JP2008510964A - マルチチャネル、マルチスペクトル型撮像分光計 - Google Patents

マルチチャネル、マルチスペクトル型撮像分光計 Download PDF

Info

Publication number
JP2008510964A
JP2008510964A JP2007528038A JP2007528038A JP2008510964A JP 2008510964 A JP2008510964 A JP 2008510964A JP 2007528038 A JP2007528038 A JP 2007528038A JP 2007528038 A JP2007528038 A JP 2007528038A JP 2008510964 A JP2008510964 A JP 2008510964A
Authority
JP
Japan
Prior art keywords
light
spectrometer
incident
dispersion
light incident
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007528038A
Other languages
English (en)
Other versions
JP2008510964A5 (ja
Inventor
ジュリアン,ジェイソン,ピー.
ディドナ,ケビン,エム.
ミルナー,ダーリン,ピー.
ミケシュ,トーマス,エル.
ミリガン,スコット,ディー.
バノン,デイビット,ピー.
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Headwall Photonics Inc
Original Assignee
Headwall Photonics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Headwall Photonics Inc filed Critical Headwall Photonics Inc
Publication of JP2008510964A publication Critical patent/JP2008510964A/ja
Publication of JP2008510964A5 publication Critical patent/JP2008510964A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0202Mechanical elements; Supports for optical elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/0208Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using focussing or collimating elements, e.g. lenses or mirrors; performing aberration correction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/021Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using plane or convex mirrors, parallel phase plates, or particular reflectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/0218Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using optical fibers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/0237Adjustable, e.g. focussing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0291Housings; Spectrometer accessories; Spatial arrangement of elements, e.g. folded path arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0294Multi-channel spectroscopy
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0297Constructional arrangements for removing other types of optical noise or for performing calibration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/04Slit arrangements slit adjustment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators
    • G01J3/18Generating the spectrum; Monochromators using diffraction elements, e.g. grating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/2823Imaging spectrometer

Abstract

マルチチャネル、マルチスペクトル型撮像分光計は、それぞれが2以上の入力チャネルの各々用である2以上の入力スリット又は他の光入力装置を有する。入力スリットは、互いに垂直及び水平方向に変位されている。垂直変位は、2つのチャネルからのスペクトルが、静止画像面上の単一画像センサ上で、互いに垂直方向に変位されるようにする。水平変位は、それぞれの入力チャネルからの入射光ビームが、異なるそれぞれの入射角で凸状格子に衝突し、異なるそれぞれのスペクトル範囲を持つ別々のスペクトルを生成するようにする。反転型分光計は、回折によって、光の波長を、異なる角度及び次数で、入射光ビームに沿ってほぼ後方に分散させる凸状格子を有する。単一の凹面鏡は、入力チャネルと分散スペクトルの双方を反射する。プリズム、ミラーの組、ビームスプリッタ又は他の光学要素(1又は複数)は、分光計の入力チャネル(1又は複数)を折り返して、入力(1又は複数)が、画像センサの面から遠くへ移動されるようにして、より大きなカメラ又は他の装置が、入力(1又は複数)を遮ることなく、分光計に取り付けられるようにする。搭載機構は、湾曲した光学要素が、ラテラル及びトランスバースの並進によって、ジンバルマウントを要することなく、調整され得るようにする。
【選択図】図15

