JP2009015069A - 画像形成装置 - Google Patents

画像形成装置 Download PDF

Info

Publication number
JP2009015069A
JP2009015069A JP2007177574A JP2007177574A JP2009015069A JP 2009015069 A JP2009015069 A JP 2009015069A JP 2007177574 A JP2007177574 A JP 2007177574A JP 2007177574 A JP2007177574 A JP 2007177574A JP 2009015069 A JP2009015069 A JP 2009015069A
Authority
JP
Japan
Prior art keywords
belt
image
image forming
forming apparatus
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007177574A
Other languages
English (en)
Other versions
JP5182605B2 (ja
Inventor
Takuya Uehara
拓也 上原
Yuzuru Ebara
譲 江原
Yohei Miura
洋平 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2007177574A priority Critical patent/JP5182605B2/ja
Publication of JP2009015069A publication Critical patent/JP2009015069A/ja
Application granted granted Critical
Publication of JP5182605B2 publication Critical patent/JP5182605B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrostatic Charge, Transfer And Separation In Electrography (AREA)
  • Control Or Security For Electrophotography (AREA)

Abstract

【課題】位置ずれ補正処理の実施によってトナー像の重ね合わせずれを確実に低減することができる画像形成装置を提供する。
【解決手段】位置ずれ補正処理の実施要件が具備されたか否かを判断し(S6)、具備された場合には(S6でY)、中間転写ベルトを無端移動させながらエンコーダによる検知結果に基づいて中間転写ベルトの速度変動パターンを検出し、RAMに記憶している速度変動パターンデータを検出結果に基づいて更新してから(S10)、位置ずれ補正処理を実施するように(S11)、制御部を構成した。
【選択図】図22

