from the offset frequency f ofs which is a preset frequency with respect to the frequency ⁇ of the transmission seed light oscillated by the reference light source 2.
  • a modulation unit 4 that gives a frequency (f ofs -f move ) obtained by subtracting the Doppler shift frequency f move corresponding to, and modulates the transmission seed light of the frequency ( ⁇ + f ofs -f move ) to output pulsed light.
  • the optical heterodyne receiver 8 optically combines the backscattered light of the frequency ( ⁇ + f ofs + f dop ) received by the optical antenna 7 and the local oscillation light of the frequency ⁇ , and the backscattered light and the local oscillation obtains a beat signal of the optical difference frequency (f ofs + f dop), the beat signal by photoelectric conversion, signal processing unit a beat signal which is an electrical signal And then, is output to, without mounting a VCO, it becomes possible to cancel the Doppler shift frequency f move corresponding to the movement speed of the moving body, as a result, the measurement accuracy of the moving speed of the observation target There is an effect that can be improved.
  • the Doppler shift frequency f move corresponding to the moving speed of the moving body can be canceled without mounting the VCO, the fundamental wave and the harmonic signal of the signal generated by the VCO Does not leak to the output side of the optical heterodyne receiver 8. For this reason, since spike noise does not appear on the frequency spectrum of the beat signal obtained from the optical heterodyne receiver 8, the measurement accuracy of the moving speed of the observation target can be increased. In addition, since the component of the difference frequency between the harmonic signal component of the VCO and the beat signal obtained from the optical heterodyne receiver 8 does not appear as a false peak on the frequency spectrum, It is possible to prevent the measurement accuracy of the moving speed from being deteriorated.
  • the first embodiment it is necessary to mount a correction circuit for canceling the Doppler shift frequency f move corresponding to the moving speed of the moving body in the area where the electrical signal at the subsequent stage of the optical heterodyne receiver 8 is handled. Therefore, there is an effect that simplification and downsizing of the configuration of the laser radar device can be achieved.
  • the amplitude of the sawtooth wave generated from the sawtooth wave generating unit 21 can be made constant, so that power saving can be achieved. . Note that by reversing the slope of the sawtooth wave generated from the sawtooth wave generating unit 21, the Doppler shift frequency f move corresponding to the moving speed of the moving body is canceled even if the traveling direction of the moving body is a negative direction. be able to.
  • Embodiment 2 FIG. In Embodiment 1 described above, ideal pulse modulation is performed in the light intensity modulation unit 26 (the extinction characteristic of the pulse OFF period by the light intensity modulation unit 26 is ideal), so that the leaked light in the pulse OFF period is In the second embodiment, since the pulse modulation in the light intensity modulation unit 26 is not necessarily ideal (the extinction characteristic of the pulse OFF period by the light intensity modulation unit 26 is ideal in the second embodiment. However, a description will be given of a laser radar device that can increase the measurement accuracy of the moving speed of the observation target even when there is leakage light in the pulse OFF period.
  • FIG. 6 is a block diagram showing an optical transmission unit 1 of a laser radar apparatus according to Embodiment 2 of the present invention.
  • the same reference numerals as those in FIG. two light intensity modulation units 26 and 27 are connected in cascade, and the two light intensity modulation units 26 and 27 are synchronously driven by a pulse phase modulation drive signal WF01 generated by the pulse signal generation unit 25. It is configured to be.
  • FIG. 7 is an explanatory diagram showing the relationship among the transmitted light, the received light, and the optical heterodyne signal spectrum when the extinction characteristic of the pulse OFF period by the light intensity modulator 26 is not ideal.
  • the frequency of the transmission light 101 which is pulse light emitted from the optical antenna 7, is ( ⁇ + f ofs ⁇ f move ), and is repeatedly emitted with a predetermined pulse width as in the first embodiment.
  • This transmission light 101 is an ON period of the pulse phase modulation drive signal WF01 generated by the pulse signal generation unit 25 (a period in which a pulse signal is output from the pulse signal generation unit 25, hereinafter referred to as a “pulse ON period”.
  • the OFF period of the pulse phase modulation drive signal WF01 (the period in which the pulse signal is not output from the pulse signal generator 25, hereinafter referred to as “pulse OFF period”) Since the extinction characteristic of the pulse OFF period by the light intensity modulator 26 is not ideal, the light intensity modulator 26 outputs the leaked light component 111.
  • the leaked light component 111 is amplified by the subsequent optical amplifier 5 and then output to the optical circulator 6.
  • a crosstalk component from the optical path OF (5) to the optical path OF (7) in the optical circulator 6 is incident on the optical heterodyne receiver 8 and is reflected by reflection of internal components of the optical antenna 7 during the pulse ON period.
  • the crosstalk component 112 of the transmission light 101 to the reception optical path is incident on the optical heterodyne receiver 8, and during the pulse OFF period, the leakage light 113 is leaked into the reception optical path by the leakage light component 111 as the optical heterodyne receiver 8. Is incident on.
  • the frequency of the leaked light 113 to the reception optical path is the same frequency ( ⁇ + f ofs ⁇ f move ) as the transmission light 101 in the pulse ON period. For this reason, in the optical heterodyne receiver 8, the leaked light 113 to the reception optical path interferes with the local oscillation light 103 to generate an unnecessary beat signal 114.
  • the frequency of the unnecessary beat signal 114 is a difference frequency (f ofs -f move ) between the leaked light 113 to the reception optical path and the local oscillation light 103, and the unnecessary beat signal 114 always exists in time.
  • the optical heterodyne signal spectrum which is the spectrum of the beat signal obtained by the optical heterodyne receiver 8
  • the peak frequencies 105 and 106 of the Doppler shift frequency fdop corresponding to the moving speed of the observation target and the unnecessary beat signal 114 are included. Therefore, it becomes difficult to detect only the peak frequencies 105 and 106 of the Doppler shift frequency fdop that directly correspond to the moving speed of the observation target. Since the frequency (f ofs -f move ) of the unnecessary beat signal 114 is an intermediate frequency, it is difficult to measure the speed equivalent to that of a mobile object equipped with a laser radar device.
  • the two light intensity modulation units 26 and 27 are connected in cascade, and the two light intensity modulation units 26 and 27 are generated by the pulse phase modulation drive signal WF01 generated by the pulse signal generation unit 25.
  • the leakage light 113 during the pulse OFF period by the light intensity modulation unit 26 is suppressed.
  • the pulse OFF period by the light intensity modulation unit 26 and the pulse OFF period by the light intensity modulation unit 27 coincide with each other, so only one light intensity modulation unit 26 is mounted.
  • the extinction characteristic during the pulse OFF period can be improved as compared with the case where the pulse is off.
  • FIG. 8 is an explanatory diagram showing the relationship between the transmitted light, the received light, and the optical heterodyne signal spectrum when the light intensity modulators 26 and 27 are driven synchronously. Since the light intensity modulator 27 suppresses the leaked light 113 during the pulse OFF period by the light intensity modulator 26 (in FIG. 8, the leaked light 113 during the pulse OFF period is suppressed), the pulse ON is used as the received light. A crosstalk component 112 to the reception optical path of the transmission light 101 in the period and a reception light component (reception light 102) subjected to Doppler shift due to the moving speed of the observation target are obtained.
  • the received light is combined with the local oscillation light 103 by the optical heterodyne receiver 8.
  • the signal spectrum includes a beat component (unnecessary) between the crosstalk component 112 of the transmission light 101 and the local oscillation light 103 during the pulse ON period. Only the beat signal 115) and the Doppler components (the peak frequencies 105 and 106 of the Doppler shift frequency fdop and the existence band 104 of the wind speed Doppler) due to the moving speed of the observation target appear on the spectrum.
  • the beat component (unnecessary beat signal 115) between the crosstalk component 112 and the local oscillation light 103 of the transmission light 101 during the pulse ON period corresponds to a signal at a distance of 0 m that is unnecessary for observation with the laser radar device. Just dismiss it. Since the unnecessary beat signal 115 can be suppressed from the optical heterodyne signal spectrum during the pulse OFF period when the observation target is desired to be observed, it is possible to accurately detect the Doppler shift frequency f dop corresponding to the moving speed of the observation target. It becomes possible.
  • the example in which the two light intensity modulation units 26 and 27 are connected in cascade is shown, but three or more light intensity modulation units are connected in cascade and three or more light intensities are connected.
  • the modulation unit may be configured to be synchronously driven by the pulse phase modulation drive signal WF01 generated by the pulse signal generation unit 25, and the extinction characteristic in the pulse OFF period can be further improved.
  • the light intensity modulator 27 is a means capable of responding with a pulse width number of 100 nsec to 1 usec required for the laser radar apparatus and a repetition frequency of about several kHz to several tens kHz.
  • an intensity modulator such as a Mach-Zehnder type LN modulator or EA modulator
  • an optical amplifier such as a semiconductor optical amplifier or an optical fiber amplifier
  • an optical switch such as a MEMS optical switch
  • a semiconductor optical amplifier or an optical fiber amplifier it is possible to compensate for the insertion loss during the pulse ON period increased by the multistage connection with the gain due to the optical amplification.
  • FIG. 9 is a block diagram showing the optical transmission unit 1 of the laser radar apparatus according to Embodiment 3 of the present invention.
  • the signal multiplier 28 multiplies the sawtooth wave generated by the sawtooth wave generation unit 21 by the pulse phase modulation drive signal WF01 generated by the pulse signal generator 25, so that the pulse phase modulation drive signal WF01 is in the ON period. Only when it is (the period in which the pulse signal is output), the process of giving the sawtooth wave generated by the sawtooth wave generating unit 21 to the optical phase modulation unit 24 is performed.
  • the signal multiplier 28 constitutes sawtooth wave cutting means.
  • the linear phase modulation signal generation unit 23 of the sawtooth wave generation unit 21 outputs the continuous sawtooth wave WF02 to the optical phase modulation unit 24.
  • the signal multiplication unit 28 by multiplying the sawtooth wave WF02 generated by the sawtooth wave generating unit 21 by the pulse phase modulation drive signal WF01 generated by the pulse signal generator 25, the continuous sawtooth wave WF02 is converted into the burst sawtooth wave WF03.
  • the burst sawtooth wave WF03 may be converted to (discrete sawtooth wave) and output to the optical phase modulator 24.
  • the optical phase modulation unit 24 is driven by the burst sawtooth wave WF03 and phase-modulates the transmission seed light having the frequency ⁇ output from the optical path branching coupler 3, so that it is generated by the pulse signal generation unit 25.
  • the pulse phase modulation drive signal WF01 Only when the pulse phase modulation drive signal WF01 is in the ON period, the frequency of the transmission seed light is shifted and the transmission seed light having the frequency ( ⁇ + f ofs ⁇ f move ) is output to the light intensity modulation unit 26. Therefore, when the pulse phase modulation drive signal WF01 generated by the pulse signal generation unit 25 is OFF, the transmission seed light having the frequency ⁇ is output to the light intensity modulation unit 26 because the frequency of the transmission seed light is not shifted.
  • FIG. 10 is an explanatory diagram showing the relationship among transmission light, reception light, and optical heterodyne signal spectrum according to Embodiment 3 of the present invention.
  • the transmission light 101 that is pulsed light is transmitted from the light intensity modulation unit 26 to the optical path OF (4).
  • the pulse phase modulation drive signal WF01 is in the OFF period
  • the leaked light component 200 is output to the optical path OF (4).
  • the leaked light component 200 is amplified by the subsequent optical amplifier 5 and then output to the optical circulator 6.
  • a crosstalk component from the optical path OF (5) to the optical path OF (7) in the optical circulator 6 is incident on the optical heterodyne receiver 8 and is reflected by reflection of internal components of the optical antenna 7 during the pulse ON period.
  • the crosstalk component 201 to the reception optical path of the transmission light 101 is incident on the optical heterodyne receiver 8, and during the pulse OFF period, the leakage light 202 is leaked as leakage light to the reception optical path due to the leakage light component 200. Is incident on.
  • the frequency of the crosstalk component 201 to the reception optical path during the pulse ON period is the same frequency ( ⁇ + f ofs ⁇ f move ) as the transmission light 101 during the pulse ON period, but the leaked light 202 into the reception optical path during the pulse OFF period Since the frequency shift (f ofs -f move ) is not performed during the pulse OFF period, the frequency of the leaked light 202 is ⁇ . For this reason, in the optical heterodyne receiver 8, the crosstalk component 201 to the reception optical path in the pulse ON period and the local oscillation light 103 interfere with each other, and an unnecessary beat signal 211 is generated. This unnecessary beat signal 211 appears at an intermediate frequency (f ofs ⁇ f move ) only during the pulse ON period.
  • the time period for observing the Doppler shift frequency f dop corresponding to the moving speed of the observation target pulse OFF period
  • the Doppler component corresponding to the moving speed of the observation target Doppler shift frequency f dop peak frequencies 105 and 106, Since the frequency (f ofs + f dop ) of the wind velocity Doppler existence band 104) is separated from the unnecessary beat signal 212 on the spectrum, the Doppler component and the unnecessary beat signal that electrically correspond to the moving speed of the observation target are present. 212 can be separated.
  • the signal multiplication unit 28 is the sawtooth wave generation unit 21 only when the pulse phase modulation drive signal WF01 generated by the pulse signal generation unit 25 is in the ON period. Even if the extinction characteristic of the pulse OFF period by the light intensity modulation unit 26 is not ideal (when the pulse ON / OFF is incomplete), the sawtooth wave generated by the above is provided to the optical phase modulation unit 24. There is an effect that the Doppler component corresponding to the moving speed of the observation object can be easily separated from the unnecessary beat signals 211 and 212 on the spectrum. In addition, since the performance requirement for the extinction characteristic during the pulse OFF period by the light intensity modulator 26 can be relaxed, there is an effect that the cost can be reduced.
  • the third embodiment it is not necessary to connect a plurality of light intensity modulation units in cascade as in the above-described second embodiment, and accordingly, a plurality of light intensity modulation units are connected in cascade. An increase in insertion loss can be avoided, which contributes to lower power consumption.
  • the laser radar device is suitable for a wind measurement lidar or the like that needs to measure the moving speed of an observation target (for example, aerosol) in space with high accuracy.
  • 1 optical transmission unit, 2 reference light source, 3 optical path branching coupler, 4 modulation unit (pulse light output means), 5 optical amplifier, 6 optical circulator, 7 optical antenna, 8 optical heterodyne receiver, 9 signal processing unit (moving speed calculation) Means) 10 measurement result display unit, 21 sawtooth wave generation unit, 22 own machine speed information output part, 22a own machine speed measurement part (speed measurement means), 22b speed-saw wave period information conversion part, 23 linear phase modulation signal Generator (saw-wave generator), 24 optical phase modulator (phase modulator), 25 pulse signal generator (pulse signal generator), 26, 27 light intensity modulator (pulse modulator), 28 signal multiplier ( Sawtooth wave cutting means), 101 transmission light (pulse light), 102 reception light (backscattered light), 103 local oscillation light, 104 wind speed Doppler Existence band, 105 Peak frequency observed when wind speed ⁇ 0, 106 Peak frequency observed when wind speed 0, 111 Leakage light component, 112 Crosstalk component to reception optical path, 113 Leakage to reception optical path

