JP2008542998A - 広域静電気中和装置およびその方法 - Google Patents

広域静電気中和装置およびその方法 Download PDF

Info

Publication number
JP2008542998A
JP2008542998A JP2008513604A JP2008513604A JP2008542998A JP 2008542998 A JP2008542998 A JP 2008542998A JP 2008513604 A JP2008513604 A JP 2008513604A JP 2008513604 A JP2008513604 A JP 2008513604A JP 2008542998 A JP2008542998 A JP 2008542998A
Authority
JP
Japan
Prior art keywords
voltage
electrode
frequency
gap
ionization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008513604A
Other languages
English (en)
Inventor
ジェフター、ピーター
ゲルケ、スコット
イグナテンコ、アレキサンドレ
Original Assignee
エムケーエス インストゥルメンツ、インク.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エムケーエス インストゥルメンツ、インク. filed Critical エムケーエス インストゥルメンツ、インク.
Publication of JP2008542998A publication Critical patent/JP2008542998A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05FSTATIC ELECTRICITY; NATURALLY-OCCURRING ELECTRICITY
    • H05F3/00Carrying-off electrostatic charges
    • H05F3/04Carrying-off electrostatic charges by means of spark gaps or other discharge devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T23/00Apparatus for generating ions to be introduced into non-enclosed gases, e.g. into the atmosphere
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05FSTATIC ELECTRICITY; NATURALLY-OCCURRING ELECTRICITY
    • H05F3/00Carrying-off electrostatic charges

Landscapes

  • Elimination Of Static Electricity (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

【解決手段】 イオン化セルまたはモジュール内に正および負に荷電した混合イオンを有するイオン雲を生成し、第2の電圧を使用して相反する極性の2つの領域に前記イオンを再分配することで前記イオン雲を再構成することにより、帯電物体の静電気の中和が提供される。前記第2の電圧は、好ましくは前記イオン雲の付近に位置する電界を生成する。前記イオンの再分配により、利用可能なイオンが前記帯電物体に向けて移動し、方向付けられることが可能な有効範囲が拡大される。前記電界は、前記イオン雲を形成するイオンを再分配する。前記第2の電圧の極性と一致する極性を有するイオンは前記電界から拡散され、前記電界のそれと反対の極性を有するイオンは電界に惹きつけられるので、前記イオン雲内のイオン再分配が発生する。前記イオン雲内の相反する極性の2つの領域に前記イオンを再分配することで前記イオン雲を再構成するので、前記拡散されたイオンに相当する前記雲の一部が前記電界に惹きつけられるイオンによって置き換えられ、従って前記イオンを拡散し、または方向付けることのできる範囲が拡大する。イオンを2つの領域に再分配するこの方法は、本明細書内の開示において、時に「イオン分極化」として参照される。
【選択図】 図2B