Description

本発明は、複数の像担持体にそれぞれ担持される可視像を、無端移動する無端状のベルト部材、あるいはそのベルト部材の表面に保持している記録部材に重ね合わせて転写する画像形成装置に関するものである。
従来、この種の画像形成装置としては、特許文献1に記載のものが知られている。この画像形成装置は、ベルト部材たる無端状の中間転写ベルトを駆動ローラ及び複数の従動ローラによって張架しながら無端移動せしめる転写ユニットを有している。そして、像担持体たる複数の感光体にそれぞれ形成した互いに異なる色のトナー像を、前述の転写ユニットによって中間転写ベルトに重ね合わせて転写することでフルカラー画像を得る。中間転写ベルトを用いる代わりに、無端移動する表面に記録紙を保持しながら搬送する紙搬送ベルトを用い、複数の感光体のそれぞれに担持される各色トナー像を紙搬送ベルト上の記録紙に直接重ね合わせて転写する方式のものもある。このように、複数の像担持体にそれぞれ形成したトナー像をベルト部材の表面あるいはベルト部材上の記録紙に重ね合わせて転写する方式は、タンデム方式と呼ばれている。
タンデム方式の画像形成装置においては、潜像書込装置のレンズやミラーなどの光学系部品の温度変化に伴って書込光の光路が微妙に変動すると、各像担持体間で潜像書込装置による潜像書込開始位置が相対的にずれてしまう。すると、各色のトナー像が互いに位置ずれした状態でベルト部材や記録紙に重ね合わせて転写されることで、いわゆる重ね合わせずれが発生してフルカラー画像の画像が乱れてしまう。
そこで、特許文献1に記載の画像形成装置は、各色トナー像の相対的な位置ずれ量を定期的に測定し、必要に応じて潜像書込開始タイミングや光学系部品の傾きを調整することで、各色トナー像の位置ずれを補正するようになっている。具体的には、複数の像担持体にそれぞれ形成した所定のトナー像を互いに位置をずらしてベルト部材に転写することで、ベルト部材上に位置ずれ検知用パターン像を得る。そして、この位置ずれ検知用パターン像内の各色トナー像を像検知手段としての光学センサによって検知するタイミングに基づいて、各色トナー像の相対的位置ずれを検知する。次いで、この検知結果に基づいて各像担持体に対する潜像書込開始タイミングを調整したり、レンズやミラーの傾きを調整したりすることで、各像担持体間でのトナー像の相対的な位置ずれを抑える。
一方、各色トナー像の重ね合わせずれを引き起こす要因としては、温度変動に伴う光学系部品の伸縮の他に、ベルト部材の速度変動が挙げられる。重ね合わせの転写の際にベルト部材の速度変動が起こると、たとえ各像担持体間でトナー像の相対的位置が合っていたとしても、各色のトナー像が互いにずれて転写されてしまうのである。ベルト部材の速度変動をきたす要因としては、ベルト部材の周方向における厚みムラが挙げられる。ベルト部材を駆動する駆動ローラ上にベルト厚の比較的厚い部分が巻き付いているときにはベルト移動速度が速くなり、反対にベルト厚の比較的薄い部分が巻き付いているときにはベルト移動速度が遅くなる。これにより、ベルト部材が1周する間に速度変動を引き起こす。遠心成型法で成型されたベルト部材では、ベルトを成型するための金型の偏心に起因して、ベルト1周あたりにおいて最大厚み箇所と最小厚み箇所とが180[°]の位相差の関係になる厚みムラを引き起こし易い。かかるベルト部材では、ベルト1周あたりにおける速度変動が1周期分のサインカーブを描く特性となる。
そこで、本発明者らは、特許文献2や特許文献3において、ベルト部材を張架しながらその無端移動に伴って従動回転する複数の従動ローラの1つに、回転速度検知手段たるエンコーダを設けたものを用いる画像形成装置を提案した。この画像形成装置は、ユーザーのもとでの初期運転時やベルト部材が交換されたときなどといった所定のタイミングで、ベルト部材を無端移動させながら、エンコーダから送られてくる従動ローラの回転角速度信号を取得していく。これにより、ベルト部材の1周あたりにおける速度変動パターンを検出してRAMなどの記憶手段に記憶する。そして、画像を形成するときには、その速度変動パターンとは逆位相の駆動速度パターンで駆動ローラの駆動源であるベルト駆動モータを駆動することで、厚みムラに起因するベルト部材の速度変動を抑えるようになっている。
特開2007−079441号公報 特開2005−115398号公報 特開2006−106642号公報
しかしながら、ベルト部材は、温度変化に伴う伸縮によって厚みを微妙に変化させたり、摩耗などによって厚みムラを経時的に変化させたりする。このため、上述のようにしてベルト1周あたりの速度変動パターンを検出したとしても、その後にベルト部材の厚みが変化すれば、上述の駆動速度パターンが実情にそぐわなくなる。よって、ベルト部材の速度変動を十分に抑えることができなくなってしまう。
特許文献1に記載の画像形成装置のように位置ずれ補正処理を行うものでは、ベルト部材の速度変動が十分に抑えられないままに位置ずれ補正処理を実施すると各色トナー像の重ね合わせずれを却って大きくしてしまうおそれがある。具体的には、書込光の光路変動による各色トナー像の位置ずれは、画像全体の位置が各色間でずれるものであり、画像内の各ドットの相対位置は各色で殆ど変わらない。このため、潜像書込開始タイミングを調整したり、ミラーの傾きを調整したりすることで、各色間で画像全体とともに各ドットの位置ずれを抑えることができる。これに対し、ベルト部材の速度変動に起因する位置ずれでは、画像内の各ドットの相対位置関係が各色間で変化する。このため、潜像書込開始タイミングやミラーの傾きを調整しても、その位置ずれを抑えることはできない。また、ベルト部材の速度変動が起こると、書込光の光路変動に起因する各色トナー像の位置ずれを正しく検知することができない。ベルト部材が速度変動をきたしている状態で形成された位置ずれ検知用パターン像は、書込光の光路変動に起因する各色トナー像の位置ずれの他、ベルト部材の速度変動に起因する位置ずれを含んでいるからである。しかも、ベルト部材上の位置ずれ検知用パターン像が光学センサによって検知されているときにもベルト部材の速度変動が起こると、その位置ずれ検知用パターン像内の各色トナー像の位置ずれパターンそのものが正しく検知されなくなる。にもかかわらず、その検知結果に基づいて潜像書込開始タイミングやミラーの傾きを調整してしまうと、重ね合わせずれを却って大きくしてしまうおそれがある。
なお、特許文献3の画像形成装置においては、ベルト部材が交換されたときだけでなく、画像を形成しているときにもベルト部材の1周あたりの速度変動パターンを検出しながら順次更新していくようになっている。しかしながら、かかる構成においても、画像形成動作が長期間に渡って停止している間にベルト部材の厚みが変化した場合、記憶手段に記憶しておいたベルト部材の速度変動パターンが実情にそぐわないものとなる。にもかかわらず、その後の画像形成動作開始時に位置ずれ補正処理を行ってしまうと、同様の理由から、各色トナー像の位置ずれを却って大きくしてしまうおそれがある。
本発明は、以上の背景に鑑みなされたものであり、その目的とするところは、位置ずれ補正処理の実施によって可視像の重ね合わせずれを確実に低減することができる画像形成装置を提供することである。
上記目的を達成するために、請求項1の発明は、可視像を担持する複数の像担持体と、それら像担持体にそれぞれ可視像を形成する可視像形成手段と、駆動ローラ及び従動ローラに張架しながら無端移動せしめている無端状のベルト部材、あるいは該ベルト部材の表面に保持している記録部材に、それら像担持体にそれぞれ担持される可視像を重ね合わせて転写する転写手段と、該従動ローラの回転速度を検知する回転速度検知手段と、該ベルト部材の表面に形成された可視像を検知する像検知手段と、該回転速度検知手段による検知結果、及び記憶手段に記憶している該ベルト部材の1周あたりにおける速度変動パターンのデータに基づいて該駆動ローラの駆動源の駆動速度を調整する駆動速度調整処理を実施したり、複数の該像担持体にそれぞれ形成した所定の可視像を該ベルト部材に転写し、該ベルト部材上のそれら可視像をそれぞれ該像検知手段に検知させた結果に基づいてそれら可視像の相対位置ずれを把握し、その結果に基づいて該可視像形成手段の作像条件を調整して各像担持体間での可視像の位置ずれを補正する位置ずれ補正処理を所定のタイミングで実施したりする制御手段とを備える画像形成装置において、上記位置ずれ補正処理の実施要件が具備されたか否かを判断し、具備された場合には、上記ベルト部材を無端移動させながら上記回転速度検知手段による検知結果に基づいて上記速度変動パターンを検出し、上記記憶手段に記憶しているデータを検出結果に基づいて更新してから、上記位置ずれ補正処理を実施するように、上記制御手段を構成したことを特徴とするものである。
また、請求項2の発明は、請求項1の画像形成装置において、環境を検知する環境検知手段を設けるとともに、前回の上記位置ずれ補正処理の実施時からの環境の変化量が所定量に達したり、所定量を超えたりしたことに基づいて、上記実施要件が具備されたと判断させるように、上記制御手段を構成したことを特徴とするものである。
また、請求項3の発明は、請求項1又は2の画像形成装置において、計時を行う計時手段を設けるとともに、前回の上記位置ずれ補正処理の実施時からの経過時間が所定時間に達したり、所定時間を超えたりしたことに基づいて、上記実施要件が具備されたと判断させるように、上記制御手段を構成したことを特徴とするものである。
また、請求項4の発明は、請求項1乃至3の何れかの画像形成装置において、計時を行う計時手段を設けるとともに、前回の上記位置ずれ補正処理の実施時からの上記ベルト部材の駆動時間増加量が所定量に達したり、所定量を超えたりしたことに基づいて、上記実施要件が具備されたと判断させるように、上記制御手段を構成したことを特徴とするものである。
また、請求項5の発明は、請求項1乃至4の何れかの画像形成装置において、画像形成動作回数を計数する計数手段を設けるとともに、前回の上記位置ずれ補正処理の実施時からの該画像形成動作回数の増加数が所定数に達したり、所定数を超えたりしたことに基づいて、上記実施要件が具備されたと判断させるように、上記制御手段を構成したことを特徴とするものである。
また、請求項6の発明は、請求項1乃至5の何れかの画像形成装置において、上記ベルト部材として、周方向における厚み偏差が25[℃]の環境下で3[μm]以上であるもの、を用いたことを特徴とするものである。
また、請求項7の発明は、請求項1乃至6の何れかの画像形成装置において、上記ベルト部材として、周方向のヤング率が5000[MPa]以下であるもの、を用いたことを特徴とするものである。
また、請求項8の発明は、請求項1乃至7の何れかの画像形成装置において、上記可視像形成手段によって形成される可視像の画像情報を取得する画像情報取得手段を設けるとともに、該画像情報に基づく可視像を形成するための画像形成動作中に、上記回転速度検知手段による検知結果に基づいて上記速度変動パターンを検出し、上記記憶手段に記憶しているデータを検出結果に基づいて順次更新していくように、上記制御手段を構成したことを特徴とするものである。
また、請求項9の発明は、請求項8の画像形成装置において、上記速度変動パターンに基づいて、上記ベルト部材の1周する毎のタイミングを把握するように、上記制御手段を構成したことを特徴とするものである。
また、請求項10の発明は、請求項1乃至9の何れかの画像形成装置において、上記位置ずれ補正処理の実施要件が具備されたと判断した場合には、複数の上記像担持体のぞれぞれについて、その表面に形成した互いに画像濃度の異なる複数の可視像からなる階調パターン像を上記ベルト部材に転写し、該ベルト部材上の該階調パターン像内における各可視像の画像濃度を上記像検知手段に検知させ、検知結果に基づいて上記可視像形成手段の作像条件を調整して画像濃度を補正する画像濃度補正処理を上記位置ずれ補正処理に先立って実施し、該画像濃度補正処理と並行して上記速度変動パターンを検出するように、上記制御手段を構成したことを特徴とするものである。
また、請求項11の発明は、請求項1乃至10の何れかの画像形成装置において、上記速度変動パターンを検出且つ更新する処理と、上記位置ずれ補正処理とを一連の制御シーケンスで実施するように、上記制御手段を構成したことを特徴とするものである。
また、請求項12の発明は、請求項1乃至11の何れかの画像形成装置において、上記ベルト部材に当接する当接部材を該ベルト部材に接離させる接離手段を設けるとともに、上記位置ずれ補正処理に先立って上記速度変動パターンを検出するにあたり、該接離手段によって該当接部材を該ベルト部材に対して接触又は離間させてから、該速度変動パターンの検出を開始するように、上記制御手段を構成したことを特徴とするものである。
また、請求項13の発明は、請求項1乃至12の何れかの画像形成装置において、上記像担持体を少なくとも4つ設けたことを特徴とするものである。
これらの発明においては、位置ずれ補正処理の実施を決定した場合に、その実施に先立ってベルト部材の速度変動パターンを検出し、これによってベルト部材の速度変動を確実に抑え得る状態になってから、位置ずれ補正処理を実施する。かかる構成では、ベルト部材の速度変動に起因する位置ずれを位置ずれ検知用パターン像内の各可視像に引き起こしてしまったり、各可視像の位置ずれを検知している際にベルト部材の速度変動を引き起こしてしまったりすることがないので、潜像書込開始位置が各像担持体間で相対的にずれてしまうことに起因する可視像の位置ずれを良好に検知することができる。よって、位置ずれ補正処理の実施によって可視像の重ね合わせずれを確実に低減することができる。
以下、本発明を適用した画像形成装置として、電子写真方式のプリンタ(以下、単にプリンタという)の一実施形態について説明する。
まず、本プリンタの基本的な構成について説明する。図1は、本プリンタを示す概略構成図である。同図において、このプリンタは、イエロー、マゼンタ、シアン、ブラック(以下、Y、M、C、Kと記す)のトナー像を生成するための4つのプロセスユニット6Y,M,C,Kを備えている。これらは、画像形成物質として、互いに異なる色のY,M,C,Kトナーを用いるが、それ以外は同様の構成になっており、寿命到達時に交換される。Yトナー像を生成するためのプロセスユニット6Yを例にすると、図2に示すように、潜像担持体たるドラム状の感光体1Y、ドラムクリーニング装置2Y、除電装置(不図示)、帯電装置4Y、現像器5Y等を備えている。画像形成ユニットたるプロセスユニット6Yは、プリンタ本体に脱着可能であり、一度に消耗部品を交換できるようになっている。
上記帯電装置4Yは、図示しない駆動手段によって図中時計回りに回転せしめられる像担持体としての感光体1Yの表面を一様帯電せしめる。一様帯電せしめられた感光体1Yの表面は、レーザ光Lによって露光走査されてY用の静電潜像を担持する。このYの静電潜像は、Yトナーと磁性キャリアとを含有するY現像剤を用いる現像器5YによってYトナー像に現像される。そして、後述する中間転写ベルト8上に中間転写される。ドラムクリーニング装置2Yは、中間転写工程を経た後の感光体1Y表面に残留したトナーを除去する。また、上記除電装置は、クリーニング後の感光体1Yの残留電荷を除電する。この除電により、感光体1Yの表面が初期化されて次の画像形成に備えられる。他色のプロセスユニット(6M,C,K)においても、同様にして感光体(1M,C,K)上に(M,C,K)トナー像が形成されて、ベルト部材としての中間転写ベルト8上に中間転写される。
上記現像器5Yは、そのケーシングの開口から一部露出させるように配設された現像ロール51Yを有している。また、互いに平行配設された2つの搬送スクリュウ55Y、ドクターブレード52Y、トナー濃度センサ(以下、Tセンサという)56Yなども有している。
現像器5Yのケーシング内には、磁性キャリアとYトナーとを含む図示しないY現像剤が収容されている。このY現像剤は2つの搬送スクリュウ55Yによって撹拌搬送されながら摩擦帯電せしめられた後、上記現像ロール51Yの表面に担持される。そして、ドクターブレード52Yによってその層厚が規制されてからY用の感光体1Yに対向する現像領域に搬送され、ここで感光体1Y上の静電潜像にYトナーを付着させる。この付着により、感光体1Y上にYトナー像が形成される。現像器5Yにおいて、現像によってYトナーを消費したY現像剤は、現像ロール51Yの回転に伴ってケーシング内に戻される。
2つの搬送スクリュウ55Yの間には仕切壁が設けられている。この仕切壁により、現像ロール51Yや図中右側の搬送スクリュウ55Y等を収容する第1供給部53Yと、図中左側の搬送スクリュウ55Yを収容する第2供給部54Yとがケーシング内で分かれている。図中右側の搬送スクリュウ55Yは、図示しない駆動手段によって回転駆動せしめられ、第1供給部53Y内のY現像剤を図中手前側から奥側へと搬送しながら現像ロール51Yに供給する。図中右側の搬送スクリュウ55Yによって第1供給部53Yの端部付近まで搬送されたY現像剤は、上記仕切壁に設けられた図示しない開口部を通って第2供給部54Y内に進入する。第2供給部54Y内において、図中左側の搬送スクリュウ55Yは、図示しない駆動手段によって回転駆動せしめられ、第1供給部53Yから送られてくるY現像剤を図中右側の搬送スクリュウ55Yとは逆方向に搬送する。図中左側の搬送スクリュウ55Yによって第2供給部54Yの端部付近まで搬送されたY現像剤は、上記仕切壁に設けられたもう一方の開口部(図示せず)を通って第1供給部53Y内に戻る。
