JP2008511781A - ロータリーバルブ構造 - Google Patents

ロータリーバルブ構造 Download PDF

Info

Publication number
JP2008511781A
JP2008511781A JP2007528518A JP2007528518A JP2008511781A JP 2008511781 A JP2008511781 A JP 2008511781A JP 2007528518 A JP2007528518 A JP 2007528518A JP 2007528518 A JP2007528518 A JP 2007528518A JP 2008511781 A JP2008511781 A JP 2008511781A
Authority
JP
Japan
Prior art keywords
valve
exhaust
intake
central portion
rotary valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007528518A
Other languages
English (en)
Other versions
JP2008511781A5 (ja
Inventor
ブルース ウォリス アンソニー
ドナルド トーマス アンドリュー
ユルゲン レスケ クラウス
Original Assignee
ビショップ イノヴェーション リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AU2004904983A external-priority patent/AU2004904983A0/en
Application filed by ビショップ イノヴェーション リミテッド filed Critical ビショップ イノヴェーション リミテッド
Publication of JP2008511781A publication Critical patent/JP2008511781A/ja
Publication of JP2008511781A5 publication Critical patent/JP2008511781A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L7/00Rotary or oscillatory slide valve-gear or valve arrangements
    • F01L7/02Rotary or oscillatory slide valve-gear or valve arrangements with cylindrical, sleeve, or part-annularly shaped valves
    • F01L7/021Rotary or oscillatory slide valve-gear or valve arrangements with cylindrical, sleeve, or part-annularly shaped valves with one rotary valve
    • F01L7/023Cylindrical valves having a hollow or partly hollow body allowing axial inlet or exhaust fluid circulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L7/00Rotary or oscillatory slide valve-gear or valve arrangements
    • F01L7/02Rotary or oscillatory slide valve-gear or valve arrangements with cylindrical, sleeve, or part-annularly shaped valves
    • F01L7/021Rotary or oscillatory slide valve-gear or valve arrangements with cylindrical, sleeve, or part-annularly shaped valves with one rotary valve
    • F01L7/024Cylindrical valves comprising radial inlet and axial outlet or axial inlet and radial outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L7/00Rotary or oscillatory slide valve-gear or valve arrangements
    • F01L7/16Sealing or packing arrangements specially therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2301/00Using particular materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2301/00Using particular materials
    • F01L2301/02Using ceramic materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Abstract

内燃エンジン用の軸流式のロータリーバルブ及びその製造方法である。このバルブは、円筒状周面を有する中央部(5)と、その中央部よりも双方において小径の吸気及び排気部(9,16)と、中央部の周面上の吸気開口部(6)及び排気開口部(7)でそれぞれ終端する吸気ポート(3)及び排気ポート(4)とを具える。中央部は、吸気部及び排気部間を連通する少なくとも一つの細長い通路を有し、通路の全体は、開口部の円周方向外側、かつ吸気及び排気部の少なくとも一方の半径方向外側に配置されている。