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electromagnetism (AREA)
  • Environmental & Geological Engineering (AREA)
  • Atmospheric Sciences (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Environmental Sciences (AREA)
  • Ecology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

 基準光源(2)により発振された送信種光の周波数νに対して、予め設定された周波数であるオフセット周波数(fofs)から移動体の移動速度に対応するドップラシフト周波数(fmove)を差し引いた周波数(fofs-fmove)を付与し、周波数(ν+fofs-fmove)の送信種光をパルス変調してパルス光を出力する変調ユニット(4)を設け、光ヘテロダイン受信機(8)が、光アンテナ(7)により受信された周波数(ν+fofs+fdop)の後方散乱光と周波数νの局部発振光とを光学的に合波して、その後方散乱光と局部発振光の差周波数(fofs+fdop)のビート信号を求める。

Description

レーザレーダ装置
 この発明は、単一周波数のレーザ光を空間に放射することで、空間内の観測対象の移動速度を測定するレーザレーダ装置に関し、特に航空機など移動体に搭載されるレーザレーダ装置に関するものである。
 空間内の観測対象の移動に伴う散乱光(観測対象に散乱されたレーザ光の散乱光)のドップラシフトから観測対象の移動速度を測定するレーザレーダ装置のうち、例えば、風速などの空間分布を遠隔から観測することができるレーザレーダ装置は、気象観測や気象予測の用途でニーズがある。また、航空の交通安全に寄与する乱気流の検出や、風力利用の適地調査など、多岐の応用観点からニーズがある。
 特に、レーザレーダ装置を航空機に搭載することで、航空機の前方に存在する晴天乱気流を検出することができるため、乱気流への突入を回避することが可能になり、航空機の交通安全に寄与する。
 風速の計測に用いるレーザレーダ装置は、コヒーレントドップラライダ(CDL)と呼ばれ、単一の周波数のレーザ光を大気中に放射したのち、大気中の観測対象(風計測では、エアロゾルが観測対象になる)に後方散乱されたレーザ光の後方散乱光を光ヘテロダイン検出することで、ドップラシフトから観測対象の移動速度を求めることができる。
 CDLにおいて、十分な速度計測範囲を確保するには、広い帯域幅の受信信号を周波数分析する必要がある。例えば、波長1.5um帯で風速±30m/sの範囲を計測するために必要な周波数分析範囲は100MHzである。
 よく知られているサンプリング定理によると、信号を所望の帯域まで再生するには、必要な帯域の2倍以上のサンプリング周波数で、信号をA/D(アナログ/デジタル)変換する必要があるとされており、従来のCDLでは、200MSamples/s程度のサンプリング周波数で動作するA/D変換器が用いられている。
 また、航空機などの移動体にCDLを搭載する場合、移動体の飛行速度に対応するドップラシフト周波数が風速の風計測値に加わるため、更に高い周波数範囲の検出が必要になる。
 このため、更に高速なサンプリング周波数で動作するA/D変換器を用いる必要があるため、レーザレーダ装置がコスト高になる。
 以下の特許文献1には、高速なサンプリング周波数で動作するA/D変換器を不要にするために、光ヘテロダイン受信機の受信信号に含まれている移動体の飛行速度に対応するドップラシフト周波数と等しい周波数の信号を発生する電圧制御発振器(VCO:Voltage Controlled Oscillator)を備え、ミキサがVCOにより発生された信号と光ヘテロダイン受信機の受信信号とをミキシングして、それらの信号の差周波成分を検出することで、移動体の飛行速度に対応するドップラシフト周波数を相殺しているレーザレーダ装置が開示されている。
 これにより、高速なサンプリング周波数で動作するA/D変換器を用いることなく、観測対象の移動速度を検出することができる。
 また、以下の特許文献2には、VCOの実現性と入手性を考慮し、比帯域が狭いVCOを用いた構成で、移動体の飛行速度の成分を補正する技術が提案されている。 
特開平1-114774号公報(図1) 特開2003-240852号公報(段落番号[0006]、図1)
 従来のレーザレーダ装置は以上のように構成されているので、移動体の飛行速度に対応するドップラシフト周波数と等しい周波数の信号を発生するVCOを備えれば、高速なサンプリング周波数で動作するA/D変換器が不要になる。しかし、VCOにより発生された信号の基本波及び高調波信号がミキサの出力側に漏洩して、光ヘテロダイン受信機の受信信号から得られる周波数スペクトル上にスパイクノイズが現れてしまうため、観測対象の移動速度の測定精度が劣化してしまう課題があった。
 また、VCOの高調波信号の成分と光ヘテロダイン受信機の受信信号との差周波数の成分が周波数スペクトル上に偽ピークとして現れる場合があり、このような偽ピークが現れると、更に観測対象の移動速度の測定精度が劣化してしまう課題があった。
 なお、スパイクノイズや偽ピークなどの不要信号は、観測対象の移動速度の測定精度の劣化要因になるため、従来のレーザレーダ装置では、VCOの出力、ミキサのダイナミックレンジや帯域透過フィルタの特性に注意して設計されることが想定される。しかし、一般にレーダレーダ装置の受信信号の信号レベルは小さいため、設計に注意を払ったとしても、スパイクノイズや偽ピークの影響を完全に除去することは困難である。このため、例えば、速度検出範囲の限定処理や固定雑音ピーク周波数の除外処理などの周波数分析後の信号処理が必要になる。よって、レーダレーダ装置の複雑化や高コスト化を招くとともに、データの信頼性が低下することが考えられる。
 この発明は上記のような課題を解決するためになされたもので、VCOを搭載することなく、移動体の移動速度に対応するドップラシフト周波数を相殺できるようにして、観測対象の移動速度の測定精度を高めることができるレーザレーダ装置を得ることを目的とする。
 この発明に係るレーザレーダ装置は、送信種光を発振する光源と、光源により発振された送信種光の周波数から自装置を搭載している移動体の速度に対応するドップラシフト周波数を減算し、ドップラシフト周波数減算後の送信種光をパルス変調してパルス光を出力するパルス光出力手段と、パルス光出力手段から出力されたパルス光を空間に放射したのち、空間に存在している観測対象に後方散乱されたパルス光の後方散乱光を受信する光アンテナと、光アンテナにより受信された後方散乱光と光源により発振された送信種光とを合波して、その後方散乱光と送信種光の差周波数のビート信号を出力する光ヘテロダイン受信機とを設け、移動速度算出手段が、光ヘテロダイン受信機から出力されたビート信号から観測対象の移動速度を算出するようにしたものである。
 この発明によれば、光源により発振された送信種光の周波数から自装置を搭載している移動体の速度に対応するドップラシフト周波数を減算し、ドップラシフト周波数減算後の送信種光をパルス変調してパルス光を光アンテナに出力するパルス光出力手段を設け、光ヘテロダイン受信機が、光アンテナにより受信された後方散乱光と光源により発振された送信種光とを合波して、その後方散乱光と送信種光の差周波数のビート信号を移動速度算出手段に出力するように構成したので、VCOを搭載することなく、移動体の移動速度に対応するドップラシフト周波数を相殺することができるようになり、その結果、観測対象の移動速度の測定精度を高めることができる効果がある。
この発明の実施の形態1によるレーザレーダ装置を示す構成図である。 この発明の実施の形態1によるレーザレーダ装置の光送信ユニット1を示す構成図である。 図2の鋸波発生ユニット21における自機速度情報出力部22の詳細を示す構成図である。 光位相変調部24に対する制御信号である駆動信号(周期Tの鋸波WF02)と光ヘテロダイン受信機8により得られるビート信号の波形例を示す説明図である。 この発明の実施の形態1における送信光と受信光と光ヘテロダイン信号スペクトルとの関係を示す説明図である。 この発明の実施の形態2によるレーザレーダ装置の光送信ユニット1を示す構成図である。 光強度変調部26によるパルスOFF期間の消光特性が理想的でない場合の送信光と受信光と光ヘテロダイン信号スペクトルとの関係を示す説明図である。 光強度変調部26,27が同期駆動された場合の送信光と受信光と光ヘテロダイン信号スペクトルとの関係を示す説明図である。 この発明の実施の形態3によるレーザレーダ装置の光送信ユニット1を示す構成図である。 この発明の実施の形態3における送信光と受信光と光ヘテロダイン信号スペクトルとの関係を示す説明図である。
 以下、この発明をより詳細に説明するために、この発明を実施するための形態について、添付の図面に従って説明する。
実施の形態1.
 図1はこの発明の実施の形態1によるレーザレーダ装置を示す構成図である。
 この実施の形態1では、図1のレーザレーダ装置が例えば航空機などの移動体に搭載されているものとする。
 図1において、光送信ユニット1は基準光源2、光路分岐カプラ3及び変調ユニット4から構成されており、パルス光及び局部発振光を出力するユニットである。
 基準光源2は単一周波数ν(単一波長)の送信種光を連続発振し、その送信種光を定偏光で光路OF(1)に出力する。