Description

本出願は、「Ion Generation Method and Apparatus」と題する、2004年4月8日付けで出願された米国特許出願第10/821,773号に対して優先権を主張する一部継続出願である。
本発明は、静電気中和するための方法および装置に関し、特に、イオン生成源から比較的広い範囲内の距離にある帯電物体を中和する静電気中和装置および方法に関する。
コロナ放電によって陽イオンおよび陰イオンを生成する静電気中和イオン発生器が、当技術分野において知られている。一般的に、これらの従来のイオン発生器では、前記コロナ放電によってイオンが発生する領域対して中和の対象となる物体を離間して配置することのできる距離が制限される。さらに、所定の時間に亘って発生する陰イオンおよび陽イオンの数を最大化するために、従来のイオン発生器では一般に、例えば(+/−)15kVなどの比較的高い交流電圧を生成する電源が使用される。別の実施形態においては、発生したイオンを前記帯電物体に向けて拡散するために空気または窒素などの気体もまた使用される。高電圧、気体、またはその両方を使用するとこのような従来のイオン発生器の製造および使用するための費用が増加する。比較的多くの陰イオンおよび陽イオンを生成するために十分な交流高電圧を生成するにはより高価な電源が必要であり、一般的に前記電源のサイズおよび重量を低減することが困難になる。また、一定の環境においては、イオン化電極および中和の対象となる物体の汚染を回避するために、気体に望ましくない粒子があまり含まれてない状態でなければならいので、前記ガスの使用によってもまた費用が追加される。さらに、空気以外の気体の使用によってもまた、前記気体を入手するためのさらなる費用が追加される。従って、イオン生成源から1〜100インチなどの比較的広い範囲内の距離にある帯電物体を中和するための、改善された静電気中和装置および方法が必要である。
正および負に荷電した混合イオンを有するイオン雲を生成する方法および装置によって、物体の静電気を中和する。前記正および負に荷電した混合イオンは、経時的に変化する周波数および振幅を有するイオン化電圧を使用することによって生成される。さらに、第2の電圧を使用して相反する極の2つの領域内に前記イオンを再分配することにより前記イオン雲を再構成する方法および装置によって物体の静電気を中和する。
本発明は特定の最良の形態に関連して説明するが、当業者にとっては、下記の説明に照らして多くの代替形態、変更形態および変形形態について明白であることが理解されるべきである。下記に示す本発明の実施形態におけるこれら代替形態、変更形態、および変形形態の使用においては、過度の実験またはさらなる発明は不要である。
下記に説明する本発明の種々の実施形態は、一般に「イオン化電圧」と呼ばれる交流高電圧およびコロナ放電を使用して、総称的に「両極イオン雲」と呼ばれる正および負に荷電した混合イオンを生成することにより帯電物体の静電気を中和することを対象とする。前記コロナ放電は、以下に「イオン化電極」として参照される、イオンを放出するために好適な形状を有する少なくとも1つの電極と、接地などの基準電圧を受ける、少なくとも1つの別の電極とを有するイオン化セルまたはモジュール内において実行される。前記イオン化電極と基準電極との間で測定される前記イオン化電圧が前記イオン化セルのコロナ発生電圧の閾値に達するか、それを超える時に当該イオン化電圧を当該イオン化電極に印加すると、前記両極イオン雲が生成される。前記コロナ発生電圧の閾値は、一般的に前記イオン化セルのパラメータの関数であり、前記イオン化電圧がその閾値に達する時若しくは超えた時が前記両極イオン雲が生成される電圧レベルである。
利用できるイオンを帯電物体の方向に移動させる、または方向付けることのできる有効範囲を拡大させるために、以下の実施例では「分極電界」と呼ばれる電界の生成を開示する。この分極電界は、前記両極イオン雲の近傍に位置する、少なくとも1つの電極(以下「分極電極」という)に対して第2の電圧(以下「分極電圧」という)を印加することによって生成できる。以下に開示した実施形態において、この分極電極は、前記イオン化電極および基準電極と共に前記イオン化セル内に含まれる。
前記分極電界は、前記両極イオン雲を形成するイオンを再分配する。前記分極電圧の極性に一致する極性を有するイオンは前記電界から反発を受け、前記分極電界の極性と反対の極性を有するイオンは分極電界に惹きつけられるので、前記イオン雲内のイオンの再分配が起こる。前記イオン雲内の相反する極性の2つの領域内に前記イオンを再分配することで前記両極イオン雲が再構成されるので、前記拡散されたイオンに相当する前記雲の一部が前記分極電界に惹きつけられたイオンによって置き換えられ、従って前記イオンを拡散し、または方向付けることのできる範囲が拡大される。2つの領域内へイオンを再分配するこの方法は、本明細書内の開示において、時として「イオン分極化」と呼ばれる。
機能強化を行うことによって分極電圧を使用して前記イオンの拡散範囲をさらに効率的に拡大することができる。この機能強化とは下記の方程式[1]によって集合的に表すことのできる、基準電極間の配置および間隙間隔、および前記イオンの移動度に対する前記イオン化電圧の電位、周波数の調節またはその両方の調節、空気、窒素などの気体流の前記生成されたイオンへの印加、前記分極電圧の電位の調節、前記分極電圧の周波数の調節、およびイオン化セルの中で使用される構造体および電極の成形の任意の組み合わせによるものである。
ここで図1Aおよび図1Bを参照して、本発明の第1の実施形態によるイオン化セル2を図示する。イオン化セル2は、イオン化電圧8などの第1の電圧を受けることのできる接続点6を有する電極4と、接地12などの基準電圧に接続された電極10aおよび10b(以下それぞれ基準電極10aおよび10bという)と、分極電圧18などの第2の電圧を受けることのできる接続点16を有する電極14aおよび14bと、電極4の機械的および電気絶縁の補助を提供する構造体20とを含む。
電極4はコロナ放電によってイオンを生成するために好適な形状を有し、図1Aおよび図1Bに示す例ではフィラメントまたはワイヤーの形態である。フィラメントまたはワイヤーを使用したイオン化電極4の実装は本明細書内に開示した種々の実施形態の範囲の限定を意図するものではない。当業者であれば、電極4の実装に当たって、尖頭または小さな先端径などを有する電極、1以上の尖頭の組または均等のイオン電極など、その他の形状を使用できることを容易に理解するであろう。下記の説明を容易にするために、電極4は以下「イオン化電極」という。以下に説明するように、電極14aおよび14b(以下「分極電極」という)は、イオン化電圧8が印加された時にイオン化電極4によって生成された両極イオン雲内でイオンを再分配するために使用され、前記両極イオン雲を構成するイオンの一部を表面電荷24を有する帯電物体22により近い移動させ、再分配する。中和の過程において、物体22は静止していても動いていてもよい。
基準電極10aおよび10b、および分極電極14aおよび14bは各々、一般的にイオン化電極4に向かって方向付けられた比較的平坦な面を有するように示されている。基準電極10aおよび10b、および分極電極14aおよび14bに比較的平坦な面を使用することは、説明の実施形態を一切限定する意図のものではない。円または半円の形状に類似した断面を有する形状を含むその他の形状の基準電極10aおよび10b、および分極電極14aおよび14bを使用してもよい。
5E−3m〜5E−2mの範囲内で間隙26aおよび26bを形成するように基準電極10aおよび10bを配置する必要がある。電極4、10a、10b、14a、および14bは、構造体20を使用して物体22に近い位置に配置され、それにより距離28は、利用可能な中和イオンが帯電物体22に向けて有効に移動または方向付けられる範囲内になる。この有効範囲は、現在、間隙26aまたは間隙26bによって画成される間隙間隔のような間隙間隔の数倍から100インチまでと考えられている。構造体20は非導電性であり、その誘電特性が本明細書内に開示されたイオンの生成および移動への影響を最小限に抑える程度に絶縁性であるべきである。構造体20の前記誘電特性は、1E11〜1E15Ωの抵抗の範囲であり、2〜5の誘電率を有することが示唆される。