Description

この発明は、ロータリーバルブ内燃エンジン用のバルブ及びその製造に関するものである。特に、この発明は、内部が冷却されるとともに同一バルブ内に吸気ポート及び排気ポートの双方が組み込まれた軸流式のロータリーバルブに関するものである。
この発明は、同一バルブ内に吸気ポート及び排気ポートの双方が組み込まれた軸流式のロータリーバルブに関するものである。これらのポートは、バルブの周面内の開口部で終端する。回転中これらの開口部は、シリンダヘッド内の同様の窓部と周期的に位置が合い、バルブからシリンダに、またその逆も同様にガスを通過させる。
シリンダヘッドボアに対して所定の小間隙をもって回転するロータリーバルブは、バルブの熱的及び機械的なたわみの問題を解決するため開発がなされていたが、この問題は20世紀の大部分にわたってロータリーバルブの開発を悩ます原因となっている。従来、ロータリーバルブは、バルブの外径周りに固定スリーブを締まり嵌めすることによりシールされていた。これらのスリーブは、燃焼室をガス密にシールするよう機能し、またバルブに吸気及び排気ポートの双方が組み込まれている場合は、それらポート間をシールするよう機能する。これらの装置は、スリーブ内のバルブに必ず焼付きを生じさせる、不可避的なバルブの熱的及び機械的な変形に対処することができないことから失敗であるといえる。この問題に打ち勝つために、スリーブの設計に関して多くの試みがなされてきたが未だ商品化に至るものはない。
これらの問題に対処するために、バルブは、シリンダヘッドボアに対して小さな隙間をもって回転するよう設計され、燃焼室は、シリンダヘッド内の窓部の周りに配置された浮動シールの配列によってシールされていた。これら最初の装置の一つが、米国特許第4,852,532号明細書(ビショップ)内に見られる。この装置においてバルブは、吸気及び排気ポートの双方が同一バルブ内に組み込まれてなるものである。吸気及び排気ポート間のガスの流れは、バルブ及びシリンダヘッドボア間の半径方向の間隙を小さくすることによって制御されていた。この小さな隙間と、吸気及び排気ポート内の小さな圧力差との組み合わせによってそれらポート間のガスの流れは制限される。
バルブの外径とシリンダヘッドボアとの間の小さな隙間の存在により、バルブをボアに接触させずに少量の熱的及び機械的歪みの発生が可能となった。この変化は、ロータリーバルブの設計において大きな進歩となった。しかしながら、この進歩したバルブを利用し得るようにするためには、熱的及び物理的な歪みが極めて小さいバルブを開発する必要がある。歪みをより小さくすればするほど、必要とされる半径方向の間隙はより小さくなるとともに吸気及び排気ポート間のシール性はさらに向上する。
一般に熱的歪みは、回転するバルブに「永久的な」変形バルブ形状をもたらす。バルブ上の熱的な誘発が高い部分がシリンダヘッドボアに接触する場合、その接触部分はバルブとともに回転し、その接触部分でバルブ内に相当量の熱が発生する。この種の接触は典型的に、シリンダヘッドボア内でバルブの焼付けを引き起こす。
同一バルブ内に吸気及び排気ポートの双方が組み込まれた軸流式ロータリーバルブは、熱的変形という視点から見た場合には最も過酷なカテゴリに位置する。バルブの一端部は高温の排気ポートであり、バルブの他端部は低温の吸気ポートであり、またその周面は、燃焼に曝される部分、排気流に曝される部分及び吸気流に曝される部分である。さらに、同一バルブ内に二つのポートの存在することは、バルブの冷却通路として利用可能なスペースを大幅に減少させることになる。
機械的歪みは、圧縮及びパワーストロークの間に、シリンダの圧力が窓部を遮断するバルブの周面上に作用することによって生じるものである。この歪みは、シリンダの圧力におおよそ比例する。バルブを湾曲してシリンダヘッドボアに接触させる、通常に比べて高いシリンダ圧力を生じる特定の運転条件の場合、当該接触は、サイクルの極一部分を占めるシリンダ圧力がピークとなる瞬間にのみ生じる。大抵の場合、バルブは、焼付くことなくボアに対して瞬間的に擦れ得ることになる。
従って、機械的歪みの場合、シリンダボアと一時的に接触するバルブに対しては許容範囲があるが、それと異なり、熱的歪みの場合には許容範囲はない。
冷却通路は、極めて低出力のロータリーバルブである場合を除き、全てのロータリーバルブに対して必要不可欠なものである。幾つかの従来技術にかかる特許文献では、ロータリーバルブ構体及び冷却の詳細が図式的に示されているが、これら詳細は、この開示に関連するものではない。この典型例は、米国特許第5,509,386号明細書(ウォリス
他)である。
米国特許第5,509,386号明細書(ウォリス 他)のロータリーバルブと同様に構成されたものをこの明細書の図10及び11に示す。このバルブの重要な特徴は、複雑な冷却通路であり、それは、吸気及び排気ポートを互いに完全に隔てるとともに排気後縁34(図11参照)に隣接するエリア内に延びるものである。図12は、鋳造工法によりこのバルブ内に冷却通路を加工するのに必要な中子の等角図である。この中子は、薄壁の部分を有し非常に複雑であり、唯一セラミックを用いて製造可能であり、壊れ易く、高価で、しかも鋳物から取り出すのが困難である。このバルブは、内部冷却通路の中子を用いた鋼鋳物として製造される点で先の従来技術のバルブに特有なものである。実際のところ、これらバルブは、鋳造するのが非常に困難であるとともに、複雑さ及びコストをさらに増大させる鋳造工法への投資を必要とする。
鋳造工法の間、セラミック中子は的確に支持されていなければならず、この制約が意味するところは、図10及び11に示すバルブは、鋳造バルブ37及びカラー38を具える二つの部品で製造されなければならないことである。バルブの構造的一体性を向上させるために、カラー38は、鋳造バルブ37に電子ビーム溶接されている(図10参照)。
米国特許第4,852,532号明細書(ビショップ)には、別の従来技術にかかる軸流式ロータリーバルブの冷却通路について幾つかの詳細が開示されている。この装置においては、このカテゴリの従来技術のバルブには一般的なことではあるが、排気後縁に隣接する冷却通路は設けられていない。排気工程の実質的な部分の間、高温の排気ガスは排気後縁上を流れる。その結果この縁は極めて高温になり、シリンダ内の燃焼ガスのシールに用いられる軸シールを損傷させる相当量の局部的な熱的変形を受ける。全てのロータリーバルブにおいて排気後縁の冷却は必要不可欠である。このエリアの局部的な冷却は、中子の断面が非常に小さく、かつ当該エリアが比較的長距離に亘る場合には、分離した中子を用いても提供することができない。この特有の問題に対して、この明細書の図10及び11に示す従来技術のバルブでは、吸気ポート及び排気ポートを隔離する中子を、排気後縁34に隣接するエリア内まで延ばすことで対処している。