 光路分岐カプラ3は基準光源2から出力された周波数νの送信種光を2分岐して、一方の送信種光を光路OF(2)に出力し、他方の送信種光を周波数νの局部発振光として光路OF(3)に出力する光学部品である。
 変調ユニット4は光路分岐カプラ3から出力された送信種光の周波数νに対して、予め設定された周波数であるオフセット周波数fofsから移動体(レーザレーダ装置を搭載している移動体)の速度に対応するドップラシフト周波数fmoveを差し引いた周波数(fofs-fmove)を付与し、周波数(ν+fofs-fmove)の送信種光をパルス変調してパルス光を光路OF(4)に出力する。なお、変調ユニット4はパルス光出力手段を構成している。
 光増幅器5は変調ユニット4から出力されたパルス光を増幅し、増幅後のパルス光を光路OF(5)に出力する。
 光サーキュレータ6は光増幅器5により増幅されたパルス光を光路OF(6)を介して光アンテナ7に出力する一方、光アンテナ7により受信された後方散乱光を光路OF(7)に出力する。
 光アンテナ7は光サーキュレータ6から出力されたパルス光を空間に放射する一方、空間に存在している観測対象(例えば、図1のレーザレーダ装置が風計測ライダとして用いられる場合、風速と同じ速度で移動するエアロゾルが観測対象となる)に後方散乱された前記パルス光の後方散乱光を受信する。
 なお、後方散乱光の周波数は、光アンテナ7から放射されたパルス光の周波数(ν+fofs-fmove)に対して、観測対象の移動速度(例えば、風速)に対応するドップラシフト周波数fdopと、移動体の速度に対応するドップラシフト周波数fmoveとが加わっている周波数となる。
 光ヘテロダイン受信機8は光アンテナ7により受信された周波数(ν+fofs+fdop)の後方散乱光と光路分岐カプラ3から出力された周波数νの局部発振光とを光学的に合波して、その後方散乱光と局部発振光の差周波数(fofs+fdop)のビート信号を求め、そのビート信号を光電変換して、電気信号であるビート信号を信号処理ユニット9に出力する。
 信号処理ユニット9は例えばCPUを実装している半導体集積回路、あるいは、ワンチップマイコンなどから構成されており、光ヘテロダイン受信機8から出力されたビート信号の周波数を分析することで、観測対象の移動速度を算出する処理を実施する。信号処理ユニット9は移動速度算出手段構成している。
 即ち、信号処理ユニット9は光ヘテロダイン受信機8から出力されたビート信号を所定のサンプリングレートでAD変換して、デジタル信号であるビート信号を変調ユニット4から出力されたパルス光のパルス幅に対応する受信ゲート幅毎に分割し、分割後のビート信号をそれぞれ高速フーリエ変換してパワースペクトルを算出する処理を実施する。
 また、信号処理ユニット9は受信ゲート幅毎のビート信号のパワースペクトルにおけるピーク値、スペクトル幅、SNR(Signal Noise Ratio)などを算出するとともに、そのパワースペクトルのピーク値から観測対象の移動速度を算出する処理を実施する。
 なお、信号処理ユニット9は視線方向(パルス光の放射方向)に対する指令値を光アンテナ7に出力する機能を有している。この指令値に従って得られた各視線方向に対する観測対象までの距離や風速の計測値を格納しておくことで、ベクトル演算によって風速の3次元分布の推定や、観測距離毎の風向風速分布の算出が可能になる。
 計測結果表示部10は例えばGPU(Graphics Processing Unit)や液晶ディスプレイなどから構成されており、例えば、信号処理ユニット9により推定された観測対象の移動速度や、風速の3次元分布などを表示する。
 図2はこの発明の実施の形態1によるレーザレーダ装置の光送信ユニット1を示す構成図である。
 鋸波発生ユニット21は自機速度情報出力部22及び直線位相変調信号発生部23から構成されており、自装置を搭載している移動体の速度に対応する周期の鋸波を発生する装置である。
 自機速度情報出力部22は自装置を搭載している移動体の速度に対応する鋸波の周期Tを出力する処理を実施する。
 直線位相変調信号発生部23はファンクションジェネレータあるいは任意波形発生装置などで構成されており、自機速度情報出力部22から出力された周期Tの鋸波WF02を発生する処理を実施する。即ち、直線位相変調信号発生部23は光位相変調部24で変調位相2π(360度)を実現するために、周期Tの鋸波WF02で光位相変調部24を駆動する処理を実施する。
 ここで、周期Tの鋸波WF02は、光位相変調部24で変調位相2π(360度)を実現するために必要な駆動電圧2Vπの整数倍(m倍)に相当する2mVπの振幅を有している。
 なお、直線位相変調信号発生部23は鋸波発生手段を構成している。
 光位相変調部24は直線位相変調信号発生部23により発生された鋸波WF02にしたがって光路分岐カプラ3から出力された周波数νの送信種光を位相変調して、その送信種光の周波数をシフトし、周波数(ν+fofs-fmove)の送信種光を光強度変調部26に出力する処理を実施する。なお、光位相変調部24は位相変調手段を構成している。
 パルス信号発生部25はパルス型のレーザレーダ装置の送信光に必要となるパルス位相変調駆動信号WF01を発生(パルス信号を繰り返し発生)する処理を実施する。なお、パルス信号発生部25はパルス信号発生手段を構成している。
 光強度変調部26は例えばMach-Zehnder型LN変調器やEA(Electro Absorption)変調器などの強度変調器、あるいは、半導体光増幅器や光ファイバ増幅器などの光増幅器、あるいは、MEMS光スイッチなどの光スイッチなどから構成されており、パルス信号発生部25により発生されたパルス位相変調駆動信号WF01にしたがって光位相変調部24から出力された周波数(ν+fofs-fmove)の送信種光をパルス変調してパルス光を光路OF(4)に出力する処理を実施する。なお、光強度変調部26はパルス変調手段を構成している。
 ここでは、光強度変調部26がMach-Zehnder型LN変調器などから構成されている例を示しているが、レーザレーダ装置に必要となるパルス幅数として100nsec~1usec、繰り返し周波数として数kHz~数10kHz程度で応答することができる手段であれば何でもよい。
 図3は図2の鋸波発生ユニット21における自機速度情報出力部22の詳細を示す構成図である。
 図3において、自機速度計測部22aは自装置を搭載している移動体の速度を計測する処理を実施する。自機速度計測部22aは移動体の速度(3000km/h程度)を数値的に十分に計測可能な計器であればよく、例えば、航空機に搭載される対気速度計などが考えられる。なお、自機速度計測部22aは速度計測手段を構成している。
 速度-鋸波周期情報変換部22bは自機速度計測部22aにより計測された移動体の速度に対応する鋸波の周期Tを出力する処理を実施する。
 次に動作について説明する。
 基準光源2は、単一周波数νの送信種光を連続発振し、その送信種光を定偏光で光路OF(1)に出力する。
 光路分岐カプラ3は、基準光源2から周波数νの送信種光を受けると、その送信種光の偏光状態を維持したまま、その送信種光を2分岐して、一方の送信種光を光路OF(2)に出力し、他方の送信種光を周波数νの局部発振光として光路OF(3)に出力する。
 変調ユニット4は、光路分岐カプラ3から周波数νの送信種光を受けると、その送信種光の周波数νに対して、予め設定された周波数であるオフセット周波数fofsから移動体(レーザレーダ装置を搭載している移動体)の速度に対応するドップラシフト周波数fmoveを差し引いた周波数(fofs-fmove)を付与し、周波数(ν+fofs-fmove)の送信種光をパルス変調してパルス光を光路OF(4)に出力する。
 レーザレーダ装置が風計測ライダ装置として用いられる場合、例えば、送信種光の周波数νは195THz、オフセット周波数fofsは10MHz~数100MHz、パルス光のパルス幅は数100nsec~1μsec程度に設定される。
 以下、変調ユニット4の処理内容を具体的に説明する。
 鋸波発生ユニット21の自機速度計測部22aは、自装置を搭載している移動体の速度を計測し、その移動体の速度を速度-鋸波周期情報変換部22bに出力する。
 速度-鋸波周期情報変換部22bは、予め移動体の速度と鋸波の周期Tとの対応関係を示すテーブルを保持しており、自機速度計測部22aから移動体の速度を受けると、そのテーブルを参照して、その移動体の速度に対応する鋸波の周期Tを把握し、その鋸波の周期Tを直線位相変調信号発生部23に出力する。
 ここでは、速度-鋸波周期情報変換部22bが、予め移動体の速度と鋸波の周期Tとの対応関係を示すテーブルを保持している例を示しているが、これに限るものではなく、例えば、移動体の速度と鋸波の周期Tとの対応関係を示す関数を用いて、移動体の速度から鋸波の周期Tを算出するようにしてもよい。
 直線位相変調信号発生部23は、速度-鋸波周期情報変換部22bから鋸波の周期Tを受けると、後段の光位相変調部24で変調位相2π(360度)を実現するために、光位相変調部24の駆動電圧2Vπの整数倍(m倍)に相当する2mVπの振幅を有する周期Tの鋸波WF02を発生する。
 光位相変調部24は、直線位相変調信号発生部23が鋸波WF02を発生すると、その鋸波WF02にしたがって光路分岐カプラ3から出力された周波数νの送信種光を位相変調して、その送信種光の周波数をシフトし、周波数(ν+fofs-fmove)の送信種光を光強度変調部26に出力する。
 ここで、光位相変調部24から出力される周波数(ν+fofs-fmove)の送信種光の位相φ(t)は、下記の式(1)に示すように、時間tに対して一定の変化率2mπ/T[rad/s]で変化するものとなる。