Description

[関連出願との相互参照]
この出願は、2004年8月19日に出願された“マルチチャネル、マルチスペクトル型撮像分光計”なる名称の米国仮出願第60/602,747号の利益を主張する。
[連邦補助研究または開発に関する表明]
(適用なし)
「発明の背景」
本発明は、撮像分光計に関し、特に小型なマルチチャネル及び/又はマルチスペクトル型撮像同心分光計に関する。
分光計は、輻射、例えば光をエネルギバンド(波長)のスペクトルに分離し、各バンドの相対強度を示す機器である。可視光の場合、分光計は、典型的に、その光を、紫(短波長)光から赤(長波長)光までの範囲を持つスペクトルに分離する。
対象物から反射されるか、それによって放射される電磁エネルギのスペクトルを分析することは、その対象物の化学的組成や物理的特性を識別する助けになる。例えば、天文学では星の化学的組成を分析することに使用される。もう1つの例(“ラマンレーザ分光計”)では、対象物は、レーザによって照射される。レーザ光は、その対象物の原子を励起し、そしてこれら原子は、レーザ光とは異なる、1つの波長又はいくつかの波長の光を放射する。レーザ光の波長と放射された光の波長(1又は複数)を比較することは、その対象物の化学的組成を識別する助けになる。ラマン及び他のレーザ分光学技術は、鉱物及び地質学的サンプル、半導体ウエハ、プロセス製造サンプル及び化学物質、例えば疑わしい生物学又は化学戦用剤を分析することに使用される。スペクトル分析のもう1つの例において、分光計で1つのシーン、例えば偵察機又は衛星から見られたシーンをスキャンすることは、関心のある形状的特徴、例えば鮮明に変更された土壌を検出することに使用できる。そのような分析は、例えば、鮮明に植えられた農作物や最近埋められた地雷を検出する場合に有用である。光学的波長分離能力に基いた製品(例えばマルチプレクサー及びデマルチプレクサー)は、光学的波長スイッチング用の光ファイバ通信システムにおいて、単一の光ファイバ上を搬送される波長分割多重(WDM)チャネルを分離することにも使用できる。
ラマン分析に使用される従来の分光計は、主として高解像度機器の設計に固有の大きな光学焦点距離に起因して、比較的大型で重い実験室ベースの機器である。加えて、従来の分光計は、明瞭に制限された範囲の波長のスペクトルを高い相互分散で生成する。
[発明の簡単な要約]
種々の特徴を持つ分光計が開示される。マルチスペクトル型分光計は、高い相互分散を持つ従来の分光計よりも広い総合範囲の波長にわたってスペクトルを生成することができる。高分散、反転型分光計は、このタイプの従来の分光計よりも小型で軽量である。折り返し入力チャネル光路(1又は複数)を持つ分光計は、大型のカメラ、検出器又は他の装置を、入力チャネル(1又は複数)に干渉することなく、分光計に取り付けることを可能にする。加えて、ジンバルマウントを要することなく、例えば分光計又は撮像システムにおいて、凸面鏡又は他の湾曲した光学要素を調整するための機構が開示される。分光計は、ここに開示される特徴の1以上を有することができる。例えば、折り返し入力チャネル及びミラー調整機構を持つマルチチャネル、マルチスペクトル、高分散反転型分光計は、これら特徴のいくつかを持つ。
マルチスペクトル型分光計は、それぞれが各入力チャネル用である2以上の入力スリット又は他の光入力装置を有する。入力スリットは、互いに垂直に変位されている。垂直変位は、2以上のチャネルからのスペクトルが、画像センサ上で、互いに垂直方向に変位されるようにする。かくして、スペクトルは、単一画像面上で別々に画像化される。入力スリットは、互いに水平にも変位されている。水平変位は、それぞれの入力チャネルからの入射光ビームが、異なるそれぞれの入射角で凸状格子に衝突するようにする。凸状格子におけるこれらの異なる入射角は、スペクトル全てが同じ範囲の角度で回折されるにもかかわらず、異なるそれぞれのスペクトル範囲を持つ2以上のスペクトルを生じさせる。集合的に、これらのスペクトルは、単一格子装置において、単一スペクトルがカバーできるよりも大きな範囲の波長、即ち大きな帯域幅をカバーする。
反転型分光計は、1次分散を入射光ビームに沿ってほぼ後方に生じる凸状格子を有する。かくして、単一の凹面鏡は、入力チャネルと分散スペクトルの双方を反射して、より小型で軽量な分光計を与える。
プリズム、1組のミラー又は他の光学要素(1又は複数)は、分光計の入力チャネル(1又は複数)を折り返して、入力が画像センサの面から遠くへ移動されるようにして、より大きなカメラ又は他の装置が、反転構成において、入力(1又は複数)を遮ることなく、分光計に取り付けられるようにする。
搭載機構は、湾曲した光学要素が、分光計又は他の機器内で、ジンバルマウントを要することなく、調整され得るようにする。搭載機構は、光学要素がラテラル及びトランスバース方向に移動されるようにする。例えば、中央箇所を中心とした小さな偏倚、例えば線形移動は、入射ビーム用の一対のジンバルによって与えられる2つの角自由度を厳密に近似する。
本発明のこれら及び他の特徴、利点、形態及び実施形態は、以下の「発明の詳細な説明」から当業者に一層明らかとなる。
この発明は、「図面」に関連した「発明の詳細な説明」を参照して、より完全に理解される。
[発明の詳細な説明]
2004年8月19日に出願された“マルチチャネル、マルチスペクトル型撮像分光計”なる名称の米国仮出願第60/602,747号の内容は、参照によりここに組み入れられる。
単純化のために、従来技術及び本発明の動作を説明することに可視光が使用される。しかしながら、本発明は、可視光及び不可視光、例えば近赤外線(NIR)、短波赤外線(SWIR)及び紫外線(UV)や、他の波長の電磁エネルギ、更には可視及び不可視エネルギの組み合わせと共に使用可能であり、これらの全ては、ここでは集合的に単純化のために“光”と呼ばれる。
[従来の分光計]
典型的な分光計は、スリット又は他の光入射装置と、到来する光をスペクトルに分散するための光分散要素と、このスペクトルがその上に投影される画像面、例えば画面又は画像センサとを有する。大抵の分光計は、回折格子を光分散要素として使用するが、他の要素、例えばプリズムが使用され得る。
回折格子は、入射光ビームをその構成波長に分散し、これによりスペクトルを生成する。分散とは、光を1つの物理的次元方向に波長に従って分布することを意味する。回折格子は、その格子の表面にエッチング又はミリング加工された複数の厳密に離隔された溝を有する。
回折格子表面は、平坦でも湾曲していてもよい。回折格子の溝は、直線的又は湾曲していて、一定の間隔で平行に、非平行に、又は可変間隔である。図1は、典型的な回折格子100の断面図である。図1に示された回折格子100の溝は鋸歯状であるが、他の形状、例えばシヌソイドを使用してもよい。図1は、入力光ビーム(入射ビーム)102と、回折されたビーム104とを示している。入射ビームの角度はαであり、回折されたビームの角度はβである。与えられた入射角αに対して、回折されたビームの角度βは、隣接する溝間の間隔と、回折された光の波長とに依存する。かくして、各波長は、異なる角度βで回折され、これにより図2に示すように、分散扇200を横切って、入射ビーム102の種々の波長を分散する。分散扇200は、スペクトルを構成する光の波長の連続体を含んでいる。入射角及び回折角は、周知の回折格子定式(1)に従って関連付けられる。
sinα+sinβ=nmλ (1)
回折格子定式(1)において、nは整数であり、mは格子周波数又はピッチであり(即ち、m=1/d、ここでdは隣接する溝間の間隔である)、λは回折されたビームの波長である。かくして、長波長は、比較的小さな角度、例えばβ1で回折され、そして短波長は、比較的大きな角度、例えばβ2で回折される。
図2の挿入図に示されているように、光は各溝から反射される。そのような反射のそれぞれは、別々の光路を作る。2つの平行な経路(例えば経路1及び経路2)の長さが1つの波長の整数倍(iλ、ここでiは整数)だけ異なる場合、建設的干渉は、その波長の光を増強し、破壊的干渉は、他の波長の光を相殺する傾向にある。かくして、経路1及び経路2に平行な経路は、主として単一波長の光を包含する。他の角度で反射された経路は、主として他のそれぞれの波長の光を包含する。
図3は、従来技術のオフナーデザイン分光計300の外皮切断図である。光は、スリット302に入り、そして第1の凹面鏡304によって凸状格子306上に反射される。(単純化のために、図1及び他の図面では、単一光線だけが描かれている。動作時には、スリット(1又は複数)の高さ(1又は複数)によって、更なる光が入れられる。)凸状格子306は、光を波長によって空間的に分散する。即ち、格子上へ入射する光のビームは、その成分波長(色)に分離される。各波長は、入射光が凸状格子306に衝突した点から異なる角度に沿って回折される。例えば、入射光ビーム308について、長波長310は、短波長314が回折される入射点とは異なる角度で、入射点312から回折される。第2の凹面鏡316は、分散された光を画像面318上に集束する。(いくつかのケースでは、単一の大きな凹面鏡表面(図示せず)が2つの別々の凹面鏡304、316の代わりに使用される。)かくして、オフナーデザイン分光計では、光は、M字形の経路を、入力スリット302から、第1の凹面鏡304へ、凸状格子306へ、第2の凹面鏡316へ、そして画像面318上へと追従する。このM字形は、必要なことではないが、凸状格子306を二等分する破線319を中心として対称である。