米国特許第2,158,386号明細書(シケス)には、同一バルブ内に吸気及び排気ポートの双方が組み込まれた軸流式ロータリーバルブの冷却についての詳細が示されている。冷却は、排気後縁の冷却を含むこの明細書の図10及び11に示す従来技術のロータリーバルブと同様の方法により提供されている。なお、米国特許第2,158,386号明細書(シケス)の中で示されているバルブの冷却通路は、図10及び11に示すバルブのそれに比べてかなり大きいものであり、従って鋳造の製造方法は幾分容易になる。しかしながら、このバルブの問題は、この提案の結果としてポートが極めて小さくなるということである。吸気及び排気ポートの双方は、バルブの外径の50%よりも小さい径しか有していない。比較として、図10及び11に示すバルブは、バルブ外径の80%となる径を持つ吸気ポート及びバルブ外径の70%となる径を持つ排気ポートを有する。流量エリアは、ポート径の面積によって変化するので、米国特許第2,158,386号明細書(シケス)の中で示されているバルブは、図10及び11に示す同一の外径を有するバルブの吸気流量エリアの40%よりも小さい吸気流量エリアしか有していないことになる。このようなバルブの吸排気能力は極めて低く、最近のポペットバルブの技術に比べて非効率である。
これは、同一バルブ内に吸気及び排気ポートの双方が組み込まれた軸流式ロータリーバルブの製造技術が直面している問題を説明している。冷却通路に割り当てられた断面積が大きければ大きい程、冷却通路の鋳造はより容易になるが、ポートサイズはより小さくなり、バルブの流量能力は低下する。ロータリーバルブが最近のポペットバルブに対して優位であるためには、大きなポートサイズが必要であり、それは冷却通路の許容断面を最小化するとともに鋳造を極めて困難で高価なものとする。加えて、これらバルブは大抵、バルブに十分な構造的一体性を与えるための、バルブ鋳物上に溶接された付加的な部品を必要とする。
この問題に対しては、バルブの外径を大きくすることで潜在的に対処することが可能である。しかしながら、ロータリーバルブ技術においてバルブの径は、スパークプラグの位置及び燃焼室の形状を決定する重要な設計事項であるから、これは現実的な選択ではない。バルブ径を大きくすればする程、スパークプラグをシリンダの中心からより遠くに配置しなければならなくなる。燃焼という観点から見た場合、スパークプラグの最適な配置は、シリンダの中心である。
この明細書の図10及び11に示す従来型のロータリーバルブは、重量が重くなる傾向にある。ひとつにこれは、壁に影響する鋳造条件によって決定される壁の厚さは、機能的又は構造的な観点から要求される厚さよりも厚くなければならないからである。この問題は、鋳物の内部ポートの表面を機械加工することによってある程度は対処することも可能である。しかしながら、これは、余分な製造上の作業及びコストを単に追加するに過ぎない。
そして、図10及び11に示す従来型のロータリーバルブは、重量比に対して低剛性であり構造的に非効率になり易い。米国特許第5,509,386号明細書(ウォリス 他)で示されているような従来技術のロータリーバルブには、先に単に図で示しただけではあるが、軸方向に配置された通路が示されている。このバルブの軸方向通路は、大きな円周長さを有し、内部及び外部壁40,39(図11)間は、この軸方向通路の円周端のみで接続されている。これが、構造的な非効率の原因である。
図11のロータリーバルブは、排気ポートの前縁35付近から吸気ポート3まで円周方向に延びる軸方向通路21aを有する。外部壁39、軸方向通路21a及び内部壁を形成することによってもたらされるこのバルブの構造は、内部及び外部壁が互いに結合されておらず、従ってそれぞれが独立して動き得ることから、本質的に可撓性である。結果としてこの装置は、重量比に対して非常に貧弱な剛性を有することになる。
この低剛性の問題は、図11に示す従来技術のバルブにおいて、ポート分割壁41の動作が外部壁39に向かってどのように反応するかを考えることで最も良く説明することができる。ポート分割壁41は、内部壁40と外部壁39とが交わる部分に離れて固定された片持ち梁のように振舞う内部壁40に反応して動く。このため、分割壁41及び内部壁40は、内部壁40及び外部壁39がそれぞれ結合するそれらポイント周りに旋回するベローズのように振舞う。
外部及び/又は内部壁をより薄くすればする程、この円周方向に長い軸方向通路によってもたらされるこの問題はさらに深刻なものとなる。この問題を数値化するにあたっての便利な方法に縦横比(アスペクト比)がある。これを適用するにあたっては、軸方向に延びる通路の縦横比は、通路の最大の円周方向長さを、軸方向通路の半径方向の先端と内部又は外部壁の何れか近い一方に隣接する表面との間で最小の半径方向の高さで割ることにより定義される。
図11に示すロータリーバルブでは、外部壁39の半径方向の肉厚は3.5mmであり、内部壁40の半径方向の肉厚は2mmであり、軸方向通路21aの円周方向長さは70mmであることから、縦横比は35対1(35:1)となる。
ロータリーバルブを設計するにあたっては、常に考慮すべき幾つかの問題がある。第一に、バルブの外径は、吸入及び排気ポートの双方において必要とされる最小の流量エリアと最低限一致していなければならない。第二に、バルブは、最大の燃焼負荷の下においても、歪みが所定の小間隙よりも小さくなるよう十分な硬さを有していなければならない。第三に、バルブの冷却及びバルブの構造は、熱的変形を所定の小間隙よりも小さくすることを確実にするようなものでなければならない。最後に、バルブの冷却及び構造は、機械的な負荷によるバルブの変形が熱的変形を増大させるようなものであってはならない。さもなければ、所定の小間隙を必要以上に大きくしなければならなくなる。
米国特許第4,852,532号明細書 米国特許第5,509,386号明細書 米国特許第2,158,386号明細書
この発明は、鋳造により内部に内部冷却通路が設けられた、上述の従来技術のロータリーバルブに伴う一つ又はそれ以上の不具合に打ち勝つことを目的とするものである。
第一の態様において、この発明は、内燃エンジン用の軸流式のロータリーバルブで構成され、前記バルブは、前記エンジンのシリンダヘッドのボア内の軸線周りに回転するように構成されており、前記バルブの一端は吸気端であり、他端は排気端であり、前記バルブは、円筒状周面を有する中央部と、前記中央部と吸気端の間に延び、前記中央部よりも直径が小さい吸気部と、前記中央部と排気端の間に延び、前記中央部よりも直径が小さい排気部と、前記吸気端から延びて前記中央部の周面内の吸気開口部として終端する吸気ポートと、前記排気端から延びて前記中央部の周面内の排気開口部として終端する排気ポートと、を具える、ロータリーバルブにおいて、前記中央部は、前記吸気部と前記排気部の間を連通する少なくとも一つの細長い通路を有し、前記通路は、前記開口部の円周方向外側、かつ前記吸気及び排気部の少なくとも一方の半径方向外側に配置されていることを特徴とする。