Figure JPOXMLDOC01-appb-I000001
 式(1)において、mod(t,T)は時間tを鋸波の周期Tで除算した際の剰余を表している。
 位相φ(t)に対する周波数fは、下記の式(2)に示すように、位相φの時間微分で定義することができる。

Figure JPOXMLDOC01-appb-I000002
 位相φ(t)の時間変化率は、2mπ/T[rad/s]であるため、光位相変調部24によって、鋸波の周期Tの逆数に比例する周波数シフト(fofs-fmove)を実現することができる。
 図4は光位相変調部24に対する制御信号である駆動信号(周期Tの鋸波WF02)と光ヘテロダイン受信機8により得られるビート信号の波形例を示す説明図である。
 図4の例では、1kHzの周波数シフト(fofs-fmove)を実現するための駆動信号を示しており、その駆動信号は、振幅が7V(2Vπ電圧(360度))で、周期Tが1msecの鋸波である。
 この場合、光ヘテロダイン受信機8により得られるビート信号は、図4に示すように、一定周期1msecの正弦波となり、1kHzの周波数シフトが得られていることが分かる。
 したがって、光位相変調部24によって、例えば、50MHz(=1kHzの50000倍)の周波数シフト(fofs-fmove)を実現するには、鋸波発生ユニット21が、振幅が7Vで周期Tが20nsec(=1msec/50000)の鋸波を発生すればよいことが分かる。
 パルス信号発生部25は、光強度変調部26をON/OFF制御するパルス位相変調駆動信号WF01を発生する。
 光強度変調部26は、パルス信号発生部25により発生されたパルス位相変調駆動信号WF01にしたがって光位相変調部24から出力された周波数(ν+fofs-fmove)の送信種光をパルス変調してパルス光を光路OF(4)に出力する。
 このパルス光は、パルス幅が数100nsec~1usecで、繰り返し周波数が数kHz~数10kHz程度である。
 光増幅器5は、変調ユニット4の光強度変調部26からパルス光を受けると、そのパルス光を増幅し、増幅後のパルス光を光路OF(5)に出力する。
 即ち、光増幅器5は、増幅媒体の蓄積作用を利用して、光強度変調部26から出力されたパルス光のOFF期間(パルス光の信号レベルがLレベルの期間)に蓄積されるエネルギーをパルス光のON期間(パルス光の信号レベルがHレベルの期間)に解放することで、パルス光を光増幅する。
 光サーキュレータ6は、光増幅器5から増幅後のパルス光を受けると、そのパルス光を光路OF(6)を介して光アンテナ7に出力する。
 光アンテナ7は、光サーキュレータ6からパルス光を受けると、そのパルス光のビーム径を所定のビーム径に拡大してから、そのパルス光を信号処理ユニット9が指示する方向の空間に放射する。
 光アンテナ7から放射されたパルス光は、空間に存在している観測対象(レーザレーダ装置が風計測ライダとして用いられる場合、風速と同じ速度で移動するエアロゾルが観測対象となる)に後方散乱される。観測対象に後方散乱されたパルス光の後方散乱光は光アンテナ7により受信されるが、この後方散乱光は、観測対象の移動速度に応じたドップラ周波数シフトを受けている。
 したがって、後方散乱光の周波数は、下記の式(3)に示すように、光アンテナ7から放射されたパルス光の周波数(ν+fofs-fmove)に対して、観測対象の移動速度に対応するドップラシフト周波数fdopと、移動体の速度に対応するドップラシフト周波数fmoveとが加わっている周波数となる。
   (ν+fofs-fmove)+(fdop+fmove
  =ν+fofs+fdop                    (3)
 光サーキュレータ6は、光アンテナ7により受信された後方散乱光を光路OF(7)に出力する。
 光ヘテロダイン受信機8は、光サーキュレータ6から光アンテナ7により受信された周波数(ν+fofs+fdop)の後方散乱光を受けると、その後方散乱光と光路分岐カプラ3から出力された周波数νの局部発振光とを光学的に合波して、その後方散乱光と局部発振光の差周波数(fofs+fdop)のビート信号を求め、そのビート信号を光電変換して、電気信号であるビート信号を信号処理ユニット9に出力する。
 光ヘテロダイン受信機8で得られるビート信号の周波数fは、下記の式(4)のように表される。
   f=fofs+fdop             (4)
 したがって、ビート信号の周波数fは、例えば、オフセット周波数fofsが50MHzで、観測対象の移動速度(例えば、風速)に対応するドップラシフト周波数fdopが-50~+50MHzの範囲である仮定すると、100MHz以下の中間周波数になる。
 ここで、図5はこの発明の実施の形態1における送信光(光アンテナ7から放射されるパルス光)と、受信光(光アンテナ7により受信される後方散乱光)と、光ヘテロダイン信号スペクトル(光ヘテロダイン受信機8により得られるビート信号のスペクトル)との関係を示す説明図である。
 光アンテナ7から放射されるパルス光である送信光101の周波数は(ν+fofs-fmove)であり、所定のパルス幅で繰り返し放射されている。なお、変調ユニット4により付与された周波数シフトは(fofs-fmove)である。
 光アンテナ7の受信光102は、観測対象に後方散乱された送信光101の後方散乱光であり、送信光101のパルスOFF期間に連続的に収集される。
 図5では、説明の簡単化のために、特定の距離レンジに対応している受信光102だけを記載しているが、実際には送信光101のパルスOFF期間に連続的に収集される。
 受信光102の周波数は、観測対象の移動速度(例えば、風速)に対応するドップラシフト周波数fdopと、移動体の移動速度に対応するドップラシフト周波数fmoveとが加わるため、(ν+fofs+fdop)で表される。
 一方、光路分岐カプラ3から出力される局部発振光103は時間的に連続して出力され、局部発振光103の周波数は、基準光源2から発振される送信種光の周波数νと一致している。
 光ヘテロダイン受信機8は、上述したように、受信光102と局部発振光103を光学的に合波して、受信光102と局部発振光103の差周波数のビート信号(周波数(fofs+fdop)のビート信号)を得るものである。
 したがって、ビート信号のスペクトルである光ヘテロダイン信号スペクトルの時系列データは、中心周波数であるオフセット周波数fofsから観測対象の移動速度に対応するドップラシフト周波数fdopだけ離調したスペクトルとして得られる。
 図5において、104は特定の距離レンジにおける風速ドップラの存在帯域(風速ドップラが存在している周波数の範囲)を示し、105は観測対象の移動速度(風速)に対応するドップラシフト周波数fdopがゼロ以外(風速≠0)のときに観測されるピーク周波数を示し、106は観測対象の移動速度に対応するドップラシフト周波数fdopがゼロ(風速=0)のときに観測されるピーク周波数を示している。
 風速=0の場合には、ビート信号の中心周波数が、中間周波数であるオフセット周波数fofsと一致する。
 図5の例では、送信光101が理想的にON/OFFされ、パルスOFF時に漏洩光がない場合を想定しているため、光ヘテロダイン受信機8により得られるビート信号には、漏洩光に伴う不要ビート成分が存在していない。
 したがって、後段の信号処理ユニット9では、風速ドップラの存在帯域104だけをフィルタで切り出して信号処理を行うようにすればよい。
 信号処理ユニット9は、光ヘテロダイン受信機8からビート信号を受けると、下記の式(5)に示すように、光アンテナ7からパルス光が放射された時刻t1と、光ヘテロダイン受信機8からビート信号(時刻t1に放射されたパルス光の後方散乱光から得られたビート信号)が出力された時刻t2との時刻差である到来時間Δt(=t2-t1)から、観測対象までの距離Lを算出する。