断面B−Bは、画像面318上に生じたスペクトル320を示している。スペクトル320の高さ322は、スリット302の高さ324(断面A−Aに示されている)に対応する。凸状格子312によって分散された最短波長光326は、スペクトル320の一方の端部に現れ、そして凸状格子によって分散された最長波長光328は、スペクトルの他方の端部に現れる。中間的な波長の光は、連続したスペクトルの2端部間に現れる。凸状格子312によって分散される光の波長の範囲、即ち、最長波長328と最短波長326との差は、その分光計の“帯域幅”と呼ばれる。与えられた凸状格子デザインは、特別なスペクトル帯域幅を生じる。かくして、従来の分光計は、それぞれの凸状格子によって制限される帯域幅を持つ。
[マルチスペクトル型分光計]
本開示に係るマルチスペクトル型分光計は、高い相互分散を持つ従来の分光計よりも大きな帯域幅を与える。図4は、例示的マルチスペクトル(高帯域幅)型分光計400の斜視図である。この分光計400は、2つの入力スリット402及び404と、第1の凹面鏡406と、凸状格子408と、第2の凹面鏡410と、画像センサ412、例えばピクセル化された電荷結合素子(CCD)画像センサアレイとを有する。凹面鏡406及び410と凸状格子408は、球状、放物状、非球面状、トロイダルセグメント、又は他の湾曲した要素である。画像センサ412の出力は、典型的にコンピュータや他の回路(図示せず)に分析又は処理用に与えられる。
凸状格子408は、湾曲した非平行溝を有する収差補正格子であることが好ましい。そのような凸状格子は、凸状ブランクを感光性化合物(一般に“フォトレジスト”と呼ばれる)で被覆し、このフォトレジストを2つの離隔された光源、例えばレーザに曝すことによって、ホログラフィ(又は干渉)格子として形成され得る。干渉パターンは、フォトレジストに記録される。フォトレジストが化学的に現像され、エッチングされると、干渉パターンは、一組の離隔された直線又は湾曲した線からなる表面レリーフをブランクの表面に生じさせる。この結果生じた格子は、米国特許第6,266,140号に開示されているようなシヌソイド型断面形状を有する。この特許の内容は、参照によりここに組み入れられる。その代わりに、直線及び/又は平行な溝及び/又は不等間隔の溝を有する回折格子が使用できる。適切な回折格子は、フィッチバーグ、MA01420所在のヘッドウォール・フォトニクス社(Headwall Photonics, Fitchburg, MA 01420)から入手可能である。
第1の破線414は、第1の凹面鏡408の中心線を示し、第2の破線416は、第2の凹面鏡410の中心線を示す。第3の破線418は、凸状格子408の中心線を示す。3本の中心線414,416及び418は、ほぼ同一平面上にある。光学部品(凹面鏡408及び410と凸状格子408)の球状半径の3つの中心は、この面の回りにほぼ“同心的”である。第4の中心線420も又、他の3本の中心線414,416及び418と同一平面上にある。画像センサ412は、中心線420が画像センサを二等分するように、配設されることが好ましい。また、入力スリット402及び404は、中心線420の互いに逆側に対称的に配設されることが好ましいが、他の配置も受け入れ可能である。特に、両スリット402及び404は、中心線420の同じ側に配設され得る。この場合、画像センサ412は、両スリット402及び404に対し中心線420の逆側に配設される。
2つの入力スリット402及び404は、2つの入力チャネル422及び424の光をそれぞれ分光計400に入れる。2つのチャネル422及び424の光は、第1の凹面鏡406によって凸状格子408上に反射され、この凸状格子は、その光を2つのそれぞれのスペクトルに分散する。これらのスペクトルは、第2の凹面鏡410によって画像センサ412上に反射される。
2つの入力スリット402及び404は、426で示されるように、互いに垂直に変位されている。この垂直変位426の結果、2つの入力チャネル402及び404の光から生じたスペクトル428及び430は、互いに、画像センサ412上で垂直に変位される。このため、2つのスペクトルの少なくともそれぞれの部分は、画像センサ上で重ならない。そして、2つのスペクトルの少なくともこれらの部分は、画像センサ412によって別々に画像化される。
2つの入力スリット402及び404はまた、432で示されるように、互いに水平に変位される。(分光計400の一部分の断面図を示す)図5に示されているように、この水平変位432によって、2つの入力チャネル422及び424からの光は、異なるそれぞれの入射角α1及びα2で凸状格子408に衝突する。これら異なる入射角α1及びα2によって、2つの異なる波長の光は、回折格子定式(1)に従って、各回折角βで回折格子418から回折される。各角度βで回折される第1の入力チャネル422の光は、同じ角度βで回折される第2の入力チャネル424の光よりも長い波長を有する。
かくして、図6に示すように、単一分散扇600にわたって、無数の回折角(β1,β2,β3及びβ4によって例示される)の各々において、2つの異なる波長の光が回折する。第1の入力チャネル422の光からの回折は、第1のスペクトル428を生じ、また第2の入力チャネル424の光からの回折は、第2のスペクトル430を生じる。2つのスペクトル428及び430の長波長極値の経路は、602で示されるように一致する。しかしながら、第1のスペクトル428の長波長極値における光の波長は、異なる入射角α1及びα2に起因して、第2のスペクトル430の長波長極値における光の波長よりも長い。かくして、各々が2つの異なる組の波長を有する2つの異なるスペクトルは、第2の凹面鏡410上に投影され、これにより、画像センサ412上に反射される。
かくして、図7に示すように、一方の入力チャネル422の光から生成されたスペクトル428は、第1の波長の光をスペクトル428の長波長端に有し、また第2の波長の光をスペクトル428の短波長端に有する。加えて、他方の入力チャネル424の光から生成されたスペクトル430は、第3の波長(第1の波長より大きい)の光をスペクトル430の長波長端に有し、また第4の波長(第2の波長より大きい)の光をスペクトル430の短波長端に有する。
1つの実施形態では、凸状格子418の溝ピッチは、ミリメータ(mm)当たり約146溝であり、そして入力チャネル422及び424は、水平に約4,6mmだけ変位されている。この実施形態では、第1チャネルのスペクトル428は、約400ナノメータ(nm)から約1000nmまで延びており、そして第2チャネルのスペクトル430は、約900nmから約1700nmまで延びている。
かくして、2つの入力チャネル422及び424から生成された2つのスペクトル428及び430は、両スペクトルが回折格子418から同じ角度で回折されてはいるが、異なる、おそらく重なった、範囲の波長をそれぞれ有する。この構成は、“マルチスペクトル”型分光計と呼ばれる。
2つのチャネル422及び424のスペクトルに関する波長の総範囲は、いずれかのチャネル単独のスペクトルにおける波長の範囲よりも大きい。単一光源が両入力チャネル422及び424に与えられる場合、光は、従来の、即ち、単一スペクトル型分光計によるよりも広範囲の波長に亘って分析される。例えば、画像センサ412からの出力は、コンピュータや他の回路(図示せず)に与えられ、これらは、2つのスペクトルを単一の高帯域幅のスペクトルに“縫い合わせる”ことができる。
画像センサ412は、2以上のセクションの組み合わせからなることができる。この場合、各セクションのセンサは、異なる技術によって製作され、各セクションは、異なる(おそらく重なった)範囲の波長に対して感度がある。例えば、センサの1つの部分は、シリコンCCD素子を利用することができ、そしてセンサのもう1つの部分は、InGaAs素子を利用することができる。同様に、各々が異なる技術を利用するセンサの組み合わせが使用できる。いずれの場合でも、センサ又はセンサセクションは、ここでは集合的に単一センサアレイと呼ばれる。
あるいは、2つの入力チャネル422及び424からの光を異なる角度で凸状格子418に衝突させる水平変位432の代わりに、又はそれに加えて、2つの入力チャネル422及び424の光ビームは、非平行にされ得る。例えば、スリット402及び404は、非共平面にされ得る。あるいは、光学要素、例えば1以上のミラーが、スリット402及び404を通して投影された光ビームを、平行でないように指向することに使用され得る。
その代わりに、2つの入力チャネル422及び424の光ビームは、同じ角度で凸状格子418に衝突することができる。この場合、2つの入力チャネル422及び424の波長範囲は異なり、かくして異なる波長範囲を持つスペクトルを生成することができる。