好ましくは、前記通路は、10:1よりも小さい縦横比を有する。
好ましくは、前記中央部の少なくとも一方の端部は、前記円筒状周面から半径方向内向きに延びる環状バルブシートを有し、前記通路の少なくとも一部は、前記環状バルブシートの内径部の半径方向外側にある。
好ましくは、前記中央部は、前記吸気及び排気開口部の軸方向外側にあり、前記環状バルブシートの半径方向内側にある環状開口部を有する少なくとも一つの環状キャビティと、前記キャビティで終端する前記通路の端部と、を有する。
好ましくは、前記少なくとも一つの細長い通路は、円周方向に離間する複数の細長い通路を具える。
好ましくは、前記通路の少なくとも一つは、前記排気開口部の後縁に隣接する。
好ましくは、前記通路のそれぞれは、実質的に円形の断面を有し、かつ実質的に軸方向に延びる。
好ましくは、前記吸気及び排気ポートは、内部通路を有していない共通壁によって分離されている。
好ましくは、前記細長い通路は、冷却通路である。
好適な一実施形態において、前記バルブは、単一固体片の材料から製造されている。
別の好適な実施形態において、前記バルブは、一つの内装体及び少なくとも一つの外装体から製造され、前記外装体は、前記内装体を少なくとも部分的に包囲するとともにそれに取り付けられ、前記通路が、前記内装体と外装体の間の境界に形成されている。
第二の態様において、この発明は、両端部に半径方向内向きの段が付いたオーバーサイズの中央部を有する未完成のバルブから、この発明の第一態様に従うロータリーバルブを製造する方法で構成され、前記オーバーサイズの中央部を機械加工し、前記細長い通路及び前記オーバーサイズの中央部の少なくとも一方の端部の端面内に環状溝を形成するステップと、前記オーバーサイズの中央部を半径方向内向きに変形させ、前記環状溝を前記環状キャビティにするステップと、前記端面を機械加工し、前記環状バルブシートを形成するとともに、前記オーバーサイズの中央部の外径部を機械加工し、前記中央部を形成するステップと、を具える。
第三の態様において、この発明は、内燃エンジン用のロータリーバルブアセンブリで構成され、この発明の第一態様に従うロータリーバルブと、ボアを有するシリンダヘッドであり、そのボア内で前記バルブが、ベアリング手段によって支持され、前記ボアと前記バルブの前記中央部との間に小さい所定の隙間をもって回転するものであり、前記バルブの前記吸気及び排気開口部が前記ボア内の窓部と周期的に連通する、シリンダヘッドと、前記ボアを弾性的にシールするとともに、前記中央部の反対端部部によりそれぞれ形成された第一及び第二のバルブシートに対して軸方向内側に付勢された第一及び第二のシールリングと、を具えることを特徴とする。
好ましくは、前記ロータリーバルブアセンブリは、前記バルブの排気ポート内に、前記バルブの前記吸気及び排気ポートを分離する共通壁の少なくとも一部を覆う断熱障壁をさらに具える。
好ましくは、前記断熱障壁と前記共通壁の間に空隙がある。
図1に、バルブ1及びシリンダヘッド2を具える、この発明に従うロータリーバルブアセンブリの第一の実施形態を示す。バルブ1は、吸気ポート3及び排気ポート4を有する。バルブ1は、一方の側である吸気部9の小径部及びもう一方の側である排気部16の小径部と同径の中央部5を有する。吸気部9は、バルブ1の、中央部5と吸気端42の間に延びる。排気部16は、バルブ1の、中央部5と排気端43の間に延びる。吸気ポート3は、バルブ1の吸気端42から延びて、中央部5の周面内の吸気開口部6として終端する。排気ポート4は、バルブ1の排気端43から延びて、中央部5の周面内の排気開口部7として終端する。吸気ポート3及び排気ポート4は、共通壁23によって分離されている。バルブ1は、ベアリング8に支持されており、シリンダヘッド2内の軸10周りに回転する。ベアリング8は、吸気部9及び排気部16の周面を支持する。ベアリング8は、中央部5の周面とシリンダヘッド2のボア11との間に小さい運転隙間を保持したまま、バルブ1を軸線10周りに回転させる。
シリンダヘッド2は、シリンダブロック12の上部に搭載されている。ピストン13は、シリンダ14内を往復運動する。バルブ1がシリンダヘッド2内を回転するとき、吸気開口部6及び排気開口部7は、シリンダヘッド2内の窓部15と周期的に連通し、バルブ1及びシリンダ14間で流体を通過させる。
バルブ冷却及び潤滑オイルの、中央部5の周面とボア11の間の区域内への進入は、バルブシールリング18、Oリング20、環状バルブシート17及び面シールスプリング19を具える二つの面シール装置によって妨げられる。中央部5は、窓部15の軸方向周縁を軸方向に小さく越えて延びる。バルブ1には、中央部5の両側に半径方向内向きの段が付けられ、面シールスプリング19から軸方向内向きに予備荷重を受けるバルブシールリング18に対するバルブシート17を形成するラジアル面が形成されている。バルブシールリング18は、Oリング手段20によって、シリンダヘッドボアに対して僅かにシールされている。
軸方向に延びる小さく細長い複数の軸方向通路21は、中央部5に近接するバルブ1を介して冷却オイルを通過させる。通路21は、吸気開口部6及び排気開口部7を越えて軸方向に延びるとともに吸気ポート9と排気ポート16の間に連通する。冷却オイルは、バルブシート17の内径部とその半径方向に隣接するバルブ表面24との間の環状の隙間を介して中央部5に出入りする。バルブシート17の軸方向内向き直近には、軸方向通路21へのアクセスを可能とする環状キャビティ22が設けられている。軸方向通路21は環状キャビティ22で終端し、各環状キャビティ22は、バルブシートの半径方向内側に環状の開口部を有する。環状キャビティ22は、吸気開口部6及び排気開口部7の軸方向外側にある。図9に、バルブ1の等角断面を示す。
軸方向通路21は、小さい縦横比を有する。軸方向通路21がドリル穴によって形成されている場合、代表的には、穴径は2mmであるとともに当該穴の半径方向周縁と隣接表面との間の半径方向の肉厚は1.5mmであるから、軸方向通路21の縦横比は1.33(すなわち、2mm/1.5mm)となる。これは、内部及び外部壁が常に効果的に結合し、非常に効率的なビームとして作用することを確実とする。従来技術のバルブとは異なり、共通壁23の如何なる動作も内部及び外部壁の双方に直接反応を与える。