また、イオン化セル2は、イオン化電極4にイオン化電圧8が印加された時に誘起される電流を分路し、分極電圧18が分極電極14aおよび14bに達することを可能とするフィルター30を含んでもよい。フィルター30は、この説明した機能を実行できる任意の装置であってよく、図1Aに示した例では、10〜1000pFの範囲内の値を有するコンデンサであってよい。また、イオン化セル2は、イオン化電圧8からイオン化電極4を部分的にデカップリングすることで正に荷電したイオンおよび負に荷電したイオンの両方の生成を向上させるための、20〜1000pFの範囲内の値を有するコンデンサのようなフィルター32を含んでもよい。フィルター32は、イオン化電圧6の低周波数およびDC成分を除去するハイ・パス・フィルターとして機能する。また、フィルター32は、動作中に生成された前記両極イオン雲を構成する陽イオンおよび陰イオンの生成を電気的に平衡させることによって、イオン化セル2に自動平衡機能を提供する。
本発明の第2の実施形態による、所定の時間に亘る両極イオン雲の再分配または分極化を図2A〜図2Dに示す。図2A〜図2Cは、イオン化電圧を受けるイオン化電極44と、接地などの基準電圧を受ける基準電極50aおよび50bと、分極電圧を受ける分極電極54aおよび54bと、構造体60とを含む、上述のイオン化セル2と実質的に同様の要素および機能を有するイオン化セル42の断面図である。
イオン化電極44と基準電極50a間の空間は間隙66aを画成し、一方、イオン化電極44と基準電極50b間の空間は間隙66bを画成する。この実施例において間隙66aおよび間隙66bは実質的に同等である。
図2Aおよび図2D中、時間t0において、イオン化電圧(V)48がイオン化電極44に印加される。イオン化電圧48は、およそ1kHz〜30kHz、好ましくは6〜10kHzの範囲内の交流周波数を有し、間隙66aおよび66b内のコロナ放電によって両極イオン雲を生成するために十分高い正電位および負電位を有する。また、時間t0において、分極電圧58(U)はゼロに等しい。
イオン化電圧48の印加によって、両極イオン雲74aおよび74bを構成するイオンがイオン化電極44と基準電極50a間、およびイオン化電極44と電極50b間でそれぞれ発振する。さらなる詳細は、以下「特許」として参照される、「Ion Generation Method and Apparatus」と題する米国特許出願第10/821,773号に見出される。
イオン化セル内に使用される分極電極の分極化の有効性は、使用される前記分極電極の形状および位置、および前記分極電極と基準電極との間で画成される間隙内の両極イオン雲の重心の位置を含む多くの要因に依存する。図示した実施形態において、両極イオン雲74aおよび74bのイオン分極化を最大限にするためには、両極イオン雲74aおよび74bの重心が分極電極54aおよび54bのそれぞれの中心55aおよび55bと位置合わせされているべきである。
間隙66aおよび66b内の両極イオン雲74aおよび74bのそれぞれの重心の位置決めは、実験的手段によって、または前記特許内にも教示されている次の方程式を使用することによって達成できる。
Figure 2008542998
但し、Vはイオン化電極44と基準電極50aおよび50bなどの基準電極との間の電圧差、μは陽イオンおよび陰イオンの平均移動度、Fはイオン化電圧48の周波数であり、Gはイオン化電極44と基準電極との間の、それぞれ間隙66aおよび66bなどの間隙の大きさと等しい。方程式[1]は、特に、イオン化電極44と基準電極50a間に形成された間隙66a、およびイオン化電極44と基準電極50b間に形成された間隙66bなどの、イオン化電極と基準電極間に形成された間隙内の両極イオン雲の重心の位置によって、イオン化電圧の電圧および周波数の関係を特徴付ける。
分極電極54aおよび54bの中心を間隙66aおよび66bのほぼ中央と位置合わせすることで、分極電極54aおよび54bの中心付近の両極イオン雲74aおよび74bのそれぞれの重心の位置決めが向上される。この位置合わせは、イオン化電圧48の振幅、周波数、またはその両方を調節することで達成できる。但し、イオン雲74aおよび74bの位置の調節の最も便利な方法は、前記イオン化電極と基準電極間の間隙を5E−3m〜5E−2mの範囲内に、イオン化電圧48の周波数を1kHz〜30kHzの範囲内に保ち、軽イオンの平均移動度が1気圧および摂氏21度の温度において1E−4〜2E−4[m2/V*s]の範囲内であると仮定した時に、イオン化電圧48の振幅を調節することであることが分かっている。
方程式[1]は比較的平坦なイオン化電極および基準電極を有するイオン化セルを特徴付けるものの、この開示および上述の米国特許出願を参照した後では、当業者は、イオン化電極および基準電極のその他の構成および/または形状に関する上述の変数を使用して、発振している両極イオン雲の中心位置を特徴付けることができることを理解するであろう。
静電気中和の過程において、分極電圧58(U)もまた印加され、多少のイオンを別個の領域に向け直し、移動させるイオン化電圧46(V)によって生成された前記両極イオン雲を分極化し、イオン化セル42が表面電荷63を有する帯電物体62に向けて中和イオンを拡散することのできる範囲を拡大する。
例えば、図2Bに示すように、図2D内のp1と指定された期間中、イオン化電圧48は負および正のコロナ発生電圧閾値V1およびV2とそれぞれ等しくなり、それを超え、両極イオン雲74aおよび74bを生成する。また、期間p1中に、分極電圧58が、多くのイオンをそれぞれ分極化された各々のイオン雲内の別個の領域に向け直し移動させることによって前記分極化されたイオン雲75aおよび75bを形成する正極化電圧閾値U1に達してそれを超え、イオン化セル42の前記イオン中和および拡散範囲を拡大する。負に荷電したイオンは分極電圧58を分極電極54aおよび54bに印加することによって生成された正電界(図示せず)に惹きつけられ、正に荷電したイオンは分極電極54aおよび54bから拡散するので、分極化が発生する。
さらに、この例において、帯電物体62aは負に帯電した面64aを有するので、前記正に荷電したイオンもまた帯電物体62aと反対の電位に引き寄せられ、中和イオンを帯電物体62aに向けて拡散することのできる範囲および効率をさらに増大させる。さらに、両極イオン雲74aおよび74bの分極化によってイオン再結合が減少し、それによって、さもなければイオン再結合のために失われたであろうイオンを生成するために必要な電気エネルギーが小さくて済むので、静電気中和を実行するイオン化セル42の効率がさらに向上する。
図2Cに示すような別の例において、および図2D内の期間p2の間、イオン化電圧48が少なくとも1度、それぞれ負および正のコロナ発生電圧閾値VおよびV2に達してそれを超え、間隙66aおよび66b内でそれぞれ発振する両極イオン雲74aおよび74bと同様のイオン雲を生成する。また、期間p2の間、分極電圧58が多くのイオンを各々の前記両極イオン雲内の別個の領域に向け直して移動させることによって分極されたイオン雲76aおよび76bを形成する負の分極電圧閾値U2に達してそれを超え、イオン化セル42のイオン中和および拡散範囲を拡大する。正に荷電したイオンが前記負電界(図示せず)に惹きつけられ、負に荷電したイオンが分極電極54aおよび54bから拡散されるので、分極化が発生する。
さらにこの例において、帯電物体62は正に帯電した面64bを有するので、前記正に荷電したイオンは帯電面64と反対の電位に引き寄せられ、中和イオンを帯電物体62aに向けて拡散することのできる範囲および効率をさらに増大させる。選択された極性を有する帯電物体の使用は、本発明の範囲および趣意を上述の図2A〜図2Dで開示された例で示したように限定する意図のものではない。任意の極性を有する任意の帯電物体を本明細書内で開示したように効果的に中和することができる。
分極電圧58の周波数は0.1〜100Hzの範囲内で選択できるが、この周波数は本発明を一切限定する意図のものではない。実際には、前記極性化電圧58の周波数はまた、0.1〜500Hzの範囲内から選択してもよい。分極電圧58は、また、生成される陽イオンおよび陰イオンの数を均衡させるためのDCオフセット(図示せず)を含んでもよい。分極電圧58のための電圧およびDCオフセットは、本明細書内に開示した実施形態においては一般に+/−10〜3000V内であるコロナ放電を生成する閾値電圧未満であってよい。
分極電圧58を正弦波形の形態で提供することは、請求の発明の範囲および趣意を本明細書内の種々の実施形態によって示したように一切限定する意図のものではない。上述の分極化効果を提供するために、矩形、台形などの形態の波形を含むその他の種類の波形を使用してもよい。
分極電圧58はイオン化電圧48が時間t1においてピーク負電圧に達する丁度その時に発生するピーク正電圧に達し、分極電圧58はイオン化電圧48が時間t2においてピーク正電圧に達する丁度その時に発生するピーク負電圧を有するように図示されているものの、図2A〜図2Dに示し、説明した実施形態はそのように限定される意図のものではない。開示したイオン電圧48および分極電圧58の周波数は、これらが図2Dに示した通りに同期するピーク電圧を有するように選択しなくてもよく、単に本明細書内で説明された発明の態様を達成する周波数範囲内であるべきである。