図4は、2つのそれぞれの入力チャネル422及び424の光を入れることに使用されたスリット402及び404を示しているが、光入射装置の他の入力構成も可能である。例えば、図8に示すように、複数の光ファイバ800が互いに柱状に垂直に積み重ねられて、入力チャネルの一方の光を入れることができる。光ファイバ800の各々から生成されたスペクトルは、画像センサ412内の別々の組のピクセルによって画像化され得る。かくして、光ファイバ800の各々によって搬送される光は、別々に分析され得る。以下で更に詳細に説明されるように、全ての光ファイバ800が単一光源からの光を搬送することを要する、というものではない。例えば、光ファイバの1以上は、第1の光源、例えばラマンレーザからの光を搬送し、そして光ファイバの1以上の他のものは、もう1つの光源、例えばラマンレーザによって照射される対象物からの光を搬送することができる。もう1つの例では、光ファイバは、複数のテスト箇所にある複数の光収集装置に接続される。
更に、マルチスペクトル型分光計は、2つの入力チャネルに限定されてはいない。図9に示すように、2より多い入力チャネル900が設けられる。各入力チャネル900の入口スリットや、光ファイバの列、又は他の光入射装置は、異なる量(変位1,変位2等)だけ水平に変位され、これにより各入力チャネルからの光が、異なるそれぞれの入射角α1,α2,・・・αNで、凸状格子418に衝突するようにする。先に論じられたように、各入力チャネル900の入口スリットや光ファイバの列等は、典型的に異なる量だけ垂直に変位され、それぞれの入力チャネル900からのスペクトルが、焦点面から離隔されるようにする。例えば、これらのスペクトルは、画像センサ412によって別々に画像化され得る。
各チャネルのスリット又は他の光入射装置が互いに水平及び垂直に変位されているので、各チャネルの光入射装置からの光線は、分光計を通る僅かに異なる(且つ、ある場合には、スペクトル範囲特異な)経路に追従する。しかしながら、全てのスペクトルが同時に単一の焦点面検出器又は一組の焦点面検出器上に画像化されることが好ましい。
[反転型分光計]
図3に関して上述したように、従来のオフナー分光計は、2つの凹面鏡304及び316か、2つのミラーの役割を果たす単一の大きな凹面鏡表面を有する。いずれの場合でも、凹面鏡(1又は複数)のサイズ及び重量は、M字型光路と同様に、従来の分光計を大型で重いものにする。本開示による反転(レトロフレクティブ)型分光計の実施形態は、従来の分光計よりも軽量で小型であり、しかもより高い相互分散を可能にすると共に非常に微細な解像度の測定を容易にする。
図10は、例示的な反転型分光計1000の斜視図である。この分光計1000は、入力スリット又は他の光入射装置1002と、単一の凹面鏡1004と、高相互分散型凸状格子1006と、画像センサ1008とを有する。破線1010は、凹面鏡1004の中心線を示し、破線1012は、凸状格子1006の中心線を示す。2本の中心線1010及び1012は共平面的であり、そして部品の球状中心は、ほぼ同心的である。第3の破線1014もまた、他の2つの中心線1010及び1012と共平面的である。
入力スリット1002は、光を分光計1000に入れる。凹面鏡1004は、光の入射ビーム1016を凸状格子1006上に反射する。凸状格子1006は、関心のある波長を有する入力光について、凸状格子によって生成される分散扇が、入射ビーム1016の角度とほぼ同じ角度に沿って後方に指向された経路1018に追従するように、設計されている。そのような構成は、“反転”的である、又はリトロー条件にあると呼ばれ、出力の主要光線が入力光線に近接又は一致した経路に沿って伝播し、入力及び出力焦点間の分離距離がシステムの焦点距離の約30%未満であることを意味する。分散扇は、単一の凹面鏡1004によって画像センサ1008上に反射される。
図2に関して述べたように、入射ビーム102は分散扇200を生成する。長及び短波長がそれぞれ分散される角度β1及びβ2は、回折格子定式(1)に従って、入射ビーム102の入射角αとそれぞれの波長とに依存する。
sinα+sinβ=nmλ (1)
回折格子定式(1)中のnの種々の(整数)値は、図11に示すように、それぞれの分散扇(一般に“分散の次数”と呼ばれる)を生成する。0(ゼロ)次は、未分散光を含む。即ち、0次は、入射ビーム102の全ての波長を含む反射光である。この技術分野では周知のように、より高次の分散は、より幅広いものであって、それらは、より低次の分散よりも広い分散扇角度を包囲し、そして図11に示すように、ある高次の分散は、低次の分散のいくつかと重なる。
(図10の反転型分光計の断面図を示す)図12Aに示されているように、溝ピッチは、凸状格子1006について選択され、与えられた範囲の入力ビーム波長について、1次分散(例えば、分散1200及び1202)は、それぞれの入射ビーム(例えば、入射ビーム1204及び1206)に沿ってほぼ後方に起こる。例えば、約760から約900nmのスペクトル範囲に対して、約1000溝/mmの溝ピッチが使用され得る。
既知の技術は、1次分散の伝播を最適化することに、即ち1次分散のエネルギの量を最大化することに使用できる。一般的に、このことは、近リトロー光路を利用することによって達成される。この光路では、光の波長λと、隣接する溝間の間隔dは、式(2)によって関連付けられる。
2/3<λ/d<2 (2)
一般的に、1次分散のエネルギを最大化する回折格子は、好ましいものである。しかしながら、関心のある入力波長の範囲と分散の所望の角度によっては、他の次数の分散、例えば負の次数の分散を使用することが好ましいこともある。例えば、2次分散又は−1次(負の1次)分散又は−2次(負の2次)分散を使用することが好ましいこともある。そのような場合、回折格子は、選択された次数の分散のエネルギを最大化するように設計される。
1以上の光トラップが分光計1000内に配設され、選択された次数の分散以外の分散、特に0次分散を捕捉することが好ましい。図13は、適切な光トラップ1300の一部分の断面図である。この光トラップ1300は、複数の羽根、例えば羽根1302を有する。羽根の端部は、1304で示されるような、ナイフの刃のような形状である。光トラップ1300の表面は、光吸収性材料、例えば平塗りの黒色塗料で被覆されている。
反転型分光計は、単一の凹面鏡1004だけを必要とする。更に、光は、半M字形経路に沿って、入力スリット2002から凸状格子1006まで進行する。また、分散された光は、同じ半M字形経路に沿って後方に(図12Bに見られるように)画像センサ1008まで進行する。かくして、図3の従来の分光計300とは異なり、画像センサ1008は、入力スリット1002が配設されているのと同じ回折格子1006の側に配設され、より小型な分光計を生じる。
低分散、ハイパースペクトル(全M字形光路)型の分光計と、高分散、反転(半M字形光路)型の分光計の双方が説明されてきた。これら2つのデザイン間の選択は、関心のある入力波長及び/又は画像化されるべき波長の範囲に基づくことができる。何故ならば、異なる入力波長は異なる分散角を生じるからである。例えば、いくつかの入力波長は、高分散、反転型デザインで有用となる満足な反転分散次数を生じる(即ち、高分散次数における十分なスペクトル範囲を与える)ことがないからである。これらの場合、低分散型の分光計は、より適切になることがある。一般的に、高分散、反転型の分光計は、低分散型の分光計よりも少ないスペクトル帯域幅(即ち、波長の小さな範囲)与える。
[折り返し入力マルチチャネル型分光計]
いくつかの例では、大きな装置、例えばカメラ又は検出器が分光計に取り付けられて、この分光計によって生成された1又は複数のスペクトルを捕獲及び/又は処理する。例えば、画像センサ1008(図10)は、カメラの一部であり得る。そのような場合、カメラ又は他の装置は、入力スリット1002又は他の光入射装置を遮るに十分な大きさになり得る。図14は、入力を遮ることなく、大きなカメラ又は他の装置の取付を可能とするように構成された分光計1400の斜視図である。この分光計1400は、プリズム、ミラー又は他の装置1402を有して、入力の光を凹面鏡1004に向けて反射する。そのような配置は、“折り返し入力チャネル”型分光計と呼ばれる。折り返し入力チャネル型分光計では、入力光は、画像センサの面に直交するのではなく、画像センサ1008の面と平行に、あるいは他の角度で導入される。この結果、如何なるサイズのカメラ又は他の装置でも、入力を遮ることなく、分光計1400に取付可能となる。
この代わりに、プリズム、ミラー又は他の装置1402は、経路1404内に配設され、これにより入力を折り返すのではなく、分光計の出力を折り返すことができる。
折り返し入力チャネル型分光計は、図15に示すように、1より多い入力チャネルを収容するように構成することができる。そのような分光計1500は、2つの入力スリット又は他の光入射装置1502及び1504を有する。図4に関して先に論じられたように、2つの入力スリット1502及び1504は、互いに垂直に変位されている。分光計1500はまた、プリズム、2つのミラー又は他の装置1506を有して、両入力チャネルを凹面鏡1004に向けて折り返す。プリズム又は他の装置1506の面は、図4に関して先に論じられたように、互いに、2つの入力チャネルの水平変位1508を与える。2つのスペクトル1510及び1512は、画像センサ1008上に投影される。
この代わりに、(変形例のマルチチャネル、折り返し入力型分光計の断面図を示す)図16に示されているように、図15に示された単一プリズム1506は、2つの別々のプリズム又はミラー1600及び1602によって置き換えられている。