Figure JPOXMLDOC01-appb-I000003
 式(5)において、cは光速である。
 また、信号処理ユニット9は、光ヘテロダイン受信機8から出力されたビート信号を所定のサンプリングレートでAD変換して、デジタル信号であるビート信号を変調ユニット4から出力されたパルス光のパルス幅に対応する受信ゲート幅毎に分割し、分割後のビート信号をそれぞれ高速フーリエ変換してパワースペクトルを算出する。
 信号処理ユニット9は、受信ゲート幅毎に、ビート信号のパワースペクトルを算出すると、そのパワースペクトルのピーク値、スペクトル幅、SNR(Signal Noise Ratio)などを算出するとともに、そのパワースペクトルのピーク値から観測対象の移動速度を算出する。
 なお、各々の受信ゲート幅(時間ゲート)は、光アンテナ7からパルス光が放射されてから、後方散乱光が受信されるまでの時間に対応し、観測対象までの距離Lに対応している。このため、観測対象までの距離L毎に、視線方向(パルス光の放射方向)の風速によるドップラシフト周波数fdopの分布を得ることができる。 
 信号処理ユニット9は、視線方向に対する指令値を光アンテナ7に出力する機能を有しており、光アンテナ7を制御することで、例えば、パルス光を1次元あるいは2次元に走査する。
 信号処理ユニット9は、この指令値に従って得られた各視線方向に対する観測対象までの距離Lや風速(風速はパワースペクトルのピーク値から得られる)の計測値を格納しておくことで、ベクトル演算によって風速の3次元分布の推定や、観測距離毎の風向風速分布の算出を行うことができる。
 信号処理ユニット9は、各種の算出結果を内部のデータ蓄積部であるメモリに格納するほか、必要な情報(例えば、観測対象の移動速度(風速)や、風速の3次元分布など)を計測結果表示部10に表示する。
 以上で明らかなように、この実施の形態1によれば、基準光源2により発振された送信種光の周波数νに対して、予め設定された周波数であるオフセット周波数fofsから移動体の移動速度に対応するドップラシフト周波数fmoveを差し引いた周波数(fofs-fmove)を付与し、周波数(ν+fofs-fmove)の送信種光をパルス変調してパルス光を出力する変調ユニット4を設け、光ヘテロダイン受信機8が、光アンテナ7により受信された周波数(ν+fofs+fdop)の後方散乱光と周波数νの局部発振光とを光学的に合波して、その後方散乱光と局部発振光の差周波数(fofs+fdop)のビート信号を求め、そのビート信号を光電変換して、電気信号であるビート信号を信号処理ユニット9に出力するように構成したので、VCOを搭載することなく、移動体の移動速度に対応するドップラシフト周波数fmoveを相殺することができるようになり、その結果、観測対象の移動速度の測定精度を高めることができる効果を奏する。
 即ち、この実施の形態1では、VCOを搭載することなく、移動体の移動速度に対応するドップラシフト周波数fmoveを相殺することができるため、VCOにより発生された信号の基本波及び高調波信号が光ヘテロダイン受信機8の出力側に漏洩することがない。このため、光ヘテロダイン受信機8から得られるビート信号の周波数スペクトル上にスパイクノイズが現れることがないため、観測対象の移動速度の測定精度を高めることができる。
 また、VCOの高調波信号の成分と光ヘテロダイン受信機8から得られるビート信号との差周波数の成分が周波数スペクトル上に偽ピークとして現れることもないため、偽ピークが現れることに伴う観測対象の移動速度の測定精度の劣化を防止することができる。
 また、この実施の形態1によれば、光ヘテロダイン受信機8の後段の電気信号を扱う領域に、移動体の移動速度に対応するドップラシフト周波数fmoveを相殺するための補正回路を搭載する必要がないため、レーザレーダ装置の構成の簡素化や小型化を図ることができる効果を奏する。
 この実施の形態1によれば、移動体の移動速度が変化しても、鋸波発生ユニット21から発生される鋸波の振幅を一定にすることができるため、省電力化を図ることができる。
 なお、鋸波発生ユニット21から発生される鋸波の傾きを反転させることで、移動体の進行方向が負方向であっても、移動体の移動速度に対応するドップラシフト周波数fmoveを相殺することができる。
実施の形態2.
 上記実施の形態1では、光強度変調部26で理想的なパルス変調が行われることで(光強度変調部26によるパルスOFF期間の消光特性が理想的である)、パルスOFF期間の漏洩光が存在していないものを示しているが、この実施の形態2では、光強度変調部26でのパルス変調が必ずしも理想的でないために(光強度変調部26によるパルスOFF期間の消光特性が理想的でない)、パルスOFF期間の漏洩光が存在していても、観測対象の移動速度の測定精度を高めることができるレーザレーダ装置について説明する。
 図6はこの発明の実施の形態2によるレーザレーダ装置の光送信ユニット1を示す構成図であり、図6において、図2と同一符号は同一または相当部分を示すので説明を省略する。
 この実施の形態2では、2つの光強度変調部26,27を縦続に接続し、2つの光強度変調部26,27がパルス信号発生部25により発生されたパルス位相変調駆動信号WF01によって同期駆動されるように構成されている。
 次に動作について説明する。
 ただし、2つの光強度変調部26と光強度変調部27が縦続に接続されている点以外は上記実施の形態1と同様であるため、上記実施の形態1と相違している部分を説明する。
 図7は光強度変調部26によるパルスOFF期間の消光特性が理想的でない場合の送信光と受信光と光ヘテロダイン信号スペクトルとの関係を示す説明図である。
 光アンテナ7から放射されるパルス光である送信光101の周波数は(ν+fofs-fmove)であり、上記実施の形態1と同様に、所定のパルス幅で繰り返し放射されている。
 この送信光101は、パルス信号発生部25により発生されたパルス位相変調駆動信号WF01のON期間(パルス信号発生部25からパルス信号が出力されている期間であり、以下、「パルスON期間」と称する)中に放射されるが、パルス位相変調駆動信号WF01のOFF期間(パルス信号発生部25からパルス信号が出力されていない期間であり、以下、「パルスOFF期間」と称する)中には、光強度変調部26によるパルスOFF期間の消光特性が理想的でないために、光強度変調部26から漏洩光の成分111が出力される。
 漏洩光の成分111は、後段の光増幅器5によって増幅されたのち、光サーキュレータ6に出力される。
 その結果、光サーキュレータ6における光路OF(5)から光路OF(7)へのクロストーク成分が光ヘテロダイン受信機8に入射されるとともに、パルスON期間においては、光アンテナ7の内部部品の反射による送信光101の受信光路へのクロストーク成分112が光ヘテロダイン受信機8に入射され、パルスOFF期間においては、漏洩光の成分111による受信光路への漏洩光として漏洩光113が光ヘテロダイン受信機8に入射される。
 受信光路への漏洩光113の周波数は、パルスON期間の送信光101と同じ周波数(ν+fofs-fmove)である。
 このため、光ヘテロダイン受信機8の内で、受信光路への漏洩光113と局部発振光103が干渉して、不要なビート信号114が発生する。 
 この不要なビート信号114の周波数は、受信光路への漏洩光113と局部発振光103との差周波数(fofs-fmove)であり、不要なビート信号114が時間的に常に存在する。 
 一方、光ヘテロダイン受信機8により得られるビート信号のスペクトルである光ヘテロダイン信号スペクトルでは、観測対象の移動速度に対応するドップラシフト周波数fdopのピーク周波数105,106と、不要なビート信号114とが重なるため、直接的に観測対象の移動速度に対応するドップラシフト周波数fdopのピーク周波数105,106だけを検出することが困難になる。
 不要なビート信号114の周波数(fofs-fmove)は、中間周波数であるため、レーザレーダ装置を搭載している移動体と同等の速度計測は困難である。
 そこで、この実施の形態2では、2つの光強度変調部26,27を縦続に接続し、2つの光強度変調部26,27がパルス信号発生部25により発生されたパルス位相変調駆動信号WF01によって同期駆動されるように構成することで、光強度変調部26によるパルスOFF期間での漏洩光113を抑圧している。
 光強度変調部26,27が同期駆動されることで、光強度変調部26によるパルスOFF期間と光強度変調部27によるパルスOFF期間が一致するため、光強度変調部26が1つだけ搭載されている場合よりも、パルスOFF期間の消光特性を高めることができる。
 図8は光強度変調部26,27が同期駆動された場合の送信光と受信光と光ヘテロダイン信号スペクトルとの関係を示す説明図である。