本発明の第3の実施形態によって、図3内の概略ブロック図に、イオン化電極と分極電極とを含むイオン化セル42と実質的に同様の要素および機能を有する両極イオン化セル106に使用する、イオン化電圧102および分極電圧104を生成する電源100を図示する。イオン化電圧102および分極電圧104は、イオン化セル106のイオン化電極および分極電極(図示せず)にそれぞれ連結されるものである。
電源100は、可変周波数発生器110および電流調整器112に連結されたDC電源108を含む。動作中、可変周波数発生器110は、高電圧増幅器114によって増幅される0.1〜500Hzの範囲内の出力周波数を生成し、分極化出力116において利用可能な分極電圧104を与える。電流調整器112はDC電源108から電力を受け取り、高電圧周波数発生器118に供給する電流を調節する。
高電圧周波数発生器118はロイヤー型高電圧周波数発生器であって、変圧器120の一次コイルのインダクタンスおよびコンデンサ122の値によって定義される周波数を有するイオン化電圧102を生成する。イオン化電圧102の最大絶対ピーク電圧は、電流調整器112を使用して調節可能である。ロイヤー型高電圧周波数発生器は当業者にとって周知である。
動作中、分極化出力116はイオン化セル106の分極電極(図示せず)に接続されているので、分極化出力116上のイオン化電圧102によって誘起される可能性のある一切の電位を最小限に抑え、または除去するために、電源100はまた、10〜1000pFの値を有するコンデンサのようなフィルター124を含んでもよい。フィルター126はハイ・パス・フィルターとして機能し、20〜1000pFの値を有するコンデンサを使用して実施できる。イオン化セル106が以前上記に開示したイオン化セル2と同様の構造および機能を有し、イオン化セル106が124および126と等価なフィルターで構成されている場合、フィルター124および126を省略してもよい。
さらに、イオン化セル42、イオン化電極44、基準電極50aおよび50b、分極電極54aおよび54b、および構造体60の使用またはその形状、または帯電物体の静帯電を中和するイオン源を生成するために使用される電極の数のどちらも、図3に示す実施形態または本明細書内に開示の一切の実施形態を限定する意図のものではない。
例えば、イオン化セル142は、図4Aおよび図4Bに示す形態で実施してもよい。イオン化セル142は、イオン化電圧148などの第1の電圧を受けることのできる接続点146を有する電極144と、接地(図示せず)などの基準電圧に接続された基準電極150と、分極電圧158などの第2の電圧を受けることのできる接続点156を有する分極電極154と、構造体160とを含む。
電極144はコロナ放電によってイオンを生成するために好適な形状を有しており、図4Aおよび図4Bに示す例において、尖頭形状の先端または小径の先端を有する棒を有する。電極144を実施するために尖頭を使用することは、本明細書内に開示した種々の実施形態の範囲の限定を意図するものではない。当業者であれば、電極144を実施するに当たって、1より多くの尖頭の組、フィラメント、または等価なイオン化電極などのその他の形状を使用できることを容易に理解するであろう。
電極150および154が電気的に連続した面として実施される以外は、接続点146および156、電極144,150、および154、およびフィルター170および172は、図1Aおよび図1Bで説明したそれらに相当する要素とそれぞれ同様の機能および構造を有する。フィルター170および172は、上述の通り選択的である。構造体160は、図示の通り概ね逆様の凹面の形態であり、上述の構造体20と同様の非導電特性を有する。さらに、基準電極150は、間隙166aおよび166b(図4b参照)がそれと電極156との間で5E−3m〜5E−2mの範囲内で形成されるように構造体160内に配置されるべきである。
電極154は、電極144にイオン化電圧148が印加された時に生成される両極イオン雲174内のイオンを再分配するために使用される。前記イオンの再分配は、前記再分配されたイオンの一部を表面電荷164を有する帯電物体162のより近くに移動させ、方向付ける。物体162は中和中に静止していても動いていてもよい。さらに、静電気中和装置は、静電気中和の対象となる前記帯電物体の構成次第で、直線的またはそれ以外の方法で配置された、1よりも多くの例のイオン化セル142で構成してもよい。
本発明の第5の実施形態によって、図5Aおよび図5Bは、分極電圧218aおよび218bをそれぞれ受ける電極214aおよび214bを有するイオン化セル202と、接続点206を介してイオン化電圧208を受ける、少なくとも1例のイオン化電極204と、接地212などの基準電圧を受ける電極210aおよび210bと、構造体220とを図示する。
各々のイオン電極204はコロナ放電によってイオンを生成するための好適な形状を有し、図5Aおよび図5Bに示す例において、尖頭形状の一端を有する。電極204を実施するために尖頭を使用することは、本明細書内に開示した種々の実施形態の範囲を限定する意図のものではない。当業者であれば、電極204の実施に当たって、フィラメントまたは等価なイオン化電極の形状を有する電極など、その他の形状を使用できることを容易に理解するであろう。
接続点206、216a、および216b、電極210aおよび210b、構造体220、フィルター230aおよび230b、およびフィルター232は、図1Aおよび図1Bで説明したこれらに相当する要素とそれぞれ同様の機能および構造を有する。イオン化電圧208(図5B参照)は、上述のイオン化電圧148について説明したそれと実質的に同様の電気特性を有する。物体222は、中和中、静止していても動いていてもよい。
電極214aおよび214bは分極電極として使用され、この例においてこれらが相互に電気的に連結していない点を除けば、上述の電極14aおよび14bと実質的に同様の機能を共有する。分極電圧218aおよび218bは、以下の図6A〜図6Dで説明する電圧258aおよび258bと実質的に同様の電圧および周波数特性を有する。
図6A〜図6Cは、イオン化電圧248を受ける接続点246を有するイオン化電極244と、接地などの基準電圧を受ける基準電極250aおよび250bと、電圧258aおよび258bをそれぞれ受ける分極電極254aおよび254bと、構造体260とを含む、図5Aおよび図5Bで説明したイオン化セル202と実質的に同様の要素および機能を有するイオン化セル242の断面図である。イオン化電極244と基準電極250b間の空間が間隙266bを形成する一方、イオン化電極244と基準電極250a間の空間は間隙266aを形成する。
また、イオン化セル242は、基準電極250aおよび250bにそれぞれ連結されたフィルター(図示せず)を有し、フィルター230a、230b、および232にそれぞれ実質的に等価なフィルター232を有するイオン化セル202と実質的に同様の方法で構成してもよい。基準電極250aおよび250bに連結されたフィルターは、本明細書内の開示を不必要に複雑にすることを回避するために、図6A〜図6Cには示さない。フィルター232はイオン化電極244および接続点246に連結されている。
図6Dは、負電荷および正電荷の混合を有する帯電表面264を有する帯電物体262の静電気中和中の、図6A〜図6Cで説明したイオン化セルに使用することを目的としたイオン化電圧248、および電圧258aおよび258bの波形を示す。
イオン化電圧248は、およそ1kHz〜30kHzの範囲内の周波数を有する交流電圧であるが、この範囲は本発明を一切限定する意図のものではない。それぞれ間隙266aおよび266b内の両極イオン雲274aおよび274bのそれぞれの重心の所望の位置によっては、その他の範囲を使用してもよい。両極イオン雲274aおよび274bの分極化、従って帯電物体262に向かったイオンの拡散を向上させるために、実験的手段、または以前に上述した方程式[1]を使用して、前記雲のそれぞれの重心を分極電極254aおよび254bの中心と位置合わせすることが示唆される。
電圧258a(Ua)および258b(Ub)は各々0.1Hz〜500Hz、好ましくは0.1〜100Hzの範囲内の周波数と、イオン化電圧未満であってよく、好ましくはコロナ放電を生成するために必要な電圧未満であってよい最大ピーク電圧と、相互に180度位相のずれた台形波形とを有する。この例において、電圧258aおよび258bは各々、(+/−)10〜3000Vの範囲内の最大ピーク電圧を有する。電圧258aおよび258bはこれ以後「分極電圧」として参照される。