透磁率センサからなる上述のTセンサ56Yは、第2供給部54Yの底壁に設けられ、その上を通過するY現像剤の透磁率に応じた値の電圧を出力する。トナーと磁性キャリアとを含有する二成分現像剤の透磁率は、トナー濃度と良好な相関を示すため、Tセンサ56YはYトナー濃度に応じた値の電圧を出力することになる。この出力電圧の値は、図示しない制御部に送られる。この制御部は、Tセンサ56Yからの出力電圧の目標値であるY用Vtrefを格納したRAMを備えている。このRAM内には、他の現像器に搭載された図示しないTセンサからの出力電圧の目標値であるM用Vtref、C用Vtref、K用Vtrefのデータも格納されている。Y用Vtrefは、後述するY用のトナー搬送装置の駆動制御に用いられる。具体的には、上記制御部は、Tセンサ56Yからの出力電圧の値をY用Vtrefに近づけるように、図示しないY用のトナー搬送装置を駆動制御して第2供給部54Y内にYトナーを補給させる。この補給により、現像器5Y内のY現像剤中のYトナー濃度が所定の範囲内に維持される。他のプロセスユニットの現像器についても、M,C,K用のトナー搬送装置を用いた同様のトナー補給制御が実施される。
先に示した図1において、プロセスユニット6Y,M,C,Kの図中下方には、潜像書込装置としての光書込ユニット7が配設されている。光書込ユニット7は、画像情報に基づいて発したレーザ光Lを、プロセスユニット6Y,M,C,Kにおけるそれぞれの感光体に照射して露光する。この露光により、感光体1Y,M,C,K上にY,M,C,K用の静電潜像が形成される。なお、光書込ユニット7は、光源から発したレーザ光(L)を、モータによって回転駆動したポリゴンミラーで走査しながら、複数の光学レンズやミラーを介して感光体に照射するものである。
光書込ユニット7の図中下側には、紙収容カセット26、これらに組み込まれた給紙ローラ27など有する紙収容手段が配設されている。紙収容カセット26は、シート状の記録体たる転写紙Pを複数枚重ねて収納しており、それぞれの一番上の転写紙Pには給紙ローラ27を当接させている。給紙ローラ27が図示しない駆動手段によって図中反時計回りに回転せしめられると、一番上の転写紙Pが給紙路70に向けて送り出される。
この給紙路70の末端付近には、レジストローラ対28が配設されている。レジストローラ対28は、転写紙Pを挟み込むべく両ローラを回転させるが、挟み込んですぐに回転を一旦停止させる。そして、転写紙Pを適切なタイミングで後述の2次転写ニップに向けて送り出す。
プロセスユニット6Y,M,C,Kの図中上方には、無端移動体たる中間転写ベルト8を張架しながら無端移動せしめる転写ユニット15が配設されている。転写手段であり且つ無端移動体ユニットである転写ユニット15は、中間転写ベルト8の他に、2次転写バイアスローラ19、クリーニング装置10などを備えている。また、4つの1次転写バイアスローラ9Y,M,C,K、駆動ローラ12、クリーニングバックアップローラ13、エンコーダローラ14なども備えている。中間転写ベルト8は、これら7つのローラに張架されながら、駆動ローラ12の回転駆動によって図中反時計回りに無端移動せしめられる。1次転写バイアスローラ9Y,M,C,Kは、このように無端移動せしめられる中間転写ベルト8を感光体1Y,M,C,Kとの間に挟み込んでそれぞれ1次転写ニップを形成している。これらは中間転写ベルト8の裏面(ループ内周面)にトナーとは逆極性(例えばプラス)の転写バイアスを印加する方式のものである。1次転写バイアスローラ9Y,M,C,Kを除くローラは、全て電気的に接地されている。中間転写ベルト8は、その無端移動に伴ってY,M,C,K用の1次転写ニップを順次通過していく過程で、感光体1Y,M,C,K上のY,M,C,Kトナー像が重ね合わせて1次転写される。これにより、中間転写ベルト8上に4色重ね合わせトナー像(以下、4色トナー像という)が形成される。
上記駆動ローラ12は、2次転写ローラ19との間に中間転写ベルト8を挟み込んで2次転写ニップを形成している。中間転写ベルト8上に形成された可視像たる4色トナー像は、この2次転写ニップで転写紙Pに転写される。そして、転写紙Pの白色と相まって、フルカラートナー像となる。2次転写ニップを通過した後の中間転写ベルト8には、転写紙Pに転写されなかった転写残トナーが付着している。これは、クリーニング装置10によってクリーニングされる。2次転写ニップで4色トナー像が一括2次転写された転写紙Pは、転写後搬送路71を経由して定着装置20に送られる。
定着装置20は、内部にハロゲンランプ等の発熱源を有する定着ローラ20aと、これに所定の圧力で当接しながら回転する加圧ローラ20bとによって定着ニップを形成している。定着装置20内に送り込まれた転写紙Pは、その未定着トナー像担持面を定着ローラ20aに密着させるようにして、定着ニップに挟まれる。そして、加熱や加圧の影響によってトナー像中のトナーが軟化せしめられて、フルカラー画像が定着せしめられる。
定着装置20内でフルカラー画像が定着せしめられた転写紙Pは、定着装置20を出た後、排紙路72と反転前搬送路73との分岐点にさしかかる。この分岐点には、第1切替爪75が揺動可能に配設されており、その揺動によって転写紙Pの進路を切り替える。具体的には、爪の先端を反転前送路73に近づける方向に動かすことにより、転写紙Pの進路を排紙路72に向かう方向にする。また、爪の先端を反転前搬送路73から遠ざける方向に動かすことにより、転写紙Pの進路を反転前搬送路73に向かう方向にする。
第1切替爪75によって排紙路72に向かう進路が選択されている場合には、転写紙Pは、排紙路72から排紙ローラ対100を経由した後、機外へと配設されて、プリンタ筺体の上面に設けられたスタック50a上にスタックされる。これに対し、第1切替爪75によって反転前搬送路73に向かう進路が選択されている場合には、転写紙Pは反転前搬送路73を経て、反転ローラ対21のニップに進入する。反転ローラ対21は、ローラ間に挟み込んだ転写紙Pをスタック部50aに向けて搬送するが、転写紙Pの後端をニップに進入させる直前で、ローラを逆回転させる。この逆転により、転写紙Pがそれまでとは逆方向に搬送されるようになり、転写紙Pの後端側が反転搬送路74内に進入する。
反転搬送路74は、鉛直方向上側から下側に向けて湾曲しながら延在する形状になっており、路内に第1反転搬送ローラ対22、第2反転搬送ローラ対23、第3反転搬送ローラ対24を有している。転写紙Pは、これらローラ対のニップを順次通過しながら搬送されることで、その上下を反転させる。上下反転後の転写紙Pは、上述の給紙路70に戻された後、再び2次転写ニップに至る。そして、今度は、画像非担持面を中間転写ベルト8に密着させながら2次転写ニップに進入して、その画像非担持面に中間転写ベルトの第2の4色トナー像が一括2次転写される。この後、転写後搬送路71、定着装置20、排紙路72、排紙ローラ対100を経由して、機外のスタック部50a上にスタックされる。このような反転搬送により、転写紙Pの両面にフルカラー画像が形成される。
上記転写ユニット15と、これよりも上方にあるスタック部50aとの間には、ボトル支持部31が配設されている。このボトル支持部31は、Y,M,C,Kトナーを収容するトナー収容部たるトナーボトル32Y,M,C,Kを搭載している。トナーボトル32Y,M,C,Kは、互いに水平よりも少し傾斜した角度で並ぶように配設され、Y、M、C、Kという順で配設位置が高くなっている。トナーボトル32Y,M,C,K内のY,M,C,Kトナーは、それぞれ後述するトナー搬送装置により、プロセスユニット6Y,M,C,Kの現像器に適宜補給される。これらのトナーボトル32Y,M,C,Kは、プロセスユニット6Y,M,C,Kとは独立してプリンタ本体に脱着可能である。
図3は、本プリンタにおける電気回路の一部を示すブロック図である。同図において、演算手段たる制御部200は、CPU201と、制御プログラムや各種データを記憶したROM202と、各種データを一時的に記憶するRAM203とを有している。この制御部200には、各周辺制御部との間で信号の授受を行うためのI/Oインターフェース204を介して光書込ユニット7、Tセンサ56Y,M,C,K、光書込ユニット7の制御を専用に司る光書込制御回路205、電源回路206、トナー補給回路207などが接続されている。また、ロータリーエンコーダ(以下、単にエンコーダという)170、中間転写ベルト(8)を駆動する駆動ローラ(12)の駆動源となっているベルト駆動モータ162、機内温度を検知する温度センサ163なども接続されている。更には、第1端部フォトセンサ151、中央フォトセンサ152、第2端部フォトセンサ153、Yフォトセンサ154Y、Mフォトセンサ154M、Cフォトセンサ154C、Kフォトセンサ154K等を有する光学センサユニット150も接続されている。なお、これらフォトセンサは、何れも図示しない発光手段から発した光を被検対象面で反射せしめ、その反射光を図示しない受光手段で検知する反射型フォトセンサである。
光書込制御回路205は制御部200からI/Oインターフェース204を介して入力される指令に基づいて光書込ユニット7を制御する。また、電源回路206は制御部200からI/Oインターフェース204を介して入力される指令に基づいて、各プロセスユニットの帯電装置に高電圧を印加するととも、各現像装置の現像ローラにそれぞれ現像バイアスを印加する。
トナー補給回路207は、制御部200からI/Oインターフェース204を介して入力される指令に基づいて、各色の図示しないトナー搬送装置を制御する。これにより、図示しない各色のトナーボトル(図1の32Y,M,C,K)から各現像装置内の2成分現像剤へのトナー補給を制御する。
制御部200は各色毎のTセンサ56Y,M,C,Kの出力値に基づいて現像装置内の2成分現像剤のトナー濃度が基準レベルになるような指令をI/Oインターフェース204を介してトナー補給回路207へ出力する。
本プリンタは、光書込ユニット(7)や各色のプロセスユニット(6Y,M,C,K)などからなる可視像形成手段としての作像装置の作像条件を調整するための作像条件調整処理を、所定時間経過毎などの所定のタイミングで実施するようになっている。そして、この作像条件調整処理において、後述するプロセスコントロール処理と、位置ずれ補正処理とを行う。そして、これらの処理では、光書込制御回路205が制御部200からI/Oインターフェース204を介して入力される指令に基づいて光書込ユニット7などを制御したり、制御部200が各プロセスユニットや転写ユニットの駆動を制御したりする。これにより、作像性能検知用の階調パターン像や、複数のトナー像からなるパッチパターンを中間転写ベルト8上に形成する。
より詳しくは、作像条件調整処理におけるプロセスコントロール処理では、中間転写ベルト8上に作像性能検知用の階調パターン像を形成する。この作像性能検知用の階調パターン像としては、Y,M,C,K階調パターン像の4つが形成される。それぞれの階調パターン像は、予め定められた画素パターンからなる14個のY,M,C,K基準トナー像からなっている。そして、それぞれ14個のY,M,C,K基準トナー像は、互いに異なるトナー付着量になるように形成される。
例えば、K階調パターン像SKを例にすると、これは、図4に示すように、段階的にトナー付着量が徐々に増えていくY基準トナー像SK1、SK2・・・・SK13、SK14という14個のK基準トナー像から構成されている。これらK基準トナー像は、中間転写ベルト8の進行方向に所定の間隔をおいて並ぶようにベルトおもて面に形成され、これらK基準トナー像に対する単位面積あたりのトナー付着量は、光学センサユニット150のKフォトセンサ154Kによって検知される。この検知結果は、出力値Vpi(i=1〜14)として、I/Oインターフェース204を介してRAM203に送られる。
光学センサユニット150において、各フォトセンサ(153、154K,C、152、154M,Y、151)は、ベルト幅方向(ローラの回転軸線方向)に一直線上に並ぶように配設されている。上述したK基準トナー像は、中間転写ベルト8のおもて面のベルト幅方向において、Kフォトセンサ154Kの設置位置と同じ位置に形成されるため、Kフォトセンサ154Kによって検知される。Kと同様にして、Y,M,Cについても、それぞれ14個のY,M,C基準トナー像が、ベルト幅方向においてY,M,Cフォトセンサ154Y,M,Cの設置位置と同じ位置に形成されて、Y,M,Cフォトセンサ154Y,M,Cによって検知される。そして、Y,M,C基準トナー像に対するトナー付着量の検知結果であるY,M,Cフォトセンサ154Y,M,Cの出力値Vp1〜14がRAM203内に記憶される。
制御部200は、RAM203に記憶されたこれら出力値と、ROM202内に格納されているデータテーブルとに基づいて、それぞれの出力値を単位面積当りのトナー付着量に換算し、トナー付着量データとしてRAM203に格納する。
図5は、感光体の電位とトナー付着量との関係をxy座標にプロットしたグラフである。同図において、x軸には現像ポテンシャル(階調パターン像作像時の現像バイアス電圧と感光体1K,Y,M,Cの表面電位との差:単位V)を割り振り、y軸には単位面積当りのトナー付着量(mg/cm)を割り振っている。
制御部200は、RAM203内に記憶されている電位データとトナー付着量データから、各色毎に、電位データとトナー付着量データとの関係(現像特性)が直線となる領域のものを選択し、これらのデータの平滑化処理を行う。そして、その平滑化処理後の電位データ及びトナー付着量データに対して最小二乗法を適用することによって各現像装置の現像特性の直線近似を行う。更に、各現像装置の現像特性の直線方程式y=ax+bを各色毎に求めた後、この直線方程式における傾きaに基づいて各プロセスユニット(6K,Y,M,C)における作像条件を調整する。作像条件を調整する方法としては、特開平9−211911号公報に記載されているように、感光体一様帯電電位や現像バイアスを調整する方法が挙げられる。また、二成分現像剤のトナー濃度を調整してもよい。
図4に示したように、プロセスコントロール処理においては、中間転写ベルト8の移動方向(副走査方向)に所定のピッチで並ぶ14個のK基準トナー像SK1、SK2・・・SK13、SK14からなるK階調パターン像SKが形成される。また、このK階調パターン像SKに対して主走査方向(ベルト幅方向)に隣り合うように、副走査方向(ベルト進行方向)に所定のピッチで並ぶ14個のY基準トナー像SY1、SY2・・・SY13、SY14からなるY階調パターン像SYが形成される。また、このY階調パターン像SYに対して主走査方向に隣り合うように、副走査方向に所定のピッチで並ぶ14個のM基準トナー像SM1、SM2・・・SM13、SM14からなるM階調パターン像SMが形成される。また、このM階調パターン像SMに対して主走査方向に隣り合うように、副走査方向に所定のピッチで並ぶ14個のC基準トナー像SC1、SC2・・・SC13、SC14からなるM階調パターン像SCが形成される。
また、作像条件調整処理における位置ずれ補正処理では、中間転写ベルト8における幅方向の両端付近及び中央付近に、図6に示されるような位置ずれ検知用のパッチパターンを形成する。両端付近及び中央付近にそれぞれ形成されるこれら3つのパッチパターンは、それぞれ副走査方向に所定の間隔で並ぶ4つのY,M,C,K基準トナー像Sy、Sm、Sc、Skからなり、同色の基準トナー像がそれぞれ主走査方向に並ぶように形成される。
図中でベルト幅方向の手前側端部付近に形成されたパッチパターン内の各基準トナー像は、第1端部フォトセンサ151によって検知される。また、ベルト幅方向の中央付近に形成されたパッチパターン内の各基準トナー像は、中央フォトセンサ152によって検知される。また、ベルト幅方向の奥側端部付近に形成されたパッチパターン内の各基準トナー像は、第2端部フォトセンサ153によって検知される。各色の基準トナー像の形成タイミングが互いに適切であれば、各基準トナー像の検知間隔がそれぞれ等しくなるが、不適切であると、各色の基準トナー像の形成間隔が不均一になる。そして、検知間隔も不均一になる。また、光学系に光書込のスキューが生じていなければ、3つのパッチパターンの間において、それぞれ同色の基準トナー像が同じタイミングで検知されるが、スキューが生じていると検知タイミングが異なってくる。制御部200は、主走査方向や副走査方向における各色トナー像の検知間隔や検知タイミングのずれに基づいて、各感光体に対する光書込開始タイミングや光学系を調整して、各色トナー像の位置ずれを抑える。
なお、上述した階調パターン像やパッチパターンを形成した際には、図1に示した2次転写バイアスローラ19を中間転写ベルト8から離間させて、階調パターン像やパッチパターンの2次転写バイアスローラ19への転位を回避するようになっている。
スキューずれの補正については、図示しない駆動機構により、光書込ユニット7の内部にある各色のレーザー光を折り返すためのミラーの傾きを調整することによってなされる。ミラーに傾きを付勢するための駆動源としてはステッピングモータが用いられている。
また、各色トナー像の副走査方向(ベルト移動方向)の位置ずれの補正については、各感光体に対する光書込開始タイミングを調整することによってなされる。図7は、副走査方向における光書込開始タイミングの補正がなされる際における各種信号の発生タイミングを示すタイミングチャートである。同図において、副走査方向の画像領域信号である潜像書込みenable信号のオンオフ(立ち上がり、立ち下がり)は、画像の1ドットに相当する時間単位で調整される。即ち、潜像書込enable信号の補正分解能は1ドットに相当する時間である。この潜像書込enable信号は、ポリゴンミラーの反射面上での反射によって主走査方向(感光体の回転軸線方向)に往復走査される書込レーザー光を主走査方向の走査領域の端部付近で検知したことによって発せられる同期検知信号に基づいて調整される。例えば、感光体に対する光書込開始タイミングを副走査方向の1ドット分の時間だけ早くする、図7に示すように同期検知信号1つ分だけ潜像書込enable信号の立ち下がりタイミングが早められる。