図2を参照すると、軸方向通路21は、円周方向にほとんど同一間隔で離間し、また軸線10から定率半径に位置しており、円筒部5の表面に近接している。軸方向通路21は、吸気開口部6及び排気開口部7の円周方向外側に配置され、バルブ1のブリッジ部32内に位置する幾つかの軸方向通路21を含む。ブリッジ部32は、吸気開口部の前縁33と排気開口部の後縁34の間を渡る中央部5の周面部付近に形成されている。軸方向通路21は全て、吸気部9の周面及び排気部16の周面の双方の周縁の半径方向外側に配置されている。なお、図示しない他の実施形態において、軸方向通路は、吸気又は排気部の一方のみの端部の半径方向外側にあっても良い。軸方向通路は、吸気又は排気部の少なくとも一方の半径方向外側にあることが必要であり、これにより、軸方向通路を加工するためのアクセスが可能となる。
軸方向通路21は、径が小さく、代表的にはその径は2mm以下である。そのような通路を鋳造する既知の手段はないので、それらはバルブ1内に機械加工しなれればならない。軸方向通路21は、円筒部5の表面に近接している必要があり、これにより燃焼室から熱の入力を受けるバルブの表面と軸方向通路21の間のヒートパスは最小化される。
従来の装置にみられる冷却通路により分離された二つの壁は、壁の中心を通り抜ける軸方向通路21を有する一つの壁に置き換えられている。この実施形態の場合の半径方向の厚さは、4〜5mmであるのに対し、プロセス生産型を用いた従来装置では、一般的には11mm程度の半径方向の厚さ(厚さ5mmの中子によって分離された厚さ3mmの二つの壁)が必要とされる。
軸方向通路21は、排気後縁34に隣接して容易に設けることができる。従来技術の装置において、これは、吸気ポートと排気ポートの間の冷却通路を延長することによってのみ可能とされていた。材料及び重量に必然的節約があった典型的な従来技術の装置の、内部冷却通路により分離されたの二つの壁に代えて、ここでは単一の共通壁23が、排気ポート4から吸気ポート3を分離する。
軸方向通路21を中央部5の表面に近接して位置するための要件は、中央部5の両端部に十分な半径方向の深さを持つバルブシート17を形成するための要件と相反する。好ましくは、軸方向通路21の半径方向の周縁が、中央部5の周面から半径方向1.5mm内に位置することである。一般に、バルブシート17には、面シールとして十分に機能するために3mmより大きい半径方向深さが必要とされる。このようなものであるから、図1に見られ得るように、各軸方向通路21の少なくとも一部は、バルブシート17の内径部の半径方向外側にある。そのため、従来の製造技術を用いてバルブ1内に直接機械加工された何れの軸方向通路21は、予備荷重されているシールリング18に対するバルブシート17を貫通し、従って適切なシールは妨げられる。この発明に従い、この困難に打ち勝つ、バルブシート17及び軸方向通路21の製造方法を図3から図5に説明する。
図3は、未完成のバルブ1の部分断面を示している。この製造段階では、中央部5は、まだ機械加工されておらず、その外径は、最終径よりも大きい。環状の溝44は、中央部5の各端面内に機械加工されている。溝44で終端する軸方向通路21は、溝44を機械加工する前又は後に中央部5を貫通して機械加工しても良い。この製造段階では、軸方向通路21は、バルブ1のオーバーサイズの中央部5の外径から幾分離れており、その外径部上には、取り代が残されたままになっている。溝44及び軸方向通路21が機械加工された後に、未完成バルブ1の外径部は、中央部5の両端部において内側に向けて変形され、図4に示すように、溝44が、軸方向通路21の端部にそれぞれ隣接する環状キャビティ22になる。この中央部5の両端部は、ローリング、スエージング又はその他の適切な方法によって変形されても良い。次いで、図5に示すように、中央部5の外径部は、最終の大きさまで機械加工され、さらに中央部5の両端部は機械加工されてバルブシート17が形成される。
この製造方法を用いることで、バルブシート17に十分な半径方向の肉厚を提供しつつ、バルブ1内であって、バルブシート17の内径部の半径方向外側に軸方向通路21を機械加工することができ、面シールの正確な機能を確実にすることができる。
バルブシート17の内径部とその半径方向に隣接する表面24との間の半径方向隙間は、キャビティ22に冷却剤開口部を形成する。この隙間は、軸方向通路への所要のオイル流量が、過度の圧力降下を伴うことなくキャビティ22に及びから通過し得ることを確実にするよう十分でなければならない。半径方向に隣接する表面24の径は、吸気ポート3及び排気ポート4の大きさを決定し、ひいてはバルブ1の吸排気能力を決定する。この表面24に隣接する最大許容ポート径は、半径方向隣接表面24から最小許容肉厚の2倍を差し引いた径である。
ベアリング表面25は、回転するベアリング8の回転要素に対する表面であり、典型的には、半径方向隣接表面24の直径よりも小さくならないように設計されているので、これは、吸気ポート3及び排気ポート4の大きさを不必要に減少させる。ベアリング表面25の径を、バルブシールリング18の内径部よりも大きくすることはできず、なぜならこの径上にそれを取り付け可能にしなければならないからである。
同じバルブ径、同じバルブシート17の所要半径方向深さ、及び同じ冷却オイル流量では、この装置は、吸気ポート3及び排気ポート4において最大の流量エリアを有するロータリーバルブを実現する。
軸方向通路21の数及びそれらの分配は、エンジン及びそのアプリケーションの設計の詳細に依存する。それらの数及び分配は、二つの考慮すべき事項によって決定される。第一に、それらは、バルブ周面上の最も高温なエリアからの熱除去が最大となるように配置されなければならないことである。第二に、それらは、バルブの熱的変形が最小となるように配置されなければならないことである。概して最適な装置は、経験に基づき確立されるものである。
中央部5の周面の特定のエリアは、他のエリアよりも熱負荷が大きくなる。例えば、燃焼に曝される周面部分は、圧縮工程間に燃焼室に曝される周面部分よりも大きい熱負荷を受ける。排気後縁34に隣接するブリッジ部32もまた熱負荷が大きくなるが、一方で吸気前縁33に隣接する、ブリッジ部32のエリアは非常に小さい熱負荷を有する。一般に、軸方向通路21は、バルブ周面上の高い熱負荷を受けることになるそれらエリアに隣接して配置されている。使用目的によっては、重量は特に重要であり、軸方向通路を可能な限り多くすることで、バルブ重量の最小化を提供することができる。これら軸方向通路21の一部は、冷却オイル流をそれらエリアに独立させるため、上述したように事後的に遮断しても良い。
冷却オイルを流す軸方向通路21の数を最小化することは、バルブを通過する所定のオイル流に対して軸方向通路21を通る冷却オイル流の速度を最大化することになる。より速い速度は、バルブ表面を冷却するオイルの能力を向上させる。前述のように、冷却オイルを運ぶ軸方向通路21の分配を行うことは、所定の冷却オイル流量のもと、高い熱の入力受けるそれら表面からのより効果的な熱の除去を確実にする。