180度位相のずれた台形波形を有する分極電圧を使用することによって、2つの相反して荷電された両極イオン雲内のイオンのほぼ連続したイオン再分配が行なわれる一方、正および負に帯電した表面の両方を有する帯電物体の静電気中和効率を向上させる。近接した陽および陰のイオン雲の提供によって空間電荷量が小さくなり、静電気中和の対象となる物体を過剰に帯電する可能性を最小限に抑えることとなる。当業者であれば、本明細書内の開示に従った後、イオンを分極化するために十分な閾値で保持できる分極電圧の時間を最大化するその他の波形を使用できることを容易に理解するであろう。例えば、分極電圧258aおよび258bは、相互に180度位相のずれた各々の分極電圧を有する2つの矩形波の形態で実施できる。
また、分極電圧258aおよび258bはそれぞれ、コロナ放電によって生成された陰イオンおよび陽イオンの均衡を調節することによって空間電荷を低減するために使用できるDCオフセット259aおよび259bを含んでもよい。使用されるDCオフセットの量は、+/−10〜3000Vの電圧範囲に限定すべきであり、前記分極電極と前記基準電極間のコロナ放電を起動するために必要な電圧レベルを超えるべきではない。
図6Aおよび図6Bを参照して、期間p3の間、イオン化電圧248は、負のコロナ閾値V3および正のコロナ閾値V4(図6D参照)にそれぞれ少なくとも1度達してそれを超える。イオン化電圧248は、イオン化電圧248がそれぞれイオン化電極244と基準電極250a間、およびイオン化電極244と基準電極250b間で測定されたV3およびV4に達してそれを超える度に、コロナ放電によってイオンを生成する。イオン化電圧248の交流特性は、それぞれイオン化電極244と基準電極250a間、およびイオン化電極244と基準電極250b間で発振する、両極イオン雲274aおよび274bとして参照される陰イオンおよび陽の混合イオンを生成する。
また、期間p3において、分極電圧258a(Ua)および258a(Ub)は、それぞれ分極化閾値Ua1およびUb2に達してそれを超える。これら分極化閾値に達してそれらを超えると、分極電圧258aおよび258bは、これら分極化されたイオンを前記それぞれの両極イオン雲内の別個の領域に向け直し、移動させることによって、両極イオン雲274aおよび274bから十分な数のイオンをそれぞれ分極化し、両極イオン雲を分極化されたイオン雲275aおよび275b(図6Bに図示)に変換し、従って、イオン化セル242のイオン中和および拡散範囲を拡大する。
雲274a内の十分な数の負に荷電したイオンが、分極電圧258aがUa1と等しくなるかそれを超えた時に分極電極254aと基準電極250間で生成される前記正電界(図示せず)に惹きつけられる時、両極イオン雲274aは分極化されたイオン雲275aとなる。両極イオン雲274bからの十分な数の正に荷電したイオンが、分極電圧258bがUa2を超えた時に分極電極254bと基準電極250b間で生成される前記負電界から拡散される時、イオン雲274bの分極化もまた発生する。
前記分極化閾値電圧Ua1、Ua2およびUb1、Ub2は10〜100Vの範囲内であってよいが、この範囲は開示の実施形態を一切限定する意図のものではない。これらの分極化閾値電圧は例として提供され、上述のようにイオンを分極化するために十分な任意の閾値量であってよい。
期間p4の間、イオン化電圧248は、イオン化電圧248が、イオン化電極244と基準電極250a間およびイオン化電極244と基準電極250b間で測定されるV3およびV4にそれぞれ達してそれを超える度にコロナ放電によってイオンを生成し続ける。イオン化電圧248の交流特性は、イオン化電極244と基準電極250a間およびイオン化電極244と基準電極250b間でそれぞれ発振する、図6Aに両極イオン雲274aおよび274bとして示した陰イオンおよび陽の混合イオンを生成する。
また、期間p4の間、分極電圧258a(Ua)および258a(Ub)はそれぞれ分極化閾値Ua1およびUb2に達してそれを超える。これら分極化閾値に達してそれを超えると、分極電圧258aおよび258bは、これら分極化されたイオンを前記それぞれ両極イオン雲内の別個の領域に向け直して移動させることによって両極イオン雲274aおよび274bからそれぞれ十分な数のイオンを分極化し、両極イオン雲を分極化されたイオン雲276aおよび275b(図6Cに図示)に変換し、従ってイオン化セル242のイオン中和および拡散範囲を拡大する。
雲274a内の十分な数の負に荷電したイオンが、分極電圧258aがUa2と等しくなるかそれを超える時に分極電極254aと基準電極250間で生成される負電界(図示せず)に惹きつけられると、両極イオン雲274aは分極されたイオン雲276aとなる。同様に、両極雲274bからの十分な数の負に荷電したイオンが、分極電圧258bがUa1を超える時に分極電極254bと基準電極250b間で生成される正電界から拡散されると、イオン雲274bの分極化もまた発生する。
前記表面電荷264の極性に拘らず、前記分極化されたイオン雲は、前記帯電面264と反対の電荷を有するこれらイオンが前記帯電面に向かって引き寄せられることを可能とするどちらかの極性の分極化されたイオンを提供し、中和イオンを帯電物体または静電気中和のために選択された面に向かって拡散することのできる範囲および効率をさらに増大させるので、分極電圧258aおよび258bを使用することによってイオン化セル242のイオン拡散範囲をさらに拡大することができる。さらに、両極イオン雲274aおよび274bの分極化によってイオン再結合が減少し、さもなければイオン再結合のために失われたであろうイオンを生成するために必要な電気エネルギーが小さくて済むので静電気中和を実行するイオン化セル242の効率をさらに向上させる。
本発明の第7の実施形態によって、2つの分極電圧を受けるとこのできるイオン化セル302で使用する電源300の概略ブロック図を図7に示す。電源300は、DC電源330と、可変周波数発生器110、電流調整器112、および高電圧周波数発生器118について上述したそれぞれ同一の要素および機能を実質的に有する可変周波数発生器332と、電流調整器334と、高電圧周波数発生器338とを含む。
また、電源300はイオン化セル302の分極電圧として使用される目的の、かつ上記イオン化電圧258aおよび258bについて述べたそれと実質的に同様の電気特性をそれぞれ有する2つの電圧314aおよび314bを生成する高電圧増幅器336をも含む。高電圧増幅器は、イオン化セル302のイオン均衡を設定する電圧314a、電圧314b、またはその両方のDCオフセット値を変化させるDCオフセット調節器340を含む。
イオン化セル302は、上述のイオン化セル242と実質的に同様の要素および機能を含む。イオン化セル302がフィルター322a、322bおよび324で構成されておらず、このようなフィルターが必要な場合、電源300はまたフィルター322aと、322bと、324とをも含んでもよい。フィルター322aおよび322bがフィルター230aおよび230bと実質的に同様の構造および機能を有する一方、フィルター324はフィルター232と実質的に同様の構造および機能を有する。
図1Aは、本発明の第1の実施形態によるイオン化セルの底面ブロック図である。 図1Bは、図1A内に図示したイオン化セルの、1B−1Bの線に沿った断面図である。 図2A〜図2Dは、本発明の第2の実施形態による両極イオン雲の生成および分極化を図示する。 図2A〜図2Dは、本発明の第2の実施形態による両極イオン雲の生成および分極化を図示する。 図2A〜図2Dは、本発明の第2の実施形態による両極イオン雲の生成および分極化を図示する。 図2A〜図2Dは、本発明の第2の実施形態による両極イオン雲の生成および分極化を図示する。 図3は、本発明の第3の実施形態による電源の概略ブロック図である。 図4Aは、本発明の第4の実施形態によるイオン化セルの底面図である。 図4Bは、図4Aに図示したイオン化セルの、4B−4Bの線に沿った断面図である。 図5Aは、本発明の第5の実施形態によるイオン化セルの底面図である。 図5Bは、図4A内に図示したイオン化セルの、5B−5Bの線に沿った断面図である。 図6A〜図6Dは、本発明の第7の実施形態による両極イオン雲の生成および分極化を図示する。 図6A〜図6Dは、本発明の第7の実施形態による両極イオン雲の生成および分極化を図示する。 図6A〜図6Dは、本発明の第7の実施形態による両極イオン雲の生成および分極化を図示する。 図6A〜図6Dは、本発明の第7の実施形態による両極イオン雲の生成および分極化を図示する。 図7は、本発明の第6の実施形態による電源の概略ブロック図である。