 光強度変調部27が光強度変調部26によるパルスOFF期間での漏洩光113を抑圧するため(図8では、パルスOFF期間での漏洩光113が抑圧されている)、受信光として、パルスON期間における送信光101の受信光路へのクロストーク成分112と、観測対象の移動速度によるドップラシフトを受けた受信光成分(受信光102)とが得られる。
 これにより、光ヘテロダイン受信機8で受信光が局部発振光103と合成される結果、信号スペクトルには、パルスON期間における送信光101のクロストーク成分112と局部発振光103とのビート成分(不要なビート信号115)と、観測対象の移動速度によるドップラ成分(ドップラシフト周波数fdopのピーク周波数105,106、風速ドップラの存在帯域104)だけがスペクトル上に現れる。
 パルスON期間における送信光101のクロストーク成分112と局部発振光103とのビート成分(不要なビート信号115)は、レーザレーダ装置での観測において不要な距離0mでの信号に対応するため、時間的に棄却すればよい。
 観測対象を観測したいパルスOFF期間において、光ヘテロダイン信号スペクトル内から、不要なビート信号115を抑圧することができるため、正確に観測対象の移動速度に対応するドップラシフト周波数fdopを検出することが可能になる。
 この実施の形態2では、2つの光強度変調部26,27を縦続に接続している例を示したが、3つ以上の光強度変調部を縦続に接続して、3つ以上の光強度変調部がパルス信号発生部25により発生されたパルス位相変調駆動信号WF01によって同期駆動されるように構成してもよく、更にパルスOFF期間の消光特性を高めることができる。
 光強度変調部27は、光強度変調部26と同様に、レーザレーダ装置に必要となるパルス幅数として100nsec~1usec、繰り返し周波数として数kHz~数10kHz程度で応答することができる手段であればよく、例えば、Mach-Zehnder型LN変調器やEA変調器などの強度変調器、あるいは、半導体光増幅器や光ファイバ増幅器などの光増幅器、あるいは、MEMS光スイッチなどの光スイッチなどを用いることができる。
 上記のうち、半導体光増幅器や光ファイバ増幅器を用いる場合には、多段接続によって増加したパルスON期間の挿入損失を、光増幅による利得で補填することも可能になる。
実施の形態3.
 図9はこの発明の実施の形態3によるレーザレーダ装置の光送信ユニット1を示す構成図であり、図9において、図2と同一符号は同一または相当部分を示すので説明を省略する。
 信号乗算部28は鋸波発生ユニット21により発生された鋸波に対して、パルス信号発生部25により発生されたパルス位相変調駆動信号WF01を乗算することで、パルス位相変調駆動信号WF01がON期間(パルス信号が出力されている期間)であるときだけ、鋸波発生ユニット21により発生された鋸波を光位相変調部24に与える処理を実施する。なお、信号乗算部28は鋸波切出し手段を構成している。
 上記実施の形態1では、鋸波発生ユニット21の直線位相変調信号発生部23が、連続的な鋸波WF02を光位相変調部24に出力しているものを示しているが、信号乗算部28が、鋸波発生ユニット21により発生された鋸波WF02に対して、パルス信号発生部25により発生されたパルス位相変調駆動信号WF01を乗算することで、連続的な鋸波WF02をバースト鋸波WF03(離散的な鋸波)に変換し、そのバースト鋸波WF03を光位相変調部24に出力するようにしてもよい。
 これにより、光位相変調部24は、バースト鋸波WF03によって駆動されて、光路分岐カプラ3から出力された周波数νの送信種光を位相変調することになるため、パルス信号発生部25により発生されたパルス位相変調駆動信号WF01がON期間であるときだけ、送信種光の周波数をシフトして、周波数(ν+fofs-fmove)の送信種光を光強度変調部26に出力することなる。
 したがって、パルス信号発生部25により発生されたパルス位相変調駆動信号WF01がOFF期間では、送信種光の周波数をシフトしないため、周波数νの送信種光を光強度変調部26に出力することなる。
 このように、パルス位相変調駆動信号WF01がOFF期間では、送信種光の周波数シフト(fofs-fmove)が行われないが、パルス信号のOFF期間に存在する漏洩光にも周波数シフト(fofs-fmove)が行われなくなるため、パルスOFF期間の消光特性を高めることができる。
 図10はこの発明の実施の形態3における送信光と受信光と光ヘテロダイン信号スペクトルとの関係を示す説明図である。
 パルス光である送信光101は、図10に示すように、パルス信号発生部25により発生されたパルス位相変調駆動信号WF01がON期間であるときに、光強度変調部26から光路OF(4)に出力されるが、パルス位相変調駆動信号WF01がOFF期間であるときには出力されず、漏洩光の成分200が光路OF(4)に出力される。
 漏洩光の成分200は、後段の光増幅器5によって増幅されたのち、光サーキュレータ6に出力される。
 その結果、光サーキュレータ6における光路OF(5)から光路OF(7)へのクロストーク成分が光ヘテロダイン受信機8に入射されるとともに、パルスON期間においては、光アンテナ7の内部部品の反射による送信光101の受信光路へのクロストーク成分201が光ヘテロダイン受信機8に入射され、パルスOFF期間においては、漏洩光の成分200による受信光路への漏洩光として漏洩光202が光ヘテロダイン受信機8に入射される。
 パルスON期間の受信光路へのクロストーク成分201の周波数は、パルスON期間における送信光101の周波数と同じ周波数(ν+fofs-fmove)であるが、パルスOFF期間の受信光路への漏洩光202は、パルスOFF期間中に周波数シフト(fofs-fmove)が行われていないため、漏洩光202の周波数はνである。
 このため、光ヘテロダイン受信機8内で、パルスON期間の受信光路へのクロストーク成分201と局部発振光103が干渉して、不要なビート信号211が発生する。
 この不要なビート信号211は、パルスON期間のときだけ中間周波数である(fofs-fmove)に現れる。
 一方、観測対象の移動速度に対応するドップラシフト周波数fdopを観測する時間帯(パルスOFF期間)では、観測対象の移動速度に対応するドップラ成分(ドップラシフト周波数fdopのピーク周波数105,106、風速ドップラの存在帯域104)の周波数(fofs+fdop)が、不要なビート信号212とスペクトル上で離れて存在するため、電気的に観測対象の移動速度に対応するドップラ成分と不要なビート信号212の分離が可能になる。
 以上で明らかなように、この実施の形態3によれば、信号乗算部28が、パルス信号発生部25により発生されたパルス位相変調駆動信号WF01がON期間であるときだけ、鋸波発生ユニット21により発生された鋸波を光位相変調部24に与えるように構成したので、光強度変調部26によるパルスOFF期間の消光特性が理想的でない場合(パルスON/OFFが不完全な場合)でも、観測対象の移動速度に対応するドップラ成分を不要なビート信号211,212とスペクトル上で容易に分離することができる効果を奏する。
 また、光強度変調部26によるパルスOFF期間の消光特性に対する性能要求を緩和することができるため、低コスト化を図ることができる効果を奏する。
 また、この実施の形態3によれば、上記実施の形態2のように、複数の光強度変調部を縦続に接続する必要がないため、複数の光強度変調部を縦続に接続することに伴う挿入損失の増加を回避することができるため、低消費電力化に寄与する。
 なお、本願発明はその発明の範囲内において、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。
 この発明に係るレーザレーダ装置は、空間内の観測対象(例えば、エアロゾル)の移動速度を高精度に測定する必要がある風計測ライダなどに適している。
 1 光送信ユニット、2 基準光源、3 光路分岐カプラ、4 変調ユニット(パルス光出力手段)、5 光増幅器、6 光サーキュレータ、7 光アンテナ、8 光ヘテロダイン受信機、9 信号処理ユニット(移動速度算出手段)、10 計測結果表示部、21 鋸波発生ユニット、22 自機速度情報出力部、22a 自機速度計測部(速度計測手段)、22b 速度-鋸波周期情報変換部、23 直線位相変調信号発生部(鋸波発生手段)、24 光位相変調部(位相変調手段)、25 パルス信号発生部(パルス信号発生手段)、26,27 光強度変調部(パルス変調手段)、28 信号乗算部(鋸波切出し手段)、101 送信光(パルス光)、102 受信光(後方散乱光)、103 局部発振光、104 風速ドップラの存在帯域、105 風速≠0のときに観測されるピーク周波数、106 風速=0のときに観測されるピーク周波数、111 漏洩光の成分、112 受信光路へのクロストーク成分、113 受信光路への漏洩光、114,115 不要なビート信号、201 受信光路へのクロストーク成分、202 受信光路への漏洩光、211,212 不要なビート信号。