一般に、圧縮及び燃焼に曝される、バルブ1の表面26(図2参照)への熱入力は、ブリッジ部32への熱入力よりも大きい。結果的に、他の全ての部分が同じまま、表面26の表面温度がより一層高温になるので、バルブは、表面26に向けて凸形状に曲がる傾向にある。なお、全ての部分が同じでない場合でも同様である。吸気ポート3と排気ポート4の間の共通壁23の排気ポート4側は、排気ガスに直接曝される。共通壁23は、内部冷却を有しておらず、結果的に極度に高温になる可能性がある。この高温の共通壁23は、バルブ1に予測困難な伸び及び熱的歪みを与える。
排気ポート4は、軸方向通路21に直接曝される特定の表面を有する。これら軸方向通路21は、バルブの外部表面及び排気ポート4の内部表面の双方から熱の入力を受け、かつ不均一な熱負荷を受ける。
排気からの熱負荷が高い、又は所定の小間隙が小さい、あるいはこれら両方の条件が組み合わされた特定の装置においては、排気ポート4から共通壁23への及び軸方向通路21への熱入力を制限することが必要となる。これは、種々の方法により達成可能である。
排気ポート4の壁に、断熱層を吹き付けることも可能である。別の方法として、高温の排気ガスと排気ポート4との壁間に空隙31(図7参照)をもたらす、薄板金属バッフル30状の熱障壁(図8参照)を排気ポート4内に挿入することも可能である。小隆起パッド36を排気ポート4の表面上に設けて、バッフル30が、これらパッド36を除き、排気ポート4の壁に接触するのを防ぐようにしても良い。
冷却剤を運ぶ軸方向通路21の半径方向の位置が中央部5の外径部に近づくように注意を払うことによって、また排気ガスから排気ポート4の内部表面を断熱することによって、最も厳しい条件下においても、バルブの変形を、エンジンの性能に悪影響を与えることがない大きさである所定の小間隙に適応し得る水準に維持することができる。
機械的剛性という局面から見て、この設計は、重量比に対して高い剛性を有することが分かる。低縦横比の軸方向通路21は、共通壁23が冷却通路によってバルブ1の外部表面から離間されている場合に比べて、共通壁23によるバルブ1の両側の外部表面同士の効果的な結合をより一層効果的にすることを確実にする。
軸方向冷却通路21は、バルブ1の外径の半径方向直近に隣接するエリアに限定される。この装置は、軸方向冷却通路21を機械加工した鋳物から事後的に製造することができるという大きな利点がある。このような鋳物は、複雑な内部冷却通路がないことから鋳造するのが非常に容易である。この装置は、バルブを固体ビレット材料から機械加工し得るという付加利益を有する。このことは、単純な鋳造でさえ長い準備期間を必要とする試作品のバルブを製作する際には特に重要となる。
吸気ポート9及び排気ポート16の周面の半径方向外側直近及び中央部5の周面の半径方向内側直近に軸方向通路21を設置することにより、並びにバルブの外部壁の中央にそれらを埋設することにより、任意のポートの流量エリア及びバルブの剛性を最大化しても、バルブの直径及び重量は、最小化される。製造中にバルブ1の外径を変形させることにより、バルブの外径を増加させることなく、適正なバルブシート17を得ても良い。最終的には、冷却剤を運ぶ軸方向通路の適正な配置及び排気ポートの断熱により、変形が最小となるバルブを得ることができる。
しかしながら、軸方向通路21は、その径が小さく、かつ長さが長いために機械加工が比較的高価なものとなる。この問題は、バルブ1が、互いに溶接された複数の部品から製造されている、図6に示すこの発明の第二の実施形態によって対処される。軸方向通路21は、バルブ内装体28の外径内に形成されている。この場合、軸方向通路21の断面を円形にしたり、又は軸方向通路21を軸方向に延ばしたりする必要はない。軸方向通路21は、排気部と吸気部の間に延びる通路に置き換えても良く、それは、対角状、曲線状又は他の通路をたどるものでも良い。軸方向通路21は、機械加工された穴を有するそれらバルブの縦横比を極めて低くするという製造上考慮すべきことにもはや制限されることはない。しかしながら、構造的な効率を確実なものとするためには、それらの低縦横比を維持することが必要である。
バルブ外装体29は、バルブ内装体28上で縮径し、バルブ内装体28に溶接されている。冷却オイルが吸気ポート3及び排気ポート4内に漏れ込まないこと確実とするために、少なくともバルブ外装体29は、中央部5内の吸気開口部6及び排気開口部7に隣接するバルブ内装体28に溶接されていなければならない。バルブ外装体29の、軸方向冷却通路間の区間内におけるバルブ内装体28への付加的な溶接は、完成バルブを補強する。この装置において、バルブ内装体28は、例えば鋳造で形成しても良く、またバルブ外装体29は、例えば押出し管から製造しても良い。
最小のバルブ径が達成された場合、バルブの外径は、バルブ外装体29をバルブ内装体28に取り付けた後に、図4及び図5に関連し先に説明した第一実施形態と同様の方法で、変形及び機械加工することが必要となる。
上述した実施形態の双方において、軸方向通路21の「低縦横比」は、10対1(10:1)より小さい何れかで定義されることを理解されたい。
本明細書において、「具える(comprising)」とは、「含む(including)」又は「有する(having)」の包括的意味で用いられており、「のみからなる(consisting only of)」の排他的意味では用いられていない。
この発明の第一の好適な実施形態に従う、軸流式ロータリーバルブ内燃エンジンの断面図である。 図1に示すエンジンのII−II線に沿う部分断面図であり、明確化のため、バルブ及びシリンダヘッドボア間の隙間を誇張したものである。 この発明に従う製造の初期段階における軸流式ロータリーバルブを通る部分断面図である。 図3と同様の部分断面図であるが、製造の後期におけるものである。 図3及び図4と同様の部分断面図であるが、製造の終期におけるものである。 二つの部品から製造される、この発明の第二の好適な実施形態に従うロータリーバルブの等角図である。 この発明に従う排気ポート用の断熱方法の詳細を示す、ロータリーバルブを通る断面図である。 図7に示す共通壁及びバルブの排気ポートの断熱に用いられる薄板金属バッフルの等角図である。 図1に示すロータリーバルブの中央を通る軸方向断面の等角図である。 従来技術のロータリーバルブの中央を通る軸方向断面の等角図である。 図10に示す従来技術のロータリーバルブの中央を通る横断面の等角図である。 図10及び11に示す従来技術のバルブにおいて、冷却通路の製造に必要とされる中子の等角図である。