図8は、副走査方向における光書込開始タイミングの補正がなされる際における各種信号の発生タイミングを示すタイミングチャートである。同図のタイミングチャートにおいても、各信号の補正分解能は1ドットになっている。このタイミングチャートにおいて、潜像書込クロックは上述の同期検知信号の立ち下がりエッジにより、各ラインともに正確に位相の合ったクロックが得られるように決定される。かかる潜像書込クロックに同期して光書込が開始されるが、主走査方向の潜像書込みenable信号もこのクロックに同期して生成される。上述のパッチパターン内の各基準トナー像の検知タイミングに基づいて、光書込開始タイミングが副走査方向に1ドット分の時間だけ早められる場合には、図8に示すように、1クロック分だけ書込enable信号を早めにアクティブにすれば良い。
また、基準色であるKに対して、Y,M,Cのパッチパターン内における各基準トナー像の主走査方向の倍率がずれていたときには、信号の周波数を非常に小さいステップで変更可能なクロックジェネレータ等のデバイスによって倍率が補正される。
図9は、中間転写ベルト(図6の8)のループ内に配設される従動ローラとしてのエンコーダローラ14をその一端側に配設されたエンコーダ170とともに示す拡大構成図である。このエンコーダローラ14は、ステンレス等からなり、中間転写ベルトの無端移動に伴って従動回転するものである。そのローラ部の両端からそれぞれ軸線濃厚に突出する軸部の一方(15a)は、図示のように、外側に向かうにしたがって3段階に細くなる構造になっている。両端の軸部はそれぞれ転写ユニットの支持板に設けられた軸受け169によって回転自在に支持されている。
エンコーダローラ14の軸部14aを覆っているエンコーダ170は、軸部14aとともに回転するように軸部14aに固定された円盤状のコードホイール171、透過型フォトセンサ172、支持板173、カバー73等を有している。
支持板173は、ポリアセタール等の樹脂材料からなり、エンコーダローラ14の軸部14aにおける根元側の箇所に圧入(軽圧入)されている。コードホイール171は、この支持板173の片側端面(圧入方向の反対側の端面)に対して、図示しない両面テープを介して固定されている。軸部14aの先端部も軸受けによって回転自在に支持されており、これによってコードホイール171が固設された支持板173の位置決め精度が向上している。
コードホイール171は、厚さ0.2mm程度のPET(ポリエチレンテレフタレート)などからなり、図10に示すように、その外縁部には放射状のスリット171aが形成されている。このスリット171aは、例えばフォトレジストを用いたパターン描画技術などによって形成されたものである。
透過型フォトセンサ172は、コードホイール171のスリット形成部を介して、自らの発光素子172aと受光素子172bとを対向させている。コードホイール171の回転に伴って、スリット形成部の各スリット171aが受光素子172aと発光素子172bとの間に位置して光を送受可能にしたり、両素子間にスリット171aが介在しなくなって光の送受がなされなくなったりが短周期で繰り返される。より詳しくは、両素子の間にスリット171a(図中の黒塗りの箇所)が介在するときには発光素子172aから射出された光が受光素子172bに受光されて、透過型フォトセンサ172からの出力電圧がHiレベルになる。これに対し、スリット171aが介在しないときには、発光素子172aからの光がスリット間の箇所に遮断されて、反射型フォトセンサ172からの出力電圧がLowレベルになる。従って、例えば、図11に示すようなエンコーダ出力信号の周波数に基づいて、エンコーダローラ14の回転角速度(以下、単に角速度という)が把握される。この把握は、図3に示した制御部200によって行われる。
制御部200は、エンコーダ170からの出力に基づいて得たエンコーダローラ14の角速度の検知結果を、ベルト駆動モータ162の駆動速度にフィードバックする。具体的には、角速度が制御目標値よりも遅いと判断した場合にはそれに応じてベルト駆動モータ162の回転速度を速める。この一方で、角速度が制御目標値よりも速いと判断した場合には、ベルト駆動モータ162の回転速度を遅める。このようなフィードバック制御により、中間転写ベルトの移動速度の安定化が図られる。
より詳しくは、本プリンタのようなタンデム方式においては、中間転写ベルト8を一定速度で移動させる必要がある。しかし、実際には、ベルトの周方向の厚みムラにより、そのベルト移動速度に変動が生じる。中間転写ベルト8のベルト移動速度が変動すると、実際のベルト移動位置が目標とするベルト移動位置からずれてしまい、感光体1Y,M,C,K上の各トナー像のベルト移動方向における先端位置が中間転写ベルト8上でずれて重ね合わせずれ(色ずれ)が発生する。また、ベルト移動速度が相対的に速い時に中間転写ベルト8上に転写されたトナー像部分は本来の形状よりもベルト周方向に引き延ばされた形状となり、逆に、ベルト移動速度が相対的に遅い時に中間転写ベルト8上に転写されたトナー像部分は本来の形状よりもベルト周方向に縮小された形状となる。この場合、最終的に記録紙上に形成された画像には、そのベルト周方向に対応する方向に周期的な画像濃度の変化(バンディング)が表れる。
そこで、以下、中間転写ベルト8を高い精度で一定速度に維持する構成及び動作について説明する。なお、以下の説明は、中間転写ベルト8に限られるものではなく、広く、駆動制御がなされるベルトについて同様であるので、ベルトとして説明する。
図12は、中間転写ベルト8の主要部を示す断面模式図である。中間転写ベルト8は、従動ローラとしてのエンコーダローラ14に対してベルト巻付角θで巻き付いており、駆動ローラ12に対してベルト巻付角θで巻き付いている。中間転写ベルト8は、図中矢印Aの方向に無端移動する。
駆動ローラ12は、図示しない伝達機構を介してベルト駆動モータ(図3の162)からの回転駆動力が伝達されるようになっている。また、ベルト駆動モータにも、図示しないロータリーエンコーダが設けられている。このエンコーダとしては、モータの回転角やモータの駆動信号から駆動ローラ12の回転角速度または角変位を推測する。
制御部200は、エンコーダローラ14に設置されたエンコーダ170から送られてくる信号に基づいて中間転写ベルト8の回転周期で発生する変動成分を認識し、適切な目標値を生成してフィードバック制御を行う。認識方法としては、駆動ローラ12の回転角変位または回転角速度と、エンコーダローラ14の回転角変位又は回転角速度のサンプルリングを行う。サンプルリングされた駆動ローラ12の回転角変位または回転角速度とエンコーダローラ14の回転角変位又は回転角速度との差から求められる変動成分の振幅及び位相を求める。これをベルトの回転周期で発生する変動成分とし、この変動成分からベルト回転周期の搬送速度変動が発生しないような目標値を設定してフィードバック制御を行う。
次に、ベルトの厚さとベルトの移動速度との関係について説明する。
図13は、一般的に用いられるベルトの周方向におけるベルト厚み変動(ベルト厚み偏差分布)の一例を示すグラフである。このグラフの横軸は、ベルト1周分の長さ(ベルト周長)を2π[rad]の角度に置き換えたものである。縦軸は、ベルト周方向におけるベルト平均厚み(100μm)を基準(基準値0)としたベルト厚みの偏差値である。図13に示すベルト厚み変動は、ベルト厚み変動の周波数成分のうち、基本(一次)成分のみを示したものである。なお、後述するが、本実施形態においてはこのような一次成分のみの厚み変動からベルト駆動を制御するだけでなく、高次成分を考慮に入れて対応可能である。
駆動ローラ12側でのベルト移動速度は、以下のようにして求める。
駆動ローラ12側でのベルト移動速度は、駆動ローラ12のベルト巻付角θの(1/2)上における中間転写ベルト8の中央部をベルト駆動位置Xと仮に設定し、このベルト駆動位置での速度とする。中間転写ベルト8の厚さが周方向に沿って正弦的に変化しているとき(サイン波)、駆動位置におけるベルト実効厚みBは、下記の数1に示す式で表すことができる。この式中の「Bt0」は、中間転写ベルト8の平均厚みであり、「Bta」は厚さ変動の振幅値、「θb」はベルト厚さ回転角速度であり、αは、初期位相である。
Figure 2009015069
実効厚みBは、ベルト材質が均一で、かつ、中間転写ベルト8の内周面と外周面との伸縮度の絶対値がほぼ一致する場合、そのベルト厚み方向の中央とベルト内周面との距離に相当する。多層構造のベルトなどにおいては、硬質な層と軟質な層との間で互いに伸縮性が異なる結果、ベルト厚み方向の中央からずれた位置とベルト内周面との距離がベルト実効厚みBtとなることもある。また、ベルト実効厚みBtは、駆動ローラ12に対するベルト巻付角によっても変化することがある。ベルト実効厚みBtは、ベルト厚み実効係数κdを用いると、下記の数2に示す式で表すことができる。ベルト厚み方向の中央とベルト内周面との距離がちょうどベルト実効厚みBtに等しい場合、ベルト厚み実効係数κdは0.5となる。
Figure 2009015069
このようなベルト実効厚みBt’となった場合のベルト搬送速度Vは、(駆動ローラ半径R+ベルト実効厚みBt’)×駆動ローラ回転角速度ωより求められ、下記の数3に示す式で表すことができる。
Figure 2009015069
上記数3から厚さ変動の振幅「Bta」があると、駆動位置におけるベルト搬送速度が変化することがわかる。
エンコーダローラ14側でのベルト移動速度は、以下のようにして求める。エンコーダローラ14のベルト巻付角θの(1/2)上における中間転写ベルト8の中央部をベルト従動位置Yと仮に設定し、このベルト従動位置での速度とする。上記ベルト駆動位置Xからベルト従動位置Yまでの距離は、ベルト一周の長さを2πラジアンとするとき、位相差τラジアンと表すことができる。すると、従動位置Yにおけるベルト実効厚みBt’’は、下記の数4に示す式で表すことができる。
Figure 2009015069
ここで、κはエンコーダローラ14側でのベルト厚み実効係数であり、駆動ローラ12とエンコーダローラ14とでベルト巻付き量が異なる構成が考えられるため、別の係数を設定した。そして、このようなベルト実効厚みBt’’のベルトが巻付いている時の従動位置Yにおけるベルト搬送速度Vは、下記の数5に示す式で表すことができる。この式中の「R」は従動ローラ半径であり、ωは、従動ローラ回転角速度である。
Figure 2009015069
ここで、中間転写ベルト8の実効厚み(Bt)の変動におけるローラの回転角速度(ω)とベルトの速度(Vb)との関係を図14に基づき説明する。図14(a)は、ローラが一定の回転角速度(ω=定数)で回転している場合の各ベルト位置でのベルトの速度(Vb)の関係Aと、ベルトが一定速度(Vb=定数)で回転している場合の各ベルト位置でのローラの回転角速度(ω)の関係Bとを示した図である。なお。グラフEは、ベルト実効厚み(Bt)を示している。図14(a)のグラフAからわかるように、ローラが一定の回転角速度で回転している場合(ω=定数)、ベルトの速度(Vb)は、ベルトの実効厚み(Bt)が最大の部分で速度が最大となり、ベルトの厚みが最小の部分で速度が最小となっている。一方、ベルト速度を一定(Vb=一定)とした場合は、ローラの回転角速度(ω)は、ベルト実効の厚み(Bt)が最大の部分で速度が最小となり、ベルトの実効厚み(Bt)が最小の部分で速度が最大となっている(図14(a)のB参照)これは、数3や、数5からわかるように、ローラの回転角速度(ω)、ベルト速度(V)、ベルト実効厚み(B)との間には、V=B×ωの関係が成り立っているからである。
この図14(a)の結果から、以下のことが言える。駆動ローラ12を一定の角速度で回転させた場合、ベルトの速度は、ベルトの厚みの影響により図14(a)のAの波形のように変動する。一方、エンコーダローラ14の回転角速度は、上記速度変動の影響を受ける。厚み変動の影響を考慮しなければ、エンコーダローラ14の回転角速度は、上記速度変動と同様な波形となる。しかしながら、実際は、エンコーダローラ14の回転角速度は、ベルトの厚みの影響によって、図14(a)に示す波形Bのような変動成分が加わる。すなわち、エンコーダローラ14の回転角度は、図14(a)の波形Aと波形Bとが重畳されたような波形となる。
図14(b)は、図12に示したようにエンコーダローラ14と駆動ローラ12とがτ離れた場合の中間転写ベルト8の厚み変動における駆動ローラ12の速度および中間転写ベルト8の速度の関係、並びに、中間転写ベルト8の厚み変動におけるエンコーダローラ14の速度および中間転写ベルト8の速度の関係を示した図である。図14(b)のAは、駆動ローラ12を一定の回転角速度で回転した場合のベルト搬送速度を示したグラフである。Cは、駆動ローラ12を一定の回転角速度で回転した場合のエンコーダローラ14の回転角速度である。B’は、ベルトを一定の搬送速度で回転したときのエンコーダローラ14の回転角速度である。Eは、図2に示す従動位置Yにおけるベルトの実効厚み変動である。Eは、図2に示す駆動位置Xにおけるベルトの実効厚み変動である。
図14(b)からわかるように、駆動ローラ12を一定の回転角速度で回転した場合のエンコーダローラ14の回転角速度であるCは、ベルトを一定の搬送速度で回転したときのエンコーダローラ14の回転角速度変動B’と、駆動ローラ12を一定の回転角速度で回転した場合のベルト搬送速度であるAとを重畳したものである。なお、ここでは、R=R、κ=κ、α=0、τ=1.3ラジアンとしている。
また、図14(b)からわかるように、回転角速度であるCをエンコーダで検出する場合、位相差τがπrad(もしくはπの奇数倍)であれば、波形B’が波形Aと同一の曲線となる。その結果、波形B’と波形Aとの合成曲線である波形Cの振幅は最大(図の例では曲線Aの振幅の2倍)になる。すなわち、駆動ローラ12とエンコーダローラ14の距離がベルト厚み変動の周期の2分の1に設定できればエンコーダローラ14の回転角速度の検出感度が最大になる。また同様に、πに近い方が波形B’と波形Aとが同一曲線に近づくので検出感度が大きくなる。このことから、回転角速度を検出するエンコーダローラ14は、駆動ローラ12に対しベルト上での距離がπに近い(ベルト周期成分がベルト1周1周期の場合、もっとも距離が離れた)エンコーダローラ14を選択するのが好ましい。
実際には、画像形成装置で機能性を持たせたベルト搬送経路を考慮すると、τをベルト厚み変動周期の丁度2分の1に設定することは難しいが、なるべくその近くに設定できると検出感度が高くなる。ベルト厚み変動が全体で2周期以上有る場合は、その変動周期において、前記の位相差τを丁度π、もしくはπの奇数倍に設定でき、高い検出感度を得ることができる。この関係をベルトの長さで表現すると、ベルト厚み変動の周期Tに対応するベルト長さの2分の1、もしくはその奇数倍ということになる。
本実施形態においては、エンコーダローラ14の回転角速度の変動がB’となるように、駆動ローラ12の回転角速度を調整するものである。詳しくは、図14(b)の波形Cから、波形B´を求める。波形C、波形B´とも周期は、ベルト厚み変動の周期であり同じ周期を有している。波形CをKsin(θ+τ)とすると、波形B’は、ηKSin(θ+τ+T)で表すことができ、振幅の補正係数ηと位相補正値Τとがわかれば、波形Cから、波形Bを求めることができる。
以下に、駆動ローラを一定角速度で駆動したときのエンコーダローラ14の回転角速度(波形C)から、ベルトを一定の搬送速度で回転したときのエンコーダローラ14の回転角速度(波形B’)を算出する演算について説明する。
まず、エンコーダローラ14の回転角速度ωは、上記数3と数5から下記の数6に示す式で表すことができる。
Figure 2009015069
ベルト厚み変動Btaは、ローラ径Rよりも十分小さいとして近似することにより、下記の数7に示す式で表すことができる。
Figure 2009015069
数7に示す従動ローラの回転角速度ωのうち、変動成分Δωは、下記の数8に示す式で表すことができる。
Figure 2009015069
Δωeは、ベルト1周の厚み変動による変動成分であり、{}の中の2項に注目し、前者をA、後者をBとすると、Aは駆動位置におけるベルト変動成分を示しており、Bは従動位置におけるベルト変動成分をそれぞれ表わしている。なお、{}の外の分数の構成から、エンコーダローラ14の半径Reよりも、駆動ローラ12の半径Rdを大きくすることで、検出感度が高くなることが分かる。
Figure 2009015069
Figure 2009015069
ここで、駆動ローラ12を一定角速度で回転させた場合のエンコーダローラ14で検出されるデータ成分Cとすると、下記の数11に示す式で表すことができる。
Figure 2009015069
A、Bは同じ周期を有する正弦波であるから、その和は同じ周期の単一の正弦波に合成されるので、Cは正弦関数で表現でき、K、βを定数とすると下記の数12に示す式で表すことができる。
Figure 2009015069
A、B、Cはいずれも回転周期がベルトの回転周期と同じであるため、位相ベクトルで表現することができる。図15はA、B、Cの位相ベクトル成分図である。図15では、一般化する意味でベクトルAを0°としているが、ベクトルAに初期位相αを与えても、各ベクトルの振幅位相関係には影響ない。
駆動ローラ12を一定回転させたときのエンコーダローラ14の回転角速度変動(ベクトルC)から、目標値であるベルト一定速度の時のエンコーダローラ14の角速度変動(ベクトルB)への変換係数ηが補正係数となる。どちらも正弦関数であるため振幅に対して係数をかけて、位相操作を行うことによりベクトルCからベクトルBへ変換が可能である。つまり、図15に示したように、検出されたCのベクトル成分からBのベクトル成分へ変換するために、ベクトルの長さ(振幅値)を補正係数にて変換し、π−τ+βだけ位相を遅らせることにより変換できる。ここでβとは、AとCとの位相差である。
Figure 2009015069