Claims (5)

  1.  送信種光を発振する光源と、
     前記光源により発振された送信種光の周波数から自装置を搭載している移動体の速度に対応するドップラシフト周波数を減算し、ドップラシフト周波数減算後の送信種光をパルス変調してパルス光を出力するパルス光出力手段と、
     前記パルス光出力手段から出力されたパルス光を空間に放射したのち、前記空間に存在している観測対象に後方散乱された前記パルス光の後方散乱光を受信する光アンテナと、
     前記光アンテナにより受信された後方散乱光と前記光源により発振された送信種光とを合波して、前記後方散乱光と前記送信種光の差周波数のビート信号を出力する光ヘテロダイン受信機と、
     前記光ヘテロダイン受信機から出力されたビート信号から前記観測対象の移動速度を算出する移動速度算出手段と
     を備えたレーザレーダ装置。
  2.  前記パルス光出力手段は、
     前記移動体の速度を計測する速度計測手段と、
     前記速度計測手段により計測された速度に対応する周期の鋸波を発生する鋸波発生手段と、
     前記鋸波発生手段により発生された鋸波にしたがって前記光源により発振された送信種光を位相変調して、前記送信種光の周波数をシフトする位相変調手段と、
     パルス信号を繰り返し発生するパルス信号発生手段と、
     前記パルス信号発生手段により発生されたパルス信号にしたがって前記位相変調手段により位相変調された送信種光をパルス変調してパルス光を出力するパルス変調手段とから構成されていることを特徴とする請求項1記載のレーザレーダ装置。
  3.  前記パルス変調手段が複数個縦続に接続され、前記複数のパルス変調手段が前記パルス信号発生手段により発生されたパルス信号によって同期駆動されることを特徴とする請求項2記載のレーザレーダ装置。
  4.  前記パルス信号発生手段からパルス信号が発生されている期間中だけ、前記鋸波発生手段により発生された鋸波を前記位相変調手段に与える鋸波切出し手段を備えたことを特徴とする請求項2記載のレーザレーダ装置。
  5.  前記パルス光出力手段から出力されたパルス光を増幅し、増幅後のパルス光を前記光アンテナに出力する光増幅器を備えたことを特徴とする請求項1記載のレーザレーダ装置。
PCT/JP2014/065351 2014-06-10 2014-06-10 レーザレーダ装置 WO2015189915A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2014/065351 WO2015189915A1 (ja) 2014-06-10 2014-06-10 レーザレーダ装置
US15/316,253 US20170153327A1 (en) 2014-06-10 2014-06-10 Laser radar device
EP14894615.5A EP3156823B1 (en) 2014-06-10 2014-06-10 Laser radar device
JP2016527530A JP6157735B2 (ja) 2014-06-10 2014-06-10 レーザレーダ装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/065351 WO2015189915A1 (ja) 2014-06-10 2014-06-10 レーザレーダ装置

Publications (1)

Publication Number Publication Date
WO2015189915A1 true WO2015189915A1 (ja) 2015-12-17

Family

ID=54833046

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/065351 WO2015189915A1 (ja) 2014-06-10 2014-06-10 レーザレーダ装置

Country Status (4)