Claims (15)

  1. 内燃エンジン用の軸流式のロータリーバルブであり、前記バルブは、前記エンジンのシリンダヘッドのボア内の軸線周りに回転するように構成されており、前記バルブの一端は吸気端であり、他端は排気端であり、前記バルブは、円筒状周面を有する中央部と、前記中央部と吸気端の間に延び、前記中央部よりも直径が小さい吸気部と、前記中央部と排気端の間に延び、前記中央部よりも直径が小さい排気部と、前記吸気端から延びて前記中央部の周面内で吸気開口部として終端する吸気ポートと、前記排気端から延びて前記中央部の周面内で排気開口部として終端する排気ポートと、を具える、ロータリーバルブにおいて、
    前記中央部は、前記吸気部と前記排気部の間を連通する少なくとも一つの細長い通路を有し、前記通路は、前記開口部の円周方向外側、かつ前記吸気及び排気部の少なくとも一方の半径方向外側に配置されていることを特徴とするロータリーバルブ。
  2. 前記通路は、10:1よりも小さい縦横比を有する、請求項1記載のロータリーバルブ。
  3. 前記中央部の少なくとも一方の端部は、前記円筒状周面から半径方向内向きに延びる環状バルブシートを有し、
    前記通路の少なくとも一部は、前記環状バルブシートの内径部の半径方向外側にある、請求項1記載のロータリーバルブ。
  4. 前記中央部は、前記吸気及び排気開口部の軸方向外側にあり、前記環状バルブシートの半径方向内側にある環状開口部を有する少なくとも一つの環状キャビティと、前記キャビティで終端する前記通路の端部と、を有する、請求項3に記載のロータリーバルブ。
  5. 前記少なくとも一つの細長い通路は、円周方向に離間する複数の細長い通路を具える、請求項1記載のロータリーバルブ。
  6. 前記通路の少なくとも一つは、前記排気開口部の後縁に隣接する、請求項5に記載のロータリーバルブ。
  7. 前記通路のそれぞれは、実質的に円形の断面を有し、かつ実質的に軸方向に延びる、請求項5に記載のロータリーバルブ。
  8. 前記吸気及び排気ポートは、内部通路を有していない共通壁によって分離されている、請求項1に記載のロータリーバルブ。
  9. 前記細長い通路は、冷却液通路である、請求項1記載のロータリーバルブ。
  10. 前記バルブは、単一固体片の材料から製造されている、請求項1記載のロータリーバルブ。
  11. 前記バルブは、一つの内装体及び少なくとも一つの外装体から製造され、前記外装体は、前記内装体を少なくとも部分的に包囲するとともにそれに取り付けられ、前記通路が、前記内装体と外装体の間の境界に形成される、請求項1記載のロータリーバルブ。
  12. 両端部に半径方向内向きの段が付いたオーバーサイズの中央部を有する未完成のバルブから、請求項4に記載のロータリーバルブを製造する方法において、
    前記オーバーサイズの中央部を機械加工し、前記細長い通路及び前記オーバーサイズの中央部の少なくとも一方の端部の端面内に環状溝を形成するステップと、
    前記オーバーサイズの中央部を半径方向内向きに変形させ、前記環状溝を前記環状キャビティにするステップと、
    前記端面を機械加工し、前記環状バルブシートを形成するとともに、前記オーバーサイズの中央部の外径部を機械加工し、前記中央部を形成するステップと、を具えることを特徴とするロータリーバルブの製造方法。
  13. 請求項1に記載のロータリーバルブと、ボアを有するシリンダヘッドであり、そのボア内で前記バルブが、ベアリング手段によって支持され、前記ボアと前記バルブの前記中央部との間に小さい所定の隙間をもって回転するものであり、前記バルブの前記吸気及び排気開口部が前記ボア内の窓部と周期的に連通する、シリンダヘッドと、前記ボアを弾性的にシールするとともに、前記中央部の反対端部によりそれぞれ形成された第一及び第二のバルブシートに対して軸方向内側に付勢された第一及び第二のシールリングと、を具えることを特徴とする、内燃エンジン用のロータリーバルブアセンブリ。
  14. 前記ロータリーバルブアセンブリは、前記バルブの排気ポート内に、前記バルブの前記吸気及び排気ポートを分離する共通壁の少なくとも一部を覆う断熱障壁をさらに具える、請求項13に記載のロータリーバルブアセンブリ。
  15. 前記断熱障壁と前記共通壁との間に空隙がある、請求項13に記載のロータリーバルブアセンブリ。
JP2007528518A 2004-09-01 2005-08-31 ロータリーバルブ構造 Pending JP2008511781A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AU2004904983A AU2004904983A0 (en) 2004-09-01 Rotary valve construction
PCT/AU2005/001310 WO2006024085A1 (en) 2004-09-01 2005-08-31 Rotary valve construction