Figure 2009015069
駆動ローラ12を一定回転させたときに従動ローラ側で検出される変動振幅を、ベルトが一定速度で搬送された時の従動ローラ側での変動振幅に変換する補正係数ηは下記の数15に示す式で表すことができる。
Figure 2009015069

また、位相に対する補正値Τは
Figure 2009015069

となる。
つまり、駆動ローラ12を一定回転させて検出されたベルト回転周期の変動データ(図14(b)の波形C)の変振幅及び位相数値に対して、振幅値は、補正係数ηをかけて、位相Tを加えた値が、ベルトが一定速度で回転させた場合のエンコーダローラ14の回転角速度の変動データ(図14(b)の波形B’)となる。これがベルト厚み変動に対応したベルトを一定速度で回転させるためのエンコーダローラ14の目標基準信号数値となる。数13〜15は、ローラ径や位相差など、すべてベルト搬送機構の構成に関する数値で求められる。そのため、振幅の補正係数ηと位相補正値Tは、予め決定される定数である。ただし、ベルト厚み実効係数κは、ベルトの材質やベルトの巻付き角に応じて変化するものであり、駆動ローラ12側とエンコーダローラ14側のベルト厚み実効係数κを事前に把握する必要がある。このベルト厚み実効係数κは、ベルトの平均搬送速度と各ローラの平均回転角速度の関係を計測して求めることができる。ベルト厚み実効係数κは、ベルト材質やベルトの巻付き角が装置すべてに共通であれば、1つの装置において計測すれば他の装置に同じ数値を用いることができる。また、駆動ローラ12とエンコーダローラ14の半径Rを同一として、さらにベルト実効厚み係数κも同一となる構成にすることで、数13、数14が簡略化されることがわかる。そのことから、駆動側と従動側のκがほぼ同一となるように巻付き角を一致させるようにベルト搬送経路を設計することが好ましい。また、巻付き角がある角度を超える、つまり、駆動ローラ12側とエンコーダローラ14側の巻付き角を十分に持たせると、ベルト厚み実効係数κは、巻付き角に依らず、ベルト体の構造固有の値に安定することが実験から得られた。このことから、駆動と従動の両者の巻付き角を十分に持たせることで同様にκの比を1とすることが可能である。
これまで、理解の容易化を図るために駆動ローラ12の回転角速度を一定とした場合について説明してきたが、駆動ローラ12の回転角速度を一定にする必要はない。この理由を以下に説明する。以下の説明では、わかりやすくするため、駆動ローラ12の角速度を変動させて、ベルト速度を一定とした場合について説明する。ベルト速度が一定と仮定した場合、駆動ローラ12における回転角速度は、図14(b)に示した波形Aとπだけ位相がずれた波形となる。このときのエンコーダローラ14における回転角速度は、図14(b)に示した波形B´となる。駆動ローラ12における回転角速度(波形Aとπずれた波形)とエンコーダローラ14における回転角速度(波形B´)との差分は、図14(b)のCの波形(駆動ローラ12を一定回転させたときのエンコーダローラ14の回転角速度)となる。先の説明では、わかり易くするために、ベルト速度が一定と仮定した場合について説明したが、上述のように駆動ローラ12における回転角速度からエンコーダローラ14における回転角速度を差し引けば、図14(b)のCの波形(駆動ローラ12を一定回転させたときのエンコーダローラ14の回転角速度)が得られる。これは、従動軸側で検出される(9)(10)(12)式で表現されたベルト厚み変動に起因した変動成分の関係は、駆動ローラ12の回転角速度に依存しないためである。つまり、駆動ローラ軸の回転角速度が変動していても、エンコーダローラ軸の回転角速度から駆動ローラ軸の回転角速度を差し引くことによって、駆動ローラ軸を一定に回転させた時と同様にベルト厚み変動に起因した変動成分を得ることができる。
以上、従動ローラ軸の回転角速度および駆動ローラ軸の回転角速度(角変位)の変動を計測したデータから、ベルト厚み変動によるエンコーダローラ14の回転角速度(角変位)変動を算出する。そして、この算出データから、ベルトが一定搬送速度となる従動ローラの制御目標値(角速度)を設定し、この目標値と従動ローラ側ロータリエンコーダの出力値と比較して駆動制御する。これにより、駆動ローラの偏心等駆動系の回転変動によるベルト速度変動、ベルト厚み変動によるベルト速度変動、ベルトとローラの熱膨張によるベルト速度変動、スリップによるベルト速度変動などのベルトの周期変動を制御することが可能となる。
また、変動成分を三角関数として近似し、展開したこの原理は、ローラ径やベルト周長などによらず、どのような構成においても適用することが可能である。
また、駆動ローラ12とエンコーダローラ14との回転角速度によって、ベルトの周期変動を制御する原理について説明したが、角速度ではなく回転角変位(位置)でも同様の原理が適用される。これは、角速度を積分したものが角変位となるからである。数式では、sin関数がcos関数に変換され、振幅が変わり、定常偏差が発生する。しかし、本理論で重要な点は、波形A、B、Cの振幅と位相の関係であり、角速度でも、角変位でも波形A、B、Cの振幅と位相の関係は変化しない。つまり、波形A、B、Cが角変位でも、上記と同様の数式で表現された振幅補正係数ηと位相補正値Tが求められるからである。
また、ここでは、ベルト周期変動をベルト1周期の基本波成分が支配している場合で、変動を正弦波として近似し、その振幅と位相値から、ベルト1周分の目標基準信号を正弦波として算出する原理を説明した。しかし、実際には、使用するベルトの周期変動が基本波として近似するには誤差が大きい場合がある。その時には、基本波の半分の周期をもつ第2高調波成分や同様に基本波の1/nの周期を持つ第n高調波成分を扱い、ベルト周期変動を近似すればよい。これは、周期関数をフーリエ級数展開するものと同様である。そして、それぞれの高調波成分に対して、同様の振幅補正、位相補正を行えばよい。ただし、位相差τに関しては、それぞれの高調波成分の周期に合わせて変換する必要がある。
次に、本プリンタのベルト駆動制御について説明する。図16は、図3に示した制御部200におけるベルト駆動制御系の電気回路を示すブロック図である。図3では、便宜上、この電気回路の図示を省略していたが、制御部200は、この図16に示す電気回路を備えている。この電気回路は、モータ駆動部615と、コントローラ部614とを備えている。モータ駆動部615には、サーボアンプ603、ループフィルタとチャージポンプとを備えた出力制御部604が設けられている。コントローラ部614には、比較器605、目標基準信号生成部606、目標関数演算部607、ベルト周期変動検出部608が設けられている。
コントローラ部614は、CPU、またはDSPの処理能力やコスト等をふまえて、ソフトで処理する部分とハードで処理する部分を適宜選択することができる。例えば、コントローラ部614をすべてCPU、又はDSPでデジタル処理し、モータ駆動615への出力の時にD/A変換するように構成しても良い。また、目標関数演算部607までをCPU、又はDSPでデジタル処理し、目標基準信号生成部606では、607からの信号に応じてパルス出力周波数を変調する回路で構成し、605はエンコーダの出力パルスと位相比較を行うようというPLL制御系とするように構成しても良い。さらに、すべてを回路で構成するようにしてもよい。CPU又はDSP等でデジタル処理領域を多くすることで、環境、経時変化やノイズの影響を受けにくくなるが、高コスト、量子化離散化ノイズなどが発生してしまう。このようなことを考慮して、ソフトで処理を行う部分、ハードで処理を行う部分を適宜選択することが好ましい。
モータ駆動部615は、ベルト駆動モータ162によって、駆動ローラ12をベルトが安定した速度で搬送されるように回転させるための制御を行うものである。モータ駆動部615は、サーボベルト駆動モータ162を含めたサーボアンプ603やループフィルタ+チャージポンプ604を位相比較器として、公知のPLL制御系で構成している。また、ベルト駆動モータ162は、サーボモータに限らず、ステッピングモータや振動波モータとしても良い。ベルト駆動モータ162をステッピングモータや振動波モータとした場合、それに伴いモータ駆動部615の制御ブロックは若干変更する。図17は、ベルト駆動モータ162をステッピングモータや振動波モータとした場合の制御部のブロック図である。図17に示す、モータ駆動部615´では、サーボアンプ603、ループフィルタ+チャージポンプ604に替わり、モータドライバ603’と駆動パルス生成部604‘の構成となる。このモータ駆動部615’は、コントローラ部614から出力される信号に応じて、駆動パルス生成部604’で駆動パルス列が出力される。それをモータドライバ603’が受けて、駆動電流をモータの各相に流す。また、駆動パルス生成部604’は、比較器605からの制御基準信号とエンコーダ出力信号との差分を駆動パルスに変換する機能をもっている。しかし、比較器605からの信号は、目標値との偏差であるため、その偏差が小さくなるようにモータを駆動する機能も駆動パルス生成部604’は併せもっている。具体的には、駆動パルス生成部604’にPID制御器などを組み込み、制御対象のベルトが目標速度に対して、偏差やオーバーシュート、発振が無いように調整してから駆動パルス列が出力されるようにしている。
また、モータ駆動部615は、駆動入力信号として駆動ローラ12の回転角速度情報をコントローラ部614に送信している。ベルト駆動モータ162がステッピングモータの場合は、駆動入力信号として、モータ駆動信号がコントローラ部614に送信される。ステッピングモータの場合は、モータ駆動パルス列に応じてステップ駆動するので、モータ駆動信号から容易に駆動ローラ12の回転角速度を推測することができる。また、ベルト駆動モータ162がDCサーボモータの場合は、サーボモータに内蔵されているモータ軸の回転数を検出するMRセンサの信号を駆動入力信号としてコントローラ部614に送信する。駆動入力信号は、これに限らず、例えば、駆動ローラ12にロータリエンコーダを設けて、このロータリエンコーダの出力信号を駆動入力信号としても良い。
エンコーダローラ14の同軸上に設けられたエンコーダ170は、エンコーダローラ14の回転角に応じた波形を出力する。出力された波形は、エンコーダ回転検出部610を介してコントローラ部614に送られる。コントローラ部614がアナログ処理の場合、エンコーダ出力をパルス波形として、コントローラ部614に送れば良い。コントローラ部614がデジタル処理の場合は、エンコーダ回転検出部610でエンコーダの検知内容(回転速度検出または回転角変位検出)に応じた処理が行われる。エンコーダの検知内容が回転角速度検出の場合、エンコーダ出力波形の周期を計測し、回転角速度をエンコーダ回転検出部610で算出してからコントローラ部614へ信号を送信する。また、エンコーダ出力波形(パルス波)をカウントし、任意の時間内に計測されたパルスカウント値から回転角速度を算出して、コントローラ部614へ信号を送信するようにしても良い。
一方、エンコーダの検知内容が回転角変位検出の場合、エンコーダ出力波形(パルス波)をカウントして回転角変位をエンコーダ回転検出部610で算出してからコントローラ部614へ駆動出力信号を送信する。または、回転角速度結果をエンコーダ回転検出部610で積分して、コントローラ部614へ駆動出力信号を送信するようにしても良い。
エンコーダの検知内容を角速度と角変位のどちらにするかについては、制御対象としているベルトの周期に応じて決めるとよい。画像形成装置で用いられる中間転写ベルト8などの無端状ベルトとそれを駆動するベルト駆動モータ162や伝達機構18、駆動ローラ12などの駆動系部品の回転周期は、0.1〜5[Hz]が多い。図1で示した画像形成装置の中間転写ベルト8は、約800[mm]の無端状ベルトを160[mm/sec]で搬送するので、回転周期は0.2[Hz]である。このようなベルト回転周期の変動を検出して適切に制御する場合、角速度を検出するよりも角変位を検出する方が変動としては大きくなり、制御性能を高くすることができる。それは、角速度は、ベルト一周期のベルトの速度変動を検出するものであるが、角変位は、ベルト一周期あたりのローラの移動量(回転量)であるからである。例えば、図1の画像形成装置では、ローラの半径が16[mm]で、ベルト平均厚みが100[μm]、ベルトの厚みが±10[μm]変化するものが多い。エンコーダローラ14が一定速度で回転した場合とベルトが一定速度で回転した場合とを比較すると、速度変動率は、±0.16[%]であるが、角変位量は、±20[μm]以上となる。このような理由から、本実施形態においては、回転角変位情報を検出する方が適している。ただし、ベルトの回転に対し比較的高い周波数の駆動系回転体に対して、より高精度に制御するために速度フィードバック系を併せて構成してもよい。
このように、エンコーダ回転検出部610からコントローラ部614へ送られた信号は、ベルト周期変動検出部608または比較器605に送られる。後述する駆動出力信号である場合は、ベルト周期変動検出部608に送られ、後述するフィードバック制御を行うために検出された信号である場合は、比較器605に送られる。
ベルト周期変動検出部608は、駆動入力信号と駆動出力信号とからベルトの仮想ホームポジション信号を基準としたベルト周期変動を検出する。このベルト周期変動検出部608の出力値は、先述したベルト回転周期変動の基本波及び高調波成分の振幅と位相数値である。
上記仮想ホームポジション信号は、ベルトの1回転周期で発生するように設定された信号である。仮想ホームポジション信号は、例えば、駆動ローラ12の径や駆動伝達系の減速比などを考慮して、ベルト1周回分に相当するモータの累積回転角を設定する。そして、モータの累積回転角が、この設定された値となったら仮想ホームポジション信号が発生するようにする。また、エンコーダローラ14の径を考慮して、ベルト1周回分に相当する従動ローラの累積回転角を設定する。エンコーダローラ14に設置されたエンコーダ170で回転角を検出して、設定した累積回転角になったときに仮想ホームポジション信号が発生するようにしてもよい。さらに、ベルトが設定された平均速度で搬送されている場合は、ベルト回転周期に相当する時間間隔のクロック信号を設定してもよい。この仮想ホームポジション信号を基準に累積回転角や経過時間を管理することで、現在のベルトの位相を認識することができる。
図18は、ベルト周期変動検出部608の回路構成を示すブロック図である。このベルト周期変動検出部608も、図3に示した制御部200内に設けられている。ベルト周期変動検出部608は、変換部803、比較器804、周期変動サンプル部805、変動振幅・位相検出部806が設けられている。変換部803は、ベルト駆動モータ162から出力された駆動入力信号を従動軸の回転角速度として変換する部分である。例えば、駆動入力信号がモータ駆動信号の場合は、モータが減速器を介して駆動ローラに接続されている場合には、減速比を考慮して、モータ駆動信号を駆動ローラ回転角に変換する。さらに、駆動ローラと従動ローラの径比を考慮して、従動軸回転角相当に変換する。また、仮に駆動入力信号802と出力信号807がそれぞれ速度情報と位置情報といったように異なる情報である場合には、駆動出力信号を駆動入力信号に一致させるように、変換部803に積分器又は微分器が付加される。比較器804は、駆動出力信号807と変換部803で変換された駆動入力信号803とを比較し、その差分が周期変動サンプル部805に出力される。この周期変動サンプル部805に出力される差分情報は、上述したようにベルト厚み変動に起因した変動成分である。周期変動サンプル部805は、ベルト1周期のベルト厚み変動に起因した変動成分をメモリに記憶する部分である。周期変動サンプル部805は、ベルト仮想ホームポジション信号を検知するとメモリにベルト厚み変動に起因した変動成分の記憶を開始する。そして、再びベルト仮想ホームポジション信号を検知した時点でメモリにベルト厚み変動に起因した変動成分の記憶を停止する。これにより、ベルト1周期分のベルト変動成分がメモリに記憶される。
変動振幅・位相検出部806は、メモリに記憶されたベルト1周期分の変動成分から基本波及び高調波の振幅と位相を検出する部分である。変動振幅、位相の検出手法としては、変動値のゼロクロス、又はピーク値から既定周期の変動成分の振幅と位相を検出する手法や直交検波による既定周期成分の検出手法がある。これらの手法は、CPU又はDSPの演算負荷やメモリ等のハード構成と、変動振幅、位相検出部806に入力される情報のSN比にから選択する。ゼロクロス、又はピーク値から検出する手法は、演算負荷も少ないがノイズの影響を受けやすい。直交検波による手法は、演算負荷は大きいがノイズの影響は受け難い。このようにして、ベルト周期成分の振幅と位相が検出される。