Country Link
US (1) US20170153327A1 (ja)
EP (1) EP3156823B1 (ja)
JP (1) JP6157735B2 (ja)
WO (1) WO2015189915A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106154288A (zh) * 2016-08-17 2016-11-23 中国气象局气象探测中心 一种全光纤连续相干多普勒激光测风方法及雷达系统
CN106371108A (zh) * 2016-08-17 2017-02-01 中国气象局气象探测中心 一种全光纤脉冲相干多普勒激光测风方法及雷达系统
CN106680831A (zh) * 2017-01-20 2017-05-17 中国科学院上海光学精密机械研究所 激光主动相干平衡探测偏振分析仪
JP2017198514A (ja) * 2016-04-27 2017-11-02 国立研究開発法人宇宙航空研究開発機構 計測装置及び信号処理方法
JPWO2021176652A1 (ja) * 2020-03-05 2021-09-10
JP2021529959A (ja) * 2018-06-29 2021-11-04 パーセプティブ・インコーポレイテッド 自律制御システム用の知覚システム

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK3084736T3 (da) * 2013-12-17 2019-08-05 Tyco Fire Products Lp System og fremgangsmåde til detektering og undertrykkelse af brand ved anvendelse af oplysninger om vind
JP7239975B2 (ja) * 2016-10-12 2023-03-15 国立研究開発法人産業技術総合研究所 光角度変調測定装置及び測定方法
DE102017221257A1 (de) * 2017-11-28 2019-05-29 Audi Ag Radarsystem und Verfahren zum Betreiben eines Radarsystems
JP6797327B2 (ja) * 2018-03-29 2020-12-09 三菱電機株式会社 レーザレーダ装置
CN108594256B (zh) * 2018-04-16 2021-10-12 夏和娣 一种基于脉冲编码技术的相干激光雷达
CN108983313B (zh) * 2018-05-02 2020-10-23 中国科学院国家空间科学中心 一种定量探测海面风场的方法
WO2019224982A1 (ja) * 2018-05-24 2019-11-28 三菱電機株式会社 光測距装置及び加工装置
CN110907922B (zh) * 2019-11-29 2022-09-02 中国科学院上海光学精密机械研究所 直接探测测风激光雷达的标定装置
CN111722212B (zh) * 2020-06-29 2022-03-29 江苏集萃深度感知技术研究所有限公司 基于锯齿波及单频率信号的雷达测速方法
FR3139391A1 (fr) * 2022-09-02 2024-03-08 Office National D'etudes Et De Recherches Aérospatiales Systeme lidar pour mesures velocimetriques

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62123379A (ja) * 1985-11-22 1987-06-04 Honda Motor Co Ltd ドプラレ−ダ
JPH0238889A (ja) * 1988-07-28 1990-02-08 Sony Corp レーザードップラー速度計
JPH04315080A (ja) * 1991-04-11 1992-11-06 Fujitsu Ten Ltd 車間距離測定装置
JP2000193558A (ja) * 1998-12-28 2000-07-14 Nec Corp 波長分散測定装置
JP2000275342A (ja) * 1999-03-23 2000-10-06 Toshiba Corp 障害物検出装置
JP2007003305A (ja) * 2005-06-22 2007-01-11 Matsushita Electric Ind Co Ltd スペクトル拡散型レーダ装置
JP2009027517A (ja) * 2007-07-20 2009-02-05 Ntt Electornics Corp 光送信回路
JP2010151806A (ja) * 2008-11-28 2010-07-08 Mitsubishi Electric Corp ドップラーレーダ用受信回路及びドップラーレーダ装置
JP2011185773A (ja) * 2010-03-09 2011-09-22 Japan Aerospace Exploration Agency 光学式エアデータセンサ
WO2013094431A1 (ja) * 2011-12-21 2013-06-27 三菱電機株式会社 レーザレーダ装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2543690B1 (fr) * 1983-03-29 1986-01-17 Thomson Csf Systeme de telemetrie laser et de mesure doppler, a compression d'impulsions
GB0209053D0 (en) * 2002-04-22 2002-12-18 Bae Systems Plc Method and apparatus for laser vibrometry
US20130083389A1 (en) * 2011-09-30 2013-04-04 Optical Air Data Systems, L.L.C. Laser Doppler Velocimeter Optical Electrical Integrated Circuits

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62123379A (ja) * 1985-11-22 1987-06-04 Honda Motor Co Ltd ドプラレ−ダ
JPH0238889A (ja) * 1988-07-28 1990-02-08 Sony Corp レーザードップラー速度計
JPH04315080A (ja) * 1991-04-11 1992-11-06 Fujitsu Ten Ltd 車間距離測定装置
JP2000193558A (ja) * 1998-12-28 2000-07-14 Nec Corp 波長分散測定装置
JP2000275342A (ja) * 1999-03-23 2000-10-06 Toshiba Corp 障害物検出装置
JP2007003305A (ja) * 2005-06-22 2007-01-11 Matsushita Electric Ind Co Ltd スペクトル拡散型レーダ装置
JP2009027517A (ja) * 2007-07-20 2009-02-05 Ntt Electornics Corp 光送信回路
JP2010151806A (ja) * 2008-11-28 2010-07-08 Mitsubishi Electric Corp ドップラーレーダ用受信回路及びドップラーレーダ装置
JP2011185773A (ja) * 2010-03-09 2011-09-22 Japan Aerospace Exploration Agency 光学式エアデータセンサ
WO2013094431A1 (ja) * 2011-12-21 2013-06-27 三菱電機株式会社 レーザレーダ装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017198514A (ja) * 2016-04-27 2017-11-02 国立研究開発法人宇宙航空研究開発機構 計測装置及び信号処理方法
CN106154288A (zh) * 2016-08-17 2016-11-23 中国气象局气象探测中心 一种全光纤连续相干多普勒激光测风方法及雷达系统
CN106371108A (zh) * 2016-08-17 2017-02-01 中国气象局气象探测中心 一种全光纤脉冲相干多普勒激光测风方法及雷达系统
CN106680831A (zh) * 2017-01-20 2017-05-17 中国科学院上海光学精密机械研究所 激光主动相干平衡探测偏振分析仪
CN106680831B (zh) * 2017-01-20 2019-02-26 中国科学院上海光学精密机械研究所 激光主动相干平衡探测偏振分析仪
JP2021529959A (ja) * 2018-06-29 2021-11-04 パーセプティブ・インコーポレイテッド 自律制御システム用の知覚システム
JPWO2021176652A1 (ja) * 2020-03-05 2021-09-10
JP7472965B2 (ja) 2020-03-05 2024-04-23 日本電気株式会社 光測定装置及び光測定方法

Also Published As

Publication number Publication date
US20170153327A1 (en) 2017-06-01
JPWO2015189915A1 (ja) 2017-04-20
EP3156823A1 (en) 2017-04-19
EP3156823A4 (en) 2018-02-28
JP6157735B2 (ja) 2017-07-05
EP3156823B1 (en) 2020-03-04

Similar Documents

Publication Publication Date Title
JP6157735B2 (ja) レーザレーダ装置
US9778362B2 (en) Relative speed measuring doppler LiDAR
US11579292B2 (en) Method and system for using square wave digital chirp signal for optical chirped range detection
US11709229B2 (en) Laser radar device
US20170350964A1 (en) Coherent lidar system using tunable carrier-suppressed single-sideband modulation
US20210405194A1 (en) Optical measurement device and measurement method
US20180224548A1 (en) Distance Measuring Apparatus, Distance Measuring Method, and Shape Measuring Apparatus
Onori et al. Coherent interferometric dual-frequency laser radar for precise range/Doppler measurement
US20210382164A1 (en) Multi-tone continuous wave detection and ranging
CA3034765A1 (en) Method for processing a signal arising from coherent lidar and associated lidar system
KR20210043735A (ko) 위상 인코딩 lidar에서의 내부 반사 감산을 위한 레이저 위상 추적 방법 및 시스템
US20190331796A1 (en) Method for processing a signal from a coherent lidar in order to reduce noise and related lidar system
Torun et al. Realization of multitone continuous wave LiDAR
US11630189B2 (en) Multi-tone continuous wave detection and ranging
JP6308183B2 (ja) 光ファイバ歪み測定装置及び光ファイバ歪み測定方法
JP4932378B2 (ja) コヒーレントライダ装置
CN110914706A (zh) Lidar测量装置
CN117561457A (zh) 一种激光雷达的发送装置、探测系统以及探测方法
JP4107603B2 (ja) レーザレーダ装置
Torun et al. Multi-tone modulated continuous-wave lidar
Peng et al. All-fiber monostatic pulsed laser Doppler vibrometer: A digital signal processing method to eliminate cochannel interference
WO2019186914A1 (ja) レーザレーダ装置
JP7209917B2 (ja) レーザレーダ装置
WO2023118295A1 (en) Electronic device, method and computer program
JP6259753B2 (ja) 光反射計測装置及び光反射計測方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14894615

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016527530

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15316253

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014894615

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014894615

Country of ref document: EP