Publications (2)

Publication Number Publication Date
JP2008511781A true JP2008511781A (ja) 2008-04-17
JP2008511781A5 JP2008511781A5 (ja) 2008-10-16

Family

ID=35999627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007528518A Pending JP2008511781A (ja) 2004-09-01 2005-08-31 ロータリーバルブ構造

Country Status (4)

Country Link
US (1) US20070277770A1 (ja)
EP (1) EP1789657A1 (ja)
JP (1) JP2008511781A (ja)
WO (1) WO2006024085A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101481427B1 (ko) * 2007-08-06 2015-01-12 엔진 솔루션 스웨덴 아크티에볼라그 연소 기관용 밸브 어레인지멘트
BRPI0907411A2 (pt) * 2008-01-25 2015-07-21 Prad Res & Dev Ltd Sistema de monitoramento de um tubo flexivel, método para monitorar a integridade de um tubo flexivel de uma instalação submarina, sistema de monitoramento de uma quantidade de água acumulada em um anel de um tubo flexivel, e método de monitoramento de uma quantidade de água acumulada em anel de um tubo
US11560952B2 (en) * 2020-09-01 2023-01-24 Hanon Systems Variable cylinder wall for seals on plug valve

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50107313A (ja) * 1974-01-30 1975-08-23
JPS5629005A (en) * 1979-08-17 1981-03-23 Honda Motor Co Ltd Internal combustion engine with rotary valve
JPH02169810A (ja) * 1988-10-26 1990-06-29 Giancarlo Brusutti 内燃エンジンの回転調時システムのためのシール素子
JPH0378509A (ja) * 1989-08-18 1991-04-03 Katsuo Tomita 回転弁および気密シートおよびその潤滑方法
JPH03229905A (ja) * 1989-10-20 1991-10-11 Takumi Muroki シール材をケーシング側に設けたロータリー弁装置
JPH04175407A (ja) * 1990-11-09 1992-06-23 Yuji Tabei エンジンの吸排気のための円柱棒状のバルブを内臓したエンジン
JPH08503049A (ja) * 1992-11-06 1996-04-02 エイ イー ビショップ リサーチ プロプライエタリー リミテッド 回転弁の潤滑機構
JPH08503047A (ja) * 1992-11-06 1996-04-02 エイ イー ビショップ リサーチ プロプライエタリー リミテッド 回転弁用ガス密封システム
US5967108A (en) * 1996-09-11 1999-10-19 Kutlucinar; Iskender Rotary valve system
JP2005527736A (ja) * 2002-05-28 2005-09-15 アールシーブィ、エンジンズ、リミテッド 回転バルブシール

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2158386A (en) * 1937-05-28 1939-05-16 Sykes Walter David Rotary valve for internal combustion engines
AU586459B2 (en) * 1986-01-23 1989-07-13 Arthur Ernest Bishop Rotary valve for internal combustion engines
US5052349A (en) * 1990-07-30 1991-10-01 Terry Buelna Rotary valve for internal combustion engine
EP0746673B1 (en) * 1992-11-06 1998-05-13 A.E. Bishop Research Pty. Limited Rotary valve with sealing means
US6321699B1 (en) * 1997-08-25 2001-11-27 Richard Berkeley Britton Spheroidal rotary valve for combustion engines

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50107313A (ja) * 1974-01-30 1975-08-23
JPS5629005A (en) * 1979-08-17 1981-03-23 Honda Motor Co Ltd Internal combustion engine with rotary valve
JPH02169810A (ja) * 1988-10-26 1990-06-29 Giancarlo Brusutti 内燃エンジンの回転調時システムのためのシール素子
JPH0378509A (ja) * 1989-08-18 1991-04-03 Katsuo Tomita 回転弁および気密シートおよびその潤滑方法
JPH03229905A (ja) * 1989-10-20 1991-10-11 Takumi Muroki シール材をケーシング側に設けたロータリー弁装置
JPH04175407A (ja) * 1990-11-09 1992-06-23 Yuji Tabei エンジンの吸排気のための円柱棒状のバルブを内臓したエンジン
JPH08503049A (ja) * 1992-11-06 1996-04-02 エイ イー ビショップ リサーチ プロプライエタリー リミテッド 回転弁の潤滑機構
JPH08503047A (ja) * 1992-11-06 1996-04-02 エイ イー ビショップ リサーチ プロプライエタリー リミテッド 回転弁用ガス密封システム
US5967108A (en) * 1996-09-11 1999-10-19 Kutlucinar; Iskender Rotary valve system
JP2005527736A (ja) * 2002-05-28 2005-09-15 アールシーブィ、エンジンズ、リミテッド 回転バルブシール

Also Published As

Publication number Publication date
WO2006024085A1 (en) 2006-03-09
US20070277770A1 (en) 2007-12-06
EP1789657A1 (en) 2007-05-30

Similar Documents

Publication Publication Date Title
EP2401481B1 (en) Sleeve valve assembly with cooling path
EP1600621B1 (en) Cylinder liner cooling structure
JP5270831B2 (ja) 軸方向応力が削減された高圧タービン用ディスクおよび軸方向応力の削減方法
CN102792030B (zh) 涡轮增压器壳体
JP2008298284A (ja) ターボチャージャ用軸受装置
EP2565393B1 (en) Turbocharger bearing comprising an insulating sleeve between the inner bearing ring and the shaft
CN104350236B (zh) 用于废气涡轮增压器的涡轮机壳体
JPH06235349A (ja) 湿式シリンダライナ
JP2008511781A (ja) ロータリーバルブ構造
JP2008511777A (ja) ロータリーバルブのガスおよびオイルシール
EP1394361B1 (en) Gas turbine
CN110114559A (zh) 具有至少一个中空顶气门的内燃机
JP2008138649A (ja) 中空バルブ
JP5529730B2 (ja) 金属粉末部品の公差改善
AU2005279694B2 (en) Rotary valve construction
JP5488042B2 (ja) 鍛造ダイ
JP4788630B2 (ja) 転がり軸受装置
JP2005106214A (ja) 転がり軸受装置
US6726218B2 (en) Compression piston ring for use in internal combustion engine
CN219711679U (zh) 气缸盖组件、发动机和车辆
JPH0245452Y2 (ja)
JP2003328711A (ja) エンジンの動弁装置
JP3612410B2 (ja) バルブガイド
JPH0138277Y2 (ja)
JPH08334055A (ja) 内燃機関用ピストン構造

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080829

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101214

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110705