図1に示す画像形成装置に用いられる中間転写ベルト8などの搬送ベルトにおいては、エンコーダで検出されるデータにベルトの周期(厚み)変動以外に様々な変動成分が重畳している。例えば、駆動系歯車の偏心や歯の累積ピッチ誤差などに起因した伝達誤差による変動成分や駆動ローラとベルト間のスリップによる変動成分、駆動ローラの偏心、ベルトに接触するクリーニングブレードやローラ、転写材による負荷変動による変動成分、さらに、エンコーダローラ14やエンコーダの取付け偏心による変動成分などである。これらの変動成分がベルト周期変動成分を検出するのに無視できない場合、先述した図10の構成だけでは不十分である。このため、ベルト厚み変動成分以外の変動を除去する機能が必要となる。
図19は、上記のようなベルトの厚み変動以外に様々な変動成分を除去して、高精度にベルト厚み変動の交流成分を検出することができるフィルタ部900を備えたベルト変動検出部809の回路構成を示すブロック図である。図中点線で示したベルト周期変動検出部809は、少なくとも図16のベルト周期変動検出部608と同等の機能を有している。フィルタ部900は、フィルタ1(901)、フィルタ2(902)、DC除去部903を有している。比較器804から出力されたベルト変動成分は、フィルタ1(901)、フィルタ2(902)、DC除去部903を通過して周期変動サンプル部805に送られる。フィルタ1(901)は、高周波のノイズ成分を除去することを目的に設計されている。フィルタ1(901)は、ベルトの回転変動が0.1〜5Hzであるときに、100Hz以上の信号を除去する。このとき、折返し成分が発生しないように、また、ベルト回転変動周辺の信号が変化しないようにすることが望まれる。このような条件を満たすフィルタとしては、FIRローパスフィルタが挙げられる。このようにフィルタ1(901)により高周波ノイズを除去することで、低価格なロータリエンコーダを使用することができる。高周波ノイズには、ロータリエンコーダを使用して回転量を検出した場合に発生する量子化ノイズがあり、分解能の低いロータリエンコーダを使用した場合に高周波ノイズが顕著に表れ、ベルト周期変動検出に問題となる。しかし、本実施形態では、フィルタ1(901)で高周波ノイズを除去するので、分解能の低いロータリエンコーダによる検出が可能となり低価格でかつ高精度な回転検出が実現できる。
フィルタ2(902)は、回転系の周期変動成分を除去することを目的に設定している。フィルタ2(902)は、ベルト厚み変動である0.2Hz以下だけの信号にするためのローパスフィルタであり、FIRローパスフィルタが設定される。フィルタ2(902)で除去する変動は、主に、駆動ローラ12やその伝達機構18の回転体(18a、18b)、エンコーダローラ14の偏心により発生する周期変動である。これらの周期変動が同一又は整数比の関係である場合、フィルタ2の設計が容易で、より効率良く除去することが可能となる。また、エンコーダローラ14から駆動ローラ12に向かってベルトが搬送される搬送経路上に別のローラがある場合、そのローラの偏心に起因して、その回転周期で発生する変動成分もロータリエンコーダで検出される。この変動成分をフィルタ2で除去する上でも同様に回転周期が駆動ローラ12などの周期変動成分と同一又は整数比の関係であるとよい。
フィルタ1(901)、フィルタ2(902)を通過した後のベルト変動成分の一例を、図20に示す。横軸は時間で、縦軸には変動値を回転角ラジアンで示している。また、ベルト搬送スピードを一定としている。1001はフィルタ1(901)、フィルタ2(902)を通過していないベルト変動成分である。1003はベルト仮想ホームポジション信号の出力タイミング(ベルト一周期)を示している。図20からわかるように、フィルタ1(901)、フィルタ2(902)を通過したベルト変動成分1002は、ノイズが除去されて滑らかな正弦関数となっていることがわかる。
しかしながら、上記2つのフィルタでも除去できない成分が存在する。この除去しきれない成分としては、DC成分が挙げられる。図20に示すように、2つのフィルタを通したベルト変動成分1002は、ベルト一周を一周期とする基本波形となっていないことがわかる。すなわち、基準となるホームポジション位置1003(図12中左側)では、2つのフィルタで除去されたベルト変動成分1002は、0ラジアンから始まっている。しかし、次に検出されベルト一周を示すホームポジション位置(図20中右側)では、ベルト変動成分1002は、0ラジアンとなっていない。つまり、この波形のずれ量(図20中の1004)がDC成分である。
このDC成分は、定常的なスリップや駆動ローラ12、エンコーダローラ14径の誤差により平均速度が異なることによって発生する。このDC成分は、後の振幅、位相検出に影響を与えるので除去するのが好ましい。この波形のずれ量を検出して除去するのがDC成分除去903である。
また、この他に上記2つのフィルタで除去できない変動成分としてランダムなスリップなどのランダムな変動成分がある。このランダムな変動成分は、一般的に同期加算と呼ばれる手法で、除去することができる。具体的には、ベルトホームポジションを基準にベルト複数周回分のベルト変動成分をサンプリングしてこのサンプリングしたデータを平均化することで除去することが可能である。つまり、ベルトホームポジション信号を基準にベルト複数周回分のサンプリングされたベルト変動成分を加算して平均することで、ランダムに発生する変動成分は減少し、ベルト1回転周期のベルト変動成分は強調される。これによって、さらに高精度な振幅、位相検出が可能となる。この同期加算の処理は周期変動サンプル部805で行うことができる。
比較器804から出力されたベルト変動成分は、フィルタ部900を通過してベルト変動成分以外の変動成分が除去されて周期変動サンプル部805に入力され、ベルト一周期のベルト変動成分がメモリに記憶される。
また、フィルタ部900を通過したベルト変動成分をダウンサンプルしてメモリに記憶してもよい。フィルタ部900を通過したベルト変動成分は、滑らかな正弦関数となっているので、ダウンサンプルを行っても精度良くベルト厚み成分に対応した交流成分の振幅と位相を抽出することが可能である。一般的に0.2Hzあたりのベルト厚み周期成分を検出するには、10倍の周期20[Hz]くらいのサンプリングで十分である。そこで、まず、比較器の出力までを100[Hz]以上の短い周期でサンプリングを行い、変動に対して位相遅れの少なく、高精度な検出を行う。そして、フィルタ部900でフィルタ処理を行った後、20[Hz]にダウンサンプルして出力する。フィルタ部900を通過した後のベルトの変動成分は、他の変動成分が除去されて、図20に示すような滑らかな正弦波形となっているため、ダウンサンプルしてデータを保存したとしても、この波形を精度よく再現することが可能である。このため、変動振幅、位相検出部806で、ベルト周期変動成分の基本波及び高調波の振幅と位相が検出するときに使用するメモリ容量を少なくすることができる。
また上記のように、100[Hz]以上の短い周期でサンプリングを行い、この短い周期でサンプリングしたベルト変動成分をフィルタ処理することで、低分解能なロータリエンコーダであっても、高い精度で周期変動を検出することが可能となる。例えば、ロータリエンコーダの分解能がベルト上に換算して100[μm]程度のロータリエンコーダでも500[Hz]でサンプリングして上記フィルタ処理を行うことで数[μm]程度の精度で周期変動を検出することが可能となる。
図20に示したフィルタ部900のフィルタ1(901)、フィルタ2(902)、DC除去(903)は、高精度にベルト厚み変動による角速度変動や角変位変動を検出するために付加される処理であり、使用される装置との関係によりどの処理を付加するかを選択することが可能である。また、フィルタ1とフィルタ2の機能を併せもつ1つのフィルタで構成してもよい。また、フィルタは、説明したFIRフィルタに限らず、移動平均を用いた簡易なローパスフィルタで構成することも可能である。
目標関数演算部607は、ベルト周期変動検出部608で得られたベルト厚み変動の基本波及び高調波成分の振幅および位相数値と、数15の振幅補正係数ηおよび数16の位相補正値Tとを用いて、ベルト搬送速度を一定にするための従動ローラの目標回転変動を演算する部分である。ここで演算された目標回転変動と同じように従動ローラの回転角速度を変動させることで、ベルト搬送速度を一定にすることができる。この目標回転変動は、仮想ホームポジション信号を検知する度に設定される。目標回転変動の算出は、まず、仮想ホームポジション信号を検知したら、時間計測を開始する。そして、仮想ホームポジション信号を再び検知したら、時間計測を停止する。この計測された時間を一周期(基本波の場合)とするSin波を基準とし、ベルト周期変動検出部608で得られた振幅に振幅補正係数ηを乗算して、目標回転変動(目標関数)の振幅値を決定する。また、計測された時間を一周期(基本波の場合)とするSin波を基準とし、ベルト周期変動検出部608で得られた位相に位相補正値Tを加算して目標回転変動(目標関数)の位相値を決定する。これにより、基本波の目標回転変動(目標関数)が生成される。高調波成分においても同様に、計測された時間をn周期とするSin波をそれぞれ基準とし、ベルト周期変動検出部608で得られた振幅に振幅補正係数ηを乗算し、ベルト周期変動検出部608で得られた位相に位相補正値Tを加算して高調波成分の目標回転変動(目標関数)が生成される。そして、基本波の目標関数と、高調波成分の目標関数とを加算して目標回転変動(目標関数)が生成される。
これまで、画像形成毎に目標回転変動(目標関数)を演算する例について説明したが、装置にあるCPU、またはDSPの処理能力、メモリ容量に応じて、予め目標回転変動(目標関数)を演算して、数値をテーブル化して保存しておき、画像形成毎に読み出すようにしてもよい。
目標基準信号生成部606は、後述する比較器605でフィードバックされるエンコーダ出力信号と比較するための基準信号を目標回転変動(目標関数)に基づき生成する部分である。目標基準信号生成部606で生成される基準信号は、エンコーダ回転検出部610からフィードバックされる出力信号によって異なる。
図21は、エンコーダ回転検出部610から比較器605へフィードバックされるエンコーダ出力信号が回転角変位情報である場合の目標基準信号の生成工程を示したものである。図21に示す、グラフ701は目標関数演算部607から出力されたエンコーダローラ14の目標回転変動(目標関数)である。なお、目標関数は式705である。式705は、1次成分(基本波)のみの場合で、振幅をa1、位相をb1としている。ωbは、ベルトの回転角速度で、tはベルト仮想ホームポジションを検出してからの径過時間を表している。一方、グラフ702は平均目標角変位であり、ベルトの所望の動きを示している。グラフ702の傾きが従動ローラの目標平均速度となっている。そして、グラフ701のエンコーダローラ14の目標回転変動(目標関数)と、グラフ702の平均目標角変位とを加算器703で加算して、グラフ704に示す目標基準信号が生成される。各グラフ縦軸は変位情報でここでは回転角ラジアンとしている。また、横軸は時間である。CPUまたはDSPでのデジタル処理の場合、これらはすべて量子化された離散データとして扱うが、説明のため曲線としている。目標基準信号がグラフ702の平均目標角変位のみであると、ベルト厚み変動に起因した周期変動分を適切に制御することができない。しかし、本実施形態では、目標関数演算部607で算出されたグラフ701の目標回転変動(目標関数)を平均目標角変位と合成して、この合成したものを目標基準信号としている。これにより、ベルト厚み変動があってもベルトを一定速度で搬送する制御が可能となる。なお、エンコーダ回転検出部610から比較器605へフィードバックされるエンコーダ出力信号が回転角速度情報である場合も同様である。すなわち、平均目標角変位が、平均目標回転角速度となり、この平均目標回転角速度と目標回転変動(目標関数)とを合成して目標基準信号が生成される。なお、このとき、各グラフ縦軸が速度情報となる。
また、上記のような目標信号の生成は、ベルトを一定速度だけでなく間欠送りさせる場合にも有効である。仮に、ベルトを一定速度ではなく、大きく変化させる(例えば加速、減速)ことを目標としている場合、平均目標角変位を示すグラフ702は、直線ではなく、その目標の動きが設定されたグラフが生成される。この生成されたグラフ702と目標回転変動(目標関数)の位相が一致するように合成すれば、ベルトの速度が大きく変化する場合の目標基準信号が生成される。
このように求められた目標基準信号とフィードバックされたエンコーダ回転検出信号との差分が比較器605で算出され、そのデータがモータ駆動部615の出力制御部604に送られる。そして、出力制御部604でその値に応じて出力が調整され、モータの駆動トルクが調節される。こうして、ベルトの直線部分を所望の速度で搬送することが可能となる。
以上の基本的な構成を備える本プリンタにおいては、各色のプロセスユニット6Y,M,C,Kや光書込ユニット7が、像担持体たる各色の感応体1Y,M,C,Kに可視像たるY,M,C,Kトナー像を形成する可視像形成手段として機能している。また、転写ユニット15が、複数の感光体にそれぞれ担持されるトナー像を、駆動ローラ12の回転駆動に伴って無端移動せしめているベルト部材としての中間転写ベルト8に重ね合わせて転写する転写装置として機能している。
次に、本プリンタの特徴的な構成について説明する。
本プリンタにおいて、モノクロ画像を出力する場合、図1に示したY,M,C用のプロセスユニット6Y,M,Cによる画像形成は行われない。にもかかわらず、それらを駆動すると、それらの部材を無駄に消耗してしまう。そこで、本プリンタは、モノクロ画像を出力する場合には、転写ユニット15の4つの1次転写バイアスローラ9Y,M,C,Kのうち、9Y,M,Cの3本を支持している図示しないサブフレームの揺動動作により、中間転写ベルト8の張架姿勢を変化させる。これにより、中間転写ベルト8を、Y,M,C用の感光体1Y,M,Cから離間させる。かかる構成では、サブフレームの揺動機構やこれの駆動系が、中間転写ベルト8に当接する当接部材である感光体1Y,M,Cを中間転写ベルト8に接離させる接離手段として機能している。
先に示した図3において、I/Oユニット204には、外部のパーソナルコンピュータから送られてくる画像情報を受け入れるための図示しない画像情報取得手段としての画像情報入力部が接続されている。制御部200や、光書込制御回路205は、この画像情報に基づいて光書込ユニット、プロセスユニット、転写ユニットなどを駆動して、画像を形成する。このようにして画像を形成している間に、制御部200は、上述した仮想ホームポジションに基づいて中間転写ベルト8が一周する毎のタイミングを把握するとともに、各周回毎にベルト1周あたりの速度変動パターンを検出していき、RAM200b内の速度変動パターンのデータを順次更新していく。具体的には、速度変動パターンとしての上記グラフ702をベルト周回毎に検出していき、RAM200b内のグラフ702を順位新しいものに更新していく。そして、先行する周回で得られたグラフ702に基づいて、後続の周回におけるベルト駆動モータ162の駆動速度を調整するのである。
かかる構成では、先行する周回における中間転写ベルト8の速度変動パターンに基づいて後続の周回ベルト移動速度を調整することで、連続プリント動作中の昇温に伴うベルト厚みの変化が起こったとしても、それを反映させたモータ制御を行って、ベルトの速度変動をより確実に抑えることができる。しかしながら、例えば画像形成動作を停止した状態で長期間放置されると、その間にベルトの厚みが変動する場合がある。このような場合、RAM200b内に記憶されている速度変動パターンのデータは、前回の周回における最新のものであるにもかかわらず、実情にそぐわないものになっている。
一方、上述した作像条件調整処理(プロセスコントロール処理及び位置ずれ補正処理)については、機内環境の変化に伴って画像濃度や各色トナー像の相対的位置が適切でなくなっている可能性が高いタイミングで実施するのが一般的である。そして、かかるタイミングの1つとして、殆どの場合には、待機時間が所定時間を超えた状態でプリント命令がなされたときや、装置の電源がONされた直後などを採用している。そして、これらのタイミングでは、RAM200内の速度変動パターンが実情にそぐわなくなっている可能性が高い。
そこで、制御手段としての制御部200は、作像条件調整処理の一部である位置ずれ補正処理の実施要件が具備されたと判断した場合には、その実施に先立って、中間転写ベルト8を少なくとも1周させながらベルトの速度変動パターンを検出する。そして、記憶手段たるRAM200bに記憶しているデータを検出結果に基づいて更新してから、位置ずれ補正処理を実施するようになっている。