図17に示されたもう1つの変形例では、1以上のビームスプリッタ1700及び1702が使用されて、入力チャネル1704の光を、それぞれが互いに変位1706された2以上の光のビームに分割する。付加的なビームスプリッタ(図示せず)が使用されると、入力チャネル1704を付加的なビームに分割することができる。最後のビームスプリッタ(例えば1702)は、ミラーによって置き換えられる。全てのビームスプリッタ(及び光学的ミラー)は、入力ビームに対して同じ角度にセットされる必要はない。例えば、各ビームスプリッタ1702及び1704は、それぞれの角度にセットされ得る。この場合、ビームスプリッタによって凹面鏡1004に向けて反射された光のビームは、結局、選択された入射角で凸状格子1006に衝突する。例えば、入射角は、回折格子定式(1)に従って選択され、所望の範囲の波長を有する(且つ所望の分散角を有して、全てのスペクトルが画像センサ1702に衝突する)分散扇を生成する。入力チャネル1704からの光の垂直部分だけが、各ビームスプリッタ1700〜1702によって分割され、各々の分割されたビームが互いに垂直に変位されることが好ましい。このようにして、画像センサ1008上に投影されたスペクトルは、別々に画像化され得る。オプションで、複数の入力チャネル(図示せず)は各々、一組のビームスプリッタ(図示せず)によって2以上のビームに分割され得る。
2より多い入力チャネルは、適切な折り返し要素を使用することによって収容可能である。例えば、図18に示すように、四角錐1800は、4チャネル分光計用の折り返し要素として使用可能である。入力チャネル1802,1804,1806及び1808の各々は、錐1800の三角形状面の異なる1つによって反射される。この場合、2つのチャネルは、図15に示すように、分光計に水平に入射し、そして2つの他のチャネルは、それぞれ分光計に上及び下から入射する。他の方位は、勿論、使用可能である。
[他の機器又はシステムとの相互関係]
図8に関して説明されたように、開示された分光計への入力(1又は複数)は、光ファイバのスタックによって与えられる。与えられたチャネルの光ファイバの全てが単一光源からの光を搬送する、という必要はない。例えば、図19に示すように、多数のプローブ又はヘッド(例えば、プローブ1900,1902及び1904)からの光ファイバ1906は、分光計1908の1以上の入力チャネルに織り込まれる。例えば、プローブ1900〜1904の1以上は、ラマンレーザの校正ソース(図示せず)に接続され、そのプローブの他のものは、テスト中の対象物(図示せず)、例えばレーザによって照射されている対象物から放射された光を収集するように接続される。もう1つの例では、プロセス制御又は監視システムの一部として、各光ファイバ1906は、化学精製所又は研究所実験の異なる部分からの光を収集するように接続される。
図20は、図19の分光計1908の撮像面2004上に投影された例示的スペクトル2000及び2002を示す。サンプル点は、スペクトル2000及び2002上に、波長の単一範囲2006(明瞭化のために2本の破線間に包囲されている)について示されている。この範囲2006内で種々のプローブ1800〜1804に対応した代表的スペクトル点もまた示されている。
光学的波長分離能力に基いた製品(例えばマルチプレクサー及びデマルチプレクサー)は、光学的波長スイッチング用の通信システム、例えば光ファイバ通信システムにおいて、単一の光ファイバ上を搬送される波長分割多重(WDM)チャネルを分離することにも使用できる。この点については、米国特許第6,522,404号に開示されており、その内容は参照によりここに組み入れられる。ここに開示された分光計は、そのような格子ベースの通信スイッチに使用可能である。
[光学要素調整機構]
調整機構は、湾曲した光学要素、例えば凹面鏡、凸面鏡、凸状格子、球状、トロイダル状、バイオニック的又は他の湾曲した光学要素を、分光計又は他の機器内で、ジンバルマウントを要することなく、調整可能にする。1つの実施形態では、2つのマイクロメータ調整、即ちラテラル並進を与えるためのものと、トランスバース並進を与えるためのものは、光学要素を位置決めすることに使用可能である。中央箇所を中心とした小さな偏倚について、そのような線形移動は、1つのジンバルによって与えられる2つの角自由度を厳密に近似する。
図21は、湾曲した光学要素用の調整機構2100の1つの実施形態の斜視図である。2つの螺合されたマイクロメータ調整器2102及び2104は、搭載ブラケット2110のトランスバース2106及びラテラル2108位置をそれぞれセットする。光学要素(2112で仮想的に示されている)は、ブラケット2110上に搭載されている。
図22に示すように、湾曲した光学部品(湾曲したミラー2200によって例示されている)は、調整機構によって位置決めされている。それ故、この光学部品は、ラテラル方向2202且つトランスバース方向に(図から外に延びた軸(図示せず)に沿って)並進可能である。1つの姿勢で、入力ビーム2204はミラー2200に衝突し、そして出力ビーム2206として反射される。図22に示された例の姿勢で、入力ビームはミラー2200の中心に衝突する。
図23は、並進2302された後のミラー2300を示している。このミラーの前の位置は、2304で仮想的に示されている。入力ビーム2204は不変のままである。ミラー2300の並進2302の結果、入力ビーム2204がミラー2300に衝突する点2308におけるミラーに対する法線2306は、変化している。かくして、反射角は変化しており、そして出力ビーム2310は今、デルタ(変化)出力2312だけ変位される。ここで留意されるべきことは、球状ミラーにとって、デルタ出力2312は、法線2314のデルタ(変化)の2倍である、という点である。
1つの実施形態では、光学要素にとって所望の位置に到達すると、光学要素は例えばエポキシ樹脂で定位置に固定される。オプションで、エポキシ樹脂が固化されたら、位置決め機構、例えば上述した2マイクロメータ機構は、取り外し可能になる。
もう1つの実施形態では、搭載機構は、過大サイズの穴を有し、そこを通して搭載ネジが挿入される。ネジの頭部は充分に大きいので、その穴を通って突出することはない。かくして、ネジが緩んでも、光学要素は2次元的(ラテラル及びトランスバース方向)に移動可能である。
この発明は、上述した例示的実施形態を通して説明されてきたが、ここに開示された発明概念から逸脱することなく、説明された実施形態に対する修正及び変形がなされうるものであることは、当業者によって理解されることになろう。例えば、いくつかの実施形態では、スリット又は他の光入射装置は、互いに、水平及び/又は垂直に変位されているものとして説明されてきたが、これらの方位及び方向の基準は、これらの実施形態の構造及び動作の説明を容易にするために使用されているのであって、それらは発明の範囲を制限することを意図したものではない。他の方向の変位及び他の方位が受け入れ可能となるのは、それらが、画像センサ上に投影される各スペクトルの少なくとも一部分を生じ、しかもそのスペクトルがその画像センサ上に投影された他の1又は複数のスペクトルから離隔されている場合に限られる。同様に、他の変位及び方位が受け入れ可能となるのは、それらが、凸状格子に選択された角度で衝突する光ビームを生じる場合に限られる。加えて、開示された特徴の組み合わせ及び下位組み合わせを含む実施形態も可能である。例えば、本開示による分光計は、上述したマルチスペクトル、マルチチャネル、折り返し入力、反転、光トラップ及び/又はミラー搭載の特徴の如何なる組み合わせでも含むことができる。加えて、分光計は、回折格子を含むものとして説明されたが、他の光分散要素、例えばプリズムも使用可能である。従って、この発明は、添付された請求の範囲の精神及び範囲による以外は制限されるものとみなされるべきではない。
従来技術による回折格子の断面図である。 図1の回折格子の他の断面図である。 従来技術による撮像分光計の断面図である。 本発明の一実施形態によるマルチスペクトル型分光計の斜視図である。 図4のマルチスペクトル型分光計の一部分の断面図である。 図4のマルチスペクトル型分光計の他の部分の断面図である。 図4のマルチスペクトル型分光計の、分光計の凹面鏡から見た画像センサの模式図である。 図4のマルチスペクトル型分光計用の代替光入射装置として使用された一列の光ファイバの模式図である。 図4のマルチスペクトル型分光計の他の実施形態の断面図である。 本発明の他の実施形態による反転型分光計の斜視図である。 図1の回折格子の他の断面図である。 図10の反転型分光計の断面図である。 図10の反転型分光計の他の断面図である。 本発明の一実施形態による光トラップの一部分の断面図である。 本発明の一実施形態による折り返し入力チャネル型分光計の斜視図である。 本発明の一実施形態による反転、マルチチャネル、折り返し入力型分光計の斜視図である。 図15の分光計の代替実施形態の断面図である。 図15の分光計の他の代替実施形態の断面図である。 本発明の他の実施形態による代替チャネル折り返し要素の斜視図である。 多数のプローブに接続された分光計の模式図である。 図19の分光計の画像面の模式図である。 本発明の一実施形態による光学要素調整機構の斜視図である。 本発明の一実施形態による調整機構の動作の模式図である。 本発明の他の一実施形態による調整機構の動作の模式図である。