Claims (59)

  1. 第1の位置において静電気的に帯電した物体を中和するための装置であって、
    第1の電圧を受けるための第1の電極と、
    選択された長さの間隙によって前記第1の電極から隔てられた第2の電極と、
    第3の電圧を受けるための第3の電極とを有し、
    前記第1の電圧は、前記第1の電極に当該第1の電圧が印加され、且つ前記第2の電極に基準電圧が印加された時に、陽イオンおよび陰イオンと、前記間隙内の選択された位置に重心とを有するイオン雲を生成するものであり、
    前記第2の電圧は、前記第3の電極に当該第2の電圧が印加された時に前記陽イオンおよび陰イオンを再分配するものである
    装置。
  2. 請求項1記載の装置において、前記第3の電極は前記間隙に対して露出した面を含むものである。
  3. 請求項1記載の装置において、前記第3の電極は前記間隙の中心と位置合わせされた中心を有する面を含むものである。
  4. 請求項1記載の装置において、前記第1の電圧は第1の周波数を有し、前記第2の電圧は第2の周波数を有するものであり、前記第1の周波数は前記第2の周波数よりも高いものである。
  5. 請求項1記載の装置において、前記第1の電圧は1kHz〜30kHzの範囲内の第1の周波数を有し、前記第2の電圧は0.1Hz〜500Hzの範囲内の第2の周波数を含むものである。
  6. 請求項1記載の装置において、前記イオン雲は両極イオン雲である。
  7. 請求項1記載の装置において、前記第1の電極はフィラメントの形態を有するものである。
  8. 請求項1記載の装置において、前記第1の電極は尖頭形状で終端するテーパー状の先端を含むものである。
  9. 請求項1記載の装置において、前記イオンの前記再分配により前記イオン雲は再構成され、それにより当該イオン雲の一部が前記第1の位置のより近くで拡散されるものである。
  10. 請求項1記載の装置において、前記第3の電圧はDCオフセットを含むものである。
  11. 請求項1記載の装置において、前記第1の電圧は、前記イオン雲の重心が前記間隙のほぼ中心に位置決めされるように選択された周波数および振幅を有するものである。
  12. 請求項1記載の装置において、前記第1の電圧は、前記イオン雲の重心が前記間隙のほぼ中心に位置決めされるように選択された周波数および振幅を有し、前記周波数および前記振幅は次の方程式を使用して選択されるものである。
    Figure 2008542998
    但し、uは前記陽イオンおよび陰イオンの平均イオン移動度、Fは前記周波数、Vは前記振幅、Gは前記間隙の前記選択された長さである。
  13. 第1の位置に位置する物体上の静帯電を低減するための装置であって、
    第1の電圧を受けるための第1の電極と、
    基準電圧を受けるための第2の電極および第3の電極であって、前記第2の電極は第1の間隙によって前記第1の電極から分離されており、前記第3の電極は第2の間隙によって前記第1の電極から分離されているものである、前記第2の電極および第3の電極と、
    前記第1の電極に前記第1の電圧が印加された時に、前記第1の間隙内に陽イオンおよび陰イオンの第1の郡を生成し、且つ前記第2の間隙内に陽イオンおよび陰イオンの第2の郡を生成するための前記第1の電圧と、
    第2の電圧を受けるための第4の電極および第5の電極とを有し、
    前記第2の電圧は、前記第4および第5の電極に当該第2の電圧が印加された時、前記陽イオンおよび陰イオンの第1の郡および第2の郡を再分配するものである
    装置。
  14. 請求項13記載の装置において、前記第1の電極はイオン化電極であり、前記基準電圧は接地に等しく、前記第1および第2の電圧の基準電圧として使用されるものである。
  15. 請求項13記載の装置において、前記第4の電極は前記第1の間隙に対向する第1の面を含み、前記第5の電極は前記第2の間隙に対向する第2の面を含むものである。
  16. 請求項13記載の装置において、前記第4および第5の電極は各々、前記第1および第2の間隙の中心とそれぞれ位置合わせされた中心を有するものである。
  17. 請求項13記載の装置において、前記第1の電圧は第1の周波数を含み、前記第2の電圧は第2の周波数を含むものであり、前記第1の周波数は前記第2の周波数よりも高いものである。
  18. 請求項13記載の装置において、前記第1の電圧は1kHz〜30kHzの範囲内の第1の周波数を含み、前記第2の電圧は0.1〜500Hzの範囲内の第2の周波数を含むものである。
  19. 第1の位置に位置した静電気的に帯電した物体を中和するための装置であって、
    間隙を介して隔てられたイオン化電極および基準電極であって、前記イオン化電極は第1の電圧を受けるものであり、この第1の電圧は、前記イオン化電極に当該第1の電圧が印加された時、前記間隙内の選択された位置に実質的に位置する陽イオンおよび陰イオンを生成するものである、前記イオン化電極および基準電極と、
    前記間隙に対向する面を有し、第2の電圧を受けるための分極電極であって、この第2の電圧は、前記分極電極に印加された時に前記陽イオンおよび陰イオンを再分配するものである、前記分極電極と
    を有する装置。
  20. 請求項19記載の装置において、前記第1の電圧は第1の周波数で交番し、前記第2の電圧は第2の周波数で交番するものである。
  21. 請求項19記載の装置において、前記第1の電圧は、1kHz〜30kHzの範囲内で選択された第1の周波数で交番し、前記第2の電圧は、0.1Hz〜500Hzの範囲内で選択された第2の周波数で交番するものである。
  22. 請求項19記載の装置において、前記再分配により、前記陽イオンの一部が前記第1の位置のより近くに拡散するものである。
  23. 請求項19記載の装置において、前記再分配により、前記陰イオンの一部が前記第1の位置のより近くに拡散するものである。
  24. 請求項19記載の装置において、前記イオン化電極はフィラメントの形状を有するものである。
  25. 第1の位置に位置する帯電物体の静電気を中和し、第1の周波数を有する第1の電圧および第2の周波数を有する第2の電圧を受けるためのイオン化セルを有するイオン生成用アセンブリであって、
    前記第1の電圧を受けるための少なくとも1つのイオン化電極と、
    前記第2の電圧を受けるための少なくとも1つの分極電極と、
    前記第1および第2の電圧の接地電圧基準として使用される電圧を有する少なくとも1つの基準電極と
    を有し、
    前記少なくとも1つのイオン化電極に前記第1の電圧を印加した時にイオン雲が生成され、前記少なくとも1つの分極電極に前記第2の電圧を印加した時に前記イオン雲内において当該第2の電圧と反対の極性を有するイオンが前記第1の位置のより近くに再分配されるものである
    イオン生成用アセンブリ。
  26. 請求項25記載のイオン生成用アセンブリにおいて、前記イオン化電極はエミッタポイント(emitter point)である。
  27. 請求項25記載のイオン生成用アセンブリにおいて、前記イオン化電極はワイヤーである。
  28. 請求項25記載のイオン生成用アセンブリにおいて、このイオン生成用アセンブリは、さらに、
    前記第1の電圧を提供する第1の出力を有する電源を含むものである。
  29. 請求項25記載のイオン生成用アセンブリにおいて、このイオン生成用アセンブリは、さらに、
    前記第1の電圧を提供する第1の出力と、前記第2の電圧を提供する第2の出力とを有する電源を含むものである。
  30. 請求項25記載のイオン生成用アセンブリにおいて、このイオン生成用アセンブリは、さらに、
    前記少なくとも1つのイオン化電極および前記第1の電圧を提供する電源出力に直列に連結された第1のフィルターを含むものである。
  31. 請求項25記載のイオン生成用アセンブリにおいて、このイオン生成用アセンブリは、さらに、
    前記少なくとも1つの分極電極および前記第2の電圧を提供する電源出力に直列に連結された第2のフィルターを含むものである。
  32. 第1の位置に位置する物体上の静帯電を低減するための装置であって、
    第1の電圧を受けるための第1の電極と、
    基準電圧を受けるための第2の電極および第3の電極であって、前記第2の電極は第1の間隙によって前記第1の電極から分離されており、前記第3の電極は第2の間隙によって前記第1の電極から分離されているものである、前記第2の電極および第3の電極と、
    前記第1の電極に前記第1の電圧が印加された時に、前記第1の間隙内に陽イオンおよび陰イオンの第1の郡を生成し、且つ前記第2の間隙内に陽イオンおよび陰イオンの第2の郡を生成するための前記第1の電圧と、
    第2の電圧を受けるための第4の電極および第3の電圧を受けるための第5の電極とを有し、
    前記第2の電圧は、前記第4の電極に当該第2の電圧が印加された時に前記陽イオンおよび陰イオンの第1の郡を再分配し、
    前記第3の電圧は、前記第5の電極に前記第3の電圧が印加された時に前記陽イオンおよび陰イオンの第2の郡を再分配するものである
    装置。
  33. 請求項32記載の装置において、前記第1の電極はイオン化電極であり、前記基準電圧は接地に等しく、前記第1および第2の電圧の基準電圧として使用されるものである。
  34. 請求項32記載の装置において、前記第4の電極は前記第1の間隙と対向して位置決めされた第1の面を含み、前記第5の電極は前記第2の間隙と対向して位置決めされた第2の面を含むものである。
  35. 請求項32記載の装置において、前記第1の電圧は第1の周波数を含み、前記第2の電圧は第2の周波数を含むものであり、前記第1の周波数は前記第2の周波数よりも高いものである。
  36. 請求項32記載の装置において、前記第1の電圧は、1kHz〜31kHzの範囲内の第1の周波数を含み、前記第2の電圧は、0.1〜500Hzの範囲内の第2の周波数を含むものである。
  37. 請求項32記載の装置において、前記第1の電圧は第1の周波数を含み、前記第2の電圧は第2の周波数を含み、前記第3の電圧は第3の周波数を含むものである。
  38. 請求項32記載の装置において、前記第1の電圧は第1の周波数を有し、前記第2の電圧は第2の周波数を有し、前記第3の電圧は第3の周波数を有するものであり、前記第1の周波数は前記第2および第3の周波数よりも高いものである。
  39. 請求項32記載の装置において、前記第2および第3の電圧は、180度位相のずれた周波数でそれぞれ交番するものである。
  40. 請求項32記載の装置において、前記第2および第3の電圧は、それぞれ台形波形を有するものである。
  41. 請求項32記載の装置において、前記第2および第3の電圧は、それぞれ矩形波形を有するものである。
  42. 請求項32記載の装置において、前記第1および第2の間隙は実質的に等しく、前記第1の電圧は周波数と電圧を有し、前記陽イオンおよび陰イオンの第1および第2の郡の前記重心は、次の方程式を使用して前記周波数および前記振幅を選択することにより、それぞれ前記第1および第2の間隙のほぼ中心に位置決めされるものである。
    Figure 2008542998
    但し、uは前記陽イオンおよび陰イオンの平均イオン移動度、Fは前記周波数、Vは前記振幅、Gは前記第1の間隙の前記選択された長さである。
  43. 第1の位置に位置する物体上の静帯電を低減するためのイオン生成用アセンブリを提供する方法であって、
    間隙によって第2の電極から分離された第1の電極と、前記間隙に露出した面を有する第3の電極とを有するイオン化セルを提供する工程と、
    正および負に荷電した混合イオンを有するイオン雲を生成する第1の電圧と、前記第1の電極に前記第1の電圧が印加された時に前記間隙内の選択された位置に位置する重心とを生成する第1の電圧源を提供する工程と、
    前記第2の電極に前記第2の電圧が印加された時に、前記イオン雲内で前記イオンを再分配する第2の電圧を生成する第2の電圧源を提供する工程と
    を有し、
    前記第2の電極は前記イオン化セルで使用される基準電圧を提供するものである
    方法。
  44. 請求項43記載の方法において、前記再分配により、前記正および負に荷電したイオンは前記イオン雲内の正領域および負領域にグループ化され、前記正領域は前記正に荷電したイオンを含み、前記負領域は前記負に荷電したイオンを含むものである。
  45. 請求項43記載の方法において、前記再分配により前記イオン雲が再構成され、前記イオン雲からイオンの一部が前記第1の位置のより近くに拡散されるものである。
  46. 請求項43記載の方法において、前記第1の電圧を生成する工程は、前記第1の電圧の周波数および振幅を定義する、前記第1の電圧を交番させる工程と、前記イオン雲を前記間隙内の選択された位置に位置決めするための前記周波数または前記振幅のいずれかを選択する工程とをさらに含むものである。
  47. 請求項43記載の方法において、前記第2の電圧を生成する工程は、0.1Hz〜500Hzの範囲内の前記第2の電圧を交番させる工程をさらに含むものである。
  48. 請求項43記載の方法において、前記再分配する工程は、前記イオン雲を再構成して前記イオン雲の一部を前記第1の位置のより近くに拡散する工程を含むものである。
  49. 請求項43記載の方法において、この方法は、さらに、
    前記第1および第2の電圧源を提供する電源を提供するものである。
  50. 第1の位置に位置する物体上の静帯電を低減する方法であって、
    周波数および経時的に変化する振幅を有するイオン化電圧を使用することにより、正および負に荷電した混合イオンを有するイオン雲を生成する工程と、
    第2の電圧を使用して前記イオンを相反する極性の2つの領域に再分配することにより前記イオン雲を再構成する工程と
    を有する方法。
  51. 請求項50記載の方法において、前記生成する工程は、選択された長さの間隙を介して相隔たる1対の電極に前記イオン化電圧を印加して前記イオン雲を生成する工程と、次の方程式を使用して前記周波数を選択することにより前記間隙内の前記イオン雲の重心を位置決めする工程とを含むものである。
    Figure 2008542998
    但し、uは前記イオンの平均イオン移動度、Fは前記周波数、Vは前記振幅、Gは前記間隙の前記選択された長さである。
  52. 請求項50記載の方法において、前記生成する工程は、選択された長さの間隙を介して相隔たる1対の電極に前記イオン化電圧を印加して前記イオン雲を生成する工程と、次の方程式を使用して前記振幅を選択することにより前記間隙内の前記イオン雲の重心を位置決めする工程とを含むものである。
    Figure 2008542998
    但し、uは前記イオンの平均イオン移動度、Fは前記周波数、Vは前記振幅、Gは前記間隙の前記選択された長さである。
  53. 請求項50記載の方法において、
    前記生成する工程は、選択された長さの間隙を介して相隔たる1対の電極に前記イオン化電圧を印加して前記イオン雲を生成する工程を含み、
    前記再構成する工程は、前記間隙に対向する少なくとも1つの面を有する少なくとも1つの電極に前記第2の電圧を印加して前記イオンを再分配する分極電界を生成する工程を含み、この分極電界は、当該分極電界の極性を有するイオンを拡散し、前記分極電界と反対の極性を有するイオンを惹きつけることによって生成されるものである。
  54. 請求項50記載の方法において、前記第2の電圧は、0.1Hz〜500Hzの範囲内の周波数と、コロナ放電を発生させるために必要な振幅未満の振幅とを有するものである。
  55. 第1の位置に実質的に位置する静電位を低減する方法であって、
    第1の電極を第1の基準面から隔てる第1の間隙と、前記第1の電極を第2の基準面から隔てる第2の間隙と、前記第1の間隙に対向する第1の分極面と、前記第2の間隙に対向する第2の分極面とを有するイオン化セルを提供する工程と、
    第1の電圧を出力するための第1の電圧源を提供する工程であって、この第1の電圧により、前記第1の電極に当該第1の電圧が印加された時に、前記第1の間隙内の選択された位置に重心を集合的に有する正および負に荷電したイオンの第1の郡と、前記第2の間隙内の選択された位置に重心を集合的に有する正および負に荷電したイオンの第2の郡とが生成されるものである、前記第1の電圧源を提供する工程と
    第2および第3の電圧を出力するための第2の電圧源を提供する工程であって、前記第1および第2の分極面に前記第2の電圧および第3の電圧がそれぞれ印加された時に、当該第2および第3の電圧により前記第1および第2の郡内の別個の領域に前記イオンがそれぞれ再分配されるものである、前記第2の電圧源を提供する工程と、
    を有し、
    前記第1および第2の基準面は、前記イオン化セルの基準電圧を提供するために使用されるものである
    方法。
  56. 請求項55記載の方法において、前記第2および第3の電圧は、それぞれ相互に位相のずれた周波数を有するものである。
  57. 請求項55記載の方法において、前記第2の電圧および第3の電圧はそれぞれ台形波形の形態で提供されるものである。
  58. 請求項55記載の方法において、前記第2の電圧および第3の電圧はそれぞれ矩形波形の形態で提供されるものである。
  59. 請求項55記載の方法において、前記第1および第2の基準面は電気的に連結されたものである。
JP2008513604A 2005-05-25 2006-05-22 広域静電気中和装置およびその方法 Pending JP2008542998A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/136,754 US7479615B2 (en) 2004-04-08 2005-05-25 Wide range static neutralizer and method
PCT/US2006/019817 WO2006127646A2 (en) 2005-05-25 2006-05-22 Wide range static neutralizer and method

Publications (1)

Publication Number Publication Date
JP2008542998A true JP2008542998A (ja) 2008-11-27

Family

ID=37452708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008513604A Pending JP2008542998A (ja) 2005-05-25 2006-05-22 広域静電気中和装置およびその方法

Country Status (6)

Country Link
US (1) US7479615B2 (ja)
JP (1) JP2008542998A (ja)
KR (1) KR20080007605A (ja)
CN (1) CN101568400A (ja)
TW (1) TW200703831A (ja)
WO (1) WO2006127646A2 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8063336B2 (en) * 2004-04-08 2011-11-22 Ion Systems, Inc. Multi-frequency static neutralization
US8773837B2 (en) 2007-03-17 2014-07-08 Illinois Tool Works Inc. Multi pulse linear ionizer
US8885317B2 (en) 2011-02-08 2014-11-11 Illinois Tool Works Inc. Micropulse bipolar corona ionizer and method
US20090316325A1 (en) * 2008-06-18 2009-12-24 Mks Instruments Silicon emitters for ionizers with high frequency waveforms
US9380689B2 (en) 2008-06-18 2016-06-28 Illinois Tool Works Inc. Silicon based charge neutralization systems
DE102009048397A1 (de) * 2009-10-06 2011-04-07 Plasmatreat Gmbh Atmosphärendruckplasmaverfahren zur Herstellung oberflächenmodifizierter Partikel und von Beschichtungen
JP5435423B2 (ja) * 2009-12-09 2014-03-05 Smc株式会社 イオナイザ及び除電方法
US9125284B2 (en) 2012-02-06 2015-09-01 Illinois Tool Works Inc. Automatically balanced micro-pulsed ionizing blower
USD743017S1 (en) 2012-02-06 2015-11-10 Illinois Tool Works Inc. Linear ionizing bar
US9918374B2 (en) 2012-02-06 2018-03-13 Illinois Tool Works Inc. Control system of a balanced micro-pulsed ionizer blower
US9265133B2 (en) * 2012-05-30 2016-02-16 Shenzhen China Star Optoelectronics Technology Co., Ltd Static elimination device and a cassette
WO2021055563A1 (en) * 2019-09-17 2021-03-25 Top Product Innovations, Inc. Air purification apparatus and methods of air purification and treatment using ionization

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5095400A (en) 1988-12-06 1992-03-10 Saito Kohki Co., Ltd. Method and apparatus for eliminating static electricity
JPH0547490A (ja) 1991-08-19 1993-02-26 Shishido Seidenki Kk 除電装置
JP3450048B2 (ja) 1994-03-11 2003-09-22 横河電子機器株式会社 除電器のバランス調整回路
US5550703A (en) 1995-01-31 1996-08-27 Richmond Technology, Inc. Particle free ionization bar
US5630949A (en) 1995-06-01 1997-05-20 Tfr Technologies, Inc. Method and apparatus for fabricating a piezoelectric resonator to a resonant frequency
JP2880427B2 (ja) 1995-06-29 1999-04-12 株式会社テクノ菱和 空気イオン化装置及び空気イオン化方法
JPH1055896A (ja) 1996-08-07 1998-02-24 Toshiba Chem Corp イオナイザー
DE19711342C2 (de) 1997-03-18 1999-01-21 Eltex Elektrostatik Gmbh Aktive Entladeelektrode
JPH10268895A (ja) 1997-03-28 1998-10-09 Yamaha Corp 音声信号処理装置
JP2954921B1 (ja) 1998-03-26 1999-09-27 一雄 岡野 噴射型イオン発生装置
JP4219451B2 (ja) 1998-06-04 2009-02-04 株式会社キーエンス 除電装置
EP1142455B1 (en) 1998-12-22 2002-11-20 Illinois Tool Works Inc. Gas-purged ionizers and methods of achieving static neutralization thereof
US6330146B1 (en) 1999-03-12 2001-12-11 Ion Systems, Inc. Piezoelectric/electrostrictive device and method of manufacturing same
JP4519333B2 (ja) 2001-01-19 2010-08-04 株式会社キーエンス パルスac式除電装置
US6649907B2 (en) 2001-03-08 2003-11-18 Wisconsin Alumni Research Foundation Charge reduction electrospray ionization ion source
JP4903942B2 (ja) 2001-03-15 2012-03-28 株式会社キーエンス イオン発生装置
JP3460021B2 (ja) 2001-04-20 2003-10-27 シャープ株式会社 イオン発生装置及びこれを搭載した空調機器
US6693788B1 (en) 2001-05-09 2004-02-17 Ion Systems Air ionizer with static balance control
KR100489819B1 (ko) 2001-07-03 2005-05-16 삼성전기주식회사 고주파 교류 고전압을 이용한 정전기 제거장치
SE522557C2 (sv) * 2001-07-13 2004-02-17 Microdrug Ag Förfarande och anordning för snabb neutralisering av ett skapat elektrostatiskt fält innefattande ett medicinskt pulver deponderad på en målarea vid en dosutformningsprocess
US6826030B2 (en) 2002-09-20 2004-11-30 Illinois Tool Works Inc. Method of offset voltage control for bipolar ionization systems
US6807044B1 (en) 2003-05-01 2004-10-19 Ion Systems, Inc. Corona discharge apparatus and method of manufacture
US20050052815A1 (en) 2003-09-09 2005-03-10 Smc Corporation Static eliminating method and apparatus therefor

Also Published As

Publication number Publication date
TW200703831A (en) 2007-01-16
WO2006127646A9 (en) 2007-01-25
KR20080007605A (ko) 2008-01-22
US20050225922A1 (en) 2005-10-13
WO2006127646A3 (en) 2009-04-16
CN101568400A (zh) 2009-10-28
US7479615B2 (en) 2009-01-20
WO2006127646A2 (en) 2006-11-30

Similar Documents

Publication Publication Date Title
JP2008542998A (ja) 広域静電気中和装置およびその方法
US8063336B2 (en) Multi-frequency static neutralization
US7679026B1 (en) Multi-frequency static neutralization of moving charged objects
CA2523983A1 (en) Ion generating element, ion generator, and electric device
EP2565903A3 (en) Plasma generator
US20070103842A1 (en) AC Ionizer with Enhanced Ion Balance
KR101942362B1 (ko) 플라즈마 미용기기
JPH0837217A (ja) Bt処理装置及びbt処理方法
JP2004018348A (ja) オゾンおよびマイナスイオン発生装置
JP2001110590A (ja) 直流除電器
JP2725166B2 (ja) 静電気除去方法とその装置
KR20190116900A (ko) 플라즈마 미용기기
JPH07249497A (ja) 除電器のバランス調整回路
JP4002948B2 (ja) イオン生成装置
JPH09320791A (ja) 移動体の除電方法
JPH077715B2 (ja) 直流除電器
KR100234846B1 (ko) 공기 청정 장치
RU18846U1 (ru) Озонатор
RU2514074C2 (ru) Способ биполярной ионизации воздуха и соответствующая схема для биполярной ионизации воздуха
JP2000123956A (ja) イオン生成装置
JP2003022897A (ja) イオン生成装置
KR200332170Y1 (ko) 교번형상 방전판이 채용된 음이온 발생기
JP2017224589A (ja) イオン発生装置
JP3507897B2 (ja) 大気圧グロー放電発生器及び除電器
RU2187762C1 (ru) Устройство для ионизации воздуха