但し、上述した画像情報に基づいてモノクロ画像を出力する場合、当然ながら各色トナー像の重ね合わせずれは起こらない。にもかかわらず、そのモノクロ画像の出力に先立って、中間転写ベルト8を少なくとも1周させながらベルトの速度変動パターンを検出すると、ユーザーの無駄な待ち時間を発生させてしまう。そこで、制御部200は、パーソナルコンピュータ等から送られてくる画像情報を受信すると、位置ずれ補正処理の実施要件が具備されているか否かを判断する前に、その画像情報がモノクロ画像に関するものであるのか否かを判断する。そして、モノクロ画像に関する画像情報であった場合には、位置ずれ補正処理の実施要件を判断することなく、画像情報に基づく画像形成動作を開始する。かかる構成では、モノクロ画像を出力するのに先立って位置ずれ補正処理を実施することによるユーザーの無駄な待ち時間の発生を回避することができる。
また、制御部200は、カラー画像を出力する場合、次に掲げる要件a〜要件dの何れか1つが具備されていれば、その出力に先立って位置ずれ補正処理を行うようになっている。
[要件a]
先に図3に示したように、本プリンタは、機内温度を検知する環境検知手段としての温度センサ163を有している。この温度センサ163によって得られる機内温度について、前回の位置ずれ補正処理の実施時からの温度変化量が所定量に達したり、所定量を超えたりしている場合には、実施要件が具備されたと判断される。このとき、連続プリント動作中である場合いは、連続プリント動作が一時中断される。
[要件b]
制御部200は、内部に図示しない計時手段としての計時回路を有している。そして、この計時回路による計時機能に基づいて、前回の位置ずれ補正処理の実施時からの経過時間が所定時間に達したり、所定時間を超えたりしていることを検知した場合には、実施要件が具備されたと判断する。このとき、連続プリント動作中である場合いは、連続プリント動作が一時中断される。
[要件c]
制御部200は、計時回路の計時機能に基づいて、前回の位置ずれ補正処理の実施時からの中間転写ベルト8の駆動時間増加量が所定量に達したり、所定量を超えたりしていることを検知した場合には、実施要件が具備されたと判断する。このとき、連続プリント動作中である場合いは、連続プリント動作が一時中断される。
[要件d]
制御部200は、記録紙1枚に対する画像形成動作を終えるごとに、RAM200bに記憶している画像形成動作回数計数用のカウンタの値を1つずつカウントアップする。また、位置ずれ補正処理を実施した場合には、RAM200b内に記憶している位置ずれ補正時累積動作回数を、その時のカウント値と同じ値に更新する。そして、画像形成動作回数計数用のカウンタの値と、位置ずれ補正時累積動作回数との差、即ち、前回の位置ずれ補正処理の実施時からの画像形成動作回数の増加数、が所定数に達したり、所定数を超えたりしていることを検知した場合に、実施要件が具備されたと判断する。
本プリンタは、上述したように、位置ずれ補正処理を実施する場合には、それい先立って、画像濃度補正処理としてのプロセスコントロール処理を実施する。この処理では、先に図4に示したように、Y階調パターン像SY、M階調パターン像SM、C階調パターン像SC、K階調パターン像SKをそれぞれ独立で形成してそれぞれを個別のセンサで検知する。そして、異なる色間でのY階調パターン像の位置ずれは、各色の濃度階調の検知結果に影響を及ぼさない。また、長期間の待機などによってRAM200b内に記憶されている速度変動パターンが実情にそぐわなくなった場合における中間転写ベルト8の速度変動は、各色の濃度階調の検知結果にそれほど影響を与えない。
そこで、制御部200は、かかるプロセスコントロール処理を実施する際に、それと並行して、少なくともベルト1周における速度変動パターンを検出しながら、RAM200b内のデータを検出結果に更新するようになっている。かかる構成では、プロセスコントロール処理と並行して速度変動パターンを検出することで、別々に行う場合に比べて、ユーザーの待機時間を短縮することができる。
図22は、制御部200によって実施される制御フローを示すフローチャートである。同図において、制御部200は、パーソナルコンピュータ等から送られてくる画像情報を受信すると(ステップ1でY:以下、ステップをSと記す)、その画像情報についてモノクロ画像の情報であるか否かを判断する(S2)。そして、モノクロ画像の情報であると判断した場合には(S2でY)、作像条件調整処理(プロセスコントロール処理及び位置ずれ補正処理)を行うことなく、画像形成処理を開始する(S3)。このときの画像形成処理は、モノクロ画像を出力するためのものであるが、この処理の後にカラー画像についての画像形成処理を行うかもしれないので、上述の仮想ホームポジションに基づく中間転写ベルト8の速度変動パターンの検出・更新処理を並行して行う(S4)。そして、画像形成処理が終了すると(S5でY)、一連の制御シーケンスを終了させる。
一方、パーソナルコンピュータ等から送られてきた画像情報についてモノクロ画像の情報でないと判断した場合には(S2でN)、次に、上述した要件a〜要件dの何れかが具備されているか否かを判断する(S6)。そして、具備されていない場合には(S6でN)、作像条件調整処理を行うことなく、制御フローを上述したS3及びS4に進める。これに対し、要件a〜要件dの何れかが具備されている場合には(S6でY)、まず、中間転写ベルト8をY,M,C用の感光体に当接させているか否かを判断する(S7)。そして、当接させていない場合には(S7でN)、上述のサブフレームの揺動によって中間転写ベルト8をY,M,C用の感光体に当接させてから(S8)、プロセスコントロール処理を実施する(S9)。このとき、上述の仮想ホームポジションに基づく中間転写ベルト8の速度変動パターンの検出・更新処理を並行して行う(S10)。この後に、位置ずれ補正処理を実施した後(S11)、制御フローを上述したS3及びS4に進める。
同図からわかるように、本プリンタでは、速度変動パターンの検出・更新処理と、位置ずれ補正処理とを一連の制御シーケンスで実施するようになっている。
プロセスコントロール処理(S9)の実施に先立って、上記S7で中間転写ベルト8をY,M,C用の感光体に当接させているか否かを判断するのは次に説明する理由からである。即ち、中間転写ベルト8をY,M,C用の感光体に当接させる際には、ベルトの負荷変動が生ずる。そして、これにより、ベルトの速度が一時的に低下する。即ち、ベルト厚みムラとは別の要因により、ベルトの速度を一時的に変動させてしまう。この変動を速度変動パターンの検出・更新処理で検出してしまうと、後の1枚目の画像形成の際に、その変動にも対応させてフィードバック制御を行ってしまうため、1枚目の画像形成時に僅かながら重ね合わせずれを引き起こしてしまう。そこで、中間転写ベルト8をY,M,C用の感光体に当接させ、それに伴うベルト速度の一時的な変動を発生させてから、プロセスコントロール処理を行うのである。
本プリンタでは、中間転写ベルト8として、遠心成型法によって製造された安価なものを用いている。遠心成型法では、ベルトの周方向の厚み偏差を3[μm]程度に留めるのが限界であるが、かかる中間転写ベルト8であっても、ベルト駆動モータのフィードバック制御によってベルトを安定した速度で移動させることができる。
また、本プリンタでは、感光体や記録紙との密着性を向上させて良好な1次転写や2次転写を実現する目的から、中間転写ベルト8として、ヤング率が5000[MPa]以下である比較的柔らかいものを用いている。かかるベルトは、温度変化に伴う厚み変化量が比較的大きくなるが、各周回毎にベルトの速度変動パターンを検出及び更新していくことで、ベルトの厚み変動にかかわらず、中間転写ベルト8を安定した速度で移動させることができる。
これまで、各感光体に形成した各色トナー像をベルト部材としての中間転写ベルト8に重ね合わせて1次転写した後、記録紙に一括2次転写するプリンタについて説明してきた。かかる構成の代わりに、各感光体に形成した各色トナー像をベルト部材としての紙搬送ベルトの表面に保持している記録紙に直接重ね合わせて転写する構成を備える画像形成装置にも、本発明の適用が可能である。
以上、実施形態に係るプリンタにおいては、環境を検知する環境検知手段たる温度センサ163を設けるとともに、前回の位置ずれ補正処理の実施時からの温度変化量が所定量に達したり、所定量を超えたりしたことに基づいて、位置ずれ補正処理の実施要件が具備されたと判断させるように、制御手段たる制御部200を構成している。かかる構成では、温度変化に伴って各色トナー像の位置ずれを悪化させている可能性が高い場合に、位置ずれ補正処理によって重ね合わせずれの発生を抑えることができる。
また、実施形態に係るプリンタにおいては、計時を行う計時手段としての計時回路を設けるとともに、前回の位置ずれ補正処理の実施時からの経過時間が所定時間に達したり、所定時間を超えたりしたことに基づいて、位置ずれ補正処理の実施要件が具備されたと判断させるように、制御部200を構成している。かかる構成では、環境変化や装置温度の低下に伴って各色トナー像の位置ずれを悪化させている可能性が高い場合に、位置ずれ補正処理によって重ね合わせずれの発生を抑えることができる。
また、実施形態に係るプリンタにおいては、計時回路を設けるとともに、前回の位置ずれ補正処理の実施時からの中間転写ベルト8の駆動時間増加量が所定量に達したり、所定量を超えたりしたことに基づいて、位置ずれ補正処理の実施要件が具備されたと判断させるように、制御部200を構成している。かかる構成では、中間転写ベルト8の伸びに伴って各色トナー像の位置ずれを悪化させている可能性が高い場合に、位置ずれ補正処理によって重ね合わせずれの発生を抑えることができる。
また、実施形態に係るプリンタにおいては、画像形成動作回数を計数する計数手段としてのカウンタを設けるとともに、前回の位置ずれ補正処理の実施時からの画像形成動作回数の増加数が所定数に達したり、所定数を超えたりしたことに基づいて、位置ずれ補正処理の実施要件が具備されたと判断させるように、制御部200を構成している。かかる構成においても、中間転写ベルト8の伸びに伴って各色トナー像の位置ずれを悪化させている可能性が高い場合に、位置ずれ補正処理によって重ね合わせずれの発生を抑えることができる。
また、実施形態に係る画像形成装置においては、中間転写ベルト8として、周方向における厚み偏差が25[℃]の環境下で3[μm]以上であるもの、を用いている。かかる構成では、中間転写ベルト8として、安価な遠心成型法によるものを用いたとしても、ベルトを安定した速度で移動させることができる。
また、実施形態に係るプリンタにおいては、中間転写ベルト8として、周方向のヤング率が5000[MPa]以下であるもの、を用いている。かかる構成では、各感光体とベルトとの密着性や、記録紙とベルトとの密着性を向上させて、転写抜けや転写不良のない良好な画像を形成しつつ、中間転写ベルト8を安定した速度で移動させることができる。
また、実施形態に係るプリンタにおいては、可視像形成手段たる光書込ユニットや各色プロセスユニットによって形成されるトナー像の画像情報を取得する画像情報取得手段としての画像情報入力部を設けるとともに、画像情報に基づくトナー像を形成するための画像形成動作中に、回転速度検知手段たるエンコーダ170による検知結果に基づいて中間転写ベルト8の速度変動パターンを検出し、記憶手段たるRAM200bに記憶しているデータを検出結果に基づいて順次更新していくように、制御部200を構成している。かかる構成では、既に説明したように、先行する周回における中間転写ベルト8の速度変動パターンに基づいて後続の周回ベルト移動速度を調整することで、連続プリント動作中の昇温に伴うベルト厚みの変化が起こったとしても、それを反映させたモータ制御を行って、ベルトの速度変動をより確実に抑えることができる。
また、実施形態に係るプリンタにおいては、検出した速度変動パターンに基づいて、中間転写ベルト8の1周する毎のタイミングである仮想ホームポジションを把握させるように、制御部200を構成している。かかる構成では、中間転写ベルト8の周方向の所定位置に付されたホームポジションマークを検知するためのホームポジションセンサの付設を省略して低コスト化を図ることができる。更には、中間転写ベルト8として、ホームポジションマークのない安価なものを用いて低コスト化を図ることもできる。
また、実施形態に係るプリンタにおいては、位置ずれ補正処理の実施要件が具備されたと判断した場合には、複数の感光体のぞれぞれについて、その表面に形成した互いに画像濃度の異なる複数の基準トナー像からなる階調パターン像である階調パターン像を中間転写ベルト8に転写し、中間転写ベルト8上の階調パターン像内における各基準トナー像の画像濃度を像検知手段たるフォトセンサに検知させ、検知結果に基づいて光書込ユニットやプロセスユニットの作像条件を調整して画像濃度を補正する画像濃度補正処理たるプロセスコントロール処理を、位置ずれ補正処理に先立って実施し、そのプロセスコントロール処理と並行して中間転写ベルト8の速度変動パターンを検出するように、制御部200を構成している。かかる構成では、既に説明したように、プロセスコントロール処理の実施によって画像濃度の安定化を図ることができる。更には、プロセスコントロール処理と並行して速度変動パターンを検出することで、別々に行う場合に比べて、ユーザーの待機時間を短縮することができる。
また、実施形態に係るプリンタにおいては、速度変動パターンの検出・更新処理と、位置ずれ補正処理とを一連の制御シーケンスで実施するように、制御部200を構成している。かかる構成では、制御シーケンスを個別にする場合に比べて、制御プログラムの簡素化を図ることができる。
また、実施形態に係るプリンタにおいては、中間転写ベルト8に当接する当接部材であるY,M,C用の感光体を中間転写ベルト8に接離させる接離手段を設けるとともに、位置ずれ補正処理に先立ってベルトの速度変動パターンを検出するにあたり、その接離手段によってそれら感光体をベルトに対して接触させてから、速度変動パターンの検出を開始するように、制御部200を構成している。かかる構成では、既に説明したように、中間転写ベルト8をY,M,C用の感光体に当接させる際の負荷変動によるベルト速度の一時的な変動を速度変動パターンに反映させてしまうことに起因する、後の1枚目の画像形成時における重ね合わせずれの発生を回避することができる。
また、実施形態に係るプリンタにおいては、像担持体としての感光体を4つ設けているので、Y,M,C,Kトナー像の重ね合わせによるフルカラー画像を形成することができる。
実施形態に係るプリンタを示す概略構成図。 同プリンタのY用のプロセスユニットと、その周囲とを示す拡大構成図。 同プリンタにおける電気回路の一部を示すブロック図。 同プリンタの中間転写ベルト上に形成される階調パターン像を示す斜視図。 同プリンタの感光体の電位とトナー付着量との関係をxy座標にプロットしたグラフ。 同中間転写ベルト上に形成されるパッチパターンを示す斜視図。 副走査方向における光書込開始タイミングの補正がなされる際における各種信号の発生タイミングを示すタイミングチャート。 副走査方向における光書込開始タイミングの補正がなされる際における潜像書込クロックの発生タイミングを示すタイミングチャート 同中間転写ベルトのループ内に配設されるエンコーダローラをその一端側に配設されたエンコーダとともに示す拡大構成図。 同エンコーダのコードホイールを透過型フォトセンサとともに示す拡大斜視図。 同透過型フォトセンサからの出力電圧特性を示すグラフ。 同中間転写ベルトの主要部を示す断面模式図。 ベルトの周方向におけるベルト厚み変動(ベルト厚み偏差分布)の一例を示すグラフ。 (a)は、ローラが一定の回転角速度で回転している場合の各ベルト位置でのベルトの速度の関係Aと、ベルトが一定速度で回転している場合の各ベルト位置でのローラの回転角速度の関係Bとを示したグラフ。(b)は、エンコーダローラと駆動ローラとがτ離れた場合の中間転写ベルトの厚み変動における駆動ローラの速度および中間転写ベルトの速度の関係、並びに、中間転写ベルトの厚み変動におけるエンコーダローラの速度および中間転写ベルトの速度の関係を示したグラフ。 A、B、Cの位相ベクトル成分を示す模式図。 同制御部におけるベルト駆動制御系の電気回路を示すブロック図。 ベルト駆動モータをステッピングモータや振動波モータとした場合の同制御部を示すブロック図。 同制御部のベルト周期変動検出部の回路構成を示すブロック図。 フィルタ部を備えたベルト変動検出部の回路構成を示すブロック図。 フィルタ部を通過した後のベルトの変動成分を示すグラフ。 エンコーダ回転検出部から比較器へフィードバックされるエンコーダ出力信号が回転角変位情報である場合の目標基準信号の生成工程を示すグラフ。 同制御部によって実施される制御フローを示すフローチャート。
符号の説明
6Y,M,C,K:プロセスユニット(可視像形成手段の一部)
7:光書込ユニット(可視像形成手段の一部)
8:中間転写ベルト(ベルト部材)
12:駆動ローラ
14:エンコーダローラ(従動ローラ)
15:転写ユニット(転写手段)
170:エンコーダ(回転速度検知手段)
200:制御部(制御手段)