Claims (53)

  1. 光分散要素と、
    第1の光集束要素と、
    第1の光入射装置であって、そこに入射した光が、第1の光集束要素によって、第1の入射角で、光分散要素上に案内されるように位置決めされた第1の光入射装置と、
    第2の光入射装置であって、そこに入射した光が、第1の光集束要素によって、第1の入射角とは異なる第2の入射角で、光分散要素上に案内されるように位置決めされた第2の光入射装置と、
    撮像面と、
    光分散要素によって分散された光を撮像面上に案内するように位置決めされた第2の光集束要素とを備え、
    第1及び第2の光入射装置と、第1及び第2の光集束要素と、光分散要素は、第1の光入射装置からの分散光によって撮像面上に生成された第1のスペクトルの少なくとも一部分が、第2の光入射装置からの分散光によって撮像面上に生成された第2のスペクトルの少なくとも一部分から離隔されるように、位置決めされていることを特徴とするマルチスペクトル型分光計。
  2. 第1及び第2の光入射装置は、それぞれの第1及び第2のスリットを規定する請求項1に記載の分光計。
  3. 第1の光入射装置は、第1列の光ファイバからなり、
    第2の光入射装置は、第2列の光ファイバからなる請求項1に記載の分光計。
  4. 光分散要素は、回折格子からなる請求項1に記載の分光計。
  5. 回折格子は、収差補正回折格子からなる請求項4に記載の分光計。
  6. 回折格子は、複数の湾曲した非平行溝を規定する請求項4に記載の分光計。
  7. 回折格子は、複数の直線的な等間隔の溝を規定する請求項4に記載の分光計。
  8. 回折格子は、ホログラフィ格子からなる請求項1に記載の分光計。
  9. 光分散要素は、プリズムからなる請求項1に記載の分光計。
  10. 第1及び第2の光集束要素は、それぞれの凹面鏡からなる請求項1に記載の分光計。
  11. 第1及び第2の光集束要素は、単一の凹面鏡からなる請求項1に記載の分光計。
  12. 第1及び第2の光集束要素は、それぞれの第1及び第2のレンズからなる請求項1に記載の分光計。
  13. 撮像面は、電子撮像装置からなる請求項1に記載の分光計。
  14. 電子撮像装置は、電荷結合素子(CCD)からなる請求項13に記載の分光計。
  15. 撮像面は、カメラからなる請求項1に記載の分光計。
  16. 撮像面は、チャネルセレクターからなる請求項1に記載の分光計。
  17. 光分散要素からの少なくとも1つの選択された次数の分散の分散光を捕捉するように位置決めされた光トラップを更に備える請求項1に記載の分光計。
  18. 第1の光入射装置と第1の光集束要素の間で、第1の光入射装置に入射する光の経路中に配設された第1の折り返し光学要素と、
    第2の光入射装置と第1の光集束要素の間で、第2の光入射装置に入射する光の経路中に配設された第2の折り返し光学要素と
    を更に備える請求項1に記載の分光計。
  19. 第1及び第2の折り返し光学要素は、単一のプリズムからなる請求項18に記載の分光計。
  20. 第1及び第2の折り返し光学要素は、それぞれの第1及び第2のプリズムからなる請求項18に記載の分光計。
  21. 第1及び第2の折り返し光学要素は、それぞれの第1及び第2のミラーからなる請求項18に記載の分光計。
  22. 第1の折り返し光学要素は、少なくとも1つの第1のビームスプリッタからなり、
    第2の折り返し光学要素は、少なくとも1つの第2のビームスプリッタからなる請求項18に記載の分光計。
  23. 第1及び第2の折り返し光学要素は、単一の四角錐からなる請求項18に記載の分光計。
  24. 光分散要素であって、その上に選択された入射角で入射する入射光の選択された範囲の波長に対し、また選択された次数の分散に対し動作可能であり、入射光を分散して、選択された次数の分散の光が入射光の経路に沿って、入射光の経路から約20度の範囲内で、後方に分散されるようにした光分散要素と、
    光集束要素と、
    第1の光入射装置であって、そこに入射した光が、光集束要素によって、選択された入射角で、光分散要素上に案内されるように位置決めされた第1の光入射装置と、
    第1の光入射装置が配設されている側と同じ光分散要素の側に配設された撮像面とを備え、
    第1の光入射装置と、光集束要素と、光分散要素は、選択された次数の分散の光が光集束要素によって撮像面上に案内されるように、位置決めされていることを特徴とする反転型分光計。
  25. 選択された次数の分散は、1次の分散である請求項24に記載の分光計。
  26. 選択された次数の分散は、2次の分散である請求項24に記載の分光計。
  27. 選択された次数の分散は、負の1次の分散である請求項24に記載の分光計。
  28. 選択された次数の分散は、負の2次の分散である請求項24に記載の分光計。
  29. 選択された次数の分散の光は、入射光の経路に沿って、入射光の経路から約10度の範囲内で、後方に分散される請求項24に記載の分光計。
  30. 選択された次数の分散の光は、入射光の経路に沿って、入射光の経路から約5度の範囲内で、後方に分散される請求項24に記載の分光計。
  31. 第1の光入射装置は、第1のスリットを規定する請求項24に記載の分光計。
  32. 第1の光入射装置は、第1列の光ファイバからなる請求項24に記載の分光計。
  33. 光分散要素は、回折格子からなる請求項24に記載の分光計。
  34. 回折格子は、収差補正回折格子からなる請求項33に記載の分光計。
  35. 回折格子は、複数の湾曲した非平行溝を規定する請求項33に記載の分光計。
  36. 回折格子は、複数の直線的な等間隔の溝を規定する請求項33に記載の分光計。
  37. 回折格子は、ホログラフィ格子からなる請求項33に記載の分光計。
  38. 光分散要素は、プリズムからなる請求項24に記載の分光計。
  39. 光集束要素は、凹面鏡からなる請求項24に記載の分光計。
  40. 光集束要素は、レンズからなる請求項24に記載の分光計。
  41. 撮像面は、電子撮像装置からなる請求項24に記載の分光計。
  42. 電子撮像装置は、電荷結合素子(CCD)からなる請求項41に記載の分光計。
  43. 撮像面は、カメラからなる請求項24に記載の分光計。
  44. 撮像面は、チャネルセレクターからなる請求項24に記載の分光計。
  45. 光分散要素からの、選択された次数の分散以外の、少なくとも1つの次数の分散の分散光を捕捉するように位置決めされた光トラップを更に備える請求項24に記載の分光計。
  46. 第2の光入射装置であって、そこに入射した光が、光集束要素によって、選択された入射角とは異なる入射角で、光分散要素上に案内されるように位置決めされた第2の光入射装置を更に備え、
    第1及び第2の光入射装置と、光集束要素と、光分散要素は、第1の光入射装置からの分散光によって撮像面上に生成された第1のスペクトルの少なくとも一部分が、第2の光入射装置からの分散光によって撮像面上に生成された第2のスペクトルの少なくとも一部分から離隔されるように、位置決めされている請求項24に記載の分光計。
  47. 第1の光入射装置と光集束要素の間で、第1の光入射装置に入射する光の経路中に配設された第1の折り返し光学要素と、
    第2の光入射装置と光集束要素の間で、第2の光入射装置に入射する光の経路中に配設された第2の折り返し光学要素と
    を更に備える請求項46に記載の分光計。
  48. 第1及び第2の折り返し光学要素は、プリズムからなる請求項47に記載の分光計。
  49. 第1及び第2の折り返し光学要素は、それぞれの第1及び第2のプリズムからなる請求項47に記載の分光計。
  50. 第1及び第2の折り返し光学要素は、それぞれの第1及び第2のミラーからなる請求項47に記載の分光計。
  51. 第1の折り返し光学要素は、少なくとも1つの第1のビームスプリッタからなり、
    第2の折り返し光学要素は、少なくとも1つの第2のビームスプリッタからなる請求項47に記載の分光計。
  52. 第1及び第2の折り返し光学要素は、単一の四角錐からなる請求項47に記載の分光計。
  53. 光分散要素であって、その上に選択された入射角の範囲内で入射する入射光の選択された範囲の波長に対し、また選択された次数の分散に対し動作可能であり、入射光を分散して、選択された次数の分散の光が入射光の経路に沿って、入射光の経路から約20度の範囲内で、後方に分散されるようにした光分散要素と、
    光集束要素と、
    第1の光入射装置であって、そこに入射した光が、光集束要素によって、選択された入射角の範囲内の第1の入射角で、光分散要素上に案内されるように位置決めされた第1の光入射装置と、
    第2の光入射装置であって、そこに入射した光が、光集束要素によって、選択された入射角の範囲内の、第1の入射角とは異なる第2の入射角で、光分散要素上に案内されるように位置決めされた第2の光入射装置と、
    第1及び第2の光入射装置が配設されている側と同じ光分散要素の側に配設された撮像面と、
    第1の光入射装置と光集束要素の間で、第1の光入射装置に入射する光の経路中に配設された第1の折り返し光学要素と、
    第2の光入射装置と光集束要素の間で、第2の光入射装置に入射する光の経路中に配設された第2の折り返し光学要素とを備え、
    第1及び第2の光入射装置と、光集束要素と、光分散要素は、
    選択された次数の分散の光が光集束要素によって光分散要素から撮像面上に案内され、且つ
    第1の光入射装置からの分散光によって撮像面上に生成された第1のスペクトルの少なくとも一部分が、第2の光入射装置からの分散光によって撮像面上に生成された第2のスペクトルの少なくとも一部分から離隔されるように、
    位置決めされていることを特徴とするマルチスペクトル、反転、折り返し入力型分光計。
JP2007528038A 2004-08-19 2005-08-19 マルチチャネル、マルチスペクトル型撮像分光計 Pending JP2008510964A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US60274704P 2004-08-19 2004-08-19
PCT/US2005/029522 WO2006023712A2 (en) 2004-08-19 2005-08-19 Multi-channel, multi-spectrum imaging spectrometer

Publications (2)

Publication Number Publication Date
JP2008510964A true JP2008510964A (ja) 2008-04-10
JP2008510964A5 JP2008510964A5 (ja) 2008-09-25

Family

ID=35968197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007528038A Pending JP2008510964A (ja) 2004-08-19 2005-08-19 マルチチャネル、マルチスペクトル型撮像分光計

Country Status (4)

Country Link
US (1) US7518722B2 (ja)
EP (1) EP1784622A4 (ja)
JP (1) JP2008510964A (ja)
WO (1) WO2006023712A2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009535621A (ja) * 2006-04-28 2009-10-01 コーニング インコーポレイテッド モノリシックオフナー分光器
JP2014510292A (ja) * 2011-04-04 2014-04-24 コーニング インコーポレイテッド 複数視野のハイパースペクトルイメージング装置およびこれを使用する方法
JP2019530876A (ja) * 2016-10-13 2019-10-24 エアバス・ディフェンス・アンド・スペース・エスアーエス 複数のスペクトル測定バンドを有する分光光度装置

Families Citing this family (70)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7116848B2 (en) * 2000-04-07 2006-10-03 Exfo Electro-Optical Engineering Inc. Optical spectrum analyzer using a diffraction grating and multi-pass optics
US7490664B2 (en) * 2004-11-12 2009-02-17 Halliburton Energy Services, Inc. Drilling, perforating and formation analysis
US7330258B2 (en) 2005-05-27 2008-02-12 Innovative Technical Solutions, Inc. Spectrometer designs
US7545446B2 (en) * 2005-08-27 2009-06-09 Hewlett-Packard Development Company, L.P. Offner relay for projection system
CN101384945B (zh) * 2006-02-22 2012-12-05 Itres研究有限公司 光学多路复用成像系统及操作方法
US20080024871A1 (en) * 2006-02-22 2008-01-31 Itres Research Limited Optically multiplexed imaging systems and methods of operation
DE102006015269A1 (de) * 2006-04-01 2007-10-25 Carl Zeiss Microimaging Gmbh Spektrometrisches Messsystem und Verfahren zur Kompensation von Falschlicht
US7485869B2 (en) 2007-02-27 2009-02-03 Metrosol, Inc. Prism spectrometer
US7684037B2 (en) * 2007-02-27 2010-03-23 Metrosol, Inc. Spectrometer with collimated input light
US7579601B2 (en) 2007-02-27 2009-08-25 Metrosol, Inc. Spectrometer with moveable detector element
US7382498B1 (en) 2007-04-30 2008-06-03 Raytheon Company Two-channel imaging spectrometer utilizing shared objective, collimating, and imaging optics
US8571368B2 (en) 2010-07-21 2013-10-29 Foro Energy, Inc. Optical fiber configurations for transmission of laser energy over great distances
US9360631B2 (en) 2008-08-20 2016-06-07 Foro Energy, Inc. Optics assembly for high power laser tools
US9089928B2 (en) 2008-08-20 2015-07-28 Foro Energy, Inc. Laser systems and methods for the removal of structures
US9244235B2 (en) 2008-10-17 2016-01-26 Foro Energy, Inc. Systems and assemblies for transferring high power laser energy through a rotating junction
US9027668B2 (en) 2008-08-20 2015-05-12 Foro Energy, Inc. Control system for high power laser drilling workover and completion unit
US9242309B2 (en) 2012-03-01 2016-01-26 Foro Energy Inc. Total internal reflection laser tools and methods
US9664012B2 (en) 2008-08-20 2017-05-30 Foro Energy, Inc. High power laser decomissioning of multistring and damaged wells
US8627901B1 (en) 2009-10-01 2014-01-14 Foro Energy, Inc. Laser bottom hole assembly
US8424617B2 (en) 2008-08-20 2013-04-23 Foro Energy Inc. Methods and apparatus for delivering high power laser energy to a surface
US20120261188A1 (en) 2008-08-20 2012-10-18 Zediker Mark S Method of high power laser-mechanical drilling
US10301912B2 (en) * 2008-08-20 2019-05-28 Foro Energy, Inc. High power laser flow assurance systems, tools and methods
US9347271B2 (en) 2008-10-17 2016-05-24 Foro Energy, Inc. Optical fiber cable for transmission of high power laser energy over great distances
US9267330B2 (en) 2008-08-20 2016-02-23 Foro Energy, Inc. Long distance high power optical laser fiber break detection and continuity monitoring systems and methods
US9669492B2 (en) 2008-08-20 2017-06-06 Foro Energy, Inc. High power laser offshore decommissioning tool, system and methods of use
US9138786B2 (en) 2008-10-17 2015-09-22 Foro Energy, Inc. High power laser pipeline tool and methods of use
US9719302B2 (en) 2008-08-20 2017-08-01 Foro Energy, Inc. High power laser perforating and laser fracturing tools and methods of use
US9080425B2 (en) 2008-10-17 2015-07-14 Foro Energy, Inc. High power laser photo-conversion assemblies, apparatuses and methods of use
US9074422B2 (en) 2011-02-24 2015-07-07 Foro Energy, Inc. Electric motor for laser-mechanical drilling
EP2350711A2 (en) * 2008-10-20 2011-08-03 Ningbo Yuanlu Electro-Optics, Co., Ltd. Spectrometers with aberration-corrected concave diffraction gratings and transmissive aberration correctors
WO2010056668A1 (en) * 2008-11-11 2010-05-20 Bae Systems Information And Electronic Systems Integration Inc. Optical multiplexer/demultiplexer
US8464794B2 (en) 2009-06-29 2013-06-18 Halliburton Energy Services, Inc. Wellbore laser operations
US8783361B2 (en) 2011-02-24 2014-07-22 Foro Energy, Inc. Laser assisted blowout preventer and methods of use
US8720584B2 (en) 2011-02-24 2014-05-13 Foro Energy, Inc. Laser assisted system for controlling deep water drilling emergency situations
US8783360B2 (en) 2011-02-24 2014-07-22 Foro Energy, Inc. Laser assisted riser disconnect and method of use
US8684088B2 (en) 2011-02-24 2014-04-01 Foro Energy, Inc. Shear laser module and method of retrofitting and use
WO2012024285A1 (en) 2010-08-17 2012-02-23 Foro Energy Inc. Systems and conveyance structures for high power long distance laster transmission
US8757822B2 (en) * 2011-01-25 2014-06-24 Ocean Optics, Inc. Astigmatism compensation in spectrometers using non-spherical mirrors
EP2715887A4 (en) 2011-06-03 2016-11-23 Foro Energy Inc PASSIVELY COOLED HIGH ENERGY LASER FIBER ROBUST OPTICAL CONNECTORS AND METHODS OF USE
DE102011080276A1 (de) * 2011-08-02 2013-02-07 Carl Zeiss Ag Spektrometer
IN2014CN02916A (ja) 2011-11-04 2015-07-03 Imec
JP2013183108A (ja) * 2012-03-02 2013-09-12 Sony Corp 照明光学系、分光測定用光照射装置及び分光測定装置
JP2013181926A (ja) * 2012-03-02 2013-09-12 Sony Corp 分光光学系及び分光測定装置
US9594201B2 (en) 2012-07-13 2017-03-14 The University Of North Carolina At Chapel Hill Curved volume phase holographic (VPH) diffraction grating with tilted fringes and spectrographs using same
BR112015004458A8 (pt) 2012-09-01 2019-08-27 Chevron Usa Inc sistema de controle de poço, bop a laser e conjunto de bop
US9030660B2 (en) 2012-09-19 2015-05-12 Raytheon Company Multi-band imaging spectrometer
US20150369665A1 (en) * 2013-02-01 2015-12-24 Tornado Spectral Systems Inc. Multi backend ultra-broadband dispersive spectrometer
EP2857810A1 (en) * 2013-10-02 2015-04-08 Nederlandse Organisatie voor toegepast -natuurwetenschappelijk onderzoek TNO Monolith spectrometer
EP2884247A1 (en) * 2013-12-16 2015-06-17 Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO Spectrometer for generating a two dimensional spectrum
JP6177153B2 (ja) * 2014-02-05 2017-08-09 浜松ホトニクス株式会社 分光器
US10718667B1 (en) * 2014-03-14 2020-07-21 Wavefront Research, Inc. Reflective relay spectrometer
US9958380B2 (en) * 2014-06-30 2018-05-01 Mks Instruments, Inc. Systems, methods, and apparatus for optical hydrocarbon gas composition monitoring
CN104296868B (zh) 2014-10-15 2016-03-02 清华大学深圳研究生院 一种光谱仪的设计方法以及光谱仪
CN104296871B (zh) * 2014-10-22 2016-03-02 清华大学深圳研究生院 一种双入射狭缝光谱仪的设计方法以及双入射狭缝光谱仪
CN104316182B (zh) * 2014-11-07 2016-02-10 清华大学深圳研究生院 一种高分辨率光谱仪的设计方法以及光谱仪
CN104729713B (zh) * 2015-04-14 2018-01-12 中国科学院光电研究院 一种空间外差干涉光谱成像仪
CN104977083A (zh) * 2015-06-29 2015-10-14 海宁艾可炫照明电器有限公司 一种扫描型分光光谱仪
US10221687B2 (en) 2015-11-26 2019-03-05 Merger Mines Corporation Method of mining using a laser
WO2018009967A1 (en) * 2016-07-14 2018-01-18 Commonwealth Scientific And Industrial Research Organisation Apparatus for measuring spectra
CN106525237A (zh) * 2016-10-24 2017-03-22 中国科学院国家空间科学中心 一种交叉车尼尔特纳结构多狭缝多光谱系统
DE102016225344A1 (de) * 2016-12-16 2018-06-21 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. System zur Analyse von elektromagnetischer Strahlung und Bauelement zur Herstellung desselben
EP3385685A1 (en) * 2017-04-06 2018-10-10 ASML Netherlands B.V. Radiation receiving system
CN107727233A (zh) * 2017-10-27 2018-02-23 北京卓立汉光仪器有限公司 一种摄谱仪
US11385182B2 (en) 2018-05-11 2022-07-12 National Research Council Of Canada Hybrid laser-induced breakdown spectroscopy system
CN110888240B (zh) * 2019-11-06 2021-08-27 苏州大学 一种Offner型光谱成像光学系统的快速装调方法
US11506598B2 (en) * 2019-11-29 2022-11-22 Epir, Inc. Compact apparatus for high-speed chemical spectral signature measurement and method of using same
CA3170608A1 (en) * 2020-03-06 2021-09-10 Grant I. Sanden Hyperspectral imaging system for geological sample analysis
US11639873B2 (en) * 2020-04-15 2023-05-02 Viavi Solutions Inc. High resolution multi-pass optical spectrum analyzer
CN112859325B (zh) * 2021-01-11 2022-07-08 无锡微奥科技有限公司 Mems微镜、迈克尔逊干涉系统及光学系统
CN113466132B (zh) * 2021-07-01 2022-04-19 哈尔滨金融学院 一种基于高光谱的水稻稻瘟病循环检测设备

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4494872A (en) * 1980-10-07 1985-01-22 Baylor University Multiple entrance aperture dispersive optical spectrometer
JPH0431720A (ja) * 1990-05-28 1992-02-03 Res Dev Corp Of Japan 2次元物体の分光装置
JPH06129907A (ja) * 1992-10-16 1994-05-13 Hitachi Ltd 2次元像分光装置
JPH1114224A (ja) * 1997-06-17 1999-01-22 Daewoo Electron Co Ltd エアカーテン生成装置を有する冷蔵庫及び冷蔵庫のエアカーテン生成作動制御方法
JPH11142240A (ja) * 1997-11-11 1999-05-28 Jasco Corp 分光装置
JPH11230828A (ja) * 1998-02-12 1999-08-27 Shimadzu Corp エシェル分光器
JP2000186959A (ja) * 1998-12-21 2000-07-04 Leco Corp 共心球分光計
JP2002005739A (ja) * 2001-05-21 2002-01-09 Mitsui Mining & Smelting Co Ltd ツェルニターナ型分光装置
JP2002513144A (ja) * 1998-04-29 2002-05-08 アメリカン ホログラフィック インコーポレイテッド 補正された集光分光計

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4259014A (en) * 1979-04-03 1981-03-31 Princeton Applied Research Corporation Fiber optic polychromator
US4375919A (en) * 1979-04-25 1983-03-08 Baylor University Multiple entrance aperture dispersive optical spectrometer
US4566792A (en) * 1983-02-04 1986-01-28 Shimadzu Corporation Multi-channel spectrophotometric measuring device
JP2791038B2 (ja) * 1988-06-24 1998-08-27 株式会社日立製作所 分光器及びそれを用いた投影露光装置並びに投影露光方法
US6204919B1 (en) * 1993-07-22 2001-03-20 Novachem Bv Double beam spectrometer
US5880834A (en) * 1996-10-16 1999-03-09 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Convex diffraction grating imaging spectrometer
GB9703770D0 (en) * 1997-02-24 1997-04-16 Sira Ltd Imaging spectrometer
US5995221A (en) * 1997-02-28 1999-11-30 Instruments S.A., Inc. Modified concentric spectrograph
EP0942267B1 (de) * 1998-03-11 2006-08-30 Gretag-Macbeth AG Spektrometer
US6181418B1 (en) * 1998-03-12 2001-01-30 Gretag Macbeth Llc Concentric spectrometer
US6522404B2 (en) * 1998-04-29 2003-02-18 Agilent Technologies, Inc. Grating based communication switching
US6100974A (en) * 1998-09-15 2000-08-08 California Institute Of Technology Imaging spectrometer/camera having convex grating
FI109149B (fi) * 1999-09-29 2002-05-31 Valtion Teknillinen Spektrometri ja menetelmä optisen spektrin mittaamiseksi
US6538736B1 (en) * 1999-12-01 2003-03-25 Hach Company Concentric spectrometer with mitigation of internal specular reflections
US6636305B2 (en) * 2001-09-13 2003-10-21 New Chromex, Inc. Apparatus and method for producing a substantially straight instrument image
FR2857746B1 (fr) * 2003-07-16 2005-11-25 Agence Spatiale Europeenne Spectrometre optique miniaturise a haute resolution
US7289209B2 (en) * 2004-07-22 2007-10-30 Eastman Kodak Company Programmable spectral imaging system

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4494872A (en) * 1980-10-07 1985-01-22 Baylor University Multiple entrance aperture dispersive optical spectrometer
JPH0431720A (ja) * 1990-05-28 1992-02-03 Res Dev Corp Of Japan 2次元物体の分光装置
JPH06129907A (ja) * 1992-10-16 1994-05-13 Hitachi Ltd 2次元像分光装置
JPH1114224A (ja) * 1997-06-17 1999-01-22 Daewoo Electron Co Ltd エアカーテン生成装置を有する冷蔵庫及び冷蔵庫のエアカーテン生成作動制御方法
JPH11142240A (ja) * 1997-11-11 1999-05-28 Jasco Corp 分光装置
JPH11230828A (ja) * 1998-02-12 1999-08-27 Shimadzu Corp エシェル分光器
JP2002513144A (ja) * 1998-04-29 2002-05-08 アメリカン ホログラフィック インコーポレイテッド 補正された集光分光計
JP2000186959A (ja) * 1998-12-21 2000-07-04 Leco Corp 共心球分光計
JP2002005739A (ja) * 2001-05-21 2002-01-09 Mitsui Mining & Smelting Co Ltd ツェルニターナ型分光装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009535621A (ja) * 2006-04-28 2009-10-01 コーニング インコーポレイテッド モノリシックオフナー分光器
JP2012230388A (ja) * 2006-04-28 2012-11-22 Corning Inc モノリシックオフナー分光器
JP2013231984A (ja) * 2006-04-28 2013-11-14 Corning Inc モノリシックオフナー分光器
JP2014510292A (ja) * 2011-04-04 2014-04-24 コーニング インコーポレイテッド 複数視野のハイパースペクトルイメージング装置およびこれを使用する方法
JP2019530876A (ja) * 2016-10-13 2019-10-24 エアバス・ディフェンス・アンド・スペース・エスアーエス 複数のスペクトル測定バンドを有する分光光度装置

Also Published As

Publication number Publication date
WO2006023712A3 (en) 2007-06-21
US20060038997A1 (en) 2006-02-23
US7518722B2 (en) 2009-04-14
EP1784622A4 (en) 2009-06-03
EP1784622A2 (en) 2007-05-16
WO2006023712A2 (en) 2006-03-02

Similar Documents

Publication Publication Date Title
US7518722B2 (en) Multi-channel, multi-spectrum imaging spectrometer
US6100974A (en) Imaging spectrometer/camera having convex grating
US5305082A (en) High spatial resolution imaging spectrograph
US7623235B2 (en) Curved grating spectrometer with very high wavelength resolution
US7315371B2 (en) Multi-channel spectrum analyzer
CN102656431B (zh) 光谱仪装置
EP2685304A1 (en) Spectroscopic confocal microscope with aperture stop for increased spatial resolution and parallelized data acquisition
JPH0339572B2 (ja)
JP5517621B2 (ja) 高感度スペクトル分析ユニット
US11764032B2 (en) Apparatus for wavelength resolved angular resolved cathodoluminescence
US8102527B2 (en) Spectrometer assembly
US5973780A (en) Echelle spectroscope
US5579106A (en) Method and apparatus for providing astigmatism-reduced images with spectroscopic instruments
US4850706A (en) Low profile spectral analysis system
CN112345076A (zh) 一种可调整分辨率的摄谱系统和摄谱仪
JPH0431720A (ja) 2次元物体の分光装置
CN110926612A (zh) 一种多通道宽带高分辨光谱仪
KR20150086134A (ko) 미세 회전형 이미지 분광장치
JPH02108929A (ja) 二重分光写真装置
KR20170103959A (ko) 혼성 화상-동공 광학 재포맷기
JPH05281041A (ja) 分光器
US11002603B2 (en) Interlaced diffractive grating
US7839504B1 (en) Multiple order common path spectrometer
KR102287914B1 (ko) 분광기 및 이미징 장치
US7019833B2 (en) Miniature optical spectrometer

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080801

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110125

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110413

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110525

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110602

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110609

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110622

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110630

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110725

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111101