Claims (12)

  1. 可視像を担持する複数の像担持体と、それら像担持体にそれぞれ可視像を形成する可視像形成手段と、駆動ローラ及び従動ローラに張架しながら無端移動せしめている無端状のベルト部材、あるいは該ベルト部材の表面に保持している記録部材に、それら像担持体にそれぞれ担持される可視像を重ね合わせて転写する転写手段と、該従動ローラの回転速度を検知する回転速度検知手段と、該ベルト部材の表面に形成された可視像を検知する像検知手段と、該回転速度検知手段による検知結果、及び記憶手段に記憶している該ベルト部材の1周あたりにおける速度変動パターンのデータに基づいて該駆動ローラの駆動源の駆動速度を調整する駆動速度調整処理を実施したり、複数の該像担持体にそれぞれ形成した所定の可視像を該ベルト部材に転写し、該ベルト部材上のそれら可視像をそれぞれ該像検知手段に検知させた結果に基づいてそれら可視像の相対位置ずれを把握し、その結果に基づいて該可視像形成手段の作像条件を調整して各像担持体間での可視像の位置ずれを補正する位置ずれ補正処理を所定のタイミングで実施したりする制御手段とを備える画像形成装置において、
    上記位置ずれ補正処理の実施要件が具備されたか否かを判断し、具備された場合には、上記ベルト部材を無端移動させながら上記回転速度検知手段による検知結果に基づいて上記速度変動パターンを検出し、上記記憶手段に記憶しているデータを検出結果に基づいて更新してから、上記位置ずれ補正処理を実施するように、上記制御手段を構成したことを特徴とする画像形成装置。
  2. 請求項1の画像形成装置において、
    環境を検知する環境検知手段を設けるとともに、前回の上記位置ずれ補正処理の実施時からの環境の変化量が所定量に達したり、所定量を超えたりしたことに基づいて、上記実施要件が具備されたと判断させるように、上記制御手段を構成したことを特徴とする画像形成装置。
  3. 請求項1又は2の画像形成装置において、
    計時を行う計時手段を設けるとともに、前回の上記位置ずれ補正処理の実施時からの経過時間が所定時間に達したり、所定時間を超えたりしたことに基づいて、上記実施要件が具備されたと判断させるように、上記制御手段を構成したことを特徴とする画像形成装置。
  4. 請求項1乃至3の何れかの画像形成装置において、
    計時を行う計時手段を設けるとともに、前回の上記位置ずれ補正処理の実施時からの上記ベルト部材の駆動時間増加量が所定量に達したり、所定量を超えたりしたことに基づいて、上記実施要件が具備されたと判断させるように、上記制御手段を構成したことを特徴とする画像形成装置。
  5. 請求項1乃至4の何れかの画像形成装置において、
    画像形成動作回数を計数する計数手段を設けるとともに、前回の上記位置ずれ補正処理の実施時からの該画像形成動作回数の増加数が所定数に達したり、所定数を超えたりしたことに基づいて、上記実施要件が具備されたと判断させるように、上記制御手段を構成したことを特徴とする画像形成装置。
  6. 請求項1乃至5の何れかの画像形成装置において、
    上記ベルト部材として、周方向における厚み偏差が25[℃]の環境下で3[μm]以上であるもの、を用いたことを特徴とする画像形成装置。
  7. 請求項1乃至6の何れかの画像形成装置において、
    上記ベルト部材として、周方向のヤング率が5000[MPa]以下であるもの、を用いたことを特徴とする画像形成装置。
  8. 請求項1乃至7の何れかの画像形成装置において、
    上記可視像形成手段によって形成される可視像の画像情報を取得する画像情報取得手段を設けるとともに、
    該画像情報に基づく可視像を形成するための画像形成動作中に、上記回転速度検知手段による検知結果に基づいて上記速度変動パターンを検出し、上記記憶手段に記憶しているデータを検出結果に基づいて順次更新していくように、上記制御手段を構成したことを特徴とする画像形成装置。
  9. 請求項8の画像形成装置において、
    上記速度変動パターンに基づいて、上記ベルト部材の1周する毎のタイミングを把握するように、上記制御手段を構成したことを特徴とする画像形成装置。
  10. 請求項1乃至9の何れかの画像形成装置において、
    上記位置ずれ補正処理の実施要件が具備されたと判断した場合には、複数の上記像担持体のぞれぞれについて、その表面に形成した互いに画像濃度の異なる複数の可視像からなる階調パターン像を上記ベルト部材に転写し、該ベルト部材上の該階調パターン像内における各可視像の画像濃度を上記像検知手段に検知させ、検知結果に基づいて上記可視像形成手段の作像条件を調整して画像濃度を補正する画像濃度補正処理を上記位置ずれ補正処理に先立って実施し、該画像濃度補正処理と並行して上記速度変動パターンを検出するように、上記制御手段を構成したことを特徴とする画像形成装置。
  11. 請求項1乃至10の何れかの画像形成装置において、
    上記速度変動パターンを検出且つ更新する処理と、上記位置ずれ補正処理とを一連の制御シーケンスで実施するように、上記制御手段を構成したことを特徴とする画像形成装置。
  12. 請求項1乃至11の何れかの画像形成装置において、
    上記ベルト部材に当接する当接部材を該ベルト部材に接離させる接離手段を設けるとともに、上記位置ずれ補正処理に先立って上記速度変動パターンを検出するにあたり、該接離手段によって該当接部材を該ベルト部材に対して接触又は離間させてから、該速度変動パターンの検出を開始するように、上記制御手段を構成したことを特徴とする画像形成装置。
JP2007177574A 2007-07-05 2007-07-05 画像形成装置 Expired - Fee Related JP5182605B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007177574A JP5182605B2 (ja) 2007-07-05 2007-07-05 画像形成装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007177574A JP5182605B2 (ja) 2007-07-05 2007-07-05 画像形成装置

Publications (2)

Publication Number Publication Date
JP2009015069A true JP2009015069A (ja) 2009-01-22
JP5182605B2 JP5182605B2 (ja) 2013-04-17

Family

ID=40356019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007177574A Expired - Fee Related JP5182605B2 (ja) 2007-07-05 2007-07-05 画像形成装置

Country Status (1)

Country Link
JP (1) JP5182605B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012123333A (ja) * 2010-12-10 2012-06-28 Canon Inc 画像形成装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001022194A (ja) * 1999-07-07 2001-01-26 Canon Inc ベルト状転写部材、該ベルト状転写部材の製造方法及び画像形成装置
JP2002072816A (ja) * 2000-09-01 2002-03-12 Matsushita Electric Ind Co Ltd 画像形成装置
JP2004251955A (ja) * 2003-02-18 2004-09-09 Minolta Co Ltd 画像形成装置および画像処理装置
JP2006023403A (ja) * 2004-07-06 2006-01-26 Ricoh Co Ltd ベルト駆動制御装置、ベルト装置及び画像形成装置
JP2006106642A (ja) * 2004-10-08 2006-04-20 Ricoh Co Ltd ベルト駆動制御装置、ベルト装置及び画像形成装置
JP2006235560A (ja) * 2005-01-25 2006-09-07 Ricoh Co Ltd ベルト駆動制御装置、色ずれ検出方法、色ずれ検出装置及び画像形成装置
JP2007164092A (ja) * 2005-12-16 2007-06-28 Canon Inc 画像形成装置およびその制御方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001022194A (ja) * 1999-07-07 2001-01-26 Canon Inc ベルト状転写部材、該ベルト状転写部材の製造方法及び画像形成装置
JP2002072816A (ja) * 2000-09-01 2002-03-12 Matsushita Electric Ind Co Ltd 画像形成装置
JP2004251955A (ja) * 2003-02-18 2004-09-09 Minolta Co Ltd 画像形成装置および画像処理装置
JP2006023403A (ja) * 2004-07-06 2006-01-26 Ricoh Co Ltd ベルト駆動制御装置、ベルト装置及び画像形成装置
JP2006106642A (ja) * 2004-10-08 2006-04-20 Ricoh Co Ltd ベルト駆動制御装置、ベルト装置及び画像形成装置
JP2006235560A (ja) * 2005-01-25 2006-09-07 Ricoh Co Ltd ベルト駆動制御装置、色ずれ検出方法、色ずれ検出装置及び画像形成装置
JP2007164092A (ja) * 2005-12-16 2007-06-28 Canon Inc 画像形成装置およびその制御方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012123333A (ja) * 2010-12-10 2012-06-28 Canon Inc 画像形成装置

Also Published As

Publication number Publication date
JP5182605B2 (ja) 2013-04-17

Similar Documents

Publication Publication Date Title
JP5107011B2 (ja) 駆動制御装置及びこれを備える画像形成装置
JP2009008741A (ja) 転写装置及び画像形成装置
JP5240579B2 (ja) 画像形成装置
JP4778807B2 (ja) 画像形成装置
JP4815334B2 (ja) 画像形成装置
JP5234412B2 (ja) ベルト駆動装置及び画像形成装置
US8385760B2 (en) Image forming apparatus and control device for image forming apparatus for detecting and cancelling image expansion and contraction pattern
JP5532382B2 (ja) 画像形成装置
JP5288247B2 (ja) 画像形成装置及び画像形成方法
JP2011043723A (ja) 画像形成装置
JP2006227192A (ja) 画像形成装置
JP5081518B2 (ja) 画像形成装置
JP2016200696A (ja) 画像形成装置
JP2016051130A (ja) 画像形成装置
JP4667819B2 (ja) ベルト駆動制御装置、ベルト装置及び画像形成装置
JP4965399B2 (ja) 画像形成装置
JP5182605B2 (ja) 画像形成装置
JP2013003485A (ja) 画像形成装置
JP2008242289A (ja) 駆動装置および画像形成装置
JP2009036993A (ja) 画像形成装置
JP5039433B2 (ja) 画像形成装置
JP5273579B2 (ja) 画像形成装置
JP5495128B2 (ja) 画像形成装置
JP5117295B2 (ja) ベルト駆動装置及び画像形成装置
JP5081544B2 (ja) 画像形成装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120928

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130103

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160